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THE DENSITY AT INFINITY OF A DISCRETE GROUP

OF HYPERBOLIC MOTIONS

by DENNIS SULLIVAN

Dedicated to the memory of Rufus Bowen

Imagine in the hyperbolic space H^1 an infinite completely symmetrical array

of points. We study here the distribution of these points at large distances from an

observation point p. One can define the density at oo for the array viewed from p.

For each p this density is a finite measure on 3d which is proportional to a certain power

of the metric on S^ associated to p by radial projection. Thus denoting the measure

by ̂

^(w), for,,, in H".
^3 V6^)/

where Q{p) is the spherical metric associated to p. So (JL behaves like a Lebesgue or

Hausdorff measure of dimension S.

The construction of the density, which was made by Patterson [4] for orbits of

Fuchsian groups and is extended here to arrays in H?^1, makes sense for any discrete

array of points and is invariant by the symmetry group F of the array in the sense that

Y^p^Pw for T in
 I'-

ll is a tautology that a density (A with these invariance properties is unique if and

only if the action of F on S0' is ergodic relative to the measure class defined by [L.

In [5] we derived an ergodicity criterion for Lebesgue measure in terms of the

divergence of the absolute Poincare series

g^y)^-8^

where {x, yjO ls hyperbolic distance, at s==d. In fact this divergence was seen to be

equivalent to the much stronger ergodicity of the action of F on (S^xS^)—diagonal.

In the construction of the density (JL above, the critical exponent of this series,

8(F), is the dimension 8 for the density (JL (The series diverges for J<S(F) and

converges for ^>8(r).) The last theorem of this paper (§ 7, theorem 32) is that
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172 D E N N I S S U L L I V A N

divergence at 8(F) implies ergodicity of the action of Y relative to piXpi on (S^xS^)—diagonal

d . . . . . . d
for 8>-. In particular, if the series diverges at the critical exponent 8(r)>—, then

2 2
the r-invariant density at oo is canonical. The proof makes use of a Markov process

constructed with the positive eigenfunction 0 (for the eigenvalue — x = — 8 ( r f — S ) )

associated to the density [L, with O(j^) = total mass of [ip. The transition probabilities for

0(y)
the process are e — — p t [ x , y ) , where p t [ x , y ) are the transition probabilities for the usual

Brownian motion on H^4'1. The paths of the process starting at p hit oo with proba-

bility distribution ——.pip, and the absolute Poincare series of weight 8 estimates

the Green's measure of the process.

In an earlier section (§ 4) we construct from [L an invariant measure for the geodesic

flow acting on (unit tangent spaces of H^4'1)/]^. For this measure dm the geodesic flow is

either ergodic or completely dissipative (Theorem 14). This generalizes the case ofLebesgue

measure, which is E. Hopf's theorem [8]. The proof is exactly the same as Hopf's

once a simple estimate is verified.

This dichotomy "ergodic or dissipative" for the geodesic flow is equivalent to

a geometric dichotomy concerning the support of the density pi. By construction the

measures of \L live on the topological limit set of F, A^. The geometric dichotomy is

whether or not [L gives positive measure to the radial limit set AyCA^ (A point ^ of S^

belongs to Ay if a ray ending at ^ comes within a bounded distance of infinitely many

points of the array (which is by the symmetry assumption an orbit of F).)

In fact consider the conditions:

(i) the radial limit set Ay C A^ has positive [L-measure',

(ii) the action of F on (S^xS^)-— diagonal is ergodic',

(iii) the geodesic/low on the quotient 'H.d+l|^ is ergodic',

{iv) the Poincare series diverges at the critical exponent 8(r)==8;

(v) the Markov process on the quotient H^4'1/? is recurrent.

Then the first three are equivalent and imply the fourth. If ^>df2, the fourth implies

d
the fifth which implies the first three (§ 4, § 5, § 7). So if 8>- all five are equivalent.

In § 2, § 3, § 5, § 6 we study the local properties of such densities (which are canonical

in the above mentioned situation). One finds easily that there are many balls on S^

such that the ratio |i(ball of radius r) /r8 is bounded above and below. The best case (§ 3)

is when F acts with a compact fundamental domain on the convex hull of the limit

;set. We say cc F is convex cocompact55. This is equivalent to A^^=A^p^^i. Then

the density [L is canonical and is just the 8-Hausdorff density on A^ which is then a positive finite

measure in every metric. This is Theorems 7 and 8, whose proof only depends on the

existence of [L and § 2.
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THE DENSITY AT INFINITY OF A DISCRETE GROUP OF HYPERBOLIC MOTIONS 173

Such a theorem was proved first for quasi-Fuchsian surface groups by Bowen [i]

using Markov partitions and equilibrium states in Gibbs formalism to construct the

relevant measure. Sections § i and § 7 here have a certain rapport with his methods,

and it would be interesting to understand more about this.

In the convex cocompact case one can also derive estimates on the array of points

such as the following one: IfUy. is the number of orbit points in a ball of radius r about a fixed

center,

ce^<_n,<_^\ for o<c, C<oo.

These suggest that the convex hull is like a hyperbolic space of real dimension 8(r)+i.

The relation between S and the Hausdorff dimension can be further studied (§ 6)

in the S(r) -finite volume case, i.e. the invariant measure for the geodesic flow has finite

total mass. Using the Birkhoff ergodic theorem one finds that in this case 8(F) is the

Hausdorff dimension of the radial limit set.

Such groups include finitely generated Fuchsian groups, a non-trivial fact depending

on Patterson [4]. We find that:

(i) for a finitely generated Fuchsian group the Hausdorff dimension of the entire limit set

is 8(r) (Corollary 26);

(ii) for an arbitrary Fuchsian group the Hausdorff dimension of the radial limit set is 8(F)

(Corollary 27).

Part (i) was done by Patterson [4] assuming either no cusps or 8(r) is not in the

interval (1/2, 2/3). (Actually by Beardon [7] one knew cusps imply -<8(r)<_i).

We close by acknowledging our great debt to the two papers by Bowen and

Patterson. The Patterson measure which is rather remarkable allows one to achieve

a general version of Bowen's beautiful result.

i. Conformal densities on the limit set.

A conformal density of dimension S on a manifold V is a function which assigns a

positive finite measure pi(p) to each element p in a non empty collection of Riemann

metrics on V. It is assumed that if p and p' are conformally the same, i.e. p==cpp' where

<p is a positive function, then [ji==[ji(p) and (Jt/==pi(p') belong to the same measure

d[L d[L (a\8

class (1) and the Radon-Nikodym ratio — is 9°. Thus — == — . Note that given
d^ d[L \p;

a measure [L and a metric p on V we can use the formula to define a conformal density

on the set of metrics conformally the same as p.

(1) The measure class of a measure picks out the sets of positive measure.
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174 D E N N I S S U L L I V A N

One example of a conformal density defined on the class of all Riemann metrics

is the following. Suppose a Borel subset G of a compact manifold V has finite positive

Hausdorff 8-measure in one Riemann metric (and therefore all). Then

(Riemann metric) h-> (Hausdorff 8-measure on C)

is a conformal density of dimension 8 (1).

This is clear because given a metric, Hausdorff measure (with gauge function r8) is

constructed from the numbers S rf, where the r^ are the radii of tiny metric balls covering
i

subsets AcG. If we change the metric by a continuous function <p, the factor (p(^)8

comes out for those terms near x. Actually, this conformal variance of dimension 8 is

true even if we use a more general gauge function such as r^log i /r)~~8 ' (log log i /r)~~8 ' . . . .

Now we will employ an ingenious construction ofPatterson [4] to obtain a conformal

density of a certain dimension 8 on the topological limit set A^ of an arbitrary infinite

discrete group F of hyperbolic motions in H^1. The conformal density [L will assign

a finite measure to each of the metrics on S^ obtained by radially projecting the unit

tangent sphere from the various points x of H^4'1. This conformal density [L will be

invariant under F in the sense that T*^(p)=^-(Tp)? for all y in F (y? is the metric such

that Y ls an isometry between p and y?)-

For each x in HP4'1 we now construct, following Patterson [4], a measure ^ by

looking from x at the orbit under F of some point y. We are interested in how the

orbit looks near oo (as viewed from A:). A unit object at the point ̂ y appears from x

to have size e~{xf'ry} where {x, ̂ y ) is the hyperbolic distance. Thus in dimension 8 we

want to associate the scale factor e~s{xfyy) to the point yj^- To construct something

really at oo we proceed as follows.

For s a positive real number consider the infinite (2) series

(1) gs^V)= s e-8^^, [x^y) the distance in H^4-1.
ver

For x and y fixed this series is proportional to (3)

(2) S V-^
f c = o

where Sj, is the number of orbit points in a half-open shell of radii in [k—-, A+-k ' ' \ 25 2J
centered about x.

(1) The function on the space of all Riemannian metrics

metric t-> HausdorfFS-mass of C

seems an interesting one (compare § 7).
(2) Since the log of the derivative of y m the Euclidean metric of the unit ball model of H^4'1 is proportional

to (x, y^) this series is proportional to the absolute Poincare series of weight s associated to F.
(3) Two functions are « proportional » if their ratio is bounded above and below by finite, positive

constants.
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THE DENSITY AT INFINITY OF A DISCRETE GROUP OF HYPERBOLIC MOTIONS 175

The series (2) converges for s>8 and diverges for s<S, where

(3) 8==lim -log^.
vo/ fc-^oo k

Since F is discrete, s^ce^ for some constant depending on the minimal separation

of the orbit points Ty. Thus S<_d.

If we define n^ to be the number of orbit points in the closed ball of radius k +-

about x, then n^ = S ̂ , so that we may also write
i==o

(4) S=Um^log^.

Using the triangle inequalities (x, YjO^C^J^+C^ ^y) and {x, YjQ^C^ YJ^—^jQ

yields

(5) e-^g^^^g^^^e^g^y).

In particular 8 depends not on x or y but only on the discrete group F. We call S the

critical exponent of the group F.

For simplicity of the discussion now (and later for mathematical reasons) let us

assume that the series ( i) diverges at the critical value 8. Thus since all terms are

positive

limS^-^'^^oo, for s>S,
s->§ r

and this is true for all x, y using (5).

Consider the family of measures

(6) ^W^-T^-rS^-^^^Y^)
gs(^y) r

where S(y^) is the unit Dirac mass at y^. The total mass of these measures is bounded

above and below independently of j, using (5).

Let ^(^)== lim [Lg.{x) denote a weak limit of these in the space of measures

on HP4'1 compactified by S ,̂ the sphere at oo. Since ^(j^jQ—^oo as s->8, [L{x) is

concentrated on the cluster points of the orbit r(^). Thus y.{x) is a measure on the

topological limit set A^(F).

If x ' is another point we claim that lim pLg.(x') converges to \^{x'}, an equivalent
* / / \ ^

measure, and the ratio is just e8^'^ where ^ belongs to S ,̂ and {x, x'\ is the
d[L(x)

signed distance between the horospheres based at ^ and passing through x and x ' y

respectively.
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176 D E N N I S S U L L I V A N

FIG. i

The point is that for orbit points yj^ ^ar to ^ (in the compactified space) the

difference {x^y}—(^/, YjQ ls approximately the horospherical distance (^ ,^ 7 )^ . Thus

for those terms near ^ for either (Jig(x) or (A^A;') the ratio of the coefficients of 8(y^) are

all nearly e~s{xfx')^. As ^-^8 only terms near S^ count and this proves the claim.

Now if x and x ' are related by an isometry T] in F, ^'=T]^, then T] on 3d is an

isometry between the metric associated to x and the one associated to x\ Thus we have:

Theorem 1. — There is a conformal density of dimension 8(r) on the topological limit set

which is invariant by F.

This result for Fuchsian groups is due to Patterson [4]. To complete the proof

here we should remark why the ratio at ^ of the metrics on 3d corresponding to x and x '

is just e^'k. In the upper half-space model with ^ at o move x and x ' together using

parabolic transformations to put them on the vertical ray from the origin.

Then use a homothety y to bring these points p and p' together. The parabolic

transformations have derivative i at ^=o (in any metric) and the linear derivative

of the homothety is y^:^'^ using the infinitesimal formula:

(hyperbolic metric). (vertical coordinate) == (euclidean metric).

To completely finish the proof we also need to eliminate the assumption that

the series (i) diverges at s==S. Following Patterson [4], we do this by increasing the

weights of the Dirac masses 8(Yjy) by factors A(distance(^ yjQ)- ^e choose h: R^-^R^

continuous, non decreasing, so that the series SA^)^"^ diverges at S, and h(k) has
k

slow growth, namely, for s>o and abounded, | (A( r+^) /A(r ) )—i [<s for r sufficiently

large.

Then in the previous calculation the new factor h{d+r)lh{r) which emerges

(rf is approximately {x, x ' ) ^ and r is (^, yj/)) becomes i as ^->8.
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THE DENSITY AT INFINITY OF A DISCRETE GROUP OF HYPERBOLIC MOTIONS 177

Note that if 8 were zero, the various measures of one conformal density would

all be equal. We would thus have a F-invariant measure on the limit set. It is easy

to see that up to finite groups such a group is either elementary parabolic or elementary

hyperbolic.

Corollary 2. — For any infinite discrete group F, 8(r)>o unless F is a finite extension

of the elementary hyperbolic group.

This may be proved in other ways (Schottky subgroups) and was done so by

Beardon [7] for Fuchsian and Kleinian groups. We note that, for a parabolic group

of rank k, 8 == —k. This calculation follows since a piece of horocycle connecting two

points at distance r has length proportional to ^2r, for r large.

2. The local properties of an invariant conformal density.

If pi is a finite measure on S^ with or without atoms and a metric is given, one

can (1) choose v<mass [JL and £>o so that every ball on S^ of radius <^s has

[jL-measure ^v. If [JL has no atoms v can be chosen arbitrarily small, otherwise it is

chosen to be a little larger than the largest mass of an atom of [L. One can take s to

be less than the Lebesgue number of a finite subcover of the cover {U^}, where U^ is

a disk about ^ in S^ so that ^(U^)^v.

Now consider an invariant conformal density [A of dimension a for the group F.

By Theorem i these exist for a =8. Relative to the metric pa; on S^ associated to x

in 'Hd+l we want to estimate ^(ball of radius r)^. Note that an asymptotic property

of these radii as r—>o will be unchanged if we change the metric conformally.

The geometric point of what follows is that a hyperbolic translation t preserving

a geodesic i through x in HP4"1 uniformly expands a ball B on S^ centered about the

expanded endpoint off and having radius ^"-(a;'te). The non uniformity depends only

on c and not on the distance (x, tx). By choosing (for given c>o) c==c{e) large enough,

the image of B will omit a ball on S^ of radius ;<£• This picture follows easily by

conjugating the translation acting on S^ to the affine expansion of Euclidean space R^

via stereographic projection.

We apply this statement to all the geodesies i connecting x and Y~1^? ^ov T m r1-

We can factor such a y into a translation followed by a rotation about x. We conclude

that the ball B^(^) of radius ^(c)^"^"1^ about the point S on S^ (which is the endpoint

of the directed ray x->^~^x) is uniformly expanded to engulf all of S^ except a ball

of radius <^c. If s is chosen relative to the v above this image contains a definite

proportion >————x—— of the mass of LL.. Since the expansion rate is essentially
' A - mass^ "' ' '

(1) Except for the case when \L consists of a single atom. This case can happen in our context only for elementary
groups.

425
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178 D E N N I S S U L L I V A N

^Y"^) ^e conclude the ratios (mass of [L in By)/(radius By)0', for y in r, are bounded

above and below independent of y-

FIG. 2

So if (JL is any F-invariant conformal density of dimension a which is not a single

atom, we have:

Proposition 3. — Given x in HP4-1, write r^=e~!x^~lx\ There are balls in S ,̂ {By},

of radius (constant) .7y centered at the ends of the rays x->^1, for y in F, such that ^(By)/ry z'j-

bounded above and below. Moreover^ y has an (essentially) uniform expansion on By and the

proportion of the mass of [L in yBy is as close as we like to i — ((largest mass of atom of pij / (mass pij).

The balls By on S^ for {x, ̂ ~lx) in the interval [k— -, k +-)? for ^ large, cover

the points ^ of S^ with a multiplicity TT^ satisfying
o<^m^<l^ (constant of proposition, minimal separation of points of orbit x).

This is so because the By are the radial projections from x of balls of a fixed size

placed along the orbit of x.

The sum of the (i-measures of these balls is proportional to the number Sj^ of orbit

points in the shell, times the mass in each, e~k<x. But this total is no more than the

maximum multiplicity G times the mass of {JL^.. Thus s^e~k<x<_c/, or s^<_c'e^. Summing

this from i up to k yields, for a>o, n^ce^. In particular a^S and we have:

Corollary 4. — The critical exponent lim - log n^ == 8 is the infimum (which is achieved)

of the set of a for which there is a conformal density of dimension a invariant by T (the elementary

parabolic groups excepted).

Corollary 5. — If n^{x) is the number of points in the orbit of x at distance at most k, then,

for some constant c^ nk{x)<lcxe8k /or S==8(r)>o. In particular (see (9), § ^) the Poincare

series satisfies the upper bound

S <,-^^)<A_ for s>S.
rer — s—S
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THE DENSITY AT INFINITY OF A DISCRETE GROUP OF HYPERBOLIC MOTIONS 179

Corollary 6. — If a discrete group T is written as a union of subgroups I\, then

8(F)=sup8(rj. In particular 8 (F)=: sup 8 (finitely generated subgroups).

To prove cor. 6, choose invariant conformal densities (i(a) for I\ of dimension 8(FJ.

Choose a sequence of indices so that Inn 8, = sup ̂  == 8' and lim ^(z) converges weakly

to (i;. Any element y in F is eventually in I\ and Y^)=——8^') since pi(i) is

an invariant conformal density. Letting Z-.OQ yields ^==——y^ Since this is

true for each y in F, ^ determines an invariant conformal density of dimension 8'.

Thus 8'^8. The reverse inequality 8'^8 is obvious.

3. Convex cocompact groups and Hausdorff measure.

If ACS^ is a closed set we can form the convex hull of A, C(A), in hyperbolic

space H^1. In the projective model C(A) is identical to the usual convex hull. If A is

the limit set of a discrete group F, then G(A) is invariant by F. We say that F is convex

cocompact if this action of F on the convex hull C(A) has a compact fundamental domain.

Finitely generated Fuchsian groups without cusps have this property. In H^1

for all dimensions the condition (< convex cocompact " is equivalent to the condition

that the fundamental domain has finitely many sides and doesn't meet the limit set.

Such groups arise from compact convex (1) hyperbolic manifolds with boundary. These

form a rich class in dimension 3 and are the building blocks in Thurston's theory [9].

In a typical example of one of these the limit set is obtained by removing countably

many open 2-disks (with non-rectifiable boundaries) from S2.

quasi-fuchsian typical
FIG. 3

P) Every homotopy class of paths between two points in the manifold is represented by a geodesic in the
manifold.
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180 D E N N I S S U L L I V A N

Now choose a r-invariant conformal density (JL in A of dimension 8, the critical

exponent of a convex cocompact group F. From. the previous proposition 3 we can

compute the ratios ^ (ball of radius r) /r8 for all balls centered at ^ on the limit set. To

do this consider the ray from x (chosen in the convex hull C(A)) to ^. There are points

of the orbit of x within a bounded distance from every point of this ray because F has

a compact fundamental domain in its action on G(A). If we adjust the constant

appropriately in the definition of the balls B^ of § 2, then those By for y near the ray

will contain the ball of radius er,y centered at ^ (r^ == radius B ). As we go out along

the ray these By such that B(^, sty) CBy shrink geometrically in size (on S^) and for

these [i(By) /r8 is bounded above and below by Proposition 3. It follows from the inclusions

B(^, £7y) CBy that, for all r, (i.e(B(^, r))/r8 is bounded above and below.

Since this is true for all ^ in the limit set we can evaluate the Hausdorff 8-measure

on A. If U B^ is a covering of a Borel subset A C A by balls centered on A of radius r^,

then Srf^ constant S^(B,)^ constant. ̂ (UBJ^ constant.^ (A). So the Hausdorff

8-measure of A, defined as the limit for s—^o of the infimum of the sums Srf for all

covers of A with r^e, is certainly at least a constant times ^(A).

To get the reverse inequality, consider s>o and construct a cover of A by balls B^,

Bg, ... centered on A, such that (radius B^)^ (radius B^^), (radius B^) <^ s, and the

center of B^_^ is outside B^u. . . uB,.

It is clear that this can be done. Now the balls of - the radii and the same centers
2

are disjoint. Denote this disjoint union by B. So

( i \8

T^r!|==281E^ -r,( <_ constant. ̂ (B)^ constant.^ (A).

So Hausdorff 8-measure of A is ^constant times ^(A).

We can extend this to any subset A C A of positive measure using density points.

Namely almost all points of A satisfy lim ^(B(<z, r)nA)/^(B(a, r))==i (Federer [3],

(2.9.n)) . Thus there is a subset A 'CA with [ji(A—A')<£ and an TQ>O so that

the above ratio is at least i—s for all r<7-o and a in A'.

Now the above argument for balls of radii <TQ yields

Hausdorff 8-measure of A' <^ constant. ̂ (A).

Letting z->o yields

Hausdorff 8-measure of A<^ constant. ̂ (A).

Thus we have (1):

Theorem 7. — For a convex cocompact group F, the Hausdorff dimension of the limit set A(F)

is the critical exponent 8(F). The Hausdorff ^-measure of the limit set is positive and finite.

(1) Theorem 7 for quasi-Fuchsian surface groups was done in Bowen [i] except for the identification of the
Hausdorff dimension. The latter was done for finitely generated Schottky Fuchsian groups in PATTERSON [4]
and in BOWEN [i] for Kleinian Schottky groups.
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Moreover, the Hausdorff ^-measure of the part of A(F) in a ball of radius r centered on A(F) is

proportional to r8.

We recall the Hausdorff dimension of a set S is the infimum of the set of a where

the Hausdorff oc-measure of S is zero. This equals the supremum of the set of a where

the Hausdorff a-measure is oo. In particular if the Hausdorff a-measure is finite and

positive for some a, then this a is unique and equals the Hausdorff dimension of the

set S.

The proof showed that if [L was a F-invariant a-conformal density on A, then

a was the Hausdorff dimension of A and the measure class of (JL was that of Hausdorff

measure. Thus a==8(F) and the measure class of (A is ergodic under the action ofF.

For if some subset of positive (but not full) measure were invariant we could restrict (JL

to this subset and obtain an inequivalent conformal density invariant by F.

This ergodicity implies that the confoimal density is unique. For if two such den-

sities, [A and [A', are given, v==-(pi+^') is also one and the ratios d ^ / d y , d\L \d^ are

F-invariant functions. Thus they are constant.

In particular any two limits, as ^—^S, of the family ^sW^—/——Tle~ s [x1yy}8^Jy)
Ssu^y) r

discussed in § i are equal. Recall {x,jy) is the hyperbolic distance and S(x) is the Dirac

mass at x.

Theorem 8. — For a convex cocompact group F there is on A(F) one and only one T-invariant

conformal density of any dimension and this is Hausdorff density of dimension 8(F) on the limit

set. In terms of the metric associated to x in H^1 the ^-Hausdorff measure satisfies

^=lim(S^-s(a;'w)S(Y^))/(2:^s(^/'Yt/))

for any y in H^4"1. In particular, the Poincare series S^""8^'^ diverges at the critical value s •== 8.
r

The series S exp(—s{y^ yjQ) diverges for s equal to the critical value 8==S(F)
ver

(in the convex cocompact case). This follows immediately because the balls By contain

coverings of A of arbitrarily small diameter. The amount of ^ in each one is pro-

portional (by proposition 3) to the corresponding term of the series for j=8. Thus

arbitrarily far out in the series for s === S we have a definite sum and thus divergence.

We note here that this divergence argument and the one on ergodicity (slightly

reinterpreted) only uses that there are infinitely many orbit points at bounded distance

from a ray connecting x to almost any point ^ in A. This will be formalized in § 5 on

the radial limit set. But now we want to derive a more precise divergence estimate

and a lower bound on the number of orbit points that really uses our convex cocompact

hypothesis.
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Convex hull

n(r;A,c)

Let A be some subset of the limit set A(F) and let n{r. A, C) be the number of

points in the orbit of x so that the distance is at most C to the set Ay obtained from A

by projecting radially onto the sphere of radius r about x. Since x was chosen to lie

in the convex hull of the limit set and F is convex cocompact the balls about the orbit

of x of radius D (sufficiently large) cover A,.. The shadows of these balls in S^ form

a cover of A with bounded multiplicity. The ^-mass of one of these balls is proportional

to e~^ by Proposition 3.

Thus for convex cocompact groups we have the estimates:

Theorem 9, — There are constants c and C so that, for all subsets A of the limit set,

n(r, A, C) ̂ 6-(Hausdorff 8-measure A) .^8r,

where 8 is the Hausdorff dimension of A(F).

Taking A to be the entire limit set and using Corollary i we have:

Corollary 10. — There are constants c and G so that n^ the number of orbit points in the

ball of radius r, satisfies

ce^^n^Ge8^

These estimates suggest the following interpretation. Since F is acting with

compact fundamental domain on the convex hull, the number of orbit points in a certain

region of the convex hull can be compared to the volume of that region. In hyperbolic

space H^4"1 the volume of a ball of large radius r is about e^ and the volume of the part

of that ball in a cone from the center of spherical measure 6 is about 6^.

Thus we should think of the convex hull as a <( hyperbolic space 5? in its own right

with the limit set playing the role of sphere at oo, the Hausdorff measure playing the

role of spherical measure.
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In summary. — Volume computations in the convex hull of the limit set for a convex cocompact

group r behave like those in a hyperbolic space which has real dimension 8(F)+i.

For Kleinian groups F one can show in the convex cocompact case that the Haus-

dorff dimension of A, D(A), satisfies i<D(A)<2 unless F is Schottky or Fuchsian

or A is all of S2.

This follows using Bowen [i] for quasi-circles, and the fact that if one removes

a collection of circles of total finite length from a region, a positive area remains.

4. The associated invariant measure for the geodesic flow.

We start with the interesting identity expressing the geometric mean value theorem

for a conformal transformation of Euclidean space R^4'1:

(7) |A^-AJ^=(A^)(A'^)IX-^.

Here A is a conformal transformation, A' x is the magnitude of the conformal distortion

at x, and |A:—J^| is the Euclidean distance. This relation can be checked for d==i

by writing A in the form z }-> ———. It then follows (David Freid) for inversions in
cz-\- d

higher dimensions since the plane of {x,y, inversion point) is carried to itself by a linear

fractional transformation. The general case now follows from the chain rule.

We apply this to conformal transformations preserving the unit sphere in R^4'1.

We can then write the same formula on 3d using the chordal metric on S .̂

Write | ^ — r\ \ for the chordal distance between two points on S^ and let p- be the

measure associated by a given F-invariant conformal density to the round Riemann

metric on Sd. If [JL is not a single atom we can form the non-trivial Radon measure (1)

v==^X[L)l\^-^\28 on (S^xS^)-diagonal.

Proposition 11. — The measure v==([j iXpi)/|E,—7]|28 on (S^xS^)— diagonal is invariant

under the product action of F, (^, ^^(y^, Y7])? f071 Y m r.

This follows immediately from (7) and Y*(JL== l y ' ^ l 8 ^ ? which is true since \L arises

from a F-invariant conformal density.

Now think of the manifold T of unit tangent vectors to H^1 fibred by the geodesic

flow lines over (S^xS^)—diagonal, geodesic \-> (+ °o endpoint, —oo endpoint). We

combine v with arc length along geodesies to obtain a measure dm invariant under F

and the geodesic flow g^ (^y==the tangent vector to the oriented geodesic determined

by v a distance -\-t away from v). Since F acts discontinuously on T we can form a

quotient space T/F with a quotient measure dm which is kept invariant by the quotient

geodesic flow.

(1) A Radon measure gives finite mass to compact sets.
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Corollary 12. — A Y-invariant conformal density on S^ determines an invariant measure

for the geodesic/low on {tangent vectors to H^^/r.

Let

(8) < j : T/^->R+

be the distance from the base point of a tangent vector v to a fixed orbit in 1Hd+l, say

that of the center of the unit ball in R^4-1. We want to show that lim -^log: dm(B )<oo
, -r» 1 r , r^oo T ° v r/

where B,. == or"3 [o, r].

FIG. 5

Consider all geodesies passing through a ball of hyperbolic radius r about the

center point. The hyperbolic length of each intersection of a geodesic with the ball

is at most 2r and the chordal distance between the endpoints is at least (a constant). e~r.

Thus the total rfm-mass of all these tangent vectors is at most a constant times re28'.

On T/r this set covers B^ and this proves what we want.

Now consider the function p^-^2^)0 for s>o. Then in terms of the natural

quotient metric on T/F we have that -p is bounded and p belongs to V-t.dm). For
P

calculating the differential in H^4-1
 yields -p

 < |28+£| . \da\, but \da\<_i. And
P

by construction, on B^—B^ p is at most ^-(28+e)n and B^—B^ has ^m-measure less

than (constant). ne2^. Thus the flfm-integral of p on B^ _^ ^ — B^ is at most ne~sn. Summing

over A yields that p belongs to V-^dm). We record this as

Proposition 13. — There is a positive dm-integrable function p on T/F which satisfies

(PW -PO^/POQ^- distance [x,y).

The function p allows us to prove the analog of E. Hopf's ergodic theorem for
the geodesic flow:
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Theorem 14. — Assume the geodesic/low g^ on T/F is conservative/or the measure dm

associated to the T-invariant conformal density on S .̂ Then g^ is ergodic for the measure dm.

One may follow Hopf's clear exposition ([8], pp. 873-876) sentence by sentence.
/*oo _

Conservative means that if p>o, then p(^z/)A==oo almost everywhere. The

Hopf form of the Birkhoff ergodic theorem for a conservative flow with invariant

measure dm (possibly infinite) states that

^Ag^dt
Urn .———— =f^v), for /, p>o in V[dm),
^"^^dt

exists almost everywhere, is constant on flow lines, and is constant for all f in I^^dm),

p fixed, if and only if the flow is ergodic. The continuous functions with compact

support are dense in l}[dm) and one computes (using Proposition 13) directly for one

of these that f^(v)==f^(v'} if^y and g ^ ' are asymptotic as ^->+oo. The same is true

for negatively asymptotic trajectories. The functiony? lifted to T determines a F-invariant

function on (3d X S^) —diagonal which is almost everywhere constant on each factor pt X S^

and S^xpt. Thus it is constant almost everywhere by Fubini. By density f^ is constant

for ally in l}[dm) and the generalized Hopf Ergodic Theorem is proved. For more

details see [8].

Corollary 15. — For the measure class on S^ determined by a Y-invariant conformal density^

the product action of T on (S^xS^)—diagonal is ergodic for the product measure class if and only

if it is conservative.

For the remainder of this paper we assume [L is of pure type (1). We note that

g^ is conservative if almost all trajectories return for arbitrarily large times to a fixed

bounded neighborhood B. For then there will be an induced measurable flow on B

preserving the finite measure dm\B. This induced flow is conservative by the Poincare

recurrence theorem, and this implies g^ is conservative. In § 5 we show that the existence

of such a bounded neighborhood is equivalent to the radial limit set having positive

mass for the conformal density.

Conversely, we show there that if the radial limit set has measure zero then the

product action of F on (S^xS^)— diagonal is completely dissipative. Equivalently the

flow gf on T/F is completely dissipative. Thus we have in general that the geodesic

flow g^ is either completely dissipative or ergodic, relative to dm.

Now let us study the average time a trajectory spends in a given bounded set 3§.

Since the ^-measure of a bounded set SS is finite and g^ is measure preserving, in the

dissipative case almost all trajectories spend a finite amount of time in SS. Thus almost

everywhere, lim-(time spent in <^?)==o.
t

(1) Pure type means either the measure has no atoms or is entirely comprised of atoms.
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In the ergodic case, this limit exists almost everywhere and equals the constant

dm{^)ldm{Tir) (by the ergodic theorem).

Corollary 16. — The expected time a positive trajectory g^v of the geodesic/low on T/F

i r
spends in a bounded set 88^ lim - tgs^g^dt^ exists for dm-almost all v in T/F. The value

T-^oorJo

is zero unless dm is a finite measure^ in which case the limit is dm[S9)ldm^TjT).

Let us take SS to be all the tangent vectors in a ball B about x in H^4"1 projected

to T/F. A trajectory ̂ ) for v in 3S lies again in 3S in T/F iff the ray in nd+l of length t

expanding v lies in a ball yB for some y m r. Clearly the average time for a slightly

larger ball is at least a constant times the expected number of visits to B which in turn

is larger than a constant times the expected time in a slightly smaller ball.

Thus the average time spent in S§ up to time T for a probability space of starting

vectors v in 88 is proportional to - S a^ where a^ is the proportion of starting vectors
^ (a;,Ya;)_^T

whose extended rays pass through the ball yB for {x, ̂ x)<_i:.

Furthermore, since the averages are bounded, we can interchange the orders of

averaging over a probability space of starting vectors for which the expected time exists,

and let T->OO.

Now the vectors in 88 are nicely sliced into families of those S8^ with given (— oo)-end

point ^ in 3d, for the representative of v in the ball B about x. (In what follows we

may have to choose a ball B so large that there are finitely many representatives of v.

This complication is easily dealt with.)

FIG. 6

Thus ?== (union of 3S^) with ^ in S .̂ Since by definition dm is

(arc length) ^
|S-Y]|

28(^X|^)

434



THE DENSITY AT INFINITY OF A DISCRETE GROUP OF HYPERBOLIC MOTIONS 187

we see dm \ B is made of the measure (JL^ on S^ for the parameter ^, and of measures

(arc length) x ,———-2Sd^ constructed on each 39^.

Let us consider the proportion a^ of v in SS^ (with the above measure) so that

the ray extending v passes through yB. We will only consider a subset 1̂  of T consisting

of Y such that y^ is near enough the point ^ antipodal about x to ^.

Then for example the arc length contribution to the measure is bounded from

above and below for the proportion a^ for y in F^. The factor .———. 28 is also bounded

above and below for Y] the (+oo)-endpoint of v in 3§^. So to compute the dm measure

of the proportion a^ we have to compute the ratio of [ji(yB)^/pL(B)^ where (B')^ means

the image by projection from ^ into 3d of the ball B'.

Now we will choose B large enough so that the denominator is a definite positive

amount independent of ^. Next, by considering only ^x near enough to the point

antipodal to ^ about x, the balls (yB)^ will be approximately the same as (yB)^, where

(B% means the ball obtained by projecting B' onto S^ from x.

By proposition 3, if B is chosen with radius in an interval [R, R'] large enough,

the (A-mass of (yB)^ is proportional to e~s{x^x\

Thus choosing first R compatible with this condition and the one previous we

then define c( near to the antipodal point of ^ " so that (yB)^ will be trapped between

the smallest and largest of the (yB)^.

Namely, (YBR)a;^ (yB)^C (yB^,)^. Then the pi-mass of (yB)^ is proportional

to e"8^^ for y in the subset I\={y : yy is near to the antipode of ^}.

A finite number of the near regions covers infinity near the limit set. Thus we

consider the probability space G consisting of a finite number of S8^ and conclude that

except for finitely many y the proportion a^ of the vectors in G whose rays pass through yB

is at least a constant times ^-8(a;^a;).

Applying the previous remark about interchanging the limit over T and integration

over G and assuming the finite number of 3§^ are chosen generically, so that the ergodic

limits exist, we have (elementary groups included):

Theorem 17. — If dm on TIT has infinite total mass, then, for y in F,

lim^ S e-^^^o.
T-^00 T {x^x}^

Theorem 17 and Corollary 5 imply:

Corollary 18. — If the Poincare series satisfies an inequality

— , ^ constant . ^ .
^-^,Y^———^^ for s>S,
r s—6

then the measure dm on T/F has finite total mass.
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From Corollary 5, Sj,=card^ : {x, ̂ x)e^k—-, k-}--^ is at most constant.^.
oo ' v / /

This implies the series S ̂ -sfc is term by term majorized by the geometric series
/»•-= 0

TO ^_,u. , . , constant
constant. 2j ^ / which sums to —————.

k• - 0 S — S
oo

In particular, the Poincare series, which is proportional to S y"8^ always satisfies

the upper bound given in Corollary 5:

(9) ^-^<c(m^.
r ~ s—6

00

Now estimate the tail S ^-sfc (for ^ conveniently chosen) from above to see that a
/£=C^

lower bound of the form

^-^^con^
r s—S

implies - S e~8{x^x}>^^>o. The latter inequality can only happen, according to

Theorem 17, when T/F has finite rfm-measure. This proves Corollary 18.

Now we want to estimate how far away a trajectory can get in time t. Using

the function (T above (8), define a function ^ on T/F by ^(v)=[da, v), the directional

derivative of a in the direction v.

On T/r there is the canonical involution A defined on T by sending v to —v.

The involution A sends trajectories to trajectories reversing direction and preserving

arc length. Passing to the quotient of T by flow lines in (3d xS^)— diagonal, A becomes

the interchange of coordinates; A commutes with the action of F, so it passes to the

quotient T/r. From the above description, A has the following properties:

(i) A preserves the measure dm,

(ii) A conjugates ^ to ^_<, A^=^A;

(iii) A reverses ^, ^oA==—^.

Now assume ^(T/r)<oo. Then Properties (i) and (iii) imply ^ r f m = o since ^

is bounded. By the ergodic theorem (^(T/r)<oo implies conservative hence ergodic)

i r r i r i
for almost all y, lim - ^{gtv)dt==\ ^dm==o. But - ^{gtv)^t==~~(G{S^V)~G{v))!

T^00 T Jo JT/F ^o T

so we have:

Corollary 19. — If ^(T/r)<oo, for almost all starting points v the distance of the

point gt{v) from a fixed point satisfies lim - (distance) = o.
t -> 00 t

We conjecture that using property (ii) allows one to replace in Corollary 19 the

assumption that ^77z(T/r)<oo by only the ergodicity of the geodesic flow.
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5. Conformal densities supported on the radial limit set.

The set of cluster points in 3d of an orbit of F in H^^, i.e. the topological limit

set A(, has the interesting topological property that every orbit of F in A( is dense.

For metrical properties such as ergodicity, or Hausdorff dimension and measure, the

subset Ay C A^ of radial limit points plays an important role.

A point S; in S^ is a radial limit of F if some geodesic ray ending at ^ is within a

bounded distance of infinitely many points of an orbit of F in H^4'1. The set of these

radial limit points Ay is a F-invariant residual subset of A^ (1). Fixing the orbit Fx

for the moment, the infimum b^ of all these bounds at ^ is a finite F-invariant Borel

function on Ay (depending on the choice of orbit Fx).

We choose a F-invariant conformal density (JL on A( and we make the (strong)

assumption that the radial limit set Ay has positive measure, relative to pi. For the

moment the dimension a of the density is not specified.

Then the function b^ just defined is less than some constant c on an invariant

set of positive measure A C Ay. Now choose R, R' large enough and balls B centered

at x with radii in [R, R'] so that:

(i) the balls (yB)a; in S^ (obtained by radially projecting the yB from x) work in

proposition 3;

(ii) the balls of radius R resp. R' for ^x within c + e of the ray connecting x to ^ trap

a ball (yB)^ centered at S, (yB^C (yB)^ C (yB^),. (See figure 7.)

FIG. 7

By construction and Proposition 3 (first part) the balls (By) ̂  have ^-measure

proportional to ^-a(a;'^). The (By)a; contain coverings of A of arbitrarily small diameter

since they contain for each ^ the balls (By)^. For such a tiny covering of A by U (By^

we have

^(A)^ ̂ ( U (By,) J ̂ constant. S^- §(a;'Y^.

(1) The convex cocompact groups of § 3 are characterized by the property that A^dial = ̂ opo^ggj •> an(!
we wrote A there.
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Corollary 20. — If a ^-invariant conformal density of dimension a gives positive measure

to the radial limit set AyCA^ then the Poincare series diverges: ^e~s(x^x) diverges at j-=a.
r

In particular, the dimension a must be the critical exponent of the groups a==8(F).

The divergence is clear from. the above because there are terms far out in the

series corresponding to small coverings of A. We know by Corollary 4 that 8<_ a and

by the definition (3) of 8 the series converges for s>S. Thus a =8. Q.E.D.

If ^i~lx approaches ^ in a sector the derivatives l y J S l are unbounded, so ^ can

deposit no atom at ^. (We note as an aside that the divergence above implies [L may only

have atoms at parabolic fixed points.) We may then discard any atoms from ^ and

still have (JL^(A^)>O.

We now can apply the second part of Proposition 3 at a density point ^ of A

(lim (Ji(B(^, r)nA)/[i(B(i;, r))->i) using the balls (yB)^ to see that A has full pi-measure.

For if ^i~lx approaches ^ in a sector, ^((Yi^B)^) is almost the entire S^ with almost all

the mass of [A (Proposition 3).

The argument here only uses that A is an invariant set of radial limit points with

positive ^-measure and we conclude that the action of F on the radial limit points is

ergodic for the measure class of [L (1).

A corollary of ergodicity is that the function b^ defined above must be constant

almost everywhere. This has the following interpretation: there is a constant C so

that for ^-almost all S; on S^ all geodesic rays ending at ^ pass within a distance C of

the orbit of x infinitely often. (We take G a little larger than the constant function b^

and use the fact that two geodesic rays ending at ^ come arbitrarily close together.)

As we remarked in the previous section this property implies that the geodesic flow

on T/r is conservative with respect to the associated measure dm. Thus by Theorem 14

and Corollary 15 the action of F on (S^xS^)—diagonal is ergodic.

Assume F is a non-elementary discrete group. Then:

Theorem 21. — The atomic part [L^ of a T-invariant density [L gives measure zero to the

radial limit set Ay. The non atomic part ^ gives either zero or full measure to Ay.

In the case of full measure the dimension of ̂  is the critical exponent 8(1"), and pi, is the

only r-invariant density giving full measure to Ay. Also the action ofT on (S^xS^)—- diagonal

is ergodic for the measure class of ̂  X p^.

Conversely, the ergodicity of the product action on (S^xS^)— diagonal for (JIX|JL implies [L

has no atoms and gives full measure to Ay.

We prove, for the converse, that if a r-invariant conformal density {JL gives zero

measure to Ay, then the product action ofF on (S^xS^)— diagonal is completely dissipa-

tive. To see this, associate ( ( (JLX ^-almost all) geodesies to finite subsets of the orbit by

(1) This argument assumes 8 > o, i.e. T is not the elementary hyperbolic group, a trivial counterexample
to the ergodicity of the action of T on Ay.
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taking closest points. This partitions (S^xS^)—diagonal into countably many subsets

so that each intersects a F-orbit in finitely many points. This proves dissipativity.

The uniqueness of pi^ follows from ergodicity just as in § 3. The argument there

about Hausdorff measure also has a generalization here.

Namely consider the collection ^ of balls (yB)^ defined above. Each point

of Ay is contained in arbitrarily small such balls centered at the point. One may define

a Hausdorff-Caratheodory measure H§( , ̂ r) relative to this collection ^ of balls and

the gauge function r8. If A is a subset of Ay, the inequality H§(A, ^)>_ constant.^ (A)

follows exactly as in § 3. The other inequality requires a strong covering theorem

(Federer [3], Theorem (2.8.14)) which implies there is a fixed k so that for each s>o

there is an s-covering of A by balls (yB)? which is the union of k disjoint collections.

Given this the argument for the second inequality proceeds just as in § 3.

Theorem 22. — In the round metric on 3d there is a collection y of balls so that each radial

limit point is the center of arbitrarily small balls of' ̂ ', and the Hausdorff ^-measure (relative to y

and the gauge function r8) of Ay is a positive finite measure (8==8(r)). This measure is pro-

portional to the measure associated to the round metric by the canonical Y-invariant conformal density

positive on Ay (which we assume exists).

In the next section we discuss the harder problem of the (usual) Hausdorff geometry

of Ay relative to the collection of all balls centered on Ay. We note here the information

already following from § 2, § 3, Theorem 21, and Theorem 22:

Corollary 23. — The Hausdorff dimension of the radial limit set is positive. If S is the

Hausdorff dimension of any Y-invariant subset ACA^, then if §<S(r) the Hausdorff ^-measure

of A is zero or infinity. If AC Ay and 8==S(r) the Hausdorff ^-measure of A is either zero

or cc one 5?.

6. Hausdorff Dimension of the Radial Limit Set.

The radial limit set Ay of a discrete group F has a Hausdorff dimension D(Ay)(1)

and we will study now the relation between D(Ay) and S(F). One has directly the

upper bound D(Ay)^8(r) for all groups F (see below). The lower bound is more

difficult, D(AJ^S(r). This was done by a vigorous argument for finitely generated

Fuchsian groups (Patterson [4]) with cusps, assuming S belonged to the interval [2/3, i],

In § 3 we have shown D(Ay)==8(r) for convex cocompact groups.

We will first prove the conjecture that S(r)=D(A^) for groups F with S(r)-finite

volume. By this we mean there is on S0' a F-invariant conformal density (JL such that the

associated measure dm on T/F invariant under the geodesic flow has finite total mass.

(1) This is the notation of Mandelbrot [6], which has beautiful pictures of sets like limit sets of Kleinian
groups and discussions of their Hausdorff geometry.
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By the results of § 4 and § 5 the dimension of [L is necessarily 8(F), pi is unique, and [L

gives full measure to the radial limit set. We begin with the upper bound,

(10) D(A,)^8(F), for any F.

To see (10) directly note that the shadows of large enough balls along the orbit of x

in HP4'1 give fine coverings of A^. Thus if 'S^e~'x{x1'rx}<co all terms far out are <s
r

and we can construct a small diameter covering of Ay such that 2r^<£. So we have

the more precise statement:

Theorem 24. — If the Poincare series ^e~s{x''rx) converges at j=a, then the Hausdorjf
r

aL-measure of Ay is zero. In particular the Hausdorjf dimension of Ay is at most 8(F).

In one sense Theorem 24 is merely a generalization of part of an argument in

Beardon and Maskit [n].

We turn to the question of the lower bound D(A,.)^8(F) for the case in which F

has 8 (F)-finite volume. To motivate what follows we note (but do not use logically)

a well-known construction of Frostman (see [10] or Frostman's beautifully written

thesis). Suppose G is a compact set whose Hausdorff a-measure is >o, then there must

exist on G (Frostman's lemma) a finite measure ^ so that v(ball of radius r) /r" is bounded

from above for all r. To see what this means if our desired lower bound is true,

(Hausdorff dimension A^)^S(r), note that by definition (Hausdorff a-measure {Ay))>o

for a =8—s, £>o. Now Ay is not compact but some compact subset of Ay must also

have positive Hausdorff a-measure. Then by Frostman's construction the nice diffuse

measure ^ exists.

In our case we have a canonical measure on Ay provided by the conformal density [JL.

So we naturally try to prove it has the nice property of Frostman; namely,

(n) ^(B^r))^--^^), for s>o,

where (JL^ is the measure associated to the metric on S^ obtained by radial projection

from x in H^1, ^ ranges over some compact subset K of Ay of positive ^-measure, and

B(^, r) is the intersection of the ball of radius r centered at ^ with K.

Actually, it is trivial that if we prove (i i) we are finished. For then ifK. is covered

by a union of balls centered on K, KC UB^ where r^= radius B^, then

Srf"8^ constant. S ̂ B^ constant. ̂ ( U B,)^ ^K>o.
i i i

So K has positive Hausdorff (8—s)-measure, which means

(Hausdorff dimension of K)^8—c.

Since KCA,. and s was an arbitrary positive number, we get the inequality

(Hausdorff dimension of A,.)>8(F),

following from (11).
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To derive (n) for ^, consider a geodesic ray g^v) starting from x in 'H.d+l and

heading toward the point S in S .̂ The projection from x onto Sd of a ball of fixed size

centered at ^(o) is a ball B( of radius constant ' e ~ 1 ' centered at ^. Let a(t} as in § 4

denote the distance from g^{v) to the nearest point in the orbit of x. Let R( be the

region of HP4'1 in the cone from B^ to x consisting of points at large {^>t) distance from x.

If we construct [L^ by the procedure of § i, then ^(B^) will be approximately

the ratio

S e-^^/^e-8^^
•rxeftt I r

for some s close to S. (We are in the divergence case by Corollary 20.)

FIG. 8

Since t is large and the angle between g^ and geodesies connecting g^x)

to ^x in R( cannot be too small we can write, using non-Euclidean plane geometry,

(A", Y^f)^ t-{-(gtx9 Y-^)—constant.

Thus S e-^^^ce-81 S e-8^^.
fxGRt Ya;6Bf

Then, using the triangle inequality {g^x, y^r^Yo-^ "p)—^(^ where Yo^ is the

closest orbit point to g^x, we have (a(^)==(^A:, Yo-^))

^ S ^-s(a;'Ya;)^^o(o S ^-s(Yoa;'Ya;)
Ya;eRf Ya;eR<

<^o(()S^-8(Yoa;)Ya;)
-- r

^ce^e-8^^.
r

Thus letting ^ approach S to construct [L we have e^^B^^ce^. In particular,

if a{t)lt—>o as t->co, for e>o there is a constant c(^ s) such that, writing r=e~~\

{ji(ball of radius r about ^/r8"8^^, s).
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Now in the finite volume case we have shown a{t)lt->o as t->oo for almost

all trajectories (Corollary 19). Thus if s>o is fixed, c{^ s) will be less than c{e) on

a compact set K of ^ in Ay with positive measure. For this set K we have estab-

lished (n). So:

Theorem 25. — If a group F has 8(r) -finite volume, then the Hausdorjf dimension of the

radial limit set is 8(F).

We apply this to the finitely generated Fuchsian groups. These have finite sided

fundamental domain, using which the strong inequality

^e-8^^-0— , for s>8,
r J—S

was derived by Patterson at the end of his paper [4].

By Corollary 18 the inequality implies F has 8 (F) -finite volume. Thus for finitely

generated Fuchsian groups the Hausdorff dimension of Ay equals 8(F). This has two

corollaries. Consider only non-elementary groups:

Corollary 26. — For a finitely generated Fuchsian group the Hausdorjf dimension of the

topological limit set is 8(F).

Corollary 27. — For an arbitrary Fuchsian group the Hausdorjf dimension of the radial

limit set is 8(F).

The first corollary follows since Beardon-Maskit [n] show that for groups (in H
2

or H3) with a finite-sided fundamental domain the topological limit set is the union

of the radial limit set and a countable set of points.

The second follows since we may write any Fuchsian group F as a union of

finitely generated groups I\. Then A^ C Ay and writing D for Hausdorff dimension,

D(A^)^sup D(A^)=sup c^^S^) using the above and Corollary 5. Combining this
a a

lower bound with (10) yields Corollary 27.

7. The Markov process associated to a conformal density.

We will now construct from a F-invariant conformal density (A on 3d a F-invariant

Markov process P^ in H^4'1. Intuitively, paths of this process starting from x in H^1

hit oo at time oo with probability measure ^ normalized to mass i.

Let <S){x) on H^4'1 be the function which assigns to x the total mass of the measure (JL^,

i.e. the mass of [L as viewed from x. Let pt{x^y) denote the transition probabilities for

(
r, \

the random motion on H^4'1 associated to the heat equation A^——==o) . Thus
8t )

if dy denotes the Riemannian volume in HP4'1, then the probability of going from x to
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E C H^4'1 in time t is the amount of mass deposited by the probability measure pt[x,y)dy
in E.

For the (i-associated process the natural measure is df-==<S){yYdy and the transition

probabilities (relative to this measure) are p^x,y)==e^ A(^ where \== S ( d — S )
0(^)<I)(j?) v n

8 == dimension [i. Thus the probability of going from A: to E in time t for the process P^

wm be JE^'O^)^ ̂  ̂ S/1^^^' The last equation shows the P^cess
only depends on the scalar multiples of 0.

Proposition 28. — The function $ is an eigenfunction of the Laplacian A on H^1 with
eigenvalue —X, where X=8(rf—8), 8= dimension [L. Thus:

W ^^P^ymy)dy=e-^[x).

(ii) The operator on functions, Pltf=f^p[t{x,y)f{y)dy^ fixes the function i.

(iii) The dual operator on measures, vi-^vP^, defined by vP^E)^ f ^ i^ p^x,y)d)Ad^
fixes the measure dyv•=<S){y)2dy. ^ H ^\JE 8 /

(iv) p^x,y)=p^[y, x) (symmetry property).

(v) j^iP^^P^ W-P^s^ ^ (semi-group property).

Proof. — To see the first part fix an XQ in H^4'1 and writer for the function in H^4'1

which in upper half-space coordinates (with ^ at oo and XQ at height one) is just the

vertical coordinate (the ^-coordinate). In terms of the horocycle distance {x, Xo)^
y^^e-^^.

Since in the upper half-space coordinates the hyperbolic metric is -y, where ds
y

is the Euclidean metric, one computes the hyperbolic Laplacian A=*'rf*'^, where *',
» / j \ d + l - 2 i

sending i-forms to ({d +1) — i) -forms, is just ( - j times the Euclidean star operator, *.
Thus the hyperbolic laplacian is

^=^y+^d((l\ ^d\={f Euclidean A)+(i-rf)j;* (^A*</( )).

If we apply the hyperbolic laplacian to the function y, we get

Ay==a(a—i)y+(i—af)j/*(^Aay-1*^)
==(a(a—l)+(i—rf)a)y (since * (^A*^)==i)
==a(a-rf)y.

Thus A^^^o^a—fi?)^)01. Now the function 0 is a convex combination of

the functions (^)8, namely ^{xf)=f{y^xf))8d[L^) because

(d^\ /metric associated to A:'\8 ., .
\——\ ===————————————— ==e~8{xofx^=(y (x'}}6

\d\L^j ^metric associated to XQ sv / / '
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Thus 0 is also an eigenfunction of A with eigenvalue —X, where X=8(rf—8)>o.

(Compare Patterson [4].) Then, since Pt{x,y)dy is by definition the kernel for the

operator e^\ we have e^<S>==e~^Q> or pt{x,y)<S>{y)dy==e~'>'t<S>{x), which is (i).
Jn^1

We then calculate that L/x'-^02^^=e^L.A^J')ocy)^==I'
which is (li). K / " / / ' /

Since pt{x,jy)=p^jy, x) for the heat kernel, p^{x,y)==p^{jy, x), and (iv) is clear.

But then since in (iii) we want to show for all E C H^4'1, ( ( f p^x.^dy^} rfv == f dy^
/. JH^WE / JE

this becomes P^^^V) dx^^i, which follows from (ii) using (iv).
JH^1

The semi-group property (v) follows from the similar property for pt{x,y) by

direct calculation. Q^.E.D.

Now we consider the positive harmonic functions/for the process ̂  {x, y)^ namely

such that PiV==/, />o. Write ^==/.0, then f{x) == ^(^^/(j^)^ is true if and
Jn^1

only if L-^'^^ol^02^^^^'or equivalently L^(^(^=^W.
Corollary 29. — The positive Pf-harmonic functions are just the functions gl^y where g is

a positive eigenfunction of e^1 with eigenvalue e~^\ which \==S{d—S).

In particular positive P^-harmonic functions bounded by i correspond to positive

eigenfunctions g satisfying g^^' Each subset A of 3d of positive [i-measure determines

one of these by the formula (I)^(^)= \^^)y^[x)d\L^(^) where 7^ is the characteristic

function of A; O^M ls a^0 t^Le [Vmass of A, i.e. the (i-mass of A as viewed

from x (1).

Let us estimate O^M ^or x near 00 m fhe compactified space H^^uS^. Draw

(
f \ K

a ray from XQ through x to ^ on S .̂ As x moves toward ^ the ratio of the measures —x- \
^J

is a function which is uniformly small outside smaller and smaller balls around ^.

Then, writing ^(^3 r) ^OT t^:le P ô"111^ of A in a ball of radius r, there is the formula

$^(^)== j f(r)8flf{Jl^(^, r) where t is the translation taking x back to XQ, and t(r) is the

conformal derivative of t on 3d at distance r from ^ in the metric from XQ .
/ y \

Suppose ^ is such that lim———— exists and equals a\L^ r)=\L^^ r) for A=Sd.

(1) The integral formula for 0 was suggested by Patterson [4], who treated d == i. The pi-mass description
was suggested by Thurston (verbal communication) in a discussion of $-Hausdorff measure.
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We take s small enough for the limit to be good, then {x, Xo) large enough to ignore

the contribution of the integral outside s. Partial integration yields

f5^)8^, r^-f^r)8^, r)dr+t^)8^ s).
Jo Jo dr

Thus we see O^(^) and O(^) are sums of terms in approximate ratio a. Thus

(radial limit for x->^ of 0^) /^W) ̂ llm [1A' ? r "flt KY the density theorem
^U^? ' )

(Federer [3], (2.9.11)), for [i-almost all E;, lim A ? ^XA^) * A minor extension

allows .y—^S; in a sector, the set of points at a bounded distance from the ray.

Corollary 30. — The bounded V^-harmonic function <S>^(x) f<S>{x) has sectorial limits equal

to the characteristic function of A at ^-almost all points of S .̂

To go further we need to discuss the measures on the paths of the process. The

space of one-sided paths is at first the uncountable product (H^4'1)^ provided with a

natural measure associated to a process P( such as PJ1 above. On the starting point

we use some appropriate measure on H^4"1. For the paths starting at x we think of

the Dirac mass flowing out (as mass) from x by applying the operator P^. One defines

the measure of a cylinder set:

at time ^ the path lies in A^cH^4'1, for z = = i , . . ., n,

as the amount of this flowing mass which lies in A^ at t^y Ag at ^? ' ' "> \ at tn-
The semi-group or Markov property for P^ implies that compatibilities with respect

to dropping conditions are satisfied. By the Kolmogoroff extension theorem one then

generates a countably additive probability measure on the c-algebra generated by the

above cylinder sets of paths starting at x in H^4'1.

If a measure dm on the state space (in our case H^1) is invariant under the process,

then one can construct a measure on the two-sided infinite paths. The space is the

uncountable product (H^4'1)", times runs from —oo to +°o? the cylinders sets are again

of the form

.1, t^ Ag, t^ . . .; A^, ^), t, in (—00, oo).(A:

Now one imagines the mass of dm in A^ flowing under the process started at time ^.

Then the measure of the cylinder set is the amount of mass starting in A^, which lies

in Ag at ^2, . . ., and in A^ at ^. Now the invariance of the measure means the amount

of mass flowing into any set from the entire space equals the amount of mass originally

in the set. Thus dropping the A^ condition is compatible. Dropping the other condi-

tions is compatible as above. Thus again by the Kolmogoroff extension theorem there

is generated a countably additive measure on the space of all biinfinite paths defined on

the or-algebra generated by the cylinders. This measure is ^-finite because the measure
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of each (A, t) is the (/m-measure of A, and if we write 1Id+l=U\ the entire space

of biinfinite paths is the union of (A^, t) for t fixed.

In our case one can measure by sets defined by conditions at a countable dense

set of times, using the continuity properties of the process. This means we have a

separable process and we can work with a countably generated c-algebra.

We will use the biinfinite paths to prove that a certain analytical condition implies

that the action of F on (3d X 3d)—diagonal is ergodic. The hypothesis emerges later.

If W is a subset of (S^X 3d)—diagonal and ̂  is the characteristic function, then form

a function of two points x, x\ in HP4'1,

i"-'- ''^f^L.-,-^^ ww)w^')-
Then h is P^-harmonic in x and x ' separately, r-invariant if W is, and not constant

if W has positive but not full measure. The latter point follows from Fubini and the
corollary 30.

Now we construct from h a function on the biinfinite paths. Let P ,̂ ^ be all the

biinfinite paths at a in HP4'1 at time t.

If we condition our measure v constructed on biinfinite paths to P^ ^ we see we

have a product situation. We have as probability spaces P^ = P_ X P+, where P^_

is the measure on one-sided paths starting at a and P_ is the measure on one-sided paths

ending at a. Since our process P^ is symmetric, P_ == P+. (In general P_ would be

the measure constructed on one-sided paths for the dual process associated to dy^.)

Now the abstract theory for a process (Martingale convergence theorem) tells

us a bounded harmonic function for a process has limits along almost all paths. More-

over, the function can be reconstructed from these limits using the mean value property

for harmonic functions and dominated convergence.

Define a function on the biinfinite paths {w} by fixing a time s and then forming

HmA(w(J), w(t)). This limit only depends on any part of the path w near +00 and

the coordinate w{s) in H^4"1. Fixing the former, the function is P^-harmonic in the

latter, using dominated convergence and symmetry of P^. Now take a limit over w{s)

to construct a function of biinfinite paths.

This produces a non trivial function of biinfinite paths which is invariant under

the time shift and the action of F.

Corollary 31. — If the combined action of F and time shift on the biinfinite paths of P^ is

ergodic, then the action of T on (S^xS^)—diagonal is ergodic.

There is a natural condition concerning the ergodicity of biinfinite paths. It is

convenient to take the quotient of the set of biinfinite paths by F. We then have a

quotient process, quotient path space, etc.

Suppose we have the following recurrence property for the quotient process: for any

point p in 'Hd+l|^ and any tiny metric ballB, almost all the paths starting fromp enter B.
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We will show that this recurrence property implies the ergodicity of the shift map on
the biinfinite paths of'H.d+l|^.

• n m

We work with rectangles e^=^(A,,^) SS = H (B,, t,) where the A, and B

are metric balls in H^/r. Besides recurrence we will use the fact that the pro-

bability p(x, ̂ ) that a path starting at x in time o lies in a rectangle ^== D (A,, t,)
with ^+i>^>o is a positive continuous function of x.

Say that two sets X and Y of paths of positive equal measure are shift isomorphic

if there is a countable partition of X into pieces so that (different) time shifts applied

to the pieces yield a partition of Y (all this modulo sets of measure zero). Ergodicity

in the measure preserving context implies that any two sets of equal measure are shift iso-

morphic. Conversely, if for every pair of rectangles one of minimum mass is shift

isomorphic to a subset of the other, then ergodicity follows. For any set of paths X

of positive area can be arbitrarily well approximated by disjoint collections of rec-

tangles—namely, for £>o, the symmetric difference (X, disjoint union of rectangles)

has measure less than s for some choice of rectangles. Then an easy argument consisting

of the steps (shift (isomorph) one rectangle into another, partition the complement of

the image approximately into disjoint rectangles, and repeat) shows that one can approxi-

mately construct a shift isomorphism between two disjoint collections of rectangles of
nearly equal mass.

If these collections are approximating two a priori given sets of paths of positive
measure X and Y, this shows some shift of X intersects Y.

These are the generalities. Now we do the specific step for rectangles, which

makes the proof. Start with simple rectangles ^=(A, ^) and ^==(B,^). By

recurrence, a countable collection (A, ^i)n(B, s,) covers (A, ^) almost everywhere. Simi-

larly (B, t^) is covered by a countable collection (B, ^)n(A, ^.). Denote the union

of these two collections by ^. Then by shifting the pieces of V we obtain (shift) surjec-
tions ^-(-V-^SS which are countable to one.

Now one can construct piecemeal an injection of the set ^ or S8 of minimum

mass into the other by composing local inverses of one surjection with the other. Thus

one of ^ or 88 is shift isomorphic to a subset of the other.
n m

Now consider more complicated rectangles ^== H (A,, t,} and S9= H (Bp^.).
m J

Let b>o be the maximum ofp{x, S9') where x is in B^ and 88' = H (B^., ^—.$1). Choose

a countable collection of times ^ so that U ((A^)n(Bi, rj) covers (A^ ^). Let
S8^{S9 shifted by r^—s^).

Then the rectangles ^c\38^ cover at least the proportion b of ^ (by definition

of the measure). Remove this proportion from e ,̂ approximate the remainder very

well by new rectangles ^ ' and repeat the procedure to similarly cover at least a pro-

portion b of these j^'. Again we arrive at a countable collection of subsets of 3S whose

translates cover ja^. Similarly cover 3S using translates of subsets of ^/.
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Let ^ be a countable union of these subsets of ^ and 39 and construct first the

shift surjections s/^- V-^SS and then the shift isomorphism between the one of minimum
mass and the other.

Thus the shift map of biinfinite paths is ergodic, assuming the process is recurrent.

This recurrence property is established by an analytical condition. Suppose it

were false. Then define n{x) to be the probability a path starting at x enters the tiny
metric ball BCH/F.

Then -n:{x) defines a PjMiarmonic function away from B by the Markov property

(Py-is the quotient process). Also TC(^)^I everywhere, n{x)==i on B, n{x)<i off B

by the maximum principle, and 7r(A:)^P^7T(^) by the Markov property.
__ ^m _

For t small, integrate TT—P^TT against the measure p^[x, y}dy^ ds. Now,
j o

r (L-̂  v) ̂ - ̂  ̂  = err' -DCL^ -^w)ds-
The right hand side is at most 2t. But the left hand side may be rewritten as

^ _ _
the measure p^{x,y)dy^ evaluated on the non-positive bounded function P^TC—TC.

If P^TT—TT is negative on a tiny neighborhood, and the density of the measure
fT —

Jo^(^j0^ g0^ to 00 as T->oo, then we have a contradiction.

Now p^{x,y), the transition probability on the quotient, satisfies

p^y)==^{x^y).

/*T x-^

Thus we want to consider lim ^p^{x, ̂ y)ds which will diverge if and only if

S(J>^TJ^) does.

Now the function f°°p^{x,y)ds is just (O(^)/<I)(A:)) f00 e^p,{x,y)ds where 0(^)/<D(;c)

is r-invariant. Thus the above diverges for fixed x, y iff 2 f00 e^p,{x, ̂ y)ds does.

The function g== \° e^p^x,y)ds satisfies the equation A^+X^==o in each variable

and only depends on the hyperbolic distance [ x , y ) since pt{x,jy) satisfies the heat equation,
ep

^p——-==o, and only depends on [x,y).

Tr • i, T i • • i r a2 ^W a

It we write the -Laplacian in polar coordinates, we get — 4- —— — imorin^
^r2 A(r) c)r

angular derivatives; A(r) is the area of the sphere in H^4'1 of radius r, so

A(r) = constant. sinh dr.

The variable change ^==coshr reduces the equation —^+—^-^-f-x^o to the
Sr2 A(r) 8r

associated Legendre equation with parameters depending on d and X. The indicial
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^g ^
equation at oo, —^+d—+X^=o, has exponential solutions e~8+r, e^8-1' where 8 , 8 _ = X ,

or- or

S_^+S_=d and 8_^8_.

The smallest solution at oo is e~8+r where 8 .̂ == --{-\/[d2^)—X. Thus we have

the inequality ^(^j)^'"8^'^. 2

In particular if 8(r)>rf/2 and X==8(rf—8), then 8(F)=8+. Then if

S^-^^oo, S ,̂ yjO-^

and the above chain of reasoning yields:

Theorem 32. — If the Poincare series S e~S[X1 rx) diverges at j=8(r)>~, then the action

of F on (S^x S^)—diagonal is ergo die for the measure class determined by any Y-invariant conformal

density [L of dimension 8(F).

Then using § 5, theorem 21, we have:

Corollary 33. — If 8(r)>6?/2, a conformal density [L of dimension 8(F) gives full measure

to the radial limit set if f the Poincare series S^8^'^ diverges at ^==8(1").

Addendum.

There is an alternative approach to the construction of \L in § i and of the eigen-

function $ (both F-invariant) based on positive superharmonic functions in H^1

invariant by F. These functions form a compact convex cone ^ invariant by the heat

semi-group P( and satisfy Ptf^f'

Consider the decreasing sequence ofsubcones ̂ , X positive and increasing, defined

by Ptf^'^f' ^y compactness we can go to the maximum Xp (easily seen to be finite).

Again by the compactness and the fixed point property applied to the rays, there is

an element 9 such that P^y^^"0^. Now e~a<_e~^^ because 9 belongs to %\ and

strict inequality is impossible because Xp is the maximum. So we have constructed

a r-invariant positive eigenfunction 9 of the Laplacian for the smallest possible eigen-

value — Xp.

If 8(r)>rf/2 and we verify the Green's function for X==8(rf—8) f00 e^pt{x,y)dt
j o

is really the small solution near oo, ^(^j)^^^"8^'^ then, for 8>8(F), ^g{x, y^)

converges and is a non-trivial element of ̂  where X==8(fl?—8). Thus Xp^8(rf—8).

On the other hand, if ^\ is non-void for a X larger than S{d—8), 8>8(F), it must

contain either a function satisfying V^f==e~^f or V^f<_e~^tf with strict inequality

at some point.

In the first case we apply the boundary theory for positive harmonic functions

relative to the operator ^P( to construct an invariant conformal density of weight <8
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which contradicts § 2. In the second case we find a Green's potential for ^P( and

deduce that the Poincare series converges at a point <8, again a contradiction.

Thus Xp===8(rf—8), we have our eigenfunction <p invariant by F, and its represen-

tating measure on S^ will be a F-invariant conformal density 8>-|.
V 2/ ^

It is curious that one does not readily describe the theory for the dimensions S<_-

by exit boundary potential theory.
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