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Abstract

This article presents some new developments in the methodology of an approach to
scoring and equating of tests with binary items, referred to as delta scoring (D-scor-
ing), which is under piloting with large-scale assessments at the National Center for
Assessment in Saudi Arabia. This presentation builds on a previous work on delta
scoring and adds procedures for scaling and equating, item response function, and
estimation of true values and standard errors of D scores. Also, unlike the previous
work on this topic, where D-scoring involves estimates of item and person para-
meters in the framework of item response theory, the approach presented here does
not require item response theory calibration.
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There are ongoing efforts in the theory and practice of measurement on comparing

and bridging concepts and procedures from the classical test theory (CTT) and item

response theory (IRT) in efforts to achieve simplicity in test scoring, equating, and

interpretations under a specific context and purpose of measurement (e.g., Bechger,

Maris, Verstralen, & Beguin, 2003; DeMars, 2008; Dimitrov, 2003, 2016; Fan, 1998;

Hambleton & Jones, 1993; Houston, Borman, Farmer, & Bearden, 2006; Kohli,
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Koran, & Henn, 2015; Lin, 2008; MacDonald & Paunonen, 2002; Oswald, Shaw, &

Farmer, 2015; Raykov & Marcoulides, 2015).

In the context of large-scale assessments with tests of binary items, Dimitrov

(2016) proposed an approach to test scoring and equating, referred to as delta scoring

(D-scoring) which is under successful piloting at the National Center for Assessment

(NCA) in Saudi Arabia. This approach is extended here with procedures for scaling

and equating of D scores, item response function (IRF) on the delta scale, and esti-

mation of true values and standard errors of D scores, without the intermediate role

of IRT calibration. A brief description of the initial delta-scoring method (Dimitrov,

2016) and its extension with new procedures is provided next.

Theoretical Framework

The Conception of ‘‘Delta Scoring’’

Under the ‘‘delta scoring’’ (D-scoring) of tests with binary items, the D score of a

person is based on the person’s response vector weighted by the expected difficulties

of the items for the target population of test takers (Dimitrov, 2016). Specifically, if

pi is the expected ‘‘easiness’’ of item i (the proportion of correct item responses by

the targeted population), the expected item difficulty is di = 1� pi. For a specific test

with n binary items, Dimitrov (2016) defined the D score of person s as a linear com-

bination of the person’s binary scores, Xsi (1/0) weighted by the expected item diffi-

culties,
Pn

i = 1 Xsidi. It should be noted that Dimitrov (2016) used the notation Ds for

this linear combination, but hereafter this notation is used consistently for D scores

on a scale from 0 to 1 to facilitate their interpretation. Specifically, currently adopted

with automated large-scale assessments at the NCA in Saudi Arabia is the Ds scoring

obtained as follows:

Ds =

Pn
i = 1 XsidiPn

i = 1 di

: ð1Þ

The Ds scores range from 0 to 1 (0 � Ds � 1), with Ds = 0 if all items

are answered incorrectly (Xs1 = 0, . . ., Xsn = 0) and Ds = 1 if all answers are correct

(Xs1 = 1, . . ., Xsn = 1). One can interpret the Ds score of a person as the proportion of

the ability required for ‘‘total success’’ on the test (Ds = 1) demonstrated by that per-

son. The resulting scale is referred to as ‘‘delta scale’’ (or just D-scale) as the Ds

score is based on the person’s response vector weighted by expected item difficulties,

di (Greek ‘‘delta’’). It should be noted that the psychometric properties of the origi-

nal D scores (intervalness, reliability, and so forth), presented by Dimitrov (2016),

are preserved with the Ds scores under the linear transformation with Equation (1)1.

As an example, the computation of D scores under Equation (1) is illustrated here

for a hypothetical test of five items with expected item difficulties d1 = 0.20, d2 =

0.35, d3 = 0.50, d4 = 0.65, and d5 = 0.80. Thus, the denominator in Equation (1) isPn
i = 1 di = 0.20 + 0.35 + 0.50 + 0.65 + 0.80 = 2.50, which can be seen as the total
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difficulty of the test. Under this scenario, the response vectors of four persons and

their respective D scores are provided in Table 1.

As can be seen, the second and third persons in Table 1 have the same total score

(X = 3) but different D scores (D2 = 0.48, D3 = 0.60) because of different response

vectors. The score of the first person is D1 = 0 as none of the items is answered cor-

rectly. The fourth person has a perfect score (D4 = 1) as all items are answered cor-

rectly (this person demonstrated 100% of the ability required for total success on the

test).

Estimation of Expected Item Difficulty
Item Response Theory–Based Estimation. In the previous article on delta scoring

(Dimitrov, 2016), the estimation of the expected difficulty of an item, di, is based on

a formula that represents di as a function of IRT item parameters (under the 1PL,

2PL, or 3PL model). Specifically, the expected item ‘‘easiness,’’pi, is obtained as a

function of the item parameters (ai and bi) under the two-parameter logistic (2PL)

model in IRT (Dimitrov, 2003):

pi =
1� erf Xið Þ

2
, ð2Þ

where Xi = aibi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 + a2

ið Þ
p

, erf is the known mathematics function called error func-

tion, ai is the item discrimination, and bi is the item difficulty. Then the expected item

difficulty is computed as di = 1� pi (for more details, see Dimitrov, 2016).

Bootstrap Estimation. To avoid the use of IRT information, the estimation of di for

delta scoring at the NCA is currently based on the method of bootstrapping (Efron,

1979). In fact, both the IRT-based and bootstrap estimation procedures are available

with the computerized system for automated test scoring and equating at the NCA

(SATSE; Atanasov & Dimitrov, 2015). An important advantage of the bootstrapping

is that it does not require assumptions associated with the use of Equation (2) (e.g.,

IRT model fit, normal distribution of the examinees’ ability scores, etc.). Although

with very large samples of examinees (e.g., N . 10,000) the sample-based di can be

used, the bootstrap approach is recommended because it provides more accurate esti-

mates of di along with the distribution of its values across thousands of random sam-

ples from the target population and their standard error, SE(di).

A simulation study under the development of SATSE (Atanasov & Dimitrov,

2015) showed that SE(di) decreases with the increase of the sample size, but in all

cases it reaches its highest value when the population di = 0:5 and decreases when di

approaches 0 or 1. This is illustrated in Table 2 with the results for two cases (N =

1,000 and N = 10,000), with values of the population di ranging from 0.1 to 0.9. For

example, for the case of N = 1,000 the bootstrap estimate of the population di = 0:5is

d̂i = 0:49 (rounded to two decimal digits). However, if one uses just a sample esti-

mate of di, its value can be much less accurate, ranging from 0.33 to 0.67.
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Item–Person Map on the Delta Scale

With the use of Equation (1), the D scores of examinees and the expected item diffi-

culties, di (i = 1, . . . , n), are represented on a same scale (from 0 to 1). Also, the D

scores are conceptually comparable to the expected item difficulties, di, as the D

scores are direct function of di values (see Equation 1). Thus, one can obtain an

Table 2. Bootstrap Estimates of Expected Item Difficulties, With Their Standard Error (SE)
and Distribution Range.

Population di Bootstrap d̂i SE(d̂i) min d̂i max d̂i

N = 1,000
0.90 0.89 0.029 0.79 0.96
0.80 0.79 0.040 0.63 0.89
0.70 0.71 0.044 0.53 0.85
0.60 0.57 0.046 0.46 0.74
0.50 0.49 0.047 0.33 0.67
0.40 0.41 0.046 0.25 0.58
0.30 0.30 0.045 0.19 0.47
0.20 0.19 0.038 0.09 0.35
0.10 0.10 0.029 0.03 0.22

N = 10,000
0.90 0.90 0.009 0.87 0.93
0.80 0.80 0.012 0.76 0.84
0.70 0.70 0.014 0.66 0.74
0.60 0.59 0.015 0.55 0.64
0.50 0.51 0.016 0.46 0.56
0.40 0.40 0.015 0.36 0.45
0.30 0.31 0.014 0.26 0.35
0.20 0.21 0.012 0.17 0.26
0.10 0.10 0.009 0.07 0.13

Note. The bootstrap estimate, d̂i, is the mode of the distribution of d̂i values obtained with a bootstrap

resampling over 1,000 replications.

Table 1. Computation of D Scores for Four Response Vectors on Five Binary Items.

d1 = 0.20 d2 = 0.35 d3 = 0.50 d4 = 0.65 d5 = 0.80

Person Xs1 Xs2 Xs3 Xs4 Xs5

P5
i = 1

Xsidi

P5
i = 1

di D score

1 0 0 0 0 0 0 2.50 0
2 1 1 0 1 0 1.20 2.50 0.48
3 1 0 1 0 1 1.50 2.50 0.60
4 1 1 1 1 1 2.50 2.50 1

Note. The D scores are computed with the use of Equation (1) (s = 1, 2, 3, 4; i = 1, 2, 3, 4, 5).
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‘‘item–person map’’ (IPM) by representing the frequency distributions of the D

scores and di values on the same scale.

As an example, Figure 1 shows the IPM obtained with test data for 3,460 high-

school graduates who took the general aptitude test (GAT) administered by the NCA

in Saudi Arabia (GAT is a standardized test with 72 dichotomously scored items).

Clearly, there is good overlap between the range of examinees’ ability levels, as mea-

sured by their D scores, and the range of expected item difficulties, di (i = 1, . . ., 72).

In general, the interpretation of the IPM on the D-scale is similar to the IPM interpre-

tation in the framework of IRT.

Item Response Function on the Delta Scale

In IRT, the probability for correct response on an item, given the examinee’s ability

on the IRT logit scale, is estimated with the use of an appropriate logistic model. For

example, under the 2PL model this probability is estimated as

P Xsi = 1jusð Þ= eDai us�bið Þ

1 + eDai us�bið Þ ; ð3Þ

Figure 1. Item–person map for D scores and di values (‘‘deltas’’) obtained with data from
the administration of the general aptitude test (GAT) to 3,460 high-school graduates in Saudi
Arabia (GAT consists of 72 dichotomously scored item responses, 1 = correct, 0 = incorrect).
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where Xsi is the binary score of person s on item i (1 = correct answer; 0 =

otherwise), us is the ability of person s (on the logit scale), ai is the item discrimina-

tion, and bi is the item difficulty (D is a scaling factor, with D = 1.7 used to approxi-

mate the two-parameter normal ogive model).

In IRT, Equation (3) is involved in complex sequential procedures for estimating

the item parameters (ai, bi) and the person’s parameter (us) using, say, the marginal

maximum-likelihood parameter estimation with the EM algorithm (MML; Bock &

Lieberman, 1970; Dempster, Laird, & Rubin, 1977). Under the delta scoring method

such complexity is avoided as the estimation of D scores via Equation (1) is based on

bootstrapping of expected item difficulties, di. After the D scores are estimated, the

probability for correct response on an item by person s, given the Ds score of that per-

son on the delta scale (from 0 to 1), is estimated as a predicted item score, X̂si, with

the use of the following 2PL regression2

X̂si = P Xsi = 1jDsð Þ= 1� 1

1 + Ds

bi

� �ai
, ð4Þ

where Ds is the known independent variable (predictor), obtained via Equation (1),

whereas ai and bi are regression coefficients. In fact, P Xsi = 1jDsð Þ is the true score

on item i for a person with score Ds (see Note 3 for the odds of the person’s success

on item i given the person’s Ds score).3

The regression coefficients in Equation (4) are analogous to (yet different from)

the IRT parameters ai and bi in Equation (3). The same notations (ai and bi) are

used in both equations to emphasize the analogy, but in the remaining these nota-

tions will be used only with their meaning in Equation (4), so confusion will be

avoided. In both Equations (3) and (4), bi is the ‘‘location’’ of the item, that is, the

location on the logit or D-scale, respectively, where the probability of correct

response on the item is 0.5 (50% chances for success), whereas ai is the slope of

the response function at the location (item discrimination at bi). It should be noted,

however, ai and bi in Equation (3) are estimated via complex procedures such as

MML within the framework of IRT, whereas ai and bi in Equation (4) are simply

regression coefficients.

True Values and Standard Errors of D Scores

Let Pi Dsð Þ is a short notation of P Xsi = 1jDsð Þ, that is, the probability of correct item

response by a person with a score Ds on the delta scale (see Equation 4). Note that

Pi Dsð Þ is the ‘‘true’’ (expected) value of the observed binary score Xsi for subjects

with a score Ds on the delta scale. On the other side, the ‘‘true’’ (expected) value of

the observed D score, denoted E(Ds), is obtained via Equation (1) by replacing the

observed Xsi scores with their expected values, Pi Dsð Þ, obtained with the use of

Equation (4). That is,
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E(Ds) =

Pn
i = 1 Pi Dsð ÞdiPn

i = 1 di

: ð5Þ

The error associated with the observed score Ds, denoted e(Ds), is the difference

between Ds and its expected value, E(Ds), that is, e(Ds) = Ds2E(Ds). Based on a for-

mula for e(Ds) derived by Dimitrov (2016, appendix A), which is adapted here for Ds

scores obtained via Equation (1), the standard error of Ds can be computed as follows:

SE Dsð Þ=
1Pn

i = 1 di

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1
d2

i Pi Dsð Þ 1� Pi Dsð Þ½ �
q

: ð6Þ

Example 1: Scoring and Item Characteristic Curves on the
Delta Scale

The data for this example come from simulated responses of 3,000 subjects on 20 binary

items under the 1PL model in IRT (Equation 3, with ai = 1) based on the random selec-

tion of (a) subjects’ ability scores, us (s = 1, . . . , 3,000), from the standard normal distri-

bution, us ~ N(0, 1) and (b) item difficulty parameters from a uniform distribution in the

interval from 22.0 to 2.0 (see Table 3 for the selected 1PL item parameters, denoted b�i
to avoid confusion with the regression coefficient bi on the D-scale metric). Using the

simulated binary scores (1/0), the estimation of the expected item difficulties, di (i = 1,

. . . , 20), was performed by using the bootstrap function in MATLAB (MathWorks, Inc.,

2015) with 1,000 replications, taking the mode of the resulting distribution of di values as

an estimate of di (the mode was found to be a slightly more accurate estimate of the pop-

ulation di compared with the mean and median of its sampling distribution; Atanasov,

2016b). The estimates of di (i = 1, . . . , 20) are given in Table 3.

Figure 2 shows the distribution of D scores obtained via Equation (1) with the

simulated binary scores of 3,000 subjects on 20 items, Xsi (s = 1, . . ., 3,000; i = 1,

. . ., 20), and the di values in Table 3. The correlation between these D scores and

the simulated 1PL-based ability values, us, was very high (0.989). The IPM for the

distributions of D scores and di values on the delta scale is provided with Figure 3.

Using the 2PL regression model in Equation (4) for each item separately, with the

binary scores on the item, Xsi (s = 1, . . . , 3,000; i = 1, . . . , 20), as the dependent

variable and the D scores of the subjects as the independent variable (predictor), the

resulting estimates of the regression coefficients for location (bi) and discrimination

(ai = slope at bi) are given in Table 3. For all items, the F-ratio test for data fit of the

regression model was statistically significant, with p \ .0001. The regression analy-

sis was performed with the statistical software MEDCALC (https://www.medcal-

c.org/index.php; other software, such as R, can also be used).

It is worth noting that the correlations among the parameters in Table 3 are almost

perfect, with (a) 0.998 between di and bi, (b) 0.997 between di and b�i , and (c) 0.998

between bi and b�i . This should not be a surprise, given that these three parameters

represent item difficulty from the perspective of different models, namely, classical

(di), IRT (b�i ), and the D-scoring model with Equation (4) (bi).
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As noted earlier, the predicted scores under the 2PL regression model in Equation

(4) serve as estimates of the ‘‘true’’ values of the binary scores Xsi. Thus, by plotting

the predicted scores against the D scores, we obtain item characteristic curves (ICCs)

on the delta scale. For illustration, the ICCs of four items are shown in Figure 4,

namely, Item 6 (the least difficult item, d6 = 0.2284), Item 8 (d8 = 0.3648), Item 20

(d20 = 0.6982), and Item 12 (the most difficult item, d12 = 0.8320). Just like in IRT,

by sum of the ICCs for all 20 items produces a test characteristic curve (TCC) on the

delta scale, that is, the true number-correct responses (NCRs) score on the test.

The standard errors of the D scores, computed with the use of Equation (6), are

depicted in Figure 5. They range from 0.008 to 0.109, with a mean of 0.092 and stan-

dard deviation of 0.020, which indicates high precision of measurement on the delta

scale. As shown in Figure 5, the standard errors, SE(D), are higher (yet relatively

small) in the middle range of the delta scale and decrease toward its ends, with the

decrease being more pronounced with the D scores getting closer to 0. This is a gen-

eral trend for SE(D) estimates on the delta scale (see Dimitrov, 2016).

Equating Test Forms on the Delta Scale

In the context of large-scale assessments at the NCA, multiple test forms are usually

equated to a base form of the test using the method of IRT true score equating under

Table 3. Item Parameters With the Simulation of 20 Items in Example 1.

Item

Item difficulty (1PL simulation) Delta-scale parameters

b�i di ai bi

1 0.4078 0.5984 2.5136 0.5145
2 0.5696 0.6273 2.7825 0.5647
3 21.0610 0.2861 1.5294 0.2053
4 20.2437 0.4541 2.0385 0.3734
5 0.3206 0.5669 2.4222 0.4934
6 21.3762 0.2284 1.3477 0.1563
7 20.9800 0.2992 1.5883 0.2277
8 20.6881 0.3648 1.9164 0.2963
9 20.3526 0.4305 1.8559 0.3423
10 0.2400 0.5617 2.5120 0.4833
11 0.5917 0.6063 2.6368 0.5359
12 1.8891 0.8320 3.7760 0.8090
13 20.2690 0.4305 1.9908 0.3569
14 0.3673 0.5774 2.2533 0.5013
15 20.9681 0.3097 1.4488 0.2208
16 21.2601 0.2598 1.5613 0.1837
17 0.5225 0.5906 2.5973 0.5164
18 21.3356 0.2520 1.4838 0.1813
19 0.9515 0.6877 2.8858 0.6247
20 0.9811 0.6982 2.9520 0.6314
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Figure 3. Item–person map for D scores obtained via Equation (1) with simulated binary
scores of 3,000 subjects on 20 items (di values in Table 3).

Figure 2. Frequency distribution of D scores obtained via Equation (1) with the binary
scores of 3,000 subjects on 20 items generated with simulations under the one-parameter
logistic (1PL) model, from the standard normal ability distribution, us ~ N(0, 1).
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the nonequivalent groups with anchor test (NEAT) design (e.g., Angoff, 1971;

Dorans, Moses, & Eignor, 2010; Kolen & Brennan, 2014; von Davier, Holland, &

Thayer, 2004). This method has advantages over classical methods of test equating

(e.g., see van der Linden, 2013), but its practical use involves procedures that are

very complex and run into technical problems with the mapping of multiple TCCs

(e.g., the Newton–Raphson procedures of tedious iterations where the choice of poor

initial values leads to erroneous solutions; Kolen & Brennan, 2014, p. 194). Such

problems are avoided under the approach of test equating on the delta scale described

next.

The test equating on the delta scale is based on the logic of the item pre-equating

design in IRT (e.g., Kolen & Brennan, 2014). A key task is to rescale the expected

item difficulties of a new test Form X, dX , to the delta scale of Form Y using a set of

common items for the two test forms. Dimitrov (2016) described an approach to this

task with the intermediate role of IRT-based item parameters. However, as the goal

here is to avoid the use of IRT information in delta scoring and equating, the pro-

posed rescaling of dX values is based on the logical assumption of high correlation

between dX and dY values for the common items of the test forms X and Y. This

assumption is tested here with simulated data, but it was also supported in many

Figure 4. Item characteristic curves (ICCs) on the D-scale for four items selected from the
20 simulated items with delta parameters in Table 3: Item 6 (d6 = 0.2284), Item 8 (d8 =
0.3648), Item 12 (d12 = 0.8320), and Item 20 (d20 = 0.6982). The ICCs are obtained via
Equation (4).

814 Educational and Psychological Measurement 78(5)



real-data analyses with large-scale assessments at the NCA (not provided here for

space consideration).

Equating of Form X to Form Y on the Delta Scale

Under high correlation between the dX and dY values for the common items of test

forms X and Y, the rescaling of dX values to the scale of Form Y can be performed as

follows. First, a simple linear regression is used with the dX and dY values of the com-

mon items for Forms X and Y, respectively,

d̂Y = A + BdX : ð7Þ

Second, after the regression coefficients A and B are obtained, Equation (7) is used

with these coefficients and the dX values of all items in Form X. The resulting pre-

dicted values are, in fact, the rescaled dX values, denoted here d�X (i.e., d�X = d̂Y ).

Next, the D scores on Form X, denoted here DX , are transformed to D�X scores on

the scale of Form Y via Equation (1) with the use of the d�X values.

Delta-Equivalency of Test Forms. The comparison of transformed D�X scores of Form X

with DY scores on Form Y is valid under the assumption of delta-equivalency of the

Figure 5. Standard error of measurement of D scores, computed via Equation (6), with the
simulated data for 20 items in Example 1.
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two test forms, which is in place if the sum of rescaled d�X values of Form X is equal

to the sum of dY value on Form Y, that is,
P

d�X =
P

dY . In other words, the same

level of ability is required for total success on each test form. The assumption of

delta-equivalency can be satisfied in the practice of large-scale assessments by taking

it as a restriction with optimization procedures for automated test assembly. For

example, this is achieved with the system for automated test assembly (SATA;

Atanasov, 2016a) designed for large-scale assessments at the NCA in Saudi Arabia,

which ensures that the test forms assembled from a delta-calibrated item pool have

the same number of items, with equal range of di values and practical ‘‘delta-equiva-

lency’’ (sums of di values differing by not more than 0.01).

Equating of Form X to Delta-Calibrated Item Pool

The approach to test equating on the delta scale is particularly efficient in the context

of large-scale assessments when new test forms are assembled from a d-calibrated

item pool. The expected item difficulties of the pool items, denoted here dp, are on a

common scale (one can see the dp values as expected item difficulties for a reference

population of examinees). Now suppose that a new test Form X consists of (a) opera-

tional items, assembled from the pool and (b) some nonoperational items (not used

in the computation of test scores). In this scenario, all operational items of Form X

are common items drawn from a d-calibrated item pool instead of from a single old

Form Y. After administering Form X, the expected item difficulties, dX , are estimated

via bootstrapping.

To compute the D score of an examinee for the administration of Form X,

Equation (1) is used with the response vector of that examinee on the operational

items and their dX values. To place this D score onto the common scale for the refer-

ence population of the pool, Equation (1) is used with the same examinee’s response

vector on the operational items, but this time with their pool values, dp. The resulting

score, denoted here Dp, is reported as the examinee’s test score on Form X. This pro-

cedure can be used with multiple test forms, assembled from the pool so that they

are delta-equivalent, thus, making the examinees’Dp scores comparable across such

test forms.

Rescaling Nonoperational Items to the Pool Scale

Still for the above case of test Form X, another task is to rescale the dX values of the

nonoperational (e.g., trial) items as dp values on the common scale of pool items,

thus, extending the pool with adding these nonoperational items. To achieve this, the

regression Equation (7) is used first with the dX values and their pool counterparts,

dp, for the operational items to estimate the rescaling constants A and B. Then,

Equation (7) is used with the rescaling constants (A and B) and the dX values of the

nonoperational items to obtain their rescaled dp values for the item pool.
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Example 2: Equating of Test Forms on the Delta Scale

The data for this example come from simulated responses of two groups of 2,000

subjects each on 40 binary items. The data were simulated with the use of the 2PL

model in IRT, with the ability distribution being (a) u ~ N(0, 1), for Group 1 and (b)

u ~ N(1, 1), for Group 2. That is, Group 2 comes from a population with higher abil-

ity compared with the population for Group 1. The 2PL item parameters for the

simulated data were selected to produce test forms of equal average difficulty when

presented on a common IRT scale. Thus, simulated were two test forms of equal dif-

ficulty taken by two groups with different abilities on a common IRT scale. Out of

40 items in each group, there were 10 common items. The simulations were repli-

cated 20 times. It should be noted that, although the IRT framework was used for

convenience with data simulations, the test equating approach illustrated here does

not involve IRT parameters. The simulated data for Group 1 are considered here as a

Form Y (base test form) and for Group 2 as a new Form X. The goal is to equate the

D scores of Form X to the delta scale of Form Y. Based on the procedure described

in the previous section, this goal is achieved as follows.

First, estimates of the expected item difficulties dY and dX for the 40 items of

Forms Y and X, respectively, were obtained with bootstrapping for all 20 replications.

To illustrate, dY and dX for one simulation are provided in Table 4, where the first 10

items (in boldface) are common items for the two test forms. The results for the com-

mon items with the simulated data in all 20 replications were practically the same,

with (a) M(dY ) = 0.459 and SD(dY ) = 0.004, for Form Y, and (b) M(dX ) = 0.241 and

SD(dX ) = 0.003, for form X.

Second, the correlation between dY and dX values for the 10 common items were

computed for all 20 simulations. For the common items in Table 4, this correlation is

0.946. For all 20 simulations, the correlations ranged from 0.927 to 0.969 (M = 0.950

and SD = 0.011).

Using the regression in Equation (7) with dY and dX values for the 10 common

items given in Table 4, the rescaling constants were found to be A = 0.207 and

B = 1.061. Then, using the dX values of all 40 items in the equation d�X = 0.207 +

1.061dX , the dX values were rescaled to d�X values on the scale of Form Y (the d�X
values are given in Table 4). Summary statistics for dY , dX , and d�X are provided in

Table 5 for the 10 common items and all 40 items. As the results in Tables 4 and 5

show (see also Figure 6), the expected item difficulties of the common items in

Form X are lower than those in Form Y (dX \ dY ) because Form X was generated

with a higher ability population, u ~ N(1, 1), compared with the population with

Form Y, u ~ N(0, 1). However, note that d�X ’dY for the rescaled common items.

Also, the results in Table 5 for all items show that the rescaled item difficulties of

Form X are almost identical to those of the Form Y in range, mean, and standard

deviation. Thus, the two test forms can be treated as being practically ‘‘delta-equiva-

lent’’ which validates the comparison of their D scores on a common delta scale.

Thus, simulated were two test forms of equal difficulty taken by two groups with dif-

ferent abilities.

Dimitrov 817



Table 4. Rescaling the Expected Item Difficulties of Form X to the Delta Scale of Form Y.

Item Form Y dY Form X dX Form X rescaled d�X

1 0.3976 0.2205 0.4409a

2 0.5630 0.3189 0.5454a

3 0.4843 0.2323 0.4534a

4 0.2874 0.1378 0.3532a

5 0.5354 0.2638 0.4869a

6 0.2874 0.0906 0.3031a

7 0.3976 0.1614 0.3783a

8 0.4803 0.2441 0.4660a

9 0.4961 0.2362 0.4576a

10 0.6772 0.4843 0.7208a

11 0.5669 0.3110 0.5370
12 0.4685 0.2953 0.5203
13 0.4331 0.2126 0.4326
14 0.4921 0.2520 0.4743
15 0.5512 0.2913 0.5161
16 0.5354 0.2638 0.4869
17 0.3386 0.1378 0.3532
18 0.2598 0.1063 0.3198
19 0.2520 0.0827 0.2947
20 0.4724 0.2441 0.4660
21 0.8071 0.5551 0.7960
22 0.8307 0.5866 0.8294
23 0.2953 0.1339 0.3490
24 0.5354 0.2638 0.4869
25 0.3780 0.1457 0.3616
26 0.4331 0.2205 0.4409
27 0.3032 0.1102 0.3240
28 0.4724 0.2677 0.4911
29 0.7874 0.6142 0.8586
30 0.7402 0.5748 0.8169
31 0.2087 0.0787 0.2905
32 0.2323 0.0669 0.2780
33 0.5354 0.3268 0.5537
34 0.2559 0.1102 0.3240
35 0.5433 0.3071 0.5328
36 0.4606 0.2598 0.4827
37 0.7835 0.5591 0.8002
38 0.4409 0.1969 0.4159
39 0.8150 0.6142 0.8586
40 0.6378 0.3583 0.5871

Note. Using the regression d̂Y = A + BdX for the 10 common items (in boldface), the coefficients were

found to be A = 0.207 and B = 1.061. The rescaled expected item difficulties of all 40 items in Form X

are obtained with using the equation: d�X = 0.207 + 1.061dX .
aFor the computation of equated D scores of Form X (via Equation 1), the rescaled d�X for the 10

common items are replaced with their actual values on the Y scale, dY (the remaining 30 items are used

with their d�X values).
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Third, the D scores on Form Y were obtained via Equation (1), using the exami-

nees’ response vectors on Form Y and the dY values in Table 4. The initial (prior to

equating) D scores on Form X were also obtained via Equation (1), with the exami-

nees’ response vectors on Form X and the dX values in Table 4. The equated D scores

on Form X (to the scale of Form Y), denoted D�X , were obtained in the same way, but

using the dY values of the 10 common items and the d�X values of the remaining 30

Figure 6. The di values for the 10 common items on test Form X, prior to their rescaling,
and test Form Y (with the simulated data in Example 2).

Table 5. Summary Statistics of the Expected Item Difficulties of Forms Y and X (Before and
After Equated to Form Y).

Variable Min Max M SD

Common items (n = 10)
dY 0.287 0.677 0.461 0.122
dX 0.091 0.484 0.239 0.108
d�X 0.303 0.721 0.460 0.115

All items (n = 40)
dY 0.209 0.831 0.487 0.173
dX 0.067 0.614 0.273 0.158
d�X 0.278 0.859 0.497 0.168
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items in Table 4. The dY values of the common items are considered here as more

accurate estimates compared with the regression-based d�X estimates of these items (or

even the average of dY and d�X values of the common items).

Descriptive statistics of the D scores on Forms Y and X (prior and after equating)

are provided in Table 6. The comparison of DY and D�X scores is legitimate in this

case because, according to the data simulation design, the two test forms are equiva-

lent in difficulty on their common IRT scale and, thus, they remain equivalent in dif-

ficulty on their common delta scale, that is, the two test forms can be treated as

practically ‘‘delta-equivalent’’ on the delta scale of the base Form Y (
P

d�X ’
P

dY ).

As can be seen, the mean of DY scores is smaller than the mean of D�X scores (0.454

\ 0.674). This indicates higher ability of the examinees on Form X, compared with

those on Form Y, which is entirely consistent with the simulation design for the IRT-

based ability distributions underlying the performance on the two test forms, N(1, 1)

for Form X and N(0, 1) for Form Y.

The standard error of D scores on Form X (prior to equating), SE(DX ), is computed

via Equation (6). As expected with the simulated data, the SE(DX ) values are very

small (see Table 6). This is supported by the high correlation between the D scores

on Form X and their true values, E DXð Þ, namely: r = 0.995. In fact, the squared value

of this correlation represents an estimate of the reliability of the DX scores, that is

r̂XX = 0.9952 = 0.990 (e.g., Allen & Yen, 1979, p. 62). It should be noted that, theore-

tically, the reliability of the D scores equals the reliability of the NCR scores (see

Dimitrov, 2016).

Discussion

This article extends a previous work on an approach to test scoring for binary items,

referred to as delta-scoring (D-scoring; Dimitrov, 2016). Under this approach, the D

score of a person is based on the person’s response vector weighted by the expected

difficulties of the test items, di (delta, hence the name ‘‘delta-scoring’’). It is impor-

tant to emphasize that the di values are expected item difficulties and, therefore, they

Table 6. Summary Statistics of D Scores on Forms Y and X (Before and After Equated to
Form Y).

D scores Min Max M SD

DY 0.000 1.000 0.454 0.237
DX 0.016 1.000 0.637 0.224
D�X 0.030 1.000 0.674 0.212
SE(DY) 0.000 0.075 0.063 0.015
SE(DX) 0.004 0.082 0.070 0.011

Note. D�X corresponds to DX equated to the scale of Form Y (thus, DY and D�X are comparable as they

are on the same scale).
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do not depend on the sample of examinees who took the test. In this sense, the D-

scoring is sample independent. The new features and procedures of D-scoring, rescal-

ing, and equating, which are added here to the previously published work on this

topic (Dimitrov, 2016), are summarized next.

First, the D scores were previously presented as a linear combination of the exam-

inee’s binary scores on the test items weighted by their di values (Dimitrov, 2016,

Equation 3). Now, with the use of Equation (1), the D scores are obtained by divid-

ing this linear combination to the sum of di values of all test items, thus, putting the

D scores on a ‘‘delta scale’’ (from 0 to 1). Also, one can interpret the D score of an

examinee as indicating what the proportion of the ability required for total success

on the test is demonstrated by that examinee. Another advantage of using Equation

(1) is that the D scores of persons and the di values of items are represented on the

same scale, which allows the depiction of ‘‘item–person map’’ (IPM) as an analog of

the IPM in IRT. It should be noted, however, that the properties of D scores, such as

intervalness and reliability, presented by Dimitrov (2016), do not change under their

linear transformation with Equation (1).

Second, the expected difficulty of an item, di, was previously estimated as a func-

tion of IRT parameters of the item (under an appropriate, 1PL, 2PL, or 3PL, model)

via Equation (2) (Dimitrov, 2016). Under the approach used here, di estimates are

obtained via bootstrapping thus avoiding the need of IRT calibration and testing of

assumptions related to the use of Equation (2), such as IRT model fit and (close to)

normal distribution of examinees’ abilities on the IRT scale.

Third, a new feature to D-scoring added here is the use of Equation (4) to define

an IRF on the delta scale, as an analog to the IRF in IRT (e.g., see Equation 3). Just

like in IRT, the regression coefficients in Equation (4) represent the item location, bi,

where the probability of correct item response is 0.5, and item discrimination, ai,

which is the slope at bi. However, the IRT person and item parameters (u, ai, bi) in

Equation (3) are initially unknown and then estimated with the use of complex

sequential procedures, say, using MML estimations. In contrast, under the D-scoring

model with Equation (4), the person parameter, Ds, is known (with its preliminary

estimation via Equation 1) and the item parameters (ai and bi) are simply estimated

as regression coefficients with the logistic regression in Equation (4).

Fourth, with the use of the regression in Equation (4) to obtain the probability of

correct item response across D scores on the delta scale, the true values and the stan-

dard errors of the D scores are now estimated via Equations (5) and (6), respectively,

without the use of IRT estimates of person and item parameters.

Fifth, the rescaling of di values of one test form to the scale of another test form

(or the reference scale of item pool) was previously performed with the intermediate

rescaling of IRT item parameters (Dimitrov, 2016). Such IRT-based rescaling is now

avoided with the bootstrap estimation of di and the use of simple linear regression in

Equation (7) for the rescaling of di.

Sixth, the proposed equating of D scores from multiple test forms to a target scale

is greatly simplified because, after ensuring ‘‘delta-equivalency’’ of the test forms, it
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is sufficient to rescale the item parameters of any test form to the target scale, thus,

avoiding IRT mapping of test characteristic curves and tedious computations and esti-

mation errors associated with the use of Newton–Raphson iterations in such mapping

(e.g., Kolen & Brennan, 2004, p. 177).

Limitations and Future Research

In general, although the D-scoring framework provides some analogs to IRT con-

cepts, such as the IRF with Equation (4) and item–person mapping on the delta scale,

the classical definition of D-scoring (via Equation 1) entails disadvantages compared

with IRT. The main limitation of the D-scoring approach relates to the assumption of

‘‘delta-equivalency’’ of test forms under equating, that is, the sum of the rescaled

expected item difficulties, d�i , should be the same across the test forms being equated.

In other words, the same level of ability is required for total success on each test form

to ensure valid comparisons of D scores across the test forms. As noted earlier, the

assumption of ‘‘delta-equivalency’’ is restrictive, but its practical satisfaction can be

easily achieved in the context of large-scale assessments by using appropriate proce-

dures for automated test assembly. For example, the system for automated test assem-

bly with large-scale assessments at the NCA in Saudi Arabia (SATA; Atanasov,

2016a) provides content representativeness and minimal measurement errors for test

forms assembled from a delta-calibrated item pool under the restrictions that the test

forms have the same number of items, equal range of di values, and practical delta-

equivalency (sums of di values differing by not more than 0.01).

In other scenarios, say, when a new test Form X is equated to an old test Form Y

and delta-equivalency is not in place for the two test forms, it is necessary to adjust

the transformed D�X scores for the difference between the sums of expected item dif-

ficulties of the two test forms. To deal with this drawback, the search for appropriate

adjustment procedures is underway, but their discussion is beyond the scope of the

present article. Another line of future research on D-scoring relates to testing for

item/person fit, scaling features (e.g., the performance of D scores with score patterns

that are ordered according to their Guttman scalability), dependability of criterion-

based classifications, and so forth. For example, under the D-scoring with large-scale

assessment data at the NCA in Saudi Arabia, promising results were obtained with

procedures of EM-based imputations for rescaling of di values, D-scoring for partial

credit scoring rubrics, and D-scoring in multistage testing, but their validation is still

under investigation.

In conclusion, the methodology and procedures of D-scoring, rescaling, and equat-

ing of tests with binary items can be useful to researchers in both theoretical and

empirical studies, as well as to the practice of large-scale assessments in the field of

educational and psychological measurement.
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Notes

1. For report purposes in the framework of large-scale assessments at the NCA, the Ds scores

on the scale from 0 to 1 are transformed to D0s scores on a scale from 0 to 100 by using a

simple linear transformation with a multiplication by 100, that is, D0s = 100Ds. Unlike the

percentile rank score, which indicates the relative performance of a person in regard to the

other test takers, the D0s score has an absolute meaning as it shows what percent of ability

required for ‘‘total success’’ on the test (D0s = 100) is demonstrated by that person.

2. The general form of the regression model with Equation (4) is referred to as four-parameter

logistic regression:

Ŷ = d +
c� d

1 + X
b

� �a ; ð8Þ

where Y is regressed on X, with regression coefficients d = upper asymptote, c =

lower asymptote, b = location, and a = slope at b. Equation (4) is a special case

of Equation (8), where the binary score of a person s on item i, Xsi, is regressed

on the subject’s score Ds, with fixed asymptotes, d = 1 and c = 0, because the

predicted item score, X̂si, can range from 0 to 1. If the item responses involve

pseudoguessing, then the lower asymptote, c, can be freely estimated as a regres-

sion coefficient. Thus, as an analogy to the 3PL in IRT, Equation (4) will be

extended to a three-parameter logistic model.

3. Under the model with Equation (4), a simple algebra reveals the following properties:

3.1 The odds for success on item i for a person s with score Ds, denoted here Osi, are

Osi =
Psi

1� Psi

=
Ds

bi

� �ai

ð9Þ
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3.2 If two persons, with scores D1 and D2, have answered the same item i, the

odds ratio (OR = O1i=O2i) for their success on that item is

OR =
D1

D2

� �ai

: ð10Þ

For example, if D1 = 0:8 and D2 = 0:4 (on the delta scale from 0 to 1) and the

item discrimination is ai = 2, then OR = 4. That is, the odds of the first person are

four times higher than the odds of the second person to answer the item correctly.

For properties of odds and odds ratios for item success under an IRT model,

which is beyond the scope of this article, the reader may refer to the IRT litera-

ture (e.g., Hambleton, Swaminathan, & Rogers, 1991, pp. 81-89).
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