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Abstract: Dendrites of pyramidal neurons integrate different sensory inputs, and non-linear 

dendritic computations drive feature selective tuning and plasticity. Yet little is known about 

how dendrites themselves represent the environment, the degree to which they are coupled to 

their soma, and how that coupling is sculpted with experience. In order to answer these 25 

questions, we developed a novel preparation in which we image soma and connected dendrites in 

a single plane across days using in vivo two-photon microscopy. Using this preparation, we 

monitored spatially tuned activity in area CA3 of the hippocampus in head-fixed mice running 

on a linear track. We identified “place dendrites”, which can stably and precisely represent both 

familiar and novel spatial environments. Dendrites could display place tuning independent of 30 

their connected soma and even their sister dendritic branches, the first evidence for branch-

specific tuning in the hippocampus. In a familiar environment, spatially tuned somata were more 

decoupled from their dendrites as compared to non-tuned somata.  This relationship was absent 

in a novel environment, suggesting an experience dependent selective gating of dendritic spatial 
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inputs. We then built a data-driven multicompartment computational model that could capture 

the experimentally observed correlations. Our model predicts that place cells exhibiting branch-

specific tuning have more flexible place fields, while neurons with homogenous or co-tuned 

dendritic branches have higher place field stability. These findings demonstrate that spatial 

representation is organized in a branch-specific manner within dendrites of hippocampal 5 

pyramidal cells. Further, spatial inputs from dendrites to soma are selectively and dynamically 

gated in an experience-dependent manner, endowing both flexibility and stability to the cognitive 

map of space. 

 

One sentence summary: Hippocampal pyramidal cells show branch-specific tuning for different 10 

place fields, and their coupling to their soma changes with experience of an environment. 

 

Results: 

Pyramidal neurons across the brain integrate inputs from multiple sources upon their 

dendritic arbors. However, it is widely observed that somatic activity of these neurons is highly 15 

selective for features of the external environment. How can a neuron with variable input exhibit 

selective output? Despite years of research regarding the organization and feature selectivity of 

these neural representations at the somatic level, the subcellular computations underlying them 

remains largely elusive. Although somata tend to be tuned to only one feature, at least two 

studies in the cortex show branch-specific tuning, whereby sensory (1) and motor (2) features are 20 

differentially represented even by sister dendritic branches. Does the soma integrate these varied 

inputs from different dendrites, or does it select for certain inputs over others to dictate the 

executive output of the neuron? 

 A prominent feature selectivity observed in the hippocampus across many mammalian 

species is the spatial tuning of place cells (3, 4). Place cells show highly selective activity at 25 

distinct locations of space (place fields) as an animal navigates its environment (5). These 

neurons derive spatial information from both the entorhinal cortex and within the hippocampus 

through inputs upon their dendrites. These inputs are compartmentalized such that different input 

streams target different segments of the dendritic tree (6-10). Although we lack experimental 

evidence for dendritic branch-specific tuning in hippocampal neurons, place cells provide an 30 

ideal substrate to study the relationship between dendritic and somatic signals. If individual 
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dendritic branches of a given place cell were selectively tuned to distinct spatial locations, it 

would allow a single place cell to hold multiple pieces of spatial information. This would vastly 

increase the computational power of the single cell, enabling the rapid formation of tuned place 

cells as an animal explores a novel environment (11-14) or the remapping of existing place fields 

to report distinctions between environments (12-15).  5 

Non-linear activity such as dendritic spikes enhance feature selectivity in the visual 

cortex (16) and drive long term synaptic plasticity even independent of somatic spiking in the 

barrel cortex (17). Non-linear dendritic spikes have long been implicated in the induction of 

cooperative long-term plasticity in vitro (18-21) and complex spike burst activity in the soma in 

vivo (22-24), a signature feature of place cells and synaptic plasticity. In area CA1 of the 10 

hippocampus, intracellular somatic recordings  reveal that injected subthreshold depolarization 

(25) as well as dendritic spike-like waveforms (22) are capable of converting silent cells into 

place cells . Further, multi-planar imaging of CA1 pyramidal neurons and basal dendrites shows 

that greater prevalence of dendritic spikes across multiple branches correlates with better place 

field precision and stability (26). Despite these pathbreaking findings emphasizing the role of 15 

dendritic spikes in predicting the spatial tuning of place cells, there remains a fundamental gap in 

our understanding of the dendrite to soma transformation relationship and the subcellular 

organization of spatial representation in the long-term. This gap stems from a lack of 

experimental data that can directly and simultaneously read out the activity of place cell somata 

and large expanses of their connected apical and basal dendrites over extended periods of time. 20 

Such experimental data would enable us to unequivocally address important unanswered 

questions: How compartmentalized is the representation of the spatial environment at the level of 

a single cell? Do individual dendritic branches represent place information in a long-term stable 

manner?  Are they capable of having independent place fields from their soma? As in the cortex 

(1, 2), can hippocampal place cells show branch-specific tuning to spatial locations? And if so, 25 

how do place cells that typically show single place fields in their somatic output, integrate and/or 

gate variable inputs from their dendrites?  

 To fill this gap we developed a cranial window preparation (Fig 1A-B, D), that captures a 

novel field of view with somata and connected basal and apical dendrites of the same cells in a 

single plane: allowing us to perform multi-compartment imaging at high speed (29 fps) and 30 

resolution (1.085 µm/ pixel) in head-fixed mice running on a linear treadmill (27-29)(Fig 1C). 
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To monitor calcium activity of both somata and dendrites (Fig 1E), we virally expressed 

GCaMP6f in pyramidal neurons of CA3 (Fig S1), an area that harbors place cell ensembles (5) 

exhibiting high degrees of stability as well as flexibility in a context-dependent manner (14, 30). 

Figure 1: Imaging preparation reveals branch-specific tuning. A. Schematic of CA3 cranial window. B. Coronal 

slice from an animal that underwent an injection of GCaMP6f into CA3 and cranial window implantation. Scale 

bar = 400 µm. C. Schematic of experimental paradigm. D. Example field of view, insets showing dendritic 

branching of two example cells. E. Example traces from cell boxed in orange in D. Green traces are somatic, 

magenta are apical dendrites, and blue are basal dendrites. Asterisks denote examples of events generated in the 

dendrite. F. Example of independently tuned basal dendrite (top) and an example independently tuned apical 

dendrite (bottom). Each arrow represents a significant calcium event for the session shown. G. Example of tuned 

dendrites from a cell that exhibits branch-specific tuning. The soma and each dendrite pictured all meet spatial 

tuning criteria. Basal dendrite 2 has a different place field than the others. H. Example of branch-specific tuning 
for a cell from an animal that had sparse GCaMP6f expression, ensuring non-overlapping labeled dendrites. I. 

Proportion of tuned and non-tuned soma showing branch-specific tuning on day 1 and day 12 of imaging (* 

denotes a p < 0.05) 
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Of note, the subcellular nature of spatial representation in CA3 is understudied and all the more 

vital given recent studies postulate weighted spatial input from CA3 may drive plasticity 

necessary for context dependent formation of place cells in area CA1 (21). With this chronic 

preparation we were able to track the same pyramidal cells along with their dendrites across 

several days (e.g., Fig 4A) and varied spatial environments. Thus, we could examine how 5 

dendrites in CA3 represent space and the nature of their input-output coupling relationship with 

the soma. We trained mice to run for sucrose rewards randomly distributed along the track (27, 

28), and subsequently exposed the mice to a textured treadmill belt for a period of 12 days to 

elicit place cell activity. We performed two-photon imaging from days 5-12 of exposure to the 

same environment (belt A, Familiar, F) in 8 mice (days 1-12 in 3 mice). Somatic and dendritic 10 

segments were manually labeled, and dendrites were assigned to parent soma based on visual 

inspection (0-21 dendritic branches imaged per cell; see Methods for segmentation procedure). 

This connectivity was verified using a shuffle analysis (Fig S2-3). Calcium (Ca2+) activity was 

monitored by changes in fluorescence (df/f) (31) for each segment. Not all calcium events were 

global to all compartments of a cell (apical, basal, somatic). Many events were observed in 15 

individual dendritic compartments unaccompanied by a time-locked event in the soma. These 

Ca2+ transients must be locally generated in the dendrite and not propagated strongly enough to 

the soma to elicit an action potential (Fig 1E).  

 We then looked for spatial tuning of both dendrites and somata. Based on their calcium 

activity, they were classified as spatially tuned or non-tuned (32) using a criterion combining 20 

spatial information (29) and tuning specificity (28). We found that 41% of imaged dendrites of 

CA3 pyramidal neurons (43% of 1356 apical dendrites, 29% of 1210 basal dendrites, p = 

0.5776, Mann Whitney test) visible in the field of view show calcium events that are stably 

tuned to space across laps in a session (Fig 2B-C). We call these spatially tuned dendrites “place 

dendrites”. We found no differences in spatial tuning quality between apical and basal 25 

dendrites, although apical dendrites are slightly more active than basal dendrites (Fig S4, 

median AUC, apical = 63.97, basal AUC =49.03, p < 0.0001, Mann-Whitney test). One may 

expect to find place dendrites in cells with spatially tuned  soma, as place cells have been shown 

to fire in bursts (5, 15, 33) and such burst firing drives strong back-propagating action potentials 

into the dendrites (34).  30 

  Contrarily, both apical and basal dendrites could have spatial tuning independent of their 
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soma in that: either soma and dendrite are tuned to different spatial locations, or a dendrite is 

tuned to space when its soma is not (Fig 1F). Out of all place dendrites, 79% shared the same 

place field as their connected soma, while 21% of place dendrites were tuned to an independent 

spatial location. Thus, dendrites do not simply reflect the back-propagated spatially tuned 

activity of their soma, but can indeed hold forward-propagating, independent spatial information. 5 

This opens up the possibility that different dendrites of the same cell could hold separate spatial 

information. We found that branch-specific tuning does occur in CA3 pyramidal cells (Fig 1G), 

the first evidence for branch selectivity reported in the hippocampus. Although we separated 

Ca2+ signals from overlapping somata and dendritic segments (31), we wanted to verify that the 

branch selectivity we observed was not an outcome of improper calcium signal de-mixing and 10 

inability to discern overlap in the z-plane in our densely labeled data set. We thus validated this 

finding in an independent data set where we expressed GCaMP6f very sparsely in area CA3, 

such that individual neurons and their dendritic arbors were labeled with no overlap between 

cells (Fig 1H, S5). Data from this group showed similar spatial tuning metrics to the densely-

expressing set (Fig S6-7). In this sparsely labeled data set where we could image and connect 15 

104 dendritic branches to their somata (5 cells) unambiguously, we found all of the cells display 

branch-specific spatial tuning during at least one session. This provides in vivo evidence not only 

for locally generated dendritic Ca2+ events in the hippocampus but also for decoupling of 

dendritic activity from the somatic activity in terms of feature selectivity. 

Our data showing branch-specific tuning is in direct contrast to the idea of branch spike 20 

prevalence, whereby many dendritic branches are homogenously tuned (co-tuned) to the same 

spatial location, that has been previously reported (26). These two can coexist if we consider 

their change with time, whereby backpropagated action potentials (bAPs) from a tuned soma 

may homogenize dendritic activity over time (35, 36).  In fact, intracellular somatic recordings 

show that the spatial tuning of inputs became more homogenous the more an animal explored an 25 

environment (24). We thus hypothesized that branch-specific tuning should decrease in the place 

cell population with experience. To examine this, we compared the proportion of neurons that 

show branch-specific tuning (at least two dendrites with independent place tuning) on day 1, 

when the environment is novel, versus day 12 when the environment has become familiar. As we 

expected, the proportion of spatially tuned place cells exhibiting branch-specific tuning declines 30 

from 55% on day 1 of exposure to an environment to 19% on day 12 (p<0.05, Mann-Whitney 
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Figure 2: Characterization of spatial tuning: soma-dendrite decoupling in place cells in a familiar environment. 

A. Schematic showing experimental paradigm. B. Spatial tuning heatmaps for tuned somata and tuned dendrites 

in the familiar environment. Data from either compartment provides a thorough tiling of the space. Cells are 

ordered according to the location of their place fields. C. Spatial tuning heatmaps for tuned somata and tuned 

dendrites in the novel environment. D. Population vector correlation for two familiar sessions (top) and a 

familiar and novel session (bottom), showing a considerable degree of remapping in the novel environment. E. 

Spatial tuning metrics for somata and dendrites in familiar versus novel conditions. Far right: Ability of somata 

and dendrites to predict whether a soma is a spatially tuned. F. Spearman’s correlation scores between soma 

dendrite pairs for soma that are either tuned or non-tuned in familiar vs. novel environments. G. Spearman’s r 

correlation scores for tuned soma and their dendrites within the place field of that soma and outside of the place 

field of that soma in both familiar and novel environments. H. Left: Separating the within field correlation bar 

in the familiar environment (empty blue in G) into two groups highly correlated pairs (soma-dendrite pairs that 

had a Spearman’s r of 0.7 or greater throughout the session and shared a place field) and lowly correlated pairs 

(soma-dendrite pairs that had a Spearman’s r below 0.7 throughout the session) Middle: Separating the outside 

of field correlation bar in the familiar environment (filled blue in G) into the same two groups. Right: Greater 

proportion of highly correlated dendrites in familiar environments as compared to novel I. Mean square error 

obtained by fitting the somatic tuning curve as a weighted or a simple sum of the dendritic tuning curves for 

familiar and novel environments. A weighted sum of dendritic spatial tuning curves is a statistically significant 
better match for somatic tuning curves than a simple average in familiar environments, but not novel. Data that 

are not normally distributed are plotted as boxplots with a point at the mean and error bars around that point for 

the SEM. Normally distributed data are plotted as bar graphs. (** denotes a p < 0.01, *** denotes a p < 0.001, 

**** denotes a p<0.0001) 
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test) of exposure to the same environment. This value is unchanged for non-tuned cells (62% on 

day 1, 70% on day 12, p = 0.5254, Mann-Whitney test) (Fig 1I), suggesting that subcellular 

organization of spatial tuning changes specifically in place cells with experience.  

Branch-specific encoding of spatial information likely contributes to efficiency of spatial 

representation wherein de novo place cells exist upon first exposure to a novel environment (11-5 

14). To examine how spatial tuning in dendrites might differ with novelty, we imaged the same 

field of view and compared tuning features of place somata and dendrites as animals randomly 

foraged in familiar (F) versus novel (N) track belt environments For this, we imaged the same 

field of view in a novel environment (belt B) one hour after imaging in the familiar environment 

on day 12. Whether we used somatic or dendritic activity, we observed place ensembles that 10 

spanned the entire length of both the familiar and novel treadmill tracks (n = 631 tuned somata, 

907 tuned dendrites) (Fig 2B-C). This shows that as an ensemble, dendritic branches can 

independently represent the entire spatial environment. We compared the population vector (PV) 

correlation of somatic activity on two different days of exposure to the familiar environment 

(0.4302) to the PV correlation between activity in the familiar vs. novel environments on day 12 15 

(0.0415) (Fig 2D) and found a significant drop in PV correlation (p <0.0001, Mann Whitney 

test). These results validate that the spatially tuned activity of the CA3 place cell population is 

sufficiently stable across days within the same environment, while introducing the animals to a 

novel spatial environment triggers an extensive reorganization of the place cell ensemble. This is 

in agreement with the vast literature showing distinct neural representations of different 20 

environments (37)  

While there exists a distinct representation of the novel spatial environment from the 

early trials of the session, we found that the proportion of spatially tuned dendrites and soma are 

both reduced in the novel compared to familiar environment (somata, F: 41%, N: 14%; dendrites 

F: 37%, N: 13%) (Fig 2E). Next, we compared activity and spatial tuning properties of dendrites 25 

versus somata in these two conditions while controlling for number of laps run and speed of the 

animal (Fig S9A). Both place somata and place dendrites have higher activity rate in the familiar 

environment compared to the novel environment (mean AUC/min: somata, F: 126.7, N: 86.04, 

p<0.001; dendrites, F: 87.5, N: 46.83, p<0.0001, Mann-Whitney test with Bonferroni correction 

for multiple comparisons) (Fig S8). In terms of spatial tuning metrics (Fig 2E), both soma and 30 

dendrites showed drastically reduced spatial information content in the novel environment 
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compared to the familiar (somata, F: 0.059, N: 0.031  p < 0.0001; dendrites, F: 0.053, N: 0.027, 

p < 0.0001; Kruskal-Wallis test with multiple comparisons) but no change in their tuning 

specificity (median: somata, F: 0.62, N: 0.70, p = 0.1288;dendrites, F: 0.75, N: 0.69, p = 0.7391; 

Kruskal-Wallis test with multiple comparisons) or place field width (median somata F: 17.68 

cm, N: 18.68 cm, p = 0.0649; dendrites, F: 18.45 cm, N: 19.08 cm, p = 0.3334, Kruskal-Wallis 5 

test with multiple comparisons) (Fig S9).  

Beyond the context-related differences, our data provide the first glimpse of how 

dendrites themselves render a representation of the spatial environment. Thus, we closely 

examined how the activity and place tuning properties of the CA3 dendritic place ensemble 

compares to that of the somatic place ensemble within each condition (Familiar and Novel). We 10 

observed that somatic activity was significantly higher than their dendritic counterparts in both 

familiar (p<0.0001) and novel (p<0.01) environments (Fig S8). We found that while in both 

conditions dendritic place fields are as precise as those exhibited by somata in their place field 

width (dendrites vs. somata, F: p = 0.05, N: p = 0.8083) (Fig S9), place dendrites have slightly 

poorer spatial information score (p < 0.001, dendrites vs. somata) in the novel environment and 15 

tuning specificity (p<0.0001) in the familiar environment. 

Previous studies have implicated that dendritic activity is predictive of feature selectivity 

in both cortex (16) and hippocampus (22, 35). To directly test the accuracy with which the 

calcium activity of dendrites could predict the spatial tuning of their corresponding soma, we 

used our data to train a machine learning algorithm. We trained an Artificial Neural Network 20 

(ANN) classifier using the mean calcium event profiles across space (of dendrites or somata) as 

input to predict the label (place or non-place) of each cell (Fig S10). We then tested the classifier 

on an unseeded dataset and compared its prediction accuracy to the true labels (see Methods). 

We found that dendritic activity could indeed predict somatic tuning in the familiar condition 

(dendrites AUC: 0.68±0.019), albeit with significantly lower accuracy than their soma (soma 25 

AUC: 0.86±0.013, p<0.0001; two-way ANOVA with multiple comparisons, Bonferroni’s 

correction). While somatic activity remained predictive of spatial tuning in the novel 

environment, albeit with low accuracy, dendritic activity could no longer predict somatic spatial 

tuning (Fig 2E) (soma: 0.69±0.063 AUC, dendrites: 0.50±0.094 AUC; p<0.0001; two-way 

ANOVA with multiple comparisons, Bonferroni’s correction). Together, these data show lower 30 

quality spatial tuning in a novel environment as compared to a familiar. This suggests a possible 
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role for experience-dependent sculpting of inputs to improve the quality of spatial tuning over 

time. Repeated exposure to the same environment can foster coincident activity dependent long-

term plasticity that results in strengthening of spatial inputs (24). In contrast, one-time exposure 

to a novel environment may be insufficient to support mechanisms that boost spatial inputs and 

filter out non-spatial “noise”.  5 

In area CA1, in vivo current injection of a dendritic spike like waveform into the soma of 

silent cells or even place cells at any location on the track belt triggers the formation of a place 

field at that given location (21). This supports our finding that a cell may encode multiple spatial 

locations through dendritic branch-specific spatial tuning. It also implies that spatial tuning 

selectivity of a soma likely arises as a function of selective propagation or coupling of dendritic 10 

input to the soma rather than specificity of overall input content to the cell. Even in CA3 place 

cells that only have one place field, we show evidence for dendritic branch-specific tuning (Fig 

1G-H). If all selectively tuned dendritic branches propagated to the soma, that soma would 

appear untuned - firing at many different locations in space. Thus, we hypothesized that for the 

development of a high-fidelity place cell, signal flow from dendrites to soma has to be 15 

selectively sculpted.  

To examine this, we first investigated the relationship between dendritic and somatic 

activity of place cells versus non-place cells. From the same dataset as above, we computed 

correlation scores (Spearman’s r) between calcium traces for each dendrite and its 

corresponding soma across the entire session. We found a very low correlation between 20 

dendritic and somatic activity in tuned cells (median r = 0.3536 for tuned, n = 450 tuned cells) 

as compared to non-tuned cells in the familiar environment (median r = 0.5910 for non-tuned, n 

= 230 p<0.0001, Mann-Whitney test, two-tailed) (Fig 2F, left). These correlation relationships 

might arise from higher activity in non-tuned cells than tuned cells, simply increasing the 

statistical probability of correlation. In fact, we found the exact opposite in our data: tuned cells 25 

show greater activity in both their somata and dendrites than non-tuned cells, indicating that 

activity rate is not a confound. (Fig S8, somatic mean AUC/min: tuned: 72.76, non-tuned cells: 

41.73, p < 0.0001; dendritic mean AUC/min tuned cells: 52.97, non-tuned cells: 45.90, p = 

0.0161, one-way ANOVA). To assess whether this low correlation in tuned cells was an artifact 

of comparing dendritic activity from outside the somatic place field, we extracted correlation 30 

scores for time windows only when the animal was within the place field of the soma.  
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Surprisingly, this decoupling was further exacerbated within the place field of the soma, a time 

window when we expected the soma to be most receptive to all dendritic activity to allow for 

strong spatial tuning (26) (median r = 0.1575 for within field, r = 0.3672 for outside of field, 

p<0.0001, Mann Whitney test, two- tailed) (Fig 2G, left). On closer examination this low 

correlation is quite intuitive because we are examining the correlation from all dendrites, even 5 

those that are either untuned or independently tuned place dendrites. Thus, we next looked at 

only soma-dendrite pairs that showed high correlation throughout the session (Spearman’s r of 

at least 0.7, n = 171). In all cases these were dendrites that were tuned to the same spatial 

location as their soma. The in-field correlation for these pairs was very high (median r = 

0.7985) while the in-field correlation for all other dendrite soma pairs (n = 279) was nearly zero 10 

(r = 0.0227) (Fig 2H, left), suggesting that there is indeed open signal flow between the soma 

and select dendrites active only during a specific spatio-temporal window (p<0.0001, Mann 

Whitney test, two-tailed). We wondered if this decoupling from most dendrites was a feature 

that predisposed cells to become place cells, or was something that developed over time as cells 

became tuned. To answer this question, we looked to the novel environment, where new place 15 

cells are formed rapidly. Interestingly, the difference in dendrite-soma coupling between tuned 

and non-tuned cells observed in familiar environments was not present in the novel environment 

(median r = 0.3243 for tuned, 0.4155 for non-tuned, n = 54 for tuned, n = 406 for non-tuned p = 

0.4951 for novel) (Fig 2F-G, right). Moreover, there was a significantly higher proportion of 

dendrites that showed high correlation with their soma in the familiar environment (0.3538) 20 

than in the novel (0.1935, p = 0.0099) (Fig 2H, right). This suggests that over time, as an animal 

familiarizes itself with an environment, a place soma is isolated from signal flow from the 

majority of its dendrites, while developing a strong correlation in its activity with select place 

dendrites.  

To validate the idea that inputs from different dendrites propagate with different 25 

efficiencies, we next compared whether weighted averages of dendritic activity were closer to 

somatic activity of a given cell than simple averages. We performed a linear regression on the 

dendritic tuning curves to find the optimal weights to minimize the error between the weighted 

sum of the dendritic traces and the corresponding somatic tuning curves for each cell. We 

performed this analysis only in our sparsely-expressing dataset where we could unambiguously 30 

assign a large number of dendrites to their corresponding soma. In familiar environments, the 
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resulting errors in the weighted average set were significantly lower than those derived from a 

simple averaging of the dendritic curves (weighted = 0.0174, simple = 0.0484, p = 0.0460, 

Wilcoxon test) (Fig 2I, left) consistent with heterogeneous propagation efficiencies from 

dendrites to soma. In novel environments, the weighted average did not significantly out-

perform the simple average (weighted = 0.0267, simple = 0. 0520, p = 0.25, Wilcoxon test) (Fig 5 

2I, right). Although more data might reveal a significant difference in novel environments, our 

results indicate a more homogeneous propagation than in familiar environments. 

Next, we simulated multi-compartment CA3 neurons with dendritic tuning properties 

constrained by our data (Fig 3A, see methods). To simulate familiar environments, well-tuned 

dendritic activity propagated to the soma with a non-uniform propagation efficacy such that 10 

some dendrites were more strongly connected with the soma than others. In novel 

environments, dendrites were only weakly tuned, and propagation efficacy was more 

homogenous. Under both conditions, dendritic and somatic place fields spanned the entire 

environment (Fig 3B-C), with noisier place fields in novel environments. The emergence of 

somatic place fields from diversely tuned dendritic place fields suggests two contributing 15 

mechanisms: a bias in dendritic tuning to a specific location and non-uniform dendrite-to-soma 

propagation efficiency (Fig S11).  

We then used our simulations to investigate the mechanisms yielding the observed 

dendrite-soma correlations. By controlling the level of non-place tuned inputs, our model 

reproduced the levels of correlation in both novel and familiar environments (Fig 3D-F, see also 20 

Fig S11 and Methods). When compared to familiar environments, the difference between tuned 

and non-tuned cells was smaller in novel environments, but significant (Fig 3D, right). The 

difference between simulation and experiment in novel environments might be a reflection of the 

higher number of samples in our simulations compared to the number of samples in our 

experiments. Interestingly, the higher correlations outside of place fields were a direct result of a 25 

global, non-spatial input delivered equally to all compartments in our neuron model. If these 

“non-place” inputs were removed, soma-dendrite correlations became higher within place fields 

than outside of place fields (Fig S11). These combined experimental and modeling results 

suggest an experience-dependent change in the coupling between place soma and their dendrites. 

Based on these results, we posit that from many place dendrites, only activity of a few 30 

“preferred” dendrites is propagated forward, and with repeated somatic coactivity, this input is 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.916643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.916643


 

13 

 

perhaps potentiated via plasticity mechanisms over time. This could lead to the observed 

decoupling between most “non-preferred” dendrites of place- tuned soma that is seen initially 

(Fig 3G). In the context of many tuned dendrites, blockade of signal flow from “non-preferred” 

spatial inputs could be achieved via depression as bAPs from burst-firing tuned somata 5 

repeatedly occur out of sync with the forward propagating, differentially tuned signal in the 

Figure 3: Multi-compartment modeling of spatial coding in CA3 place cells. A. Cartoon of CA3 multi-

compartment model. B. Spatial tuning heatmaps for the model generated data in the familiar environment. C.  

Spatial tuning heatmaps for the model generated data in the novel environment. Analogous analysis to A, using 

modeling generated data. D. Analogous analysis to Fig 2E, using modeling generated data. E. Analogous analysis 

to Fig 2F, using modeling generated data. F. Analogous analysis to Fig 2G, using modeling generated data. G. 

Schematic of potential mechanism of correlation relationships observed in the familiar environment. A proposed 

role for gating forward and potentiation of “preferred” input in a familiar environment. H. Schematic of potential 
mechanism of correlation relationships observed in the novel environment whereby potentiation has not yet 

developed. (*** denotes a p < 0.001, **** denotes a p<0.0001) 
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dendrite; or from branch-selective inhibitory gating of “non-preferred inputs” (38). On the 

contrary, in a novel environment, perhaps plasticity has yet to occur and thus the decoupling is 

absent (Fig 3H). 

To further examine this experience-dependent reorganization, we tracked the same 

dendrite-soma pairs across all 12 days (Fig 4A) and computed correlations between each pair on 5 

each day. We found that on day 1 of exposure to an environment (when it is novel), tuned soma 

showed similar correlation with their dendrites as was seen in the novel data above (0.4823 on 

day 1, 0.5003 in novel, p = 0.8158, Mann-Whitney test). Upon repeated exposure to the 

environment across several days, this correlation dropped for all animals until it reaches a trough 

on day 5, 6, or 7. After this trough was reached, the correlation began to rise again. In a novel 10 

environment that was experienced on day 12, the correlation was again high relative to the values 

seen in the familiar environment (Fig 4B). Interestingly, the prevalence of branch-specific tuning 

across time bore an inverse relationship to these correlations (Fig 4C). An increased prevalence 

of branch-specific tuning coincided with a decreased correlation between soma-dendrite pairs 

and vice versa. This is consistent with our conceptual framework in which dendrites tuned to a 15 

different location than their somata need to be decoupled from the soma to maintain fidelity of 

spatial tuning output of that cell. (Fig 4D, left). Over time, however, the depression of non-

specific inputs would render a cell more homogenously tuned (Fig 4C-D, right) and the average 

soma-dendrite correlation would be increased, as is seen on days 7-12 in our data (Fig 4B, left). 

Another possibility that could lead to the changes we observe in correlation and branch-specific 20 

tuning across time is a decrease in stability of dendritic activity. To rule this out, we computed 

PV correlations of the activity of tuned somata and dendrites across time comparing the activity 

for each day to that of day 5 (Fig 4E, S11). We found that place somata and place dendrites show 

no differences in stability, except for a single day in which the dendritic ensemble showed 

slightly greater stability than the somatic ensemble (PV corr dendritic: 0.2395, somatic: 0.2008,  25 

p < 0.05, Kruskal-Wallis test with multiple comparisons). This indicates that a decline in 

dendritic stability is unlikely to be the cause of the observed decrease in branch specific tuning 

across time. 

What is the benefit of branch-specific tuning if it just dissipates over time? Is it simply an 

intermediate step for achieving spatial tuning of a cell or does it play a specific role in shaping 30 

ensemble dynamics? Some place cells remain highly stable across time, while others are more 
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Figure 4: Experience-dependent changes in tuning. A. The same field of view and an example cell across 6 days 

(days 5-10 for this example). B. Tracking the correlation between soma and dendrites across time for tuned soma 
(left) and non-tuned soma (right). There is an observed trough in the data from the tuned soma, with the day of 

lowest correlation varying by animal. C. Proportion of cells that show branch-specific tuning across time. Of note, 

this curve shows an inverse relationship to the soma-dendrite correlations plotted across time. D. Schematic of 

potential mechanism of correlation relationships observed across time. With increased familiarity, 

backpropagating activity homogenizes tuning of cell compartments. E. PV correlations across time with day 5 as a 

reference show no differences between stability of place soma and place dendrites. F. Place cells that exhibit 

homogenous tuning on day 5 are more stable across time than cells that exhibit branch-specific tuning, showing 

that branch selective tuning may confer a propensity for plasticity. Spatial information is unchanged across time, 

indicating that the decrease in stability is not a byproduct of worse spatial tuning. G. Place field stability and (left) 

and flexibility (right) for simulations under branch prevalence and branch selective tuning conditions. Branch 

selective tuning confers flexibility to the spatial code.  (* denotes a p <0.05, ** denotes a p < 0.01, **** denotes a 
p <0.0001) 
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flexible. Previous studies show that increased homogeneity of dendritic activity leads to more 

stable, precise place fields (26). Conversely, does the degree of flexibility depend on the ability 

of a cell to represent multiple spatial locations within its dendritic arbor? To examine this, we 

split the somatic data by whether the cell exhibited branch-specific tuning or homogenous 

tuning. We found that the homogenously tuned cells showed greater stability across time (Fig 4F, 5 

left) as compared to cells exhibiting branch-specific tuning. To test if the greater drop in PV 

correlation in the branch specific tuning set was due to a degradation in the quality of tuning 

across time, we quantified their spatial information content across days 6-12 and found no 

accompanying change (Fig 4F, right). Taken together this means that although cells may change 

their place fields from day-to-day (contributing to the drop in PV correlation), they are equally 10 

well tuned across familiar days (as seen by consistently high spatial information score). This 

suggests that branch-specific tuning may confer flexibility to the map of cognitive space without 

degrading the quality of the cognitive spatial map. We explored this idea by simulating two 

groups of cells, one in which cells exhibited branch-specific tuning, and one in which dendrites 

were homogenously tuned (deemed “branch prevalence” dominated). We then compared these 15 

two conditions and assessed their effect on place field stability and flexibility. As we expected, 

the model neurons with homogenously tuned dendrites showed greater place field stability, but 

were inflexible to change (stability = 0.98, flexibility = 0.005) (Fig 4G, left). The model 

incorporating branch-specific tuning was flexible enough to remap (stability = 0.53, flexibility = 

0.17) (Fig 4G, right), a phenomenon observed widely in CA3 (14, 30, 37, 39). Branch specific 20 

tuning could thus provide a dynamic range of spatial feature selectivity to place cells enabling 

rapid remapping (as seen by flexible place tuning) for otherwise static representations of space. 

In summary, we find high fidelity place dendrites in area CA3 belonging to both tuned and 

non-tuned somata. When place dendrites belong to a tuned soma, they may encode place field 

locations different from their somatic place fields (although they are often tuned to the same 25 

location). We provide the first experimental evidence for hippocampal place cells exhibiting 

dendritic branch-specific tuning. Even in neurons exhibiting branch-specific tuning, the soma 

typically expresses only a single place field and thus becomes decoupled from many of its 

dendrites – a mechanism by which cells can maintain their specific spatial activity in the face of 

differentially tuned dendrites. This decoupling only occurs with repeated exposure to an 30 

environment, and as such is likely the result of experience-dependent plasticity. While we do not 
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know the mechanism by which certain dendritic inputs are selectively gated while others are 

decoupled, we can speculate that coincident activity-dependent plasticity or selective inhibition 

may be at play.  This multi-stage, compartmentalized organization of spatial information within a 

single hippocampal place cell can greatly increase its computational power, and thus allows for 

flexibility of spatial representation.  5 

 

Methods: 

Cranial Window Surgery 

All experiments were approved by New York University’s Animal Care and Use Committee. 4 

female and 4 male mice were anesthetized using isoflurane (1.5-2.5%) and a small (0.5 mm) hole 10 

was drilled in the skull above dorsal area CA3 of hippocampus (1.6 mm lateral, and 1.4 mm 

caudal of Bregma). 2 females and 2 males had injections and implants on the left side, and the 

remaining 4 animals had the procedure on the right side to control for laterality. Injections of 

AAV1.CamKII.GCaMP6f.WPRE.SV40 (commercially generated at Penn Vector Core, titer: 

2.76x1013 GC/ml, 23 nL per site) were made at two sites, three depth levels each (1.5 mm lateral, 15 

1.3 mm caudal of Bregma; 1.7 mm lateral, 1.5 mm caudal of Bregma; depths of 1.8, 2, and 2.2 

mm below the dural surface). For sparse expression, injections were made at only the 1.8 depth 

level using a mixture of AAV1.CamKII-Cre (commercially generated at Penn Vector Core, titer: 

2.71x 1013GC/ml diluted 100,000 fold with aCSF) and AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 

(commercially generated at Penn Vector Core, titer: 1.64x1013 GC/ml) as in (25) at 23 nL per 20 

site. After injection, a 3 mm craniotomy was made with the injection site at the center. The skull 

was removed, and a vacuum system was used to gently remove the overlying cortex and external 

capsule. aCSF (NaCl 119mM, KCl 2.5 mM, NaH2PO4  1.25 mM, NaHCO3  24 mM, glucose 12.5 

mM, CaCl2  2mM, MgSO2 2mM) at 0° was used to irrigate the area throughout the duration of 

the procedure. A cranial window (3 mm diameter, 1.7 mm length stainless steel cannula attached 25 

to 3 mm diameter glass coverslip) was then implanted over the area. The window was sealed to 

the skull using Vetbond, and a custom designed 3D-printed plastic headpost (40) was cemented 

over the skull. 

 

Behavioral training 30 

Two days after cranial window implantation, water scheduling was begun. Mice were provided 

with 1 mL of 5% sucrose per 24 hours. A custom-built behavior system (as described below) 

fitted under the two-photon microscope was used to train and run mice head-fixed on a treadmill. 

Mice were then trained to run on a 200 cm untextured treadmill for sucrose rewards presented 

randomly throughout the track (one 15-20 min session per mouse per day). If mice did not 35 

receive a full 1 mL of sucrose during training, they were given the balance in water after 

training. Once mice reached a running speed of 2 laps/min, place cell imaging was begun. Place 

cell imaging was performed using a textured track with 3 macrotextures and 6 microtextures (2 
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microtextures per macrotexture). Treadmill belts were created using 2 cm wide ribbon (3 types to 

create the 3 macrotextures), and microtextures were created using Velcro pieces, foil dots, 

rhinestones, glue dots, and textured fabric. Each mouse ran on the treadmill for ~15 minutes per 

session, 2 sessions per day for 11 days. On day 12, mice were exposed to a novel treadmill belt. 

To control for treadmill textures, the 8 mice were run in 3 separate cohorts, with each cohort 5 

having different treadmill belts for both familiar and novel conditions. 

Behavior apparatus for reward delivery and behavior tracking - Briefly, the same behavior setup 

(as described in (29)) was used for training and running mice during imaging experiments. The 

system was equipped with i) a 3D printed head-post mounting and fixation assembly, ii) 

treadmill track belt with RFID tags communicating with an RFID reader (ID-20LA, SparkFun 10 

Electronics) moving on 3D printed wheels coupled to a rotary encoder (S5-720, US Digital) for 

position sensing, iii) a solenoid valve (Parker) driven reward delivery system coupled to a 

capacitive lick sensor (SparkFun Capacitive touch Breakout AT42QT1010) for detecting the 

licking of the mouse during collection of the sucrose water rewards. A microcontroller (Arduino 

Mega, Adafruit) connected to a shield (OM2, OpenMaze) was used to control the input-output 15 

for the behavior. 

 

Two-Photon Imaging 

We used the same imaging system as described previously (29). Briefly in vivo two photon 

imaging was performed using a dual galvanometric and resonant laser scanning two-photon 20 

microscope (Ultima, Bruker), coupled to a tunable Ti:Sapphire laser (MaiTai eHP DeepSee, 

Spectraphysics) pulsed at a 80 MHz repetition rates and <70fs pulse width along with dispersion 

compensation. GCaMP fluorophore was excited at 920 nm, using a resonant scanning X-

galvanometer (8kHz) paired with a 6mm standard scanning Y-galvanometer. The scanning 

system was mounted on movable objective Ultima microscope, equipped with an orbital 25 

nosepiece coupled to a 16X, 0.8 NA, 3 mm water immersion objective (Nikon) and a piezo drive 

for angled imaging and ultrafast volumetric scanning. Imaging was performed at a scan speed of 

29 fps, using 512x512 frame size (1.012 µm/ pixel resolution). Fluorescence signal was 

separated into green channel and red channel using a dichroic mirror (T565lpxr, Chroma 

Technology) and emission filters (green, ET510/80m-2p; red, ET605/70m-2p, Chroma 30 

Technology), respectively. Each emission signal was detected using high-sensitivity GaAsP 

photomultiplier tubes (model 7422PA-40 PMTs, Hamamatsu).  

 

Data Analysis 

Analysis was performed using the CaImAn Matlab package (30), ImageJ, and custom written 35 

Matlab scripts. CaImAn was used to motion correct each time-series. Both somatic and dendritic 

regions of interest (ROIs) were hand drawn using ImageJ. Only dendrites that could be traced to 

their cell body were included in the analysis. ROIs for dendrites that could not be traced to a cell 
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body were still drawn so that their calcium signals could be de-mixed from adjacent/overlapping 

neuropil and somata. Calcium signals from those dendrites were subsequently excluded. 

Dendritic branches were defined as separate segments anytime a branch point was observed. 

Ca2+ transient detection: Significant transients were identified as events that started (onset) 

when fluorescence deviated 2σ (standard deviation) from the baseline trace and ended when it 5 

returned to within 0.5σ (offset). We then recalculated the baseline of the full calcium trace after 

masking frames occurring during previously identified significant transients. The standard 

deviation was then recalculated and transients re-estimated. Transients less than 1s were 

removed. This procedure was repeated three times. For the spatial information and the spatial 

tuning calculation we restricted our analysis to running epochs, defined as consecutive frames of 10 

forward locomotion of at least 2s duration and with a minimum peak speed of 5cm/s. 

Consecutive epochs separated by <0.5s were merged. ROIs that were active during less than 20% 

of laps run were excluded.   

Spatial information: The spatial information was computed from the smoothed rate map: a 

Gaussian filter (sigma = 3 bins) was applied to the calcium event count, and occupancy across 15 

bin positions and the smoothed rate map was constructed by dividing the smoothed event count 

by the smoothed occupancy. For each cell the spatial information content (41) was calculated 

according to the formula  

𝐼" =$ 𝜆& 	ln	 *+*"
&,- 	𝑝& 

Where, 𝜆& and 𝑝& are the transient rate and probability of occupancy of bin 𝑖, l is the overall 20 

transient rate, and N is the number of bins. We computed 𝐼"for multiple values of N = 2, 4, 5, 8, 

10, 20, 25, and 100. We then created 100,000 random reassignments of the transient onset times 

within the running-related epochs and re-computed the values of 𝐼"0  , where 𝑠 is the index of the 

shuffle. This measure is biased by both the number of bins chosen and by the number of events 

fired by the cell. Performing shuffles on a per-cell basis addresses the latter bias. To roughly 25 

correct from the bias associated with binning, we subtracted the mean of this null distribution 

from all estimates to obtain values 𝐼2" =	 𝐼" −	 --44444∑ 𝐼"0-444440,- . Finally, we computed a single 

estimate of the information content for the true transient onset times, 𝐼2 = 𝑚𝑎𝑥"𝐼2"and for the 

shuffles,𝐼20 =	𝑚𝑎𝑥0𝐼2"0 . The spatial tuning p-value was taken as the fraction of values of 𝑠 for 

which 𝐼2 exceeded 𝐼20. A cell was considered to have significant spatial information content if 30 

p<0.05 (28). 

Tuning specificity: Spatial tuning vector was calculated as ∑ 9+:;<(>;)@   

Where 𝜃@ is the position of the mouse at the onset time of the Ca2+ transient j, Ο(𝜃@) is the 

fraction of frames acquired at position 𝜃@. We assessed the significance of the spatial selectivity 

for each cell by generating a null distribution of shuffled transient onset times and recalculating 35 

the tuning specificity 10,000x. The p value was defined as the fraction of this null distribution 

that exceeded the neuron tuning specificity.  
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ROIs, regardless of whether they were somata or dendrites, were classified as spatially tuned if 

they met both spatial information and tuning specificity criteria.  

 

State-dependent Correlation (Fig S2 Panel A): This analysis was done on a subset of the data 

from 4 mice. Continuous ΔF/F traces for soma and dendrite were split into periods of mobility 5 

(treadmill speed > 2 cm/s) and immobility (speed <= 2 cm/s), and the Pearson’s correlation 

coefficient was calculated between traces of soma-dendrite pairs in each condition.  

 

Matched vs Unmatched Correlation (Fig S2 Panel B): The correlation between matched soma-

dendrite pairs was computed as described above. To generate unmatched correlations, the 10 

correlation coefficients between a soma and all dendritic ROIs that were not identified as 

belonging to that soma were computed. This was done for all soma in a session, with the results 

aggregated together. All correlations were computed only using data during mobility. 

The distance between a soma-dendrite pair (matched or unmatched) was the Euclidean distance 

between the centers of each ROI. 15 

The moving average for matched and unmatched pairs was computed as the mean of data points 

falling into 50 bins with edges logarithmically spaced between 4 and 560 cm. This moving 

average was then smoothed with a Gaussian kernel with σ = 1 bin. Only bins with at least 2 data 

points in a given population were plotted. 

Coactivity Analysis (Fig S2 Panel C): All analysis was done only using data during mobility. 20 

Each ΔF/F trace was z-scored with respect to itself and identified as “active” if the z-scored 

value exceeded 2. For each soma-dendrite pair, a coactivity score was computed as the following 

ratio: 𝑇DEFG𝑇0EHI 

Where Tboth is the amount of time both the soma and dendrite were simultaneously active, and 25 

Tsoma is the amount of time the soma was active, regardless of the activity state of the dendrite. 

This yields a bounded measure between 0 and 1, with 0 indicating a complete absence of 

simultaneous activity in the two ROIs, and 1 indicating total synchrony. 

We used a bootstrapping procedure to estimate the null coactivity between a soma-dendrite pair, 

defined the amount of coactivity between the pair expected by chance. The ΔF/F trace of the 30 

dendrite was first time-reversed and then circularly shifted by a random amount (at least 1 

second) to obtain a null dendritic trace. The coactivity between the soma and this null dendritic 

signal was then computed. This was repeated 100 times with different shift amounts, and the null 

coactivity was defined as the 95th percentile of the resulting distribution. Thus, if the coactivity 

of a soma-dendrite pair exceeded the null coactivity so defined, then the pair exhibited 35 

statistically significant coactivity at the p<0.05 level. 
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Branch specific tuning classification: Only cells that had two or more dendrites visible in the 

field of view were considered for branch-specific tuning analyses. A cell was considered to 

display branch specific tuning only if one or more dendrites displayed in the field of view were 

tuned to different locations than the remaining dendrites. 

Machine learning classification: We used classification methods to classify pyramidal neurons 5 

into place cells vs. non-place cells, based on the calcium activity of either the soma or selected 

dendrites. We assessed different classifiers (e.g., k-Nearest Neighbors ,Naïve Bayes, Random 

Forests, Quadratic Discriminant Analysis, Logistic Regression, Artificial Neural Networks 

(ANN), etc.) and chose the one achieving highest performance under control conditions, when 

using the somatic recordings as input (the ANN). To evaluate the models we split the dataset into 10 

training and test sets (80-20) and performed an exhaustive grid search for various hyperparameters 

(Table S1) using 5-fold Cross Validation.  Classification was performed using the MLPClassifier() 

function in the Scikit-learn(42) module in python. MLPClassifier is a traditional Artificial Neural 

Network classifier (43). The network consists of two hidden layers with 200 and 100 nodes, 

respectively. The algorithm used for learning is the stochastic gradient descent with batch size 15 

equal to 100. We used adaptive learning rate, with initial value 0.2 and decreased by 5 if the loss 

remained constant for two consecutive epochs. These parameters were kept constant across all 

runs. We analyzed two experimental conditions: (i) familiar, and (ii) novel environment. The data 

were split in training and testing data sets under the constraint of equally represented classes. To 

achieve class equality, a randomly chosen portion of the data was left out. Input was provided in a 20 

matrix form, where columns represent neurons and the rows represent the corresponding mean 

calcium event rate (see experimental methods for a description of event rate). Input matrices were 

different for somatic and dendritic calcium signals. For dendritic signals, in cases where more than 

one dendrite was provided, we used the activity of the dendrite that had the highest correlation 

with the soma (Pearson correlation coefficient). Labeling (place cells vs. non-place cells) was 25 

provided as a vector with one and zero, values, respectively. Zero-padding was used to create 

same-length vectors. The classifier was executed 1,000 times, with randomly partitioned 

training/test sets. The above training/testing process was done for each condition (control / novel) 

and each type of data (somatic vs. dendritic), separately. Performance was assessed using the area 

under the receiver operating characteristic (ROC) curve (AUC)(44). Plots report the mean AUC 30 

value across repetition trials and error bars indicate standard deviations. To compare the 

performance of the classifier amongst different groups (i.e., familiar vs. novel environment and 

soma vs. dendrite), AUC scores were analyzed using two-way analysis of variance (ANOVA) 

followed by post-hoc tests using the Bonferroni method whenever statistical significance was 

observed. The α was chosen to be 0.001 for statistical significance. To correct for multiple 35 

comparisons, the α was divided by the number of tests according to the Bonferroni procedure 

 

Table S1 - Hyperparameters for classifiers tested. 

 

Classifier Hyperparameters 

Logistic Regression (LR) • Regularization strength (‘C’) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.916643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.916643


 

22 

 

Linear Discriminant 

Analysis (LDA) 

• Solver method (‘solver’) 

Quadratic Discriminant 

Analysis (QDA) 

• Covariance regularization (‘reg_param’) 

• threshold for rank estimation (‘tol’) 

K Nearest Neighbors 

(KNN) 

• Number of neighbors (‘n_neighbors’) 

• Distance metric (‘metric’) 

Decision Trees (DT) 

• Function to measure the quality of a split (‘splitter’) 

• Strategy used to choose the split at each node (‘criterion’) 

• Number of features when looking for the best split 

(‘max_features’) 

Gaussian Naive Bayes 

(GNB) 

• Portion of the largest variance of all the features that is 

added to variances for stability (‘var_smoothing’) 

Support Vector Machine 

(SVM) 

• Regularization parameter (‘C’)  

• Coefficient for ‘rbf’ kernel (‘gamma’) 

Random Forest (RF) 

• Number of trees in the forest (‘n_estimators’) 

• function to measure the quality of a split (‘criterion’) 

• Whether bootstrap samples are used when building trees 

(‘bootstrap’) 

Artificial Neural 

Network (ANN) 

• Number of layers and nodes per layer 

(‘hidden_layer_sizes’) 

• Activation function in the hidden layer(s) (‘activation’) 

• Initial learning rate (‘learning_rate_init’) 

AdaBoost (ADB) 

• Maximum number of estimators at which boosting is 

terminated (‘n_estimators’) 

• Shrinkage of the contribution of each classifier (‘learning 

rate’) 

• Algorithm to learn the parameters (‘algorithm’) 

  

 

Dendritic-somatic signal transformation: Using our sparsely-expressing dataset, we tested 

whether the somatic activity could be approximated by a simple average of the dendritic activity 

and whether an weighted average would improve this approximation. The approximated somatic 5 

activity was given by 

𝑠IJ = K$𝑎@𝑑@@ + 𝑏O
P
			, 
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where 𝑑@ is the activity of dendrite 𝑗, 𝑎@ is a positive coefficient, b is a number, and ⌈∙⌉P is a 

rectification function that sets all negative values to zero. The values for the coefficients 𝑎@’s and 𝑏 were chosen to minimize the mean square error between the approximated somatic activity and 

the activity observed experimentally. For a simple average, the coefficients were constrained 

such that 𝑎@ = 𝑎 for all dendrites.    5 

 

Modeling 

Neuron model 

We simulated CA3 pyramidal cells using a multicompartment, rate-based model. The neuron 

model was composed of 100 dendritic compartments that projected to one somatic compartment. 10 

Each dendritic compartment 𝑖 was modelled as a rate-based unit and described by a “potential” 

variable 𝑥&V whose temporal evolution follows 

𝑑𝑥&V𝑑𝑡 = −𝑥&V +$𝑤&@𝑔Z𝑥@&[J\F]@ + 𝐻&V − 𝐼V 		, 
where 𝑥@&[J\F is the potential variable for input neuron 𝑗, 𝑤&@ is the weight of the synaptic 

connection from input neuron j to dendritic compartment 𝑖, 𝐻&V = 𝐴`EaI`[E[bJ`Ia9𝜉&V +15 𝐴d`EDI`[E[bJ`Ia9𝜉d`EDI` is a noise term (non-place inputs), 𝐼V is the dendritic inhibition, and 𝑔(𝑥) is 

the unit’s instantaneous activity, measured relative to a low level of spontaneous activity. The 

function 𝑔 is given by  

𝑔(𝑥) = e 𝑟4 tanh(𝑥/𝑟4)(𝑟HIk − 𝑟4) tanh[𝑥/(𝑟HIk − 𝑟4)]					 if			𝑥 < 0
if			𝑥 ≥ 0		, 

with baseline activity 𝑟4 = 1, and maximum activity 𝑟HIk = 20. Therefore, the activity of the 20 

dendritic compartment 𝑖, relative to the baseline activity, is 𝑟&V = 𝑔Z𝑥&V].  
The somatic potential for each simulated neuron was given by a similar equation, 𝑑𝑥&0𝑑𝑡 = −𝑥&0 +$𝑓&@𝑔Z𝑥@V]@ + 𝐻&0 − 𝐼0		, 
where 𝑓&@ is the efficiency of the dendrite-to-soma propagation from dendritic compartment 𝑗 to 

soma for neuron 𝑖, 𝐻&0 = 𝐴`EaI`[E[bJ`Ia9𝜉&0 + 𝐴d`EDI`[E[bJ`Ia9𝜉d`EDI` is a noise term, and 𝐼0 is the somatic 25 

inhibition. The somatic activity for neuron 𝑖, relative to baseline, is 𝑟&0 = 𝑔(𝑥&0). 
The noise terms, 𝜉&V, 𝜉d`EDI` and 𝜉0, were modelled as independent Ornstein-Uhlenbeck 

processes. The local terms, 𝜉&V and 𝜉0, with time constant 100 ms, and the global term, 𝜉d`EDI`, 
with time constant 10 ms. The terms 𝐴`EaI`[E[bJ`Ia9

 and 𝐴d`EDI`[E[bJ`Ia9
 are the amplitudes of the 
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independent (local) and global non-place inputs to all the compartments. The values for 𝐴`EaI`[E[bJ`Ia9
 and 𝐴d`EDI`[E[bJ`Ia9

 were chosen to fit our experimental data such that the mean within 

field, outside of field, and overall correlation were close to the ones observed experimentally 

(Fig. S11) 

 5 

Position-modulated inputs 

The simulated CA3 neurons received feedforward input from 𝑁&[J\F neurons whose activities 

are tuned to specific locations. The location of the peak of the activity for each input neuron was 

determined by dividing the length of the annular track by the number of input neurons and 

assigning each neuron to a multiple of this division. Therefore, the firing rate of input neuron 𝑖 10 

was centered at 𝑝&4 = 𝐿FvIaw 𝑁&[J\Fx , where 𝐿FvIaw is the length of the annular track. All the place 

fields of input neurons had the same tuning width, 𝜎&[J\F, and the same amplitude, 𝐴&[J\F. The 

animal explored an annular track with speed 𝑣. The potential variable of input neuron 𝑗 with 

place field centered at 𝑝&& when the animal is at position 𝑝 is 

𝑥@&[J\F(𝑝) = 𝐴&[J\F exp{− 𝑑|2𝜎&[J\F| } + 𝐴&[J\F[E[bJ`Ia9𝜉&[J\F				, 15 

where 𝑑 is the distance, along the track, between the animal’s position and the center of the 

neuron’s place field, 𝜉&[J\F is a noise term generated from an Ornstein-Uhlenbeck process with 

time constant 10 ms, and 𝐴&[J\F[E[bJ`Ia9
 is the amplitude of non-place inputs on input neurons. The 

value for 𝐴&[J\F[E[bJ`Ia9
 was chosen to fit our experimental data such that the mean within field, 

outside of field, and overall correlation were close to the ones observed experimentally (Fig. 20 

S11). 

Data-constrained parameters 

In all of our simulations, neurons were composed of 100 dendrites directly connected to the 

soma. The proportion of those dendrites that displayed spatially tuned activity, 𝑝V, was extracted 

from our experimental data and imposed as a constrain to our simulations. These values were 25 

extracted from four distinct subsets of our data: tuned cells in familiar environments (𝑝V = 0.5), 

untuned cells in familiar environments (𝑝V = 0.3), tuned cells in novel environments (𝑝V =0.17), and untuned cells in novel environments (𝑝V = 0.06). For tuned cells, we also constrained 

our model by imposing the proportion of tuned dendrites that were tuned to the same place as the 

soma (0.65 for familiar and 0.62 for novel environments).  30 

Tuned versus untuned cells 

In addition to differences in proportions of tuned dendrites, tuned cells were different from 

untuned cells in terms of efficiency of dendrite-to-soma propagations and distribution of 

excitatory synaptic weights. For tuned cells in familiar environments, the propagation 
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efficiencies were set to 0.01 for all dendrites and multiplied by a factor of 10 for the dendrites 

that shared the same tuning as the soma. For untuned cells in both familiar and novel 

environments, propagation efficiencies were all set to 0.04. Tuned cells in novel environments 

were assumed to be less tuned than in familiar environment and, therefore, propagation 

efficiencies were set to 0.04 and multiplied by 3. To define the synaptic weights for tuned cells, 5 

we first set all the weights to zero and added a rectified random number drawn from a normal 

distribution with mean zero (5, for novel environments) and standard deviation 2.0. For each 

tuned dendrite, the preferred input was randomly assigned (but constrained to the proportion of 

dendrites tuned to the same location as the soma) and the corresponding synaptic weight was 

increased by 1000 (150, for novel environments). The weights for each dendrite were then 10 

normalized by dividing all the weights by the average weight and multiplying the result by 0.1. 

For untuned cells, we follow the same steps but the preferred synaptic weight for tuned dendrites 

is multiplied by 150. 

Place field stability analysis 

We simulated CA3 neurons under two conditions: branch selective tuning—in which all the 15 

dendrites were tuned to a random location—and branch prevalence tuning—in which all the 

dendrites were tuned to the same location. The propagation efficiency for one of the dendrites 

was multiplied by 10 and this dendrite defined the position of the peak of the somatic place field. 

The propagation efficiency for all the other dendrites was set to 0.5 for the branch selective 

simulations, and to 0.1 for the branch prevalence simulations. To enhance the effect of noise, we 20 

increased the local noise to dendrites by multiplying the noise amplitude by 2 and reduced all the 

other sources of noise to zero. The relation between the stability under both conditions 

considered here—and therefore our conclusions from our simulations—are not dependent on 

specific values of noise amplitude.  To measure the stability of place fields, we first measured the 

average place field over all trials for each condition considered (50 trials in total for each 25 

condition). Place field stability was then defined as the correlation between each trial and the 

average place field.  

Place field flexibility analysis 

To measure place field flexibility, we simulated CA3 neurons while an animal ran through an 

annular track for two laps. During the first lap of exploration, the amplitude of the activity of all 30 

input neurons was set to the same level (𝐴&[J\F = 0.2). During the second lap, however, one of 

the input neurons was randomly chosen and its activity amplitude was multiplied by 10 to try to 

shift the peak of somatic activity to a new location. We simulated CA3 neurons under two 

conditions: branch selective tuning—in which all the dendrites were tuned to a random 

location—and branch prevalence tuning—in which all the dendrites were tuned to the same 35 

location. Noise amplitudes were set to zero except for local dendritic noise amplitude, which was 

set to 0.4. The relation between the flexibility under both conditions considered here—and 

therefore our conclusions from our simulations—are not dependent on specific values of noise 

amplitude. Place field flexibility was measured as the distance between the position of the initial 
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peak of somatic place field (first lap) and of its final position (second lap) following the increase 

in amplitude of a randomly selected input place field. 

 

Parameters and simulations 

All simulations were implemented in python and are available at ModelDB. The parameters used 5 

in our simulations can be found in table 2. 

 

Table S2 - Parameters for simulations. 

Neuron Model  

Neuron and Network  parameters  

Name  Value  Description  𝑁V9[V 100 Number of dendritic compartments for CA3 neurons 𝑁&[J\F 100 Number of input neurons 𝐼V 12 a.u. Dendritic inhibition 𝐼0 6 a.u. Somatic inhibition 

Place-tuned input 

Name  Value  Description  𝐴&[J\F 2.0 Presynaptic place field amplitude 𝜎&[J\F 2.0 Presynaptic place field width 

Non-place input 

Name  Value  Description  𝐴`EaI`[E[bJ`Ia9
 0.4 Amplitude of local term of non-place inputs 𝐴d`EDI`[E[bJ`Ia9
 0.4 Amplitude of global term of non-place inputs 𝐴&[J\F[E[bJ`Ia9
 0.2 Amplitude of non-place inputs onto input neurons 

Simulation parameters 

Name  Value  Description  𝐿FvIaw 50 a.u. Track length 𝑣 5.0 × 10b� ms	b- Animal speed 

 
  10 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.916643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.916643


 

27 

 

References 

 

1. H. Jia, N. L. Rochefort, X. Chen, A. Konnerth, Dendritic organization of sensory input to 

cortical neurons in vivo. Nature 464, 1307-1312 (2010). 

2. J. Cichon, W. B. Gan, Branch-specific dendritic Ca(2+) spikes cause persistent synaptic 5 

plasticity. Nature 520, 180-185 (2015). 

3. G. Buzsaki, E. I. Moser, Memory, navigation and theta rhythm in the hippocampal-

entorhinal system. Nature neuroscience 16, 130-138 (2013). 

4. J. O'Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from 

unit activity in the freely-moving rat. Brain research 34, 171-175 (1971). 10 

5. K. Mizuseki, S. Royer, K. Diba, G. Buzsaki, Activity dynamics and behavioral correlates 

of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22, 1659-1680 (2012). 

6. N. Rebola, M. Carta, C. Mulle, Operation and plasticity of hippocampal CA3 circuits: 

implications for memory encoding. Nat Rev Neurosci 18, 208-220 (2017). 

7. D. G. Amaral, M. P. Witter, The three-dimensional organization of the hippocampal 15 

formation: a review of anatomical data. Neuroscience 31, 571-591 (1989). 

8. X. G. Li, P. Somogyi, A. Ylinen, G. Buzsaki, The hippocampal CA3 network: an in vivo 

intracellular labeling study. The Journal of comparative neurology 339, 181-208 (1994). 

9. N. Ishizuka, J. Weber, D. G. Amaral, Organization of intrahippocampal projections 

originating from CA3 pyramidal cells in the rat. J Comp Neurol 295, 580-623 (1990). 20 

10. M. P. Witter, Intrinsic and extrinsic wiring of CA3: indications for connectional 

heterogeneity. Learn Mem 14, 705-713 (2007). 

11. A. J. Hill, First occurrence of hippocampal spatial firing in a new environment. Exp 

Neurol 62, 282-297 (1978). 

12. M. A. Wilson, B. L. McNaughton, Dynamics of the hippocampal ensemble code for 25 

space. Science (New York, N.Y.) 261, 1055-1058 (1993). 

13. L. M. Frank, G. B. Stanley, E. N. Brown, Hippocampal plasticity across multiple days of 

exposure to novel environments. The Journal of neuroscience : the official journal of the 

Society for Neuroscience 24, 7681-7689 (2004). 

14. S. Leutgeb, J. K. Leutgeb, A. Treves, M. B. Moser, E. I. Moser, Distinct ensemble codes 30 

in hippocampal areas CA3 and CA1. Science (New York, N.Y.) 305, 1295-1298 (2004). 

15. R. U. Muller, J. L. Kubie, J. B. Ranck, Jr., Spatial firing patterns of hippocampal 

complex-spike cells in a fixed environment. The Journal of neuroscience : the official 

journal of the Society for Neuroscience 7, 1935-1950 (1987). 

16. S. L. Smith, I. T. Smith, T. Branco, M. Hausser, Dendritic spikes enhance stimulus 35 

selectivity in cortical neurons in vivo. Nature 503, 115-120 (2013). 

17. F. Gambino et al., Sensory-evoked LTP driven by dendritic plateau potentials in vivo. 

Nature 515, 116-119 (2014). 

18. N. L. Golding, N. P. Staff, N. Spruston, Dendritic spikes as a mechanism for cooperative 

long-term potentiation. Nature 418, 326-331 (2002). 40 

19. J. Basu et al., Gating of hippocampal activity, plasticity, and memory by entorhinal 

cortex long-range inhibition. Science 351, aaa5694 (2016). 

20. N. Takahashi, T. G. Oertner, P. Hegemann, M. E. Larkum, Active cortical dendrites 

modulate perception. Science (New York, N.Y.) 354, 1587-1590 (2016). 

21. K. C. Bittner, A. D. Milstein, C. Grienberger, S. Romani, J. C. Magee, Behavioral time 45 

scale synaptic plasticity underlies CA1 place fields. Science 357, 1033-1036 (2017). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.916643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.916643


 

28 

 

22. K. C. Bittner et al., Conjunctive input processing drives feature selectivity in 

hippocampal CA1 neurons. Nature neuroscience 18, 1133-1142 (2015). 

23. C. Grienberger, X. Chen, A. Konnerth, NMDA receptor-dependent multidendrite Ca(2+) 

spikes required for hippocampal burst firing in vivo. Neuron 81, 1274-1281 (2014). 

24. J. D. Cohen, M. Bolstad, A. K. Lee, Experience-dependent shaping of hippocampal CA1 5 

intracellular activity in novel and familiar environments. Elife 6,  (2017). 

25. D. Lee, B. J. Lin, A. K. Lee, Hippocampal place fields emerge upon single-cell 

manipulation of excitability during behavior. Science (New York, N.Y.) 337, 849-853 

(2012). 

26. M. E. Sheffield, D. A. Dombeck, Calcium transient prevalence across the dendritic 10 

arbour predicts place field properties. Nature 517, 200-204 (2015). 

27. S. Royer et al., Control of timing, rate and bursts of hippocampal place cells by dendritic 

and somatic inhibition. Nature neuroscience 15, 769-775 (2012). 

28. N. B. Danielson et al., Distinct Contribution of Adult-Born Hippocampal Granule Cells 

to Context Encoding. Neuron 90, 101-112 (2016). 15 

29. C. J. Magnus et al., Ultrapotent chemogenetics for research and potential clinical 

applications. Science (New York, N.Y.) 364,  (2019). 

30. S. Leutgeb et al., Independent codes for spatial and episodic memory in hippocampal 

neuronal ensembles. Science (New York, N.Y.) 309, 619-623 (2005). 

31. E. A. Pnevmatikakis et al., Simultaneous Denoising, Deconvolution, and Demixing of 20 

Calcium Imaging Data. Neuron 89, 285-299 (2016). 

32. N. B. Danielson et al., Sublayer-Specific Coding Dynamics during Spatial Navigation 

and Learning in Hippocampal Area CA1. Neuron 91, 652-665 (2016). 

33. J. B. Ranck, Jr., Studies on single neurons in dorsal hippocampal formation and septum 

in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 41, 461-25 

531 (1973). 

34. S. Raus Balind et al., Diverse synaptic and dendritic mechanisms of complex spike burst 

generation in hippocampal CA3 pyramidal cells. Nature communications 10, 1859 

(2019). 

35. M. E. J. Sheffield, M. D. Adoff, D. A. Dombeck, Increased Prevalence of Calcium 30 

Transients across the Dendritic Arbor during Place Field Formation. Neuron 96, 490-504 

e495 (2017). 

36. M. E. Sheffield, D. A. Dombeck, Dendritic mechanisms of hippocampal place field 

formation. Current opinion in neurobiology 54, 1-11 (2019). 

37. M. B. Moser, D. C. Rowland, E. I. Moser, Place cells, grid cells, and memory. Cold 35 

Spring Harb Perspect Biol 7, a021808 (2015). 

38. E. B. Bloss et al., Structured Dendritic Inhibition Supports Branch-Selective Integration 

in CA1 Pyramidal Cells. Neuron 89, 1016-1030 (2016). 

39. H. Lee, C. Wang, S. S. Deshmukh, J. J. Knierim, Neural Population Evidence of 

Functional Heterogeneity along the CA3 Transverse Axis: Pattern Completion versus 40 

Pattern Separation. Neuron 87, 1093-1105 (2015). 

 

40.  C. D. Wilson, G. O. Serrano, A. A. Koulakov, D. Rinberg, A primacy code for odor 

identity. Nature communications 8, 1477 (2017). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.916643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.916643


 

29 

 

41.  W.E. Skaggs, B.L. McNaughton, K.M. Gothard, E.J. Markus. An information theoretic 

approach to deciphering the hippocampal code. In: Hanson SJ, Cowan JD, Giles CL, 

editors. Advances in neural information processing. Vol 5. 1030–1037 (1993). 

42.  F. Pedregosa et al., Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 

2825–2830 (2011). 5 

43. Hinton, Geoffrey E. “Connectionist learning procedures.” Artificial intelligence 40.1 

(1989): 185-234 

44.   A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine 

learning algorithms. Pattern Recognit. 30, 1145–1159 (1997). 

 10 

  

Acknowledgements: Funding: This work was supported by an NIH BRAIN INITIATIVE 

1R01NS109994 to JB and CC, and in part by an NIH T32GM007308 to SKR, Stavros Niarchos 

Foundation award to SC, Alexander von Humboldt Foundation to PP, American Epilepsy 

Foundation Post-doctoral Research Fellowship to MAD, a  CAPES Foundation, process n. 15 

99999.001758/2015-02 to VP, a BBSRC BB/N013956/1, BB/N019008/1, Wellcome Trust 

200790/Z/16/Z, Simons Foundation 564408, and EPSRC EP/R035806/1 to CC, and an NIH 

1R01NS109362-01, McKnight Scholar Award in Neuroscience, Klingenstein-Simons 

Fellowship Award in Neuroscience, Alfred P. Sloan Research Fellowship, Whitehall Research 

Grant, American Epilepsy Society Junior Investigator Award, and the Leon Levy Foundation 20 

Award to JB. We thank Roland Zemla for his technical contribution in developing the hardware 

and software for the treadmill-based behavior setup (as described in (29)) and Lulu Peng for her 

help with operational logistics. We are indebted to Dmitri Chkolvskii, György Buszáki, Richard 

Tsien, Michael Long, and Wenbiao Gan, for helpful discussions on the study and comments on 

previous versions of the manuscript. 25 

 

Author contributions: SKR and JB conceived the project, designed the experiments and wrote 

the manuscript. SKR performed all mouse experiments and analysis. VP and CC conceived the 

CA3 model, and VP created the model and all resulting modeling data in addition to 

experimental analysis in Fig 2I. MAD developed the cranial window preparation and assisted 30 

with data analysis. JJM performed analysis for Fig S2-3. RGD performed the 

immunohistochemistry and confocal imaging for Fig S1. PP and SC conceived and SC 

implemented the machine learning algorithms for place cell predictions.  

Competing interests: Authors declare no competing interests.  

Data and materials availability: All experimental data, modeling code, and machine learning 35 

code is available upon request. 

 

 

Supplementary Materials: 

Materials and Methods 40 

Table S1-S2 

Fig S1-S12 

References (40-44) 

Movies S1-S2 

 45 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.916643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.916643



