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The Denjoy extension of the
Bochner, Pettis, and Dunford integrals

by
R. A. GORDON (Walla Walla, Wash.}

Abstract. In this paper the Depjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals
of functions mapping an interval [a, b] into a Banach space X are defined and studied.
Necessary and sufficient conditions for the existence of the Denjoy-Dunford integral are
determined. Tt is shown that a Denjoy-Dunford (Denjoy—Bochrer) integrable function on [«, &]
issDunford (Bochner) integrable on some subinterval of [«, b] and that for spaces that do not
contain a copy of ¢o, a Denjoy~Pettis integrable function on [a, b] is Petiis integrable on some
subinterval of [a, b]. For measurable functions, the Denioy-Dunford and Denjoy-Pettis inte-
grals are equivalent if and onmly if X is weakly sequentially complete. Several examples of
functions that are integrable in one sense but not another are included.

The Denjoy integral of a real-valued function is, in the descriptive sense
(that is, specifying the properties of the primitive), a natural extension of the
Lebesgue integral of a real-valued function. The Bochner, Pettis, and Dun-
ford integrals are generalizations of the Lebesgue integral to Banach-valued
functions. In this paper we will study the Denjoy extension of the Bochner,
Pettis, and Dunford integrals.

Before embarking on this study a firm foundation must be laid. The
reader may wish to begin with Definition 25 and refer to the introductory
material as the need arises. We begin with the notions of bounded
variation and absolute continuity on a set. Throughout this paper X will
denote a real Banach space and X* its dual. : :

Dernrrion 1. Let F: [a, b] —+ X and let £ be a subset of [a, b].

(a) The function F is BY on E if sup{}: I|F(d)—F{c)||} is finite where
the supremum is taken over all finite collections {[¢;, 4,]} of noncverlapping
intervals that have endpoints in E.

(b) The function F-is AC on E if for each ¢ > ( there exists § > 0 such
that 3, )IF (d)—F (el < & whenever {[¢, d,]} is a finite collection of nonover-
lapping intervals that have endpoints in E and satisfy Zi (d;~c) <.

{¢) The function F is BVG on E if E can be cxpressed as a countable
unjon of sets on each of which F 1s BV.
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(d) The function F is ACG on E if F is continuous on E and if E can be
expressed as a countable union of sets on each of which F is AC.

The proofs of the next two theorems are tedious but not difficult and
are left to the reader.

TueoReM 2. Let F: [a, b] = X, let E be a subset of [«, b], and suppose
that F is continuous on a set H that contains E. If F is BV (AC) on E, then F
is BV (AC) on E.

TueoreMm 3. Let F: [a, b] = X and let E be a closed subset of [a, b] with
bounds ¢ and d. Let G: [c, d] — X be the function that equals F on E and is linear
on the intervals contiguous to E. If F is BV (AC) on E, then G is BV (AC) on
[c, d].

The following theorem and lemma are useful in proving results in the
theory of the Denjoy integral. The proof of the first is quite similar to a
proof in Saks [6, p. 233] and the proof of the second can be found in
Romanovski [5]. Recall that a portion of a set E — R is a nonempty set P of
the form P = En[ where [ is an open interval

THEOREM 4. Let E be a closed subset of [a,b] and let F: {a,b] ~ X be
continuous on E. Then F is BVG (ACG) on E if and only if every perfect set in
E contains a portion on which F is BV (AC).

Lemma 5. Let F be a family of open intervals in (a, b) and suppose that
F has the following properties:

(1) If (o, B) and (B, y) belong to F, then (a, y) belongs to 7.

{2) If (x, f) belongs to F, then every open interval in (v, f) belongs to F.

(3) If (2, B) belongs to F for every interval [a, ] =(c, d), then (¢, d)
belongs to #.

(4) If all of the intervals contiguous to the perfect set E — [a, b) belony to
., then there exists an interval I in F such that INE # Q.

Then & contains the interval (a, b)

The function F: E — R satisfies condition (N) on E if u*(F(4))=0 for
every set A = E of measure zero. Here u* (A) represents the Lebesgue outer
measure of the set A. The next two theorems reveal the importance of this
concept. See Saks [6] for the proofs of these resulis.

THEOREM 6. If F: E > R is ACG on E, then F satisfies condition (N) on E.

TheorRem 7. Ler E be a bounded, closed set with bounds a and b and let
F: [a, b} = R be continuwous on E. Then F is AC on E if and only if F is BV
on E and satisfies condition (N} on E.

Next, we define approximate derivatives and state two theorems that
illustrate the usefulness of this type of derivative. The proofs can be found in
Saks [6].
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DerintTion 8. Let F: [a, b] = X and let t €(a, b). A vector z in X is the
approximate derivative of F at t if there exists a measurable set E = [a, b]
that has t as a point of density such that

o FO=F@) _

5= S_f
ssE

We will write F (t) ==z

TueoreM 9. Let F; [a, b] =R be measurable and let E be a subset of
[a,b]. If F is BVG on E, then F is approximately differentioble almost
everywhere on E.

Tusorem 10. Let F: [a,b] =R be ACG on [a, b]. If F,, =0 almost
everywhere on [a, b], then F is constant on [a, b].

We can now define the Denjoy integral of a real-valued function. Recall
that a function f* [a, ] — R is Lebesgue integrable on [a, b] if there exists
an AC function F: [a, b] — R such that F' = f almost everywhere on [a, b].

Dernvimion T, The function [ [a, b] = R is Denjoy integrable on [a, #]
if there exists an ACG function F: [a,b] =R such that F, = f almost
everywhere on [a, b]. The function f is Dewnjoy integrable on the set
E < [a, b] if fyy-is Denjoy integrable on [a, b]. When it is necessary to
distinguish between the Denjoy and Lebesgue integrals we will use the
prefixes (D) and (L).

Tueorem 12. Let {1 [a, b] —R.

{a) If f is Denjoy integrable on [a, b], then f is measurable.

(b) If f is nonnegative and Denjoy integrable on [a, b], thenfzs Lebesgue
integrable on [a, b7,

(©) If f is Denjoy integrable on [a, b], then every perfect set in [a, b]
contains a portion on which f is Lebesgue integrable.

The proofs of these facts can be found in Saks [6]. Note that (c) implies
that a Denjoy integrable function on [a, k] is Lebesgue integrable on some
subinterval of [a, #]. Another useful property of the Denjoy integral is given
by the ncxt theorem (see Suks [6, p. 257]). Let w(F, [=, ;3])-sup{|F(r)
~F(s): 2« €5 <1 < ) denote the oscillation of F on [a, f].

Turorem 13, Let E be a bounded, closed set with bounds a and b and let
f{ar. by)] be the sequence of intervals in [a, b] contiguous to E. Suppose that
S [a,b] =R is Denjoy integrable on E and on each [ay, b . If

Z|jf|<oo and hmw(jf,[ak,bk])
ko —+.0

.
then f is Denjoy integrable on [a, b]. In addition,
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t 3 . by,
§f = [fie+ E §f for teE,
t t by ¢
(f=1fet+ L[S+ [ Jfor te(a, by
a a by St ay ay

The next group of definitions and theorems extends the familiar concept
of uniform integrability into the context of Denjoy integrals.

Derinmion 14, Let | f,) be a family of Denjoy integrable functions
defined on [a, b]. The family |f,] is uniformly Denjoy integrable on [a, b] if
for each perfect set £ < [a, b] there exists an interval [c, d] < [a, b] with
c,deE and Enlc, d)# @ such that every /. is Lebesgue integrable on

En{e, dj and for every o the series z | j;| is convergent where [c, d]—E

= Un (Cn,

Derinnrron 15, Let [F,) be a family of functions defined on [a, 5] and
let E be a subset of [a, b]. The family {F,} is uniformly BV G (ACG) on E if
each F, is BVG (ACG) on E and if each perfect set in E contains a portion
on which every F, is BY (A(C).

The proof of Theorem 4 can be adapted to prove the following theorem.

THEOREM 16. Let {F,} be a family of functions defined on [a, b]. Suppose
that E is a closed subset of [a, b] and thar each F, is continuous on E. Then
the family {F,} is uniformly BVG (ACG) on E :fand only if E =), E, where
every F, is BV (AC) on each E,.

The next theorem ties together the concepts of uniform Denjoy integra-
bility and uniformly ACG.

TueoreMm 17. Let {f,} be a family of Denjoy integrable functions defined
on [a, b] and for each a let F,(t) = [; f,. Then the jamily {f,} is uniformly
Denjoy integrable on [a, b] if and only if the family {F,,} is uniformly ACG
on [a, b].

Proof. Suppose first that {f,} is uniformly Dcnjoy integrable on [a, b]
and let E be a perfect set in [a, b]. Then there exists an interval [c, d] with
c,d€E and En(c,d) + @ such that every f, is Lebesgue integrable on
En[e, d] and for every a the series

1= T @) —F )

By n

is absolutely convergent where [c d] E ={]J,(e,, d,). By Theorem 13 we
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have
dﬂ
F. ()~ F,(0) '*(L)ff.)ts+ DI
d,Strey
for all r in E e, d] and for all a. We will show that each F, is AC on
E e, d].

To this end fix & and let ¢ > 0. Choose a positive integer N such that

Z" N+1|F( - F,{c) <&2 and choose a positive number & < min {d,

1<n< N} such that ({y|filxz <&/2 whenever u(H)<d and

H c[c d]. Now let {[w, »]} be a finite collection of nonoverlapping

intervals that have endpoints in E r\[c, d] and satisfy Z: —u) <&. Let H

= {J;[%, v;] and for each i let m; = {n: (e, d.) < (u;, ¢; )} Smce the ;s are
disjoint and contain no integers less than or equal to N we have

ZIF (w)— F(“i|“2| faXE+ Z ffa|

IJ'

E[ju'XL'I“ZZ | fa|

[ i nemy o,

“.ﬂli Xet+ Z IFa(du)'—Fa(cn)l

n=N+1

<2482 =0¢.

Hence, the function F, is AC on E n[c, d].

Now suppose that the family {F,} is uniformly ACG on [a, b] and let F
be a perfect set in [a, b]. Then there exists an interval [e, d] such that
¢, deE, En(c, d) # O, and each F, is AC on En[c, d]. Fix o, let F = F,,
and let G: [¢, d] — R be the function that equals F on E and is linear on the
intervals contiguous to E. By Theorem 3 the function G is AC on [¢, d] and
hence G’ exists almost everywhere on [¢, d] and is Lebesgue integrable on
[e, d]. Since G' = F;, = f, almost everywhere on E ~e, d] the function f, is
Lebesgue integrable on E n[e, d]. Furthermore, since F is BV on E n[e, 4],
the series Zﬂlj, :Jf,| converges where (¢, d]—E = | J,(¢,, d,). Since this is valid
for each « it follows that the family |f,) is uniformly Denjoy integrable on
[e, b]. . .

Derivimion 18, Let {f,) be a family of Denjoy integrable functions
defined on [a, b]. The family {f,} is uniformly integrable in a generalized sense
on [a, b] if for each perfect set E in [a, b] there is a portion E nJ of E such
that the family {f, xx) is uniformly integrable (Lebesgue sense) on I.

We are now ready to look at the integrals of vector-valued functions.
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We first state and prove a theorem that guarantees the existence of the
Dunford integral. Qur proof of this theorem is not the standard closed graph
argument (see Dicstel and Uhl [2, p. 52]) but it is in the spirit of several
proofs that appear later in this paper.

Tueorem 19. Ler f: [a, b] — X . If x*fis Lebesgue integrable on [a, b]
Sor each x* in X*, then for each measurable set E in [a, b] there exists a
vector xF* in X** such that x§*(x*) = {gx*f for all x* in X*.

Proof Let B = !x*eX*: {|x*| < 1! and for each positive integer n let
V, = Ix*eB: 1: Ix* f| < n}. Then B = {, V, and we show next that each ¥, is
closed. Let y* be a limit point of ¥, and let |x}} be a sequence in ¥, that
converges to y* The sequence {|[x¥ f|! converges pointwise to [p* f] and
“Fatou's Lemma yields

b b
jly* f1< liminf {[x¢ ] < »
a k—oo g

This shows that y* eV, and we conclude that V, is closed.

By the Baire Category Theorem there exist an integer N, a real number
¢ >0, and a vector x}¥ in B such that [x*: |[x*—x¥|| € ¢] = Vy. Take x*eB
and compule

b

b b b
[Ix* f1 = 07" Jlox* f4 x5 f—x £1 < 07" [llox* +x8) f1+a™* ixt f] < 2N/e.

an

Now let E be a measurable subset of [, b] and let I be the linear functional
defined on X* by lp(x*) = [, x* f. Since

b
sup [ [x* f| < sup [|x* f] < sup [Ix* f] < 2N/e,
B K B E B 4

the linear functional [, is bounded and hence defines an elcmenl of X** This
completes the proof.

- Derivumion. 20 (a) The function f: [a, b] — X is Dunford integrable on
[a, b1 if x* fis Lebesgue integrable on [a, b] for each x* in X*. The Dunford
infegral of f oun the measurable set E < [, b] is the vector x¥* in X** such
that xf*(x*) = 2 x* f for all x* in X*.

(b) The function f: [a, b] =X is Pettis integrable on {a,b] if [ is
I{)unford integrable on [a, b] and xE*eX for every measurable set E in
a, b]

(¢) The function f: [a, b] =X is Bochner integrable on [a, b] if there
exists an AC function F: [g, b] -+ X such that F is differentiable almost
everywhere on [a, b] and F' = f almost everywhere on [a, b],
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The function f is Dunford, Pettis, or Bochner integrable on the set
E =[a, b] if the function fy; is Dunford, Pettis, or Bochner integrable on
[a, b]. The next three theorems list properties of the Dunford and Pettis
integrals. The last two follow from the Bessaga—Pelczynski characterization
of Banach spaces that do not contain a copy of ¢y {see Diestel und Uhl [2,

22)).
Tueorem 21, If f: [u, b] = X is Pertis integrable on [a, b, then the

family (x¥ f1 |lx*] < 1 is uniformly integrable on [a, b].

TueoreM 22, Suppose that X conrains ne copy of ¢ and let f2 [a, b] = X
be Dunford integrable on [a, b]. If f is measurable, then f is Perttis integrable
on [a, h]. .

TueorEM 23, Suppose that X coptaing no copy of ¢ and let f@ [a, Pl 2 X
be Dunford integrable on [a, b]. If \,fEX for every interval I in [a, B], then f
is Pettis inteyrable on [a, b].

The foundation to study the Denjoy extension of Banach-valued inte-
grals is now in place. The next theorem guarantees the uniqueness of the
Denjoy-Bochner integral. We will use ¢ to represent the zero of a Banach
space.

Tweorem 24, Let F: [a, b] = X be ACG on [a, b] and suppose that F is
approximately differentiable almost everywhere on {a, b). If F|, =0 almost
everywhere on [a, b], then F is constant on [a, b]. '

Proof Suppose that F is not constant on [, b]. Then there exist
pointy .', and (, in [a. b] such that F{r,) ¢ F{r;). Choose x* in X* such that
Xx*F(t;) % x*F(r,). Since x*F is ACG on [a, b] and since (x*F),, =0
almost everywhere on [a, b], the function x*F is constant on [a, b] by
Theorem 1{. This contradiction completes the proof.

Derinerion 25, (a) The function f: [a, b1 — X is Denjoy—-Dunford inte-
grable on [, b] if for each x* in X* the function x* fis Denjoy mtegrable
on [a, b] and if for every interval I in [a, b] there exists a vector xj* in X**
such that xf*(x*) = [y x* f for all x* in X*.

(b) The function [ [a, b] = X is Denjoy-Pettis integrable on [a, b] if f
is Denjoy-Dunford integrable on [a, b] and if x}* € X for every interval [ in
[a, b].

(¢} The function [ [a,.b] =» X is Denjoy—Bochner integrable on [a, b] if
there exists an ACG function F: [a, b] =X such that F is approximately
differentiable almost everywhere on [a, b] and F,, = f dlmoqt ¢verywhere on
[a, 7.

The function [ is integrable in one of the above senses: on ‘the  set
E = [a, b] if the function fy is integrable in that sense on [a, b].'We first
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examine the properties of the Denjoy-Bochner integral. As with the Bochner
integral, a Denjoy~Bochner integrable function must be measurable.

TueoreM 26. If f: [a,b] — X is Denjoy—Bochner integrable on [a, b],
then f is measurable.

Proof Since it is clear that each x* f is Denjoy integrable on [g, b],
each x* f is measurable by Theorem 12(a). Let F(1) = {;f. Since F is
continuous, the set "LF(1): t €[a, b]} is compact and hence separable. Let Y
be the closed linear subspace spanned by F(1): tela, b]}. Then ¥ is
separable and Y contains the set |f(¢): F, () = f (1 Hence, the function f
is essentially separably valued. It follows from the Pettis Measurability
Theorem that f is measurable.

The next two theorems were proved by Alexiewicz {1]. The first, which
we state without proof, is important in the theory of the differentiation of
vector-valued functions {see also Gordon [3]). The proof of the second is
included for completeness.

TueoreM 27. Let F: [a, b] =X be AC on [a, b]. If F is approximately
differentiable almost everywhere on [a, b], then F is differentiable almost
everywhere on [a, b]. ‘

TreEcreM 28. If f: [a, b] = X is Denjoy—Bochner integrable on [a, b],
then each perfect set in [a, b] contains a portion on which f is Bochner
integrahle,

Proof. Let E be a perfect set in [a, b]. Since the function F{) = i f is
ACG on [g, b], we find, using Theorem 4, that there exists an interval [c, d]
in [a, b] such that ¢, d€E, (c, ) "E#D, and F is AC on [¢,d]nE. Let
G: [c,d] = X be the function that equals F on {¢, d] nE and is linear on
the intervals contiguous to [¢, d] N E. Then G is AC on [¢, d] by Theorem 3
and it is not difficult to show that G is approximately differentiable almost
everywhere on [c, d]. By Theorem 27 the function G is differentiable almost
evur}whcre on {c. d] and it follows that ¢’ is Bochner integrable on [c, d].
Since G’ = F, = j alwwout everywhers on E m[e¢, d) the function fis Bochner
mtegrable on Enic, d).

We next consider the Denjoy-Punford integral. The Lebesgue integrabi-
lity of each x*f is sufficient to guarantee the existence of the Dunford
integral, that is, the linear functional /;: X* — R defined by I (x*) = {; x* f'is
continuous. We have been unable to prove this result (or find a- countere-
xample) when each x* fis Denjoy integrable. However, we have obtained a
necessary and sufficient condition for a function to be Denjoy-Dunford
integrable and the next few results lay the base for this condition.
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Lemma 29, Let.F: [a, B] = X** If for each x* in X* the function Fx* is
continuous and BVG on [a, b], then the family (Fx*: x*eX*} is unmiformly
BVG on [a, b].

Proof. Let E be a perfect set in [a, b] and let {I,} be the sequence of
all open intervals in (a, b) that intersect E and have rational endpoints. For
each pair of positive integers m and n  let AL = {x*eX*:
V(Fx*, Enl,) < m) where V(f, A) is the variation of f on 4. By Theorem 4
we see that X* = (], {J,4n. The next step is to show that each of the sets
Al is closed.

Let x* be a limit point of A% and let {x¥} be a sequence in 4, that
converges to x*. Let l[c‘,d,] ! be a finite collection of nonoverlappmg
intervals that have endpoints in E nI, and compute

ZIF (d)) x* — F (¢} x*| = liminf [)_ |F(d) x¥

koo i

— F{c) x|}

< liminf {V (Fxg, ENI)} < m

k=00

Hence, we have V(Fx*, E 1) < m and this shows that the set A}, is closed.

By the Baire Category Theorem there exist M, N, xj, and ¢ > 0 such
that {x*: ||x* - x|l < ¢} = AY,. For each x* in X* with ||x*|| # 0 we find
that

V(Fx*, Enly) =

:
il (” Q*” Fx* 4 Fxt—Fx%, E mIN)
0

%
< o)
@ ll*]]

2M
+ V{Fx§, E mIN)} S ?”x*“.

Hence, the function Fx* is BV on E NIy for each x* in X* and it follows
that the family [Fx*: x* eX*} is uniformly BVG on [a, b].

LevMa 30, Let F: [a, b] = X**, If the function Fx* is ACG on [a, b] for
each x* in X*, then the family [Fx*: x*eX*) is uniformly ACG on [a, b].

Proofl Let E be a perfect set in [a, b]. By the previous lemma there
exists an interval [c, d] in [a, b] such that E n(c, d) # @ and such that the
function Fx* is BV on E~[e, d] for each x* in X*. By Theorem 6 the
function Fx* satisfies condition (N) on E n[e, d] for each x* in X* and by
Theorem 7 the function Fx* is AC on E n[e, d] for each x* in X*. Hence,
the family {Fx*: x* eX*} is uniformly ACG on [a, b].

6 -~ Studin Muthematicn 921
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The next theorem is the analogue of Theorem 19. However, to guarantee
the continuity of the linear functional we need to assume more than just the
Denjoy integrability of each x* f.

TureoreM 31, Let f: [a, b] = X and suppose that x* [ is Denjoy integra-
ble on [a, b] for each x* in X*, Then f is Denjoy-Dunford integrable on [a, b]
if and only if the family |x* fi x* € X*} is uniformly Denjoy integrable on
[a, b]. :

Proof. Suppose first that fis Denjoy-Dunford integrable on [a, b] and
let F(r) = {if. Then F(f)x* = [ix* f for each x* in X* and it follows that
the function Fx* is ACG on [a, b] for each x* in X* By Lemma 30 the
family {Fx*: x*eX*) is uniformly ACG on [a, b] and therefore the family
{x*f: x*€X*) is uniformly Denjoy integrable on [a, b] by Theorem 17.

Now suppose that the family {x*f: x*eX*} is uniformly Denjoy
integrable on [a, b]. For each open interval I in (a, b) let I, be the linear
functional on X* defined by I (x*) = {;x*f. Let' F = {I =(a, b): lxeX**
for every open interval K < I]. We must show that the interval (a, b)
belongs to #. To this end we will verify that # satisfies Romanovski’s four
conditions and apply Lemma 3.

Conditions (1) and (2) are trivially verified. Suppose that («, f)e.# for
every interval [«, B] «=(c, d). For those positive integers n for which I, =
(c+1/n, d—1/n) is nonempty define x3* =1, . For each x* in X* we have

d
leay (x¥) = [x* f = lim [x*f = lim x}* (x*).
¢ nes f, oo
By the Banach-Steinhaus Theorem the functional I, ; is an element of X™*.
It follows easily that (¢, d) belongs to #. Thus, condition (3) is satisfied.

Let E be a perfect set in [a, b] such that each interval contiguous to E
in (a, b) belengs to 7. Since the family [x* /7 x* e X*) is uniformly Denjoy
integrable on [a, b] there exists an interval [¢, d] in [a, b] with ¢; d€E and
E (¢, d) # O such that each x* f is Lebesgue integrable on E n[c, d] and
for each x* in X* we have ZnH:,. "x* f| < and (see Theorem 13)
d d dy
[ f =[x et £ [x* f
< ¢ &y
where [¢, d]~E=J,(¢,d,). It follows that f is Dunford integrable on
E e, d] and that the series ), x3*, where x}* = [ 4, is weak* Cauchy.
Let x}* be the Dunford integral of f on E n[c, d] and let x}* be the weak*
limit of the series ) ,x¥*. Then for each x* in X* we have

Loy %) = [ %% 7= (D x* £ yg+ T x5 (x%) = (x* + x&%) (x¥).

icm
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Hence, the functional [ 4 is an element of X**, Using a similar argument for
the subintervals of (¢, d) we find that (c, d) belongs te . Therefore,
condition (4) is satisfied and the proof is complete.

CoroLLary 32. If f: [a, bl = X is Denjoy~Dunford integrable on [a, b],
then each perfect set in [a, b] contains a portion on which f is Dunford
integrable. In particular, the function [ is Dunford integrable on some subinter-
val Qf [a, k.

Proof. Let E be a perfect set in [a, b]. Since f is Denjoy-Dunford
integrable on [, b] the family {x*f: x* eX*) is uniformly Denjoy integra-
ble on [a, b]. Hence, there is a portion EnJ of E on which each x* f is
Lebesgue integrable and it follows that fis Dunford integrable on En/.

The next theorem gives a resull that is formally stronger than that of the
above corollary. :

Throrem 33. Let 1 [a, b] — X. If the function x* f is Denjoy integrable
on [a, b] for cvery x* in X*, then each perfect set in [a, b} contains a portion
on which f is Dunford integrable.

Proof. Let E be a perfect set in [a, b] and let {I,} be the sequence of
all open intervals in (a, b) that intersect E and have rational endpoints. For
cach n let E, = Enl,. For each pair of positive integers m and n let Ap,
= x*eX*: [ Ix* f| < m}. By Theorem 12(c) we find that X* =), Un AL
We claim that each of the sets A), is closed.

Let x* be a limit point of 47 and let {x}} be a sequence in A} that
converges to x*. Then the sequence {|x§ f|} converges pointwise on [, b] to
the function |x* f| and by Fatou’s Lemma we have

flx* fl< liminf { [ [x¥ fI} < m.
E, k= E,
This shows that x*eA” and we conclude that the set A4, is closed.

By the Baire Category Theorem there exist M, N, x§, and ¢ > 0 such
that {x*: [x* —x¥| < @) < A}, For each x* in X* with [x*| # 0 we find
that

P PR

Hence, for each x* in X* the function x* f'is Lebesgue integrable on £ N 1Iy.

This shows that £ is Dunford integrable on E Iy, _
Let [ [a, b] —~ X and suppose that each x* [ is Denjoy integrable on

[a, b]. The proof of Theorem 31 shows that £ is Denjoy-Dunford integrable

on [a, b] if for each perfect set E in [a, b] there exists a portion En(c, d)

such that for each x* in X* the function x* f is Lebesgue integrable on

e : ) U M
< Lo fexasle i .f|JL < M.
HlN En . é
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E n{c, d) and the series Z | "x* f | converges where (¢, d)—E = | J,{c,, d,}.
The proof of Theorem 33 shows that there is a portion on which each x* f'is
Lebesgue integrable. However, this argument fails to provide a portion on
which the series converges for every x* in X* because the corresponding sets
A" are not necessarily closed. Hence, this approach does not establish the
existence of the Denjoy-—Dunford integral,

- The next two theorems provide conditions for the existence of the
Denjov—Dunford integral. The theorems give no new information since each
condition implies that the family {x* f* x*eX*! is uniformly Denjoy inte-
grable. However, these conditions may be easier to verify in a particular
case. We first need a definition.

Dermvition 34, Let £ Ta, b] = X and suppose that esach x* fis Denjoy
integrable on [a, b]. A point ¢ in {a, b] is called a Denjoy point of f if for
each interval [ in [a b7 that contains 7 there exists a vector x¥ in X* such
that the function x} f is not Lebesgue integrable on I.

It is clear that the set of Denjoy points of a function is closed.
Furthermore, if the interval I contains no Denjoy points of f, then there
exists a vector xf* in X** such that x}*(x*) = (D) [ x* f for all x* in X*
Here xf* is the Dunford integral of f on [

TuEoREM 35, Ler f: [a, b] — X and suppose that x* [ is Denjoy integra-
ble on [a, b] for each x* in X*. If the set of Denjoy points of f is countable,
then f is Denjoy-Dunford integrable on [a, b].

Proof. By Theorem 31 it is sufficient to prove that the family
{x* f: x* eX*) is uniformly Denjoy integrable on [a, b]. Let H be the set of
Denjoy points of f and let E be a perfect set in [4, b]. Since the set E is
uncountable and since the set H is closed and countable there exists an
interval [c, d] in [a, b] such that [¢,d] "H =0 and (¢, d) ~ E # ©. Now
each x* f is Lebesgue integrable on [¢,d] and, in particular, Lebesgue
integrable on E n{c, d]. Let (¢, d)~E = | ,(c,, d,) and note that

dn dy d
XS T [l Sl <

no ey L c
for all x* in X* Hence, the family {x*f: x*eX*} is uniformly Denjoy
integrable on [a, b],

Turorem 36. Let f: [a, b] = X and suppose that x* f is Denjoy integra-
ble on [a, b] for each x* in X*. Let H be the set of Denjoy poinis of f, let (a, b)
—H =), (a,, b)), and let x** be the Denjoy—Dunford integral of f on (a,, b,).
If f is Dunford integrable on H and if the series Z ¥ (x*)| converges for
each .x* in X*, then [ is Denjoy—Dunford mtegrable on fa, b].
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Proof. By Theorem 31 it is sufficient to prove that the family
{x*f: x*eX*} is uniformly Denjoy integrable on [a, b]. Let E be a perfect
set in [a, b]. If E is not a subset of H, then as in the previous proof there is
a portion of E with the desired properties. Suppose that E is a subset of &
and let (a,P)—E = J;(¢. d). Since each vc* f is Lebesgue integrable on
E n[a, b] we need only prove that Zi 1, x*f| < oo for each x* in X*.

For each i let m, = |n: (a,, b,) =(c, d)} and note that the n;’s form a
partition of the positive integers since E < H. Using Theerem 13 we obtain

ZI!x*fl lx*fxal+ ZI x*fl

RERG A,
<}j;lx*fl+ Z Hx*ff =[x fl+ X x* (e < 0
=1 a, H =1
for each x* in X*. This completes the proof.

The next theorem gives necessary and sufficient conditions for a function
to be Denjoy--Pettis integrable.

Tueorem 37. A function f: [a, b] =X is Denjoy—Pettis integrable on
[a, b) if and only if there exists a function F: [a, b} — X such that the Jamily
{x*F: x* eX*} is uniformly ACG on [a, b] and (x* F),, = x* f almost every-
where on [a, b] Jor each x* in X*. (The exceptional set may vary with each x*)

Proof Suppose first that fis Denjoy-Pettis integrable on [a, b] and let
F{t) = j f. By Theorem 31 the family {x* F: x* eX*} is uniformly ACG on
[a, b]. Since x*F(r) --j' x* f we see that (x* F);,, = x* f almost everywhere
on [a, b].

Now suppose that a function F with the given properties exists and fix
x*eX*. The function x*F is ACG on [a, b] and (x*F),, = x* f almost
everywhere on [a, b]. Hence, the function x* fis Denjoy mtegrable on [a, b]
and for each interval [¢, d] < [a, b] we have x*(F(d)—F(c)) = j x* f. Since
this is valid for all x* in X* the function f is Denjoy-Pettis integrable on

[a, b].

It should be noted that the above theorem remains valid if we only
require x* F to be ACG for each x* in X*

We have shown that a Denjoy-Bochner (Denjoy-Dunford) 1ntegrable
function is Bochner (Dunford) integrable on a portion of every perfect set.
We have been unable to prove that a Denjoy-Pettis integrable function s
Pettis integrable on a portion of every perfect. set. However we do have the
following result.

Trurorem 38, Suppose that X contains no copy of ¢, and let f [a, b] =X
If f is Denjoy—Pettis integrable on [a, b], then every perfgct set in [a, b]
contains .a portion on which-f is Pettis mtegrable
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Proof Let E be a perfect set in {a, b]. By Theorem 31 the family
{x* f: x*eX*} is uniformly Denjoy integrable on [a, b]. Consequently,
there exists an mterval [c. d]in [a, b] with ¢, d€E and E r‘\(c d) % @ such
that each x* fis Lebesgue integrable on E m[c d)and ¥ |fonx* f| < oo for
each x* in X* where (¢, d)—E =1{J,(¢,, d,). We will show lhdlj is Pettis
integrable on En[c, d]. Since the funcnon f is Dunford integrable on
Ene, d] it is sufficient to prove that the Dunford integral of fy, is X-
valued for every interval in [c, d] and apply Theorem 23.
fet r be a point in (¢, d] and %uppme that 1 ¢ E. Choose an integer N
such that ts(cy, dy). Since Zd <,| "X f| < co for each x* in X*, the series
D, <t i‘”_ is unconditionally convergent by the Bessaga-Pelczyiski Theo-
rem. Let x, be the sum of the series. Fix x* e X* and use Theorem 13 Lo
compute
f dn t
(D) fx*f =(L) [x* fxg+ > D |x* FH(D) | x*f.
[ n\l £p N

We then have

t 1 t
Ly fx* fog = x*([)=x* )= x*( [ f).
C o oy
Since this is valid for all x* in X* the Dunford integral of fy, on [c, t] is X-
valued. The case for t €E is similar and it follows easily that the Dunford
integral of fy; is X-valued for every interval in [c, 4],

If f:[a,b] =X 1is Pettis integrable on [a, #], then the family
be* £ lIx*| < 1) is uniformly integrable on [a, b]. Theorem 38 yields the
following ‘extension of this resuit. (See Definition 18.)

CoroLLary 39. Suppose that X contains no copy of ¢o dand let £ [a, b
—+X. If f is Denjoy-Pettis integrable on [a, b], then the fomily
i £ llx¥| < 1) is uniformly integrable in a generalized sense on [a, b].

Suppose that X contains no copy of ¢,. In Theorem 22 we have stated
that every measurable, Dunford integrable function is Pettis integrable in
such a space. Morrison [4] states and proves that every measurable, Denjoy-
Dunford integrable function is Denjoy-Pettis integrable in such a space.
However, he uses Solomon’s [7] definitions of these integrals and it is
difficult to relate Solomon's integrals to those defined here. Using the
definitions of the Denjoy-Dunford and Denjoy-Pettis inlegrals developed in
this paper we prove that the result is only valid in weakly sequentially
complete spaces, :

TueoreM 40. Let X be weakly sequentially complete and let f: [a, b]
X be Denjoy-Dunford integrable on [a, b]. If f is measurable, then f is
Denjoy—Pertis integrable on [a, b].
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Proof. For each interval I in [a, b] let xf* be the Denjoy-Dunford
integral of fon I. Let & be the collection of all open intervals I in (a b} such
that xf* e X for every open interval K < I. We must show that # contains
(@, b) and by Lemma 5 it is sufficient to verify that # satisfies Romanovski’s
four conditions,

Conditions (1) and (2) are easily verified. Suppose that (x, ) belongs to .F#
for every interval [o, f1 in (c, d). For each positive integer n > 2/{d~c)
define I, = (c~+l/n, d—1/n) and let x, = xj*. Then we have

P d
xgEx (x*) = l[x*f = lim {x*f= lim x*(x,)
¢ LIy R
for each x* in X*. Since X is weakly sequentially complete the sequence |x,]
converges weakly to an element x, of X and we must have x{% = x,. It
follows easily that (c, d) belongs to F and this verifies condition (3).

Now let E be a perfect set in [a, b] such that each of the intervals in
(«, b) contiguous 1o E belongs to +#. Since f is Denjoy-Dunford integrable
on [a, b] the family {x*f: x*eX*! is uniformly Denjoy integrable on
[a. p]. Hence, there exists an interval [, ] with u, v€E and En(u, v) = @
such that each x* [ is Lebesgue integrable on Er[u,r] and the series
Zl\[ converges for each x* in X* where (u, v)—E = J;{y;, ).

Let (¢, d) be a subset of (u, v}, let (¢, d)— E = |, (¢, di), and for each k
let x, = x{¥,,. Since Zklx* (xJ] < co for each x* in X* the series Zk X, 18
unconditionally convergent by the Bessaga—Petczynski Theorem. Let =z
=Zk X;. Since [y is Dunford integrable on [¢, d] and since X contains no
copy of ¢g, the function fy; is Pettis integrable on [¢, d] by Theorem 22. Let
y be the Pettis integral of fyz on [c,d]. For each x* in X* we have

4
X (%) = (L) IX*fxE+Z ) [x* f = x*(y)+x*(2)
<
and this shows that (¢, d} €.#. Therefore, the interval (u, v) belongs to % and
# satisfies condition (4). This completes the proof.

Exampre 41. Suppose that X is not weakly sequentially complete. There
exists a series Z x, in X such that the series 3 x*(x,) converges for each x*
in X* but the series Z x, converges weak* to x§F*eX**— X, For each
positive integer n let I, -»(1/(11+1) 1/n) and define f: [0, 1] =X by

JO) = T+ 1) x, %, ().
L

The function f is clearly measurable. Fix x* in X* and note that x* f is
Lebesgue integrable on the interval [«, 1] for each a&(0, 1). For ae(1/(N
+1), 1/N] we find that

1 1N ‘ N-1

[x*f= i x* f+ 1 x* f = N(N+D(1/N=a)x*(xy)+ > x*(x

¥ 1N n= 1
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It is not difficult to see that

fim fx*f = ]

ca=0t

Hence, the function x* f is Denjoy integrable on [0, 1] and
1
[x* f =3 %% (x,) = x§* (x*).
0 n

It follows easily that f is Denjoy-Dunford integrable on [0, 1] but not
Denjoy—Pettis integrable on [0, 1].

We conclude this paper with three more examples. Example 43 is due to
Alextewicz [1].

ExampLE 42: A measurable, Pettis integrable function that is not Den-
jov-Bochner integrable.

Let {r,} be a listing of the rational numbers in [0, 1) and for each pair
of positive integers n and k let

I"---(r+1 r+l
SRS LY

For each k define f: [0, 1] —{; by
£t = (D0}

We claim that the series ), 47* f; is ,-valued almost everywhere on [0, 1].
For each positive integer j let A; =), te[0, 1]: [t—r] <2774 and
let A= (;A; Then p(4)=0 and {r,| <A. If t¢4, then t¢d;, for some
jo and it follows that [f;()ll<2°"* for all k. Hence we have
2 EAQN < 2% and this shows that the series 247 A (1) converges in I;.
This establishes the claim.
Define g: [0, 1] =1, by g(® :Ek4"‘f,_¢(t) for ¢ in [0,1]—A and g(2)
=4§ for t in A, We first show that g is Pettis integrable on [0, 1].
Since I, is reflexive we need only prove that the function x*g is
Lebesgue integrable on [0, 1] for each x* in ¥ =[,. For each positive
integer n define g,: [0, 11 =R by g,(t) =3, 47 *(n+1) g~ () for t in [0, 1]
—A and g,(t) =0 for £ in 4 and note that g(t) = {g,()} for all ¢ in [0 1].
Since
21(4"'(n+1) rcyarlol L
- ; : XI,, = - n . 3ns

the function g, is Lebcsguc integrable on [0, 1] for each n by the Beppo‘ Levi

Denjoy extension of Bochner, Pettis, and Dunford integrals 89

Theorem. Let x* = |o,} ef;. Then x*yg tznm,,g,, and we have

1
1
Y fangal <3l 5, <%
L] " n

Using the Beppo Levi Theorem once again we find that the function x*g is
Lebesgue integrable on [0, 1]. This proves that ¢ is Pettis integrable on
[0, 1].
Now we will show that g is not Denjoy—Bochner integrable on [0, 1].

By Theorem 28 it is sufficient to prove that f is not Bochner integrable on
any subinterval of [0, 17. Let [a, b] =[0, 1] and choose a rational number
r. and a positive integer N such that (r, r,-+1/N) = (a, b). We then have

b r PN i+ 1N o

Mgz | tallz | I47*fll=4""% 1/n=00

a i 4% n=N

Hence, the function g is not Bochner integrablé on [a, b].

ExampLe 43: A Denjoy-Bochner integrable function that is Pettis inte-
grable but not Bochner integrable.

Let X be an infinite-dimensional Banach space. By the Dvoretsky—
Rogers Theorem there exists a series Z" x, in X that converges unconditio-
nally but not absolutely. For cach positive integer » let 1, = (1/(r+1), 1/n)
and define f: [0, 1] =X by /(1) = (1/u{l,))x, for ¢t in I, and f(z) = @ for all
other values of . The function f is measurable since it is courtably valued,
but fis not Bochner integrable on [0, 1] since

1
=2 sl = e = 0

We will show that f'is both Denjoy—Bochner and Pettis integrable on [0, 1].
We first show that [ is Denjoy-Bochner integrable on [0, 1. Define
F: [0,1]—X by
1
+1 . 1 1
F{t) = — X, + Z x, for ¢ in (m, E]

( n) k=pnt1

and F(0) = 0, Then F is continuous on [0, 1] and F’ = f almost everywhere
on [0, 1. Furthermore, the function F is ACG on [0, 1] since F is AC on
0} and on each of the intervals [1/(n-+1), 1/n]. Hence, the function [ is
Denjoy-—Bochncr integrable on [0, 1].

Now we will show that fis Pettis integrable on [0, 1]. For each x* in
X* we have

HX*fI 2|

" 1,,#(11,3 1x* (xl z;lx* (xui <0
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since the seriesEnx,, is unconditionally convergent, Hence, the function fis
Dunford integrable on [0, 1]. Let E be a measurable set in [0, 1] and let x,
be the sum of the unconditionally convergent series

w(EnI,)

AR
Then
) 1
N

for each x* in X*. This shows that f is Pettis integrable on [0, 1].

ExamrLE 44: A Denjoy-Pettis integrable function that is Dunford inte-
grable but not Pettis integrable.
For each positive integer n let

. (_L ﬂ_) . (ﬂ_ 1)

" n+1 nn+ 1)/ g n(n+1) n
and define f: [0, 1] >R by f,,(t)=2n(n+1)(x,;(r)mx,ﬁ(t)). Then the se-
guence {f,] converges to O pointwise and it is not difficult to show that
{{; f,} converges to 0 for each interval I < [0, 1]. Define f: [0, 1] —¢,
by f{) = £, ()]

Let x* = {a,} €l;; then x* =3 o, f,. Since
1
Sl fil =X 20 < oo
n0 n

the Beppo Levi Theorem applies to show that x* f'is Lebesgue integrable on
[0,1] and

rX*f =Z.ra’rrfn = Ean} ’ {jfn}
E nE I

Hence, the function f is Dunford integrable on [0, 1] and [ f = {f f,] for
every measurable set ‘E < [0, 1]. For each interval [ < [0, 1] we have
|1 f €co by the choice of {f,] and it follows that f is Denjoy—Pettis integrable
on [0, 1]. But fis not Pettis integrable on [0, 1] since for the set E =, 1,
we have {iz f,} = (1} €l,~e¢p.
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