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THE DENSITY MANIFOLD
AND CONFIGURATION SPACE QUANTIZATION

JOHN D. LAFFERTY

ABSTRACT. The differential geometric structure of a Fréchet manifold of den-
sities is developed, providing a geometrical framework for quantization related
to Nelson's stochastic mechanics. The Riemannian and symplectic structures
of the density manifold are studied, and the Schrödinger equation is derived
from a variational principle. By a theorem of Moser, the density manifold is
an infinite dimensional homogeneous space, being the quotient of the group of
diffeomorphisms of the underlying base manifold modulo the group of diffeo-
morphisms which preserve the Riemannian volume. From this structure and
symplectic reduction, the quantization procedure is equivalent to Lie-Poisson
equations on the dual of a semidirect product Lie algebra. A Poisson map is
obtained between the dual of this Lie algebra and the underlying projective
Hubert space.

1. Introduction. The configuration space for a physical problem is a differen-
tiable manifold M, and the appropriate phase space is the cotangent bundle T*M,
which is furnished with a canonical symplectic structure. The quantum state space
is the complex Hubert space U = L2(p) divided by the multiplicative action of C*,
where p is an appropriate measure on M. The classical Hamiltonian generates a
group of symplectic automorphisms of T*M, but does not act naturally on M. The
term quantization refers to the problem of establishing a correspondence between
the two mathematical frameworks.

Let us briefly adopt the language of categories to discuss this problem in more
detail (see [22]). The classical category C consists of symplectic vector bundles
and symplectic isomorphisms. The quantum category Q is made up of complex
Hubert spaces, and unitary operators. The most general quantization problem,
therefore, is to determine a functor f:C—>Q which is required to obey some auxil-
iary conditions. It is well known however, that no such functor exists, if the bracket
operations are to be preserved. An alternative problem, therefore, is to obtain an
intermediate category I and a pair of functors C <— I —► Q. Since the collection
of cotangent bundles lies naturally in (the objects of) C, a natural choice for I is
to consider the collection of smooth manifolds and smooth diffeomorphisms. To
determine a functor from I to Q assume that the manifold M has a distinguished
volume element p and form the Hubert space M — L2(p). (p is replaced by equiva-
lence classes of measures in the general case.) A quantization procedure may then
involve establishing a correspondence between unitary operators on the Hubert
space M associated with the manifold M, and Poisson algebras of functions on the
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700 J. D. LAFFERTY

cotangent bundle T*M. We refer to [1, 22] and the references quoted therein for
further discussion of the general topic of quantization.

In this paper, we study an additional structure, formally represented by

C    -    I    -»    fi
(1-1) \    I    /

J
The objects of / consist of density manifolds: if N is an object of I,N maps
to M(N), an infinite dimensional manifold of probability densities on N. The
cotangent bundle map I —► C is then naturally defined, and the map I —► Q is
defined as before by choosing a distinguished density. By studying the symplectic
structure of T*M(N), we provide a classical mathematical framework for quantum
theory by passing from finite to infinite dimensional symplectic geometry. Following
Nelson [21], we call this procedure configuration space quantization.

Suppose that M and TV are C°° manifolds with distinguished volume elements
dMx and dNx. If we let M(M) = L2(dMx),)i(N) = L2(dNx), and )l(M x N) =
L2(d\iX x djvx), we see that there are natural isomorphisms

T*(MxN)*T*MxT*N   and   H(M x N) « M{M) <8> M(N).
However, the density manifold M (M x TV) is much larger than the space of prod-
uct measures M(M) x M(N). We therefore think of M(M) as a mathematical
configuration space and do not assign it interpretational value.

The mathematical structure of configuration space quantization is wholly moti-
vated and guided by stochastic mechanics. In this probabilistic theory, a diffusion is
constructed on the physical configuration space M, and there is a correspondence
between Hamiltonians on the phase space T*M and functionals on the diffusion
process. Although the quantization procedure of Markovian stochastic mechanics
is derived from a variational principle, the collection of regular Borel measures on
path space in this theory does not inherently admit a natural symplectic structure.
The present work may therefore be seen as a geometrization of the deterministic
relations of stochastic mechanics.

2. Conservative diffusion and stochastic mechanics. In this section we
review the basic concepts and constructions of stochastic mechanics in order to
motivate and provide technical as well as conceptual background for the following
sections.

Let M be an n-dimensional C°° manifold which is a locally compact Hausdorff
space, and for an interval J Ç R let the path space Yl be defined by

yi = Y[m
I

(where M denotes the one-point compactification of M) with the product topology.
An element of Yl is an arbitrary function w: J —» M. If B denotes the Borel u-algebra
of fi then a regular Borel probability measure Pr on (Yl,B) defines an M-valued
stochastic process £(t)tei over (Yl, S,Pr) by the evaluation map

ew(«)=«(*)■
Similarly, an M-valued stochastic process over a probability space (S, S, p) induces
a measure on path space by a procedure developed by Nelson; see [20].   We let
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THE DENSITY MANIFOLD 701

Pt,7t, and JJt denote the cr-algebras Pt — o-{Ç(s),s < t}, 7%— a{t\(s),s > i), and
M — ̂ {íí5)» s — t} generated by £.

DEFINITION 2.1. We say that {£(i)}te/ is a smooth diffusion if

(2.1) Etdt?(t) = EtiCit + dt) - è(t)) = ßl(C(t),t)dt + o(dt),

(2.2) d?(t)dÇ>{t) = o-ij(Ç(t)) dt + o(dt)
in local coordinates ql, where ßl and al] are smooth functions and a13 is of strictly
positive type, and if (2.1) and (2.2) hold for the time-reversed process £(i) =
a-t), ¿G/.

Here Et denotes the conditional expectation with respect to the a-algebra Xlt,
and o(dt) is interpreted in the probabilistic sense. To be precise, let Bt be the
algebra of all uniformly bounded stochastic processes {r)t}te[o,e] defined over the
same probability space as £ such that

|£tf?(dt)|oo = 0(dt)    and    |75tr,(di)2|oo = 0(dt).

Let Ot be the ideal of all ç G Bt such that

\EtÇ(dt)\oo = o(dt)   and   |£tc(di)2|oo = o(dt).

Then we write o:(i) = ß(t) + o(dt) in case a(t) - ß(t) G CV We assume as part of
the definition that

Etd.?(t) = ßi{t(t),t)dt + o{dt)
and

d.e(t)d.e(t) = <#(£(*)) dt+o(dt)
for smooth functions ßl and o~l3 defined in the local chart, where d*tl'(t) = £'(£) -
£l(t — dt), dt > 0. The following theorem is an easy consequence of Definition 2.1.

THEOREM 2.2. If t¡ is a smooth diffusion and f G Cq'(M x /), the collection
of smooth functions with compact support in M x I, then

dedÇjdt:k = o(dt),

^M^ = {^^+^+l.)ñmt)
and under a change of coordinates ql i-+ ql

d^ = wde+l^3dt+0{dt^

ßl = -¡r^F + ^dqi r       2      ÓYÓV

d¿_d¿_nij
dqi dqia13  =  ,- ■    - .a

The point of this theorem is that while aXJ is a contravariant 2-tensor which
defines a Riemannian metric on TM, ßl does not transform like a vector and we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



702 J. D. LAFFERTY

must therefore allow for a correction term in defining the drift vector field of the
process £. This is done by setting

(2.3) V = ßl + irj-fccr>*

where Y1k are the Christoffel symbols associated with the Riemannian connection
for the metric a. (Here and throughout we employ the summation convention
A*Bi = T,kAhBk-) The vector field b = b^d/dq*) is called the forward drift of
the process £. Notice that the choice of metric is intrinsically associated with the
diffusion, and determines its quadratic variation.

Now, from the time-symmetric definition of smooth diffusion one can deduce
the equality at} — a1?, and we may therefore define the backward drift vector field
6. =bi(d/dqi)by
(2.4) b\ = ßi + irj,y*
using the same connection.

A smooth diffusion £ has a smooth time-dependent and strictly positive density
p which satisfies

/      fdp= [ E[f(Ç(t),t)}dt
Jmxi Ji

for all / G Co°(M x I).   The density p therefore satisfies the parabolic forward
Fokker-Planck equation

(2.5) dp/dt = \Ap - V • (bp)
(where V- and A are the usual operations on vector fields and scalars associated
with the Riemannian metric er). By introducing the forward and backward stochas-
tic derivatives

dX(t)
dt

d.X(t)

Pt

dt 7t

(2.6) DX(t) = lim E
dtlO

(2.7) D,X(t) = lim E

for a real-valued stochastic process {X(t)}tei over (Yl, B, Pr) and utilizing the asso-
ciated stochastic integration by parts formulae, one can then show that the forward
and backward drift vector fields are related by

(2.8) ¿>:=&¿-V¿logp
and, in addition, that p satisfies the antiparabolic backward Fokker-Planck equation

(2.9) dp/dt = -¿Ap-V-(M.
We therefore have that the continuity equation (or current equation)

(2.10) dp/dt = -V • (vp)
and the osmotic equation

(2.11) W = i(VV/p)
hold, when we define the current velocity by v = |(6 + 6*) and the osmotic velocity
byu=i(b-b.).
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THE DENSITY MANIFOLD 703

By differentiating (2.11) in time and using (2.10) we find that

(2.12) du/dt = -V(\V -v + u-v).
The time evolution of the current velocity, however, is not as easily obtained from
the basic relations governing the infinitesimal characteristics of £. In the context
of stochastic mechanics, dv/dt is obtained from a stochastic variational principle.

Notice that if / G Cq'(MxI), then the stochastic derivative Df(t¡(t),t) is given
by

Df(at), t) = |A/(f (i), t) + b- V/(£(í), t) -IfvigM.
We call | A + b ■ V the forward diffusion operator, and the analogous backward
diffusion operator is given by -^A + 6« • V. To extend the stochastic derivatives
to the full tensor algebra requires a stochastic parallel translation map, which we
denote by r. The correct definition of this map in the context of stochastic me-
chanics was given by Dohrn and Guerra (see [20]). It is obtained by applying a
deterministic translation map to the geodesic approximation of the diffusion, as
follows. Let {7/(s)|s G [so>si]} be a geodesic on M with v(s) — dn/ds the vector
field tangent to rj and let uo G TV^SQ)M. Then u(s) = t(v(s), n(so))uo is defined to
be the Jacobi field along n with initial condition Vvu(so) = 0; that is, u(s) satisfies

(2.13) D2u/ds + R(u, v)u = 0

with initial conditions

(2.14) Du/ds = 0,    u(s0) = «o

where D/ds denotes the covariant derivative along rj, and R is the Riemannian
curvature tensor. It is an elementary fact that every Jacobi field may be obtained by
a variation through geodesies. To construct this variation through geodesies for r,
let {7(so,í)|í G [0,1]} be a curve satisfying 7(s0,0) = n(s0), dq(s0,t)/ât[t=o = «o,
and let {7(5,t)\s G [so,si]} be the geodesic beginnning at 7(so,i), with initial
velocity 7(77(50), 7(so, t))v(so), where T denotes the Levi-Civita parallel translation.
It is then easy to check that

u(s) = d~i(s,t)/dt\t=o
is the Jacobi field described by (2.13) and (2.14). If one now takes the geodesic ap-
proximation to the diffusion £ and applies r to each geodesic segment, the stochastic
differential equation

dYi = -r'fci y*d£' - \o-klY™ dt (rifiUi - r;,r4fc - r^m¡ + JLpw)

is obtained, which may be represented intrinsically by the Stratanovich stochastic
differential equation

dYi = -rlfc/yfc o dXl + \R)klYlcrik dt.

For a tensor field a, the stochastic derivatives Da and D»a are then defined by
setting

Da = lim -Î-J5,[r(£(0, £(t + «tt))a(£(i + dt), t + dt)- a(Ç{t),t)]
dtio at
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704 J. D. LAFFERTY

and 1
D.a = lim -¡-Et[a(Ç(t), t) - r(£(i), Ç{t - dt))a{^{t - dt), t - dt)}

dt\o at
which leads to the relations

Da{t(t), t) = (5 Adg + b ■ V + d/dt)a(t:(t), t),
£U(£(i),t) = (-\ADG + 6, ■ V + d/dt)a(at),t).

The second order operator Adg is the Dohrn-Guerra Laplacian Adg = V'V, — it!.',
with i?.' denoting the induced action of the Ricci tensor R on the mixed tensor
algebra T(M). The Laplacian Adg agrees with the de Rham-Kodaira Laplacian
on scalars and 1-forms.

2.1 Stochastic action. From Theorem 2.2 we see that the stochastic increment
d£*(i) = f'(i + dt) — £*(i) does not transform like a vector. To obtain a vector
quantity naturally associated with d£l we make use of the exponential map of the
Riemannian manifold M. To this end, define d£ G T^M by

«*PÍC(1) = expd-í/dt(dí) = ¿(i + dt).

Since exp is a local isomorphism, d£ is (almost surely) well-defined when dt is
sufficiently small, and

EtdÇ = b(t(t),t)dt + o(dt).
Let {n(s)\t < s < t + dt} be the minimal geodesic joining Ç(t) and £(£ + dt). Then

dn/ds\s=t = dtl/dt,
and (nsw'-ir^*)
is the square of the Riemannian distance between £(£) and t\(t + di). However, since

we would like to estimate 7?t(d£,d£) to o(dt2) in order to provide an approxima-
tion for E[(dtl/dt,dtl/dt)]. The point of this calculation would be that although
the paths of £ are almost surely nowhere differentiable, if the divergent quantity
limdtioY^nE[(d£{tn)/dt,dcl(tn)/dt)}dt may be given a well-defined meaning and
expressed in terms of the infinitesimal characteristics of the diffusion £, then it will
serve as the classical action of £ and should determine the appropriate Lagrangian
for the quantization procedure of stochastic mechanics. This idea is realized in the
following theorem of Guerra and Nelson.

THEOREM 2.3. Let {£(i)}te/ be a smooth Markovian diffusion on M with for-
ward drift vector field b, and fix t G I. Let dt > 0 be sufficiently small so that

is almost surely well-defined. Then

where R is the scalar curvature of the metric induced by £.
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The important aspect of this result is that the expression (2.15) is renormalizable
in the following sense. The divergent term n/2 dt —► oo is deterministic; it does not
depend on the particular path, and therefore drops out upon taking variations of
the diffusion £ by processes of identical quadratic variation.

The expression (2.15) for the classical action of a Markovian diffusion leads to
the following notion of criticality. Let (¡> G Co°(M) and let L: TM x I —► R be the
Lagrangian on TM given by

(2.16) L(v,t) = \(v,v)<v) - <f>(-K(v),t)

where, as before, x >-* (-, -)x denotes the Riemannian metric on TM and n: TM —►
M is the canonical projection. If {£(t)}tgj is a smooth Markovian diffusion with
forward drift vector field b and diffusion tensor giving the metric (-,-), we may form
the associated Lagrangian Lb: M x I —> R by setting

(2.17) Lb(x,t) = {\(b,b) + \V-b+±R-<l>)(x,t).
The associated action is

I[b,to,ti] = E\f Lb(t(t),t)dt\ = j jLb(x,t)p(x,t)dt

where I = [ío,íi]- We may also re-express Lb in the following form, which will be
especially convenient for our later developments.

PROPOSITION 2.4. Let i; be a smooth diffusion with forward drift vector field
b, backward drift 6», and density p. Then

E[Lb(t;(t)A)} = E [(±{v,v) - l(u,u)-<l> + ±R) (£(i),t)]
(2 18) C

= /   {\(v,v)-\(u,u)-(j)+^R){x,t)p(x,t)dMX,
Jm

where v = \(b + ¿)*) and u = \(b - 6») = \(Vp/p) are respectively the current
velocity and osmotic velocity vector fields of the diffusion £.

PROOF. By partial integration we see that since p > 0,

But \(b,b) - (b,u) — \(v,v) — \(u,u), and since the contributions from <j> and R
are identical in equations (2.17) and (2.18), the result follows.

REMARK. Notice that we may simply hide the scalar curvature term in the
Lagrangian by setting <fr^ — <p — -^R and considering the Lagrangian L-^(v,t) =
^(v,v) — <pp(Tr(v),t). We will therefore not include this term in the following
expressions; the interested reader may refer to [20] and the references quoted therein
for a discussion of this Pauli-DeWitt term.

DEFINITION 2.5. The smooth Markovian diffusion £ is said to be critical for
the Lagrangian L if for each interval [t, ti] Ç I = [í0,íi] and every smooth vector
field 6b with compact support in M x [t,ti] we have that

(2.19) I[b,t,ti]-I'[b',t,ti] = o(6b),
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



706 J. D. LAFFERTY

where

r[b',t,ti] = E'\j1 Lb+6b(Ç'(s),s)ds

(2.20) S(Ç(r),r) = -E

Here £" denotes the expectation with respect to the measure of the smooth Marko-
vian diffusion £' having forward drift vector field b' = b + 6b, and the same diffusion
tensor and probability density at time t as £(£).

The following theorem is due to Guerra and Morato, and serves to specify the
dynamics of a critical diffusion. The crucial step in the Guerra-Morato variational
principle is the introduction of the stochastic analogue of Hamilton's principle func-
tion, which is the scalar given by

j1 Lb(as),s)ds\l-(r)   ,

and the expansion of the stochastic derivatives of this random variable with re-
spect to both the critical and "variational" processes. The approach given below
is more probabilistic, and assumes less regularity of the principal function than
the method which treats the stochastic differentiation operations as second order
partial differential operators.

THEOREM 2.6. Suppose that S is defined as in (2.19), that the gradient VS
exists in L2(p), and that
(2.20) dS(Ç(t), t) = VS(C(t), t) ■ dw(t) + 0(dt),
where the 0(dt) term is £(t) -measurable, and w is the underlying Wiener process.
Then the smooth Markovian diffusion £ is critical for L given by (2.16) if and only
if the current velocity v of £ satisfies the stochastic Hamilton-Jacobi condition

(2.21) v(x,t) = VS(x,t).
PROOF. As described above, let £' be the Markovian diffusion with forward drift

vector field b' = b + 6b. Let

(2.22) M(r) = exp (£ (6b(as),s),dw(s)) + \ j* ||5&(£(s),S)||2dS)

rsanov density associate

i = E\j\b(t:(s),s)< = E[S(t;(t),t)} = E[S(at),t)M(t)}

be the Girsanov density associated with £' (see [12]). Since
rti

)ds
it

and S(t;(ti),ti) =0 almost surely, we may use the algebraic identity
d(S(£(s), s)M(s)) = dS(Ç(s), s)M(s) + S(£(s), s) dM(s) + dS(£(s), s) dM(s)

to obtain an expression for I by stochastic integration by parts. Because M is
a Pt-martingale there will be no contribution from the S(tl(s),s)dM(s) term un-
der expectation. Furthermore, by expanding the exponential and again using the
martingale property it is easy to see that

fs+ds ^
\ViSd?(s)M(s) I /        6bidwi(s) +o(6b)E[dS(Z(s),s)dM(s)} = E

= E ViSftds + dw
s+ds

6bl dwi o(6b) + o(ds)

= E[ViS6biM(s) ds] + o(6b) + o(ds).
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THE DENSITY MANIFOLD 707

We therefore have that
rt,

-/ = £ Í' DS(t2(s,s))M(s)d8  +E   ('* ViS6bi(Ç(s),s)M(s)ds   +o(6b).

Now, from the Markov property it is clear that

(2.23) DS = Lb
and, similarly, that D'S' = L'b. (Note that this remains true for non-Markovian
processes when the stochastic derivatives are taken with respect to the past nitra-
tions.) Expanding the Lagrangians in 6b yields

Lb, -Lb = (b,6b) + \V • 6b + o(6b).
Finally, using the relations

\E'[V -6b\ = \ ¡V-6bp + o(6b) = -E[(6b,u)} + o(6b)l ¿ J
and b — u = v, by combining the above expressions, we arrive at

I' -I = E\f ' (v -VS,6b)(c:(s),s)M(s)ds   + o(6b)

■ fti -.
= E   /    (v-VS,6b)(Ç'(s),s)ds   +o(6b).Jt

The result now follows since 6b is only restricted to have compact support in M x
[Mi]-

COROLLARY 2.7.   Let £ be critical for L and let S be defined by (2.1).   Then
the stochastic Hamilton-Jacobi equation

(2.24)

holds.

^+1-(VS,VS)+<P-í-(u,u)-í-V.u = 0

PROOF. By combining the relation (2.23) with (2.21) we obtain

f + 6.V5+lAS -gj + (b,v) + -V ■ v = -(b,b) + V ■ b - <t>.

(Recall the above remark regarding the scalar curvature.) Using the relation v+u =
b then yields equation (2.24).

COROLLARY 2.8.   The diffusion £ is critical for L iff the Schrödinger equation

(2.25) *- = --A-r^

holds for ip given by ip = eR+tS, where u = Vi? and v — VS are the osmotic and
current velocity vector fields of £, and S is given as in (2.20).

PROOF. Combining the stochastic Hamilton-Jacobi equation (2.24) with the
current equation (2.10) expressed in terms of the scalars R and S results in the
nonlinear system

(2.26) ^L+i-(VS,VS) + <!>-\(VR,VR)-±AR = 0,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



708 J. D. LAFFERTY

(97? 1
(2.27) -^ + (VR,VS) + ^AS = 0.
A simple computation then shows that the above system is equivalent to the
Schrödinger equation (2.25).

REMARK. We note that a covector term may be included in the above La-
grangians as well. See [20] and §5.

2.2 Paths of density. There are several ways of constructing a smooth Markovian
diffusion on M. Given a collection of vector fields one can construct a stochastic flow
of diffeomorphisms of the frame bundle and project onto M. The familiar method of
taking discrete approximations to Itô stochastic integral equations yields a diffusion
locally, and the resulting local processes in different charts may be glued together.
A partial differential equations approach begins with an initial density po and the
drift vector field b(-,t), t G I, and solves the forward diffusion equation to obtain
the probability transition function p, and therefore the measure Pr on path space.

From the point of view of the present paper, it is most natural to suppose that
for each t G I, p(-, t) is a smooth strictly positive probability density on the compact
manifold M. The osmotic velocity, determined by

u= |Vlogp,
is smooth and we may define the current velocity by the relation

Ü = _IVA-^p dt
which exists since / dp/dt = 0 implies dp/dt G Ran(A). Then p satisfies the
forward and backward diffusion equations (associated with b = v+u and b* = v—u)
which have fundamental solutions p and p». The measure on path space may then
be generated using the transition kernel

p(dxi,ti;... ;dx„,t„) — p*(dxi,ti\x2,t2) ■ • -p*(dx¿_i,í¿_i;xi,í¿)p(dx¿,í¿)
■ p(xi,ti;dxi+i,ti+1) ■ ■ ■p(xn-1,tn-i;dxn,tn).

Thus, a smooth path of densities may be used to generate a Markovian diffusion.
The following theorem, due to Carlen [5], provides the proper mathematical

setting for stochastic mechanics.

THEOREM 2.9. For each t G [ío,¿i] = I let p(-,t) be a probability density, and
let u and v be time-dependent vector fields on M which satisfy

(2.28) /       ((v,v) + (u,u))p(x,t)dMxdt < oo
Jm Jj

and

(2.29) /   f(x)p(x,t)dMx-       f(x)p(x,s)dMx=        /   (v,Vf)p(x,r)dMxdr
Jm Jm Js Jm

for all s,t G I and f G Cq0 (M) ■ Then there is a regular probability measure Pr on
path space Yl such that under Pr, 11—> £(f) is a square integrable Markov process with
density p(-, t), and the following limits exist strongly in L2{Pr) for any f G C0X(M):

lim jtE[f(Z{t + dt)) - /(£(i))lM] = (§A + b ■ V) /(£(*)),
Hm M/(£(i)) - /(£(« - dt))\Mt] = (-±A + 6, ■ V) /(£(i))
otj.0

where b = v + u and bm = v - u are the forward and backward drift vector fields.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The relevance of the finite action condition (2.28) and the weak continuity equa-
tion (2.29) for stochastic quantization is contained in the following result.

THEOREM 2.10. Let <j> be a Rellich class potential on M x I and let Vo
satisfy \i()\2 — fM\\Vip\\2 d\{X < oo. Then if ipt = i¡)(-,t) is a solution of the
Schrodinger equation (2.25) with potential<fr and initial condition %¡)q (that is, ifipt =
exr>(—itH)ipo for the Hamiltonian H = —\A + cf>), then u,v, and p defined by

(2.30) u(x,t)={ ip(x,t)        VK     '^
0, <KM)=o,

(2.31) v(x,t)= { ip(x,t)        n'jr   '
0, xp(x,t)=Q,

and

(2.32) p(x,t) = [i>(x,t)\2

satisfy the finite action condition (2.28) and the weak continuity equation (2.29).

We refer to [5] for the proofs of these results. We end this section by briefly
discussing the interpretational aspect of Markovian stochastic mechanics. Through
the study of some particular quantum systems, it has been determined that Marko-
vian stochastic mechanics violates a certain separability property which one may
justifiably demand of a physically tenable theory. This is essentially due to the
fundamental property that a component of a multidimensional Markov process is
not again, in general, a Markov process—the generation of a-algebras does not re-
spect vector space structure. (Consider the sheet component of a Wiener process
on the Riemann surface of y/z.) However, it is not at all clear how the Guerra-
Morato variational principle may be extended to non-Markovian diffusions, or that
such an extension would remove the separability problem.* Thus, from the point
of view of Nelson, one should turn toward the construction of random fields on
physical space-time rather than diffusions on configuration space. See [20, 21] for
a treatment of the locality problem in stochastic mechanics. The point to be made
here is that there is no mention of Markovicity or other restrictions in specifying a
path of densities p. Hence, if a quantization theory can be formulated using paths
of density as the fundamental mathematical objects of consideration, then there
may be no questions of locality or separability directly involved. We carry out this
program in the following sections.

3. The density manifold. Throughout this section, M will denote a C°°,
compact, connected, Riemannian n-manifold without boundary. A volume element
is a positive rz-form of odd kind, in the sense of de Rham. We let M = M(M)
denote the collection of smooth (= C°°) densities on M. To be precise, let M be

*One approach to this problem uses the homogeneous chaos decomposition of Wiener space as
a basis for a variational principle for non-Markovian semimartingales.
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the vector space of sections of the bundle of smooth n-forms over M, and let K Ç M
be the closed subspace

K={,emjMr, = o).

Consider the Riemannian volume element dj^x = p, form the closed affine subspace
K = K + p, and set

(3.1) M = {p G ~K\p = fp locally, with / > 0}.
We may assume, of course, that Vol(M) = fMp = 1, so that if p G M, then
Im P = *■ Thus, M is an open convex subset of a closed affine subspace of the
vector space JJ.

In this section we study the manifold structure of M and briefly discuss its
relationship with the group D(M) of diffeomorphisms of M. This relationship is
further developed in §6. Consider the following simple example, which gives an
indication of the interplay between M and P. Let M = S1, and let P(S1) denote
the group of orientation preserving diffeomorphisms of S1. If n G P(S1), then n
lifts naturally to a real-valued periodic function (also denoted r¡) on R. Clearly
n' is a density, and an exercise in calculus shows that P(S1) « AUS1) x R/27T.
Therefore P(S1) has the same homotopy type as S1, since M is contractible. (This
is the trivial case of the Smale conjecture: P(Sn) is homotopically equivalent to
SO(n + 1), n = 1,2,3,4. The case n = 4 appears to be open.)

This discussion of the relation between the diffeomorphism group and the density
manifold in 3.3 and 3.4 will lead to a treatment of the Fréchet manifold structure of
M and its tangent bundle TM in 3.5 through 3.7. In particular, in 3.5 we develop
the fundamental properties of the osmotic Laplacian Ap, which is essential to many
further results. This operator is used to study the geometric structure of M in 3.6
and 3.7.

3.1 Calculus on Fréchet manifolds. We will be working in the C°° category, and
therefore briefly recall here some basic facts concerning the Fréchet calculus.

By a grading on the Fréchet space X we mean a family of seminorms {| • |}neN
which generate the topology of X, and which satisfies | • |o < | • |i < • • • < | ■ |n < • • • •
For example, let V be a finite-dimensional vector bundle over M, and consider
the space C°°(M,V) of smooth sections. Let Ua be an open cover of M and let
<j>: Ua —* Va be local trivializations. For each a, let Ka C Va be compact, and set
Ka = (^>~1(Ä'a). Also, assume that

V: C°°(M, V) - C°°(M, T*M ® V)
is a bundle connection. Define the family of seminorms {| • \%atn} by

l/ISL« = ¿ E supiv^-.-v^x)!
j=l ti,...,ij   ^a

where the indices ii,...,in refer to a basis for TMI^, and V., is the covariant
derivative for V. By restricting to a countable subcover (or finite in the compact
case) and letting a countable collection of compact sets fill out each coordinate
chart, it is then evident that the above family of seminorms generates a grading for
a Fréchet topology on C°°(M,V) which is independent of the local trivializations
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chosen. In the same fashion one constructs a grading which is compatible with the
topology generated by the Sobolev seminorms.

Although there is no canonical extension of Banach space differential calculus to
Fréchet spaces, the following provides a good working definition.

DEFINITION 3.1. Let X and Y be Fréchet spaces. Suppose that U Ç X is
open, and that /: U —► Y is a continuous map. If x G U and v EX, the directional
derivative of f at x in the direction v is defined to be the element dfx(v) of Y given
by

(3.2) dfx{V)=}^±±^m

if this limit exists.
Since the vector space C(X, Y) = Hom(X, Y) is not, in general, a Fréchet space

when X and Y are Fréchet the usual notion of C1 Fréchet derivative in Banach
spaces, namely, that the mapping x h-> dfx is continuous in the norm topology of
£.(X,Y), does not apply. The following weaker criterion is therefore adopted in
Fréchet spaces.

DEFINITION 3.2. The map /:U Ç X -+ Y is said to be of class C1 in case the
limit dfx(v) always exists, and the mapping given by df:U x X —» Y, df(x,v) —
dfx(v) is jointly continuous as a function of two variables. Higher derivatives and
the class Ck,k > 2, are defined in the obvious inductive fashion.

Within this framework the basic operations of the calculus are sufficiently well
behaved for our purposes. In particular, the notion of Fréchet manifold, defined in
the obvious way, is well adapted to our study of M. We refer to [11, 17] for further
discussion of the general theory.

REMARK. Apart from certain topological and analytical issues, a large part
of the finite-dimensional geometric theory carries over unchanged to the infinite-
dimensional case when it is formulated in an appropriate algebraic fashion. In [19]
the theory is cast in the abstract setting of Lie modules, which provides a suitable
framework for much of what we shall carry out in later sections.

3.2 The group of diffeomorphisms. We now quickly review the basic facts con-
cerning the group of diffeomorphisms of the compact manifold M. For details and
many further developments we refer to [11] and [17], where the C°° point of view
is developed, and to [2] and [6], where the Hubert manifold case is developed.

Let P(M) denote the group of C°° diffeomorphisms of M, with the C°° topology.
The tangent space TeP(M) at the identity e is identified with equivalence classes
of smooth curves of diffeomorphisms through e. Thus the Lie algebra £(P(M))
consists of the collection X(M) of smooth vector fields x \-* V(x) €TXM with the
C°° topology.

A one-parameter subgroup of P(M) is simply the flow of a vector field V G
X(M), and this flow is defined for all time since M is compact. We therefore
have a map EXP: X (M) —► P (M) which takes V G X (M) to the one-parameter
group of diffeomorphisms EXP(iV) satisfying d7/dt = Vf/y), 7(0) = xo, when we
set 7(t) = EXP(iV)(xo). Unlike the situation with finite-dimensional Lie groups,
however, this exponential map does not provide a local chart structure on P(M)
since it is not a local isomorphism—it does not map onto any neighborhood of the
identity. Some more work must therefore be done to provide an atlas for P(M).
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The idea behind providing a chart structure for P(M) may be thought of as
follows. Let Ve Ç X(M) be a neighborhood of zero which satisfies |u| < e for all
v G VE, where | • | denotes the Riemannian norm on TM. Choose s sufficiently small
so that any two points of M with Riemannian distance less than e may be joined
by a unique geodesic of length less than s, and such that this geodesic is minimal
and depends smoothly on its endpoints. (For example, if M — Sn,s < it will do.)
Let exp denote the exponential map of M. Then for v €Ve the map 4>(v): M —» M
given by <j>(v)(x) = expv(-x)(l) may be thought of as mapping x G M to a geodesic
of length \v[ < e, and <p: V£ —► C°°(M,M) is a homeomorphism onto an open set
Ue Ç C°°(M,M). Define V£ by

Ue = {n G Ue\r¡ is a diffeomorphism}.

Then Ve = 0-1(t/e) is open in Ve. This provides a local chart <p:Ve —► Ue at
the identity. A local chart structure for all of P(M) is then obtained by using
the group action. This provides P(M) with the structure of a smooth Fréchet
manifold modelled on the Fréchet space X(M). The Lie product of the Lie algebra
TeP(M) sa X(M) is minus the usual bracket of vector fields

[X,YY=X3^-Y3^-X7

The minus sign comes from the fact that one works with right- rather than left-
invariant vector fields.

Now the group TP(M) may be expresed as a semidirect product

TP(M) « P(M) K1TeP(M),
where TeP(M) is a normal subgroup. In particular, we have that the fiber TVP(M),
for n G P(M), is given by

TVP(M) = {V: M - TM|7rV(x) = n(x)}.
Thus, Tr)P(M) is the collection of smooth vector fields over r?, represented by the
commutative diagram

TM
VA      \*

M    -^     M.
We denote the group actions associated with n by Rr, and L„ :

LV:P(M)^P(M),        £^L,7£ = r?o£,
RV:P(M)^P(M),        £h^£ = £OÍ7.

The induced actions on TP(M) are

TLr,:TP(M) -» TP(M),    V€ G T^P(M) ■-» rL,V€ = Tr/ o V€ g T„oíP(M),
TRn:TP(M) -* TP(M),    V€ G T€P(Af ) h^ TÄ„V€ = V€ o n G TíorlP(M),

and these maps are smooth. The adjoint action Ad is therefore given by pushfor-
ward of vector fields:

Adn:TeP{M) -* TeP(M),    V ^ Ad^V = Te(Lv o Rn-,)V = n*V.
REMARK. From these relations it is clear that when P(M) is modelled on Hs,

it is not a Lie group since the group operations are not smooth.
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Two important subgroups of P(M) are the group of volume preserving diffeo-
morphisms

Pli{M) = {r,eP{M)\r,*p = p},
and the group of symplectic diffeomorphisms

pu(M) = {n G P(M)\r¡*uj = «},

in the case that M admits a symplectic structure w. To show that Pp(M) is a
closed smooth submanifold of P(M) one considers the cohomology class

[p]=ß + d(C°°(An-1(M)))

(where C°°(Ak(M)) denotes the smooth exterior fc-forms), and shows that the
mapping F: P(M) —► [p] described by F(n) = n*p, is a submersion. Then Pß(M) =
F~1(p) is a smooth submanifold, but this only determines the local chart structure
of Pft(M) implicitly.

The proof of this fact is similar to that of the following theorem, which is central
to the developments of §6.

THEOREM 3.3. The Lie group P(M) acts transitively on M by pullback of
forms. Furthermore, ir:P(M) —► M is a principal fiber bundle with structure group
Pn(M) and projection nr¡ = n*p.

For a proof of this theorem, which is indicative of the methodology of diffeomor-
phism groups, we refer to [6]. The proof is based on a beautiful (and now standard)
technique due to Moser [18], which generalizes not only to the Darboux theorem,
but to Weinstein's theorem on normal forms for Lagrangian submanifolds. The
proof given in [11] uses heat equation and inverse function theorem methods.

A density is thus a coset of diffeomorphisms. The Lie algebra £(Pß(M)) of
the Lie group Pß(M) is the Fréchet space X?(M) = {X G X(M)\V ■ X = 0},
the space of vector fields which are divergence-free with respect to the measure
p. This follows from the observation that if t >-* r¡t is a curve in P^(M) with
Xt = dn/dt G TVtP^(M), then

Q=rrtrl*trl = rl*t(LXtorl7irl),

and thus V • (Xt ot?*-1) =0. The tangent space T^M should therefore be identified
with QX(M), the gradient vector fields on M, since by the Hodge decomposition

Z(P(M)) t*X(M) = Xß(M) e QX(M).
In other words, n: P(M) -»Misa submersion, and we have

PROPOSITION 3.4.   There is a short exact sequence of Fréchet spaces given by

0 -> TeP„(M) -» TeP(M) ^T^M^O
which splits canonically.

In the next two sections we will establish a more concrete description of this
relationship, and, in particular, we shall see how the splitting of this sequence
provides an important feature of the density manifold for our later developments.

3.3 The osmotic Laplacian. There is nothing special about the volume form p
in the above discussion. Indeed, we may let po G M be an initial density, and for
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t r-> rjt a path in P(M) with »70 = e, let pt = (nt)*Po be the push-forward density
path. Then

holds, where Xt G TVtP(M) is the vector field over <7t tangent to í h» nt. Thus,
under the mapping pt *-► pt/p from n-forms to smooth, strictly positive functions,
the continuity equation

dp/dt + V-(xtPt) = 0
holds when we set Xt<>r)t = Xt. Of course, the same equation holds if we replace
Xt by Xt + zt, where Zt is a vector field on M having divergence zero with respect
to the measure pt (« ptdMx).

With p = po, suppose that we seek to minimize the energy

(3-3) \jM\\x[[2p=\((v,v))p

among all vector fields v which satisfy the continuity equation for p(t) at t = 0.
If v is the unique vector field which minimizes (3.3) then v is orthogonal to all
p-divergence-free vector fields with respect to the inner product ((-, -))p. Thus, since
p > 0, v* is a closed 1-form. Without assumption on the H1(M, R), we would like
to show that v* is exact [21].

THEOREM 3.5.   Let t *-* p(t) be a smooth curve in M with p(Q) = p. Then there
is a function S G C°°(M), defined uniquely up to a constant, such that

(3.4) dp/dt\t=0 = -V • (VSp).
PROOF.   For the purposes of this proof, let U be the complex Hubert space

L2(pdMx) with inner product (•, -)o,

if, 9)0 = /   fgpdMx,
Jm

and let M1 be the completion of C°°(M) with respect to the bilinear form (v)i:

</.0>i=T /   (Vf,Vg)pdMx+ /   fgpdMx.
L Jm Jm

Clearly M1 is a dense linear subspace of M, and is a Hubert space with larger norm
l/li > I/I01 / € M1. Thus, it follows that there is a unique positive selfadjoint
operator associated with the quadratic form (-,-)i with form domain U1. If we
denote this operator by — \AP, then

if,9)i = if,-^p9)o + (f,9)o
for / G ri1 and g G Dom(-^Ap). Furthermore, for g G Dom(-^Ap) we have that

1a 1a       1 Vp   _       1 . _-Apg=-Ag+--.Vg=-Ag + u.Vg.

Let )io Q ri be the closed subspace Mo = {/ G ri\fMfp = 0}. Then \AP is an
elliptic operator with discrete spectrum, and kernel consisting of the constants,
which maps Mo into itself. It also has a bounded inverse (|Ap)_1.
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Now, clearly p  1(dp/dt) G #0 since

L(cpt)p=íLp=o-
Thus,

exists in -Vo, and by elliptic regularity is C°°.  S is the desired solution (up to a
constant) of (3.4).

COROLLARY 3.6.   LetpGM.  We may write

(3.5) X(M) = gX(M)®Xp(M),
where §X(M) is the collection of gradient vector fields on M, and XP(M) is or-
thogonal to QX(M) with respect to the bilinear form

(X,Y)~((X,Y))P= f (X,Y)pJm
onX(M)xX(M).

PROOF. If z G X(M) we may consider a smooth curve t h-> p(t) in M with

dp/dt\t=o = -V ■ (zp).
The operator \AP then provides a smooth gradient vector field

(3,, 0W, = -*(iV)(±!)
and since P{p)z = z — Q(p)z satisfies V • (P(p)zp) — 0, it follows that P(p)z and
Q(p)z are orthogonal with respect to ((•, -))p.

We call the operator Ap constructed in Theorem 3.5 the osmotic Laplacian. It
will play an important role in what follows. The advantage of the above construction
is that it goes through in the more general case where M is not compact and the
density p may have nodes.

PROPOSITION 3.7. The collection {Ap}pex is a smooth one-parameter family
of elliptic operators with corresponding smooth family of inverses {A"1}^^.

PROOF. Consider the grading on C°°(M) generated by the Sobolev norms

l/ln =    £   |V«/|,
|a|<n

with I • I the L2{dMx) norm, as in the construction of §2.2. By Sobolev embedding,
this is equivalent to the Cn grading. From general elliptic theory we have that if
the mapping

/ ~ L(f) =£/„•£>",        fGU,
\<*\<T

defines a family of elliptic operators of degree r (where generally the coefficients
/ = if a) are sections of a jet bundle) then for g G U, if \f - g\o < e one obtains
estimates of the form

|Ä|„+r < C(|fc|n + |/|n|fc|o)
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where L(f)h = k. For Ap, we require that the osmotic velocities be close,

||Vlog(p/p0)||o<e,

to obtain estimates of the form

(3.7) I V*|„+a - C^n + lvl°gHn|fc|o).
REMARK. In considering osmotic diffusion where dp/dt = 0, the operator ^Ap

may be used to construct a measure on path space yielding a symmetric Markov pro-
cess. Recent work has been carried out by D. Bakry and M. Emery [4] on Sobolev
and logarithmic Sobolev inequalities related to Ap on noncompact manifolds.

3.4 The Fréchet manifold structure of M. Notice that the appearance of the Lie
derivative in the expression

VÏ(LXtOri7ipt + dpt/dt) = 0,
which is equivalent to the continuity equation, transforms the tangent Xt to the
path of diffeomorphisms into an implicit tangent vector xt = Xt o nr1 for the path
of densities by the relation dp/dt + V ■ (xp) = 0. We now provide M with a chart
structure which makes this correspondence explicit.

THEOREM 3.8. Let p G M and let Vp be a neighborhood of zero in K = {f G
C°°(M)\fMfdMX = 0} such that APS < 1 for all S G Vp. Let 4>P:VP -» M be
the mapping given by <¡>P(S) = p — V ■ (VSp). Then the collection of such pairs
{Vp,<i>p}p€M forms a C°° atlas on M.

PROOF. Let S G Vp. Since APS < 1 we see that (¡>P(S) = p - V ■ (VSp) =
p(l — APS) > 0. In addition, since fM(ApS)p = 0, it follows that <f>p maps Vp into
M, as claimed.

Recall that a closed subspace of a Fréchet space is again Fréchet. The mapping
S i-» 4>P(S) - p = -(ApS)p is a linear, invertible map of K into itself. Since
(p, S) t-* ApS is smooth, it follows from the open mapping theorem that the set
0p(Vp) — p is open in K. Thus, <j>p(Vp) is open in M.

Let pi, p2 G M with corresponding charts (fo: Vi —► Ui Ç M, i = 1,2, and consider
the composition

<t> = 4>~l ° fa-<t>2 \Ui n u2) - ^(Ui n u2)..
If p = pi - V • (VSipi) = p2 - V • (VS2p2) G Ui n U2, then (APl'Si)pi =pi-p2 +
(AP2S2)p2, so that

S. = *(S2) = A-'(l-iî + (A,„)g)

noticing that (l-p2/pi), (AP2S2)p2/pi G KPl — {f\J fpi =0}. From our previous
remarks regarding the osmotic Laplacian it now follows that (¡> is smooth.

Notice that if t >-* p(t) is a curve through p(0) = p in M, then dp/dt makes sense
as a Gâteux derivative. We therefore think of the gradient vector field

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DENSITY MANIFOLD 717

as an intrinsic tangent vector (or an intrinsic representation) at p since there is no
mention of local charts. A vector field on M is thus a smooth (as a map between
Fréchet spaces) assignment p h+ X(p) of a gradient vector field X(p) G PX(M) to
each p G M.

A simple consequence of the chart structure provided by Theorem 3.8 is the
following, which provides the most natural framework for working with tensors on
M.

PROPOSITION 3.9. Let Xi,...,Xn be vector fields on M and let p G M. Then
there is a chart <j>:V Ç QX(M) —> U Ç M with p G M, such that

= Xi(p),        i = l, , ,n,
t=o

where for each i, t ■—► pi(t) is a curve representing Xi at p.  In other words, the
intrinsic and local representations of Xi agree at p.

PROOF. Let e > 0 be such that the set V = {tXi(p)\t G (-e,e),i = 1,... ,n}
satisfies p — V • (vp) > 0 for all v G V. Extend V to an open neighborhood
V Ç QX(M) such that again p - V - (vp) > 0 for v G V. Now define (¡>: V —► M by
<p(v) — p — V • (üp). For z = 1,..., n let í h-> pi(i) represent X¿ at p. Then

4,-1 o p¿(í) = (p-1 o (p - íV • (Xi(p)p)) + o(dt) = tXi(p) + o(dt)

so that

Í7-opi(t) = Xi(p)
t=o

for each i.
Finally, it will be useful to think of tangent vectors on M as equivalence classes

of vector fields on M, as in the fiber bundle description of Theorem 3.3. To this
end we make the following definition.

DEFINITION 3.10. For each p G M, let =p denote the relation on X(M) xX(M)
defined by X =p Y in case V • ((X — Y)p) = 0. Then =p is an equivalence relation
on X(M) and by Theorem 3.5 there is a unique gradient vector field within each
equivalence class. We denote by Q(p):X(M) —> X(M) the projection operator
which takes X G X(M) to the unique gradient vector field Q(p)X in the equivalence
class [X]p containing X. For p G M let "Vp be the collection of equivalence classes
of vector fields on M under the equivalence relation =p. It is then easy to prove
that V — öpVp forms a vector bundle over M with projection 7iv, such that the
following diagram commutes:

TM     ^       V
?rj      Sn\      \Q
M       £-     TM

Thus, the p-equivalence class

Mp = (&f(&)
is associated with the path 11-> p(t) g M.
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Together with the results of §2.4 then, we may summarize the relationship be-
tween P(M), Pli(M), and M in the following commutative diagram:

TP„(M)    £    TP(M)    3   TM    "      V
irppl [no nMl IQ

Pß(M)     «-♦     P(M)     ^     M     Vi   TM
3.5 The tangent bundle TM. Let X and Y be vector fields on M. For each

p G M, X(p) G Tp.M « QX(M) is a gradient vector field. Let ((-, -))p be the inner
product

(3.8) ((X, Y))p = f (X(p), Y(p))p(x) dMx.
Jm

The mapping p i—► ((-,-)) p determines a weak Riemannian structure on TM. The
term weak is used since the topology generated on TPM by the bilinear form {(■,■))p
is strictly weaker than the topology inherited from M. Thus, each fiber TPM is a
pre-Hilbert space in the {(■,■))p inner product.

DEFINITION 3.11. Let t >-> p(t) G M be a curve representing X at p G M.
Interpreting Y: M —» QX(M) as a map between Fréchet spaces we define XoY(p) G
TpM by

(3.9) XoY(p)=^Y(p(t)) = dFp(-V-(X(p)p)).
t=o

To determine the Lie product on TM we need the following lemma.

LEMMA 3.12.  LetX = VS* and Y = VSy be vector fields on M. Then

(3.10) [X(p), Y(p)} =p (ApSy)X - (ApSx)Y.
PROOF.  Clearly this result only depends on X and Y at p. We need to show

that
({Z, (ApSy)X - (ApSx)Y))p = ((Z, [X(p), Y(p)}))p

for any Z G $X(M).   Since the Riemannian connection on TM is torsion-free,
integrating {{Z, [X, Y]))p by parts yields

/ (Z,VxY-VyX)p=  f Z^VVjYi-Y'VjXJpJm Jm

=  f (Y^VjZ^i-X^VjZ^pJm

+ f (ZiXiVj(Y3p)-ZiYiVj(X3p)).Jm
But the second integral above reduces to ¡m(Z1XíApSy - ZlYiApSx)p, and thus

((Z, [X, Y]))p = {(VyZ, X))p - «VxZ, Y))p + {(Z, (APSY)X - (APSX)Y]))P.
Now, since Z is a gradient vector field on M, Y> VjZ*Xi = Y^ZjXi = (Y, VXZ).
Therefore we obtain

((Z, [X,Y}))P = ((Z, (APSY)X - (APSX)Y))P,
as desired.
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It is instructive to verily this directly. This is accomplished by checking the
identity

V,((XfcVfcr - YkVkXl)p) + Vi ({vkXk + ^-Xk\ Y'p)

-Vi((vkYk + ^Yk\xip)=0

with the aid of the Ricci identity.
THEOREM 3.13. Let X and Y be vector fields on M, and let {X,Y] be the Lie

product of X and Y.  Then for each p G M,
(3.11) \X, y\(p) =pXoY(p)-Yo X(p) + [X(p), Y(p)}.

PROOF. By the Hahn-Banach theorem it suffices to determine the action of
\X, Yj as a derivation. Thus, let / G C°°(M) be a smooth scalar. Then

¡X,Yjf(p) = (X(Y(f))-Y(X(f)))(p)
canonically defines the Lie product. If dfp denotes the directional derivative of /
at p as a mapping between Fréchet spaces, then this may be expressed as

lX,Yjf(p) = X(dfp(-V ■ (Y(p)p))(p)) - Y(dfp(-V ■ (X(p)p))(p)).
Next, taking a second derivative along integral curves of X and Y we obtain

¡X, Y\f(p) = d2fp(-V ■ (Y(p)p), -V - (X(p)p))
+ dfp(-V ■ (X o Y(p)p - ApSxY(p)p))
-d2fp(-V.(X(p)p),-V-(Y(p)p))
- dfp(-V • (Y o X(p)p - ApSYX(p)p)).

Now d2fp is a symmetric bilinear operator, so the d2f terms cancel.  The above
expression thus reduces to

[X, Yjf(p) = d/„(-V • ((X o Y(p) - Y o X(p) + (APSY)X - (ApSx)Y)p))
and then from Lemma 3.12 to

¡X, Y]f(p) = dfp(-V ■ ((X o Y(p) - Y o X(p) + [X(p), Y(p)])p)).
Therefore, (X, Y] = X o Y - Y o X + [X, Y], as claimed.

Of course, the Jacobi identity follows immediately from the definition of the Lie
product as a bilinear, antisymmetric mapping on derivations of the associative ring
of scalars. However, since QX(M) is not closed as an algebra under the bracket
[-, •] on TM, the Jacobi identity for the bracket [•, •] is not immediately clear from
the expression (3.11). This result is thus most naturally interpreted in the bundle
ny. "V —* M. To verify the Jacobi identity directly, consider the equivalence class
E<-> 11-^' ̂ 1> ZJ\p where J2^-> denotes cyclic summation. A calculation shows that

£[[X,y],Zl(p) =p ]T([Q{p)[X,Y],Z]-ZoQ{p)[X,Y])

where we may assume that X, Y, and Z are gradient vector fields which are inde-
pendent of p. Now, in general, we have

dp(Apg(p))(v) = Apdgp(v) + Vgdp H^j (v),
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so that letting g = Ap x f we obtain

dp(A'p1f)(v) = A-1 (dpf(v) - VA;1/ - dp (^) (t;)) .

Setting / = p_1 V • ([X, Y]p), a calculation then shows that

dp(Q(p)[X,Y])(Z) =dp (-va;1 Qv-([X,y]p))) (Z)

= Q(p)(ApSz(Q(p)[X,Y]-[X,Y]))
=p ApSz(Q(p)[X,Y\-[X,Y\).

Therefore

Y}\X, Y], Z] = £([Q[X, Y], Z] + APSZ([X, Y] - Q[X, Y})).

Taking the p-divergence of both sides, and using L[x,Y] = [Lx,Ly], with Lxp =
VßXp yields

£ V • {¡¡X, Y], Z\p) = £(Q[X, Y] - VV • (Zp) - Z ■ VV • {[X, Y]p))

+ J2([X,Y]-Q[X,Y))-VV-(Zp)
= 0,

proving that the Jacobi identity holds with respect to the equivalence relation =.
In considering the Jacobi identity for TM, recall the following definition.   A

homogeneous space G/H is said to be reductive if there exists a linear subspace m
of g, the Lie algebra of G, such that

0 = f) © m,
and Adjjm ç m, where I) is the Lie algebra of H. If p defines the projection onto
I) and q defines the projection onto m then since [h, m] Ç m for such a space it is
obvious that

J2p[Q[li,ri)A\=0,

for £,57,f G m. However, the density manifold M, as a homogeneous space, is not
reductive, and the Jacobi identity must be verified directly.

In conclusion, we make a remark on the cotangent bundle T* M for later reference.
It is a theorem that the topological dual of a nonnormable Fréchet space is not itself
a Fréchet space. Thus, rather than working with the topological dual of TM, which
is a space of distributions, we use the Riemannian structure p h^ ((•, -))p to identify
the cotangent bundle geometrically.

To be precise, let \>:TM -> T*M be the bundle isomorphism which is the index
lowering action. This induces a bundle isomorphism \>:TM —► T*M (onto the
geometric cotangent bundle) by X^(p) = (X(p))b, and the pairing ((-, -))p given by

((Xb,y))»= / Xt,-Y(p)pdMX= f (X(p),Y(p))pdMx
Jm Jm

describes the action of T*M on TM.
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4. Geometry of the density manifold. In this section we investigate the
fundamental properties of the density manifold by studying the Riemannian and
symplectic structures on TM.

4.1 The Riemannian structure. Generally speaking, if £ is a vector bundle over
the manifold M with projection tt, the nullspace ker7r*|z, z G Tí, is the subspace of
vertical tangent vectors and is naturally isomorphic to the fiber £,7r(2). A connection
is a choice of a complementary subspace of horizontal vectors. The horizontal lift of
a path in the base space is then defined, which for Fréchet manifolds, however, may
not exist in general. The following result determines the Riemannian connection
on TM, which may be interpreted as a connection for the bundle Try. y —► M
constructed in the previous section.

THEOREM 4.1. Let X, Y, and Z be vector fields on M. The Riemannian con-
nection, denoted V, is given by

(4.1) VxY(p) =p VxY(p) + Vxip)Y(p),

where V t'a the canonical flat connection on TM.

PROOF. There is a trivial parallel translation map 7 = id on TM, identifying
fibers as Fréchet spaces. Since we assume that p G M satisfies p > 0 locally,
the completions of the fibers under the weak Riemannian structure are unitarily
equivalent as Hubert spaces. If X G TM and Z G TXTM is represented by the
curve t*-*W(t), W(0) = X then

,,^ T7„     ,.    rW(t)-X(4.2) KZ = lim-—-
K    J t-*0        t

defines the flat connection V on TM by

(4.3) KoTXoY = VXY.

To see that V is, in fact, a flat connection notice that by considering Z: M —► TM
as a map between Fréchet spaces we have that

(VXVYZ - VYVXZ - VlXtYiZ)(p)
= Vx(dZp(-V ■ (Yp))) - VY(dZp(-V ■ (Xp))) - dZp(-V ■ (¡X,Y]p))
= d2Zp(-V ■ (Yp), -V • (Xp)) + dZp(-V .((XoY- (ApSx)Y)p))

- d2Zp(-V - (Xp), -V • (Yp)) - dZp(-V .((YoX- (ApSY)X)p))
- dZp(-V ■ ((X o Y - Y o X + [X, Y])p))

= 0

as in Theorem 3.13.
Now, in general, a connection V on a manifold N, induces a bundle map

KV:T2N^TN

such that the diagram
T2N    ^   TN
Til J7r
TN     -^     N
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commutes, where 7Ti and n are the usual projections, and such that ni : T2 N —► TN
is isomorphic to kerÄy ©ker(7r*). Furthermore, ÄV determines V through the
relation

(4.4) VVW = K o TW o V.

In this way one constructs the Riemannian connection for the group P(M). Let
K be the map associated with the Riemannian connection V on TM as above. If
K: T2P(M) -> TP(M) is defined by KY = K o Y then the commutativity of the
diagram

T2p    JL,   TP
rril [rr

TP       -I*       P
follows from that of the diagram associated with K, and the Riemannian connection
V on TP (M) is then given by

VXY = KoTYoX

(see [6]). The connection V on TM is then obtained from the fiber bundle structure
of 7r: P(M) —7 M by considering the group action of P(M).

To be concrete, think ofV = V + Vasa sum of the flat connection V, and the
Riemannian connection V on TM acting pointwise on TM. If / G C°°(M), notice
that

VX(fY)(P) = Vx(fY)(p) + Vx{p)(f(p)Y(p))
= X(f)(p)Y(p) + f(p)X o Y(p) + f(p)Vx{p]Y(p)
= (X(f)Y + fVxY)(p),

since X(p) ■ f(p) = 0 when f(p) is interpreted as a scalar on M through a sequence
1 -» C°°(M,R)m -> C00(M,C00(M,R)y -+ C°°(M,R)* - 1.

Since linearity is trivial, the Kozul axioms are thus verified. If the curve t i-> p(t)
represents Z at t = 0, then

Z(((X,Y))P)=±- f (X(p(t)),Y(P(t)))p(t)dMx\
ai Jm lt7=o

= / ((ZoX,Y) + (X,ZoY))pdMx- [ (X,Y)V.(Zp)dMx.
Jm Jm

But the last integral may be written as

Í Z(X,Y)pdMx= [ ((VzX,Y) + (X,VzY))p
J M J M

and thus,

Z(((X,Y))p) = ({ZoX + VZX, Y))p + ((X,Zo Y + VZY))P
= ({VZX + VZX, Y))p + {{X, VZY + VZY))P

= ((VzX,Y))p + ((X,VzY))p.
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Finally, since

VxY _ VyX - IX, Y] s VXY - VYX + VXY - VYX + {X, Y]
= Xo Y - Y oX + [X,Y] - [X,Y\
sO,

the connection V is clearly torsion-free.
We comment that VxY is not a gradient vector field, in general, when X and

Y are. Thus, the connection V is most naturally viewed as a bundle connection for
the bundle ny. V -* M. In so considering V:T("V) —► r(T*M <g> "V), the covariant
derivative Vx maps vector fields on M to equivalence classes of vector fields on
M. Finally, note that the ring of scalars C°°(M) = C°°(M,R) is canonically
embedded in the ring C°0(M,C°0(M, R)). However, with respect to this larger ring
the connection V does not satisfy the Kozul axioms since Vx(p):r(TM) —► T(TM)
is not linear over C°°(M,R).

COROLLARY 4.2. Let t t-> p(t) be a path in M with t H-7 v(t) = v(p(t)) G Tp<t) M
the vector field tangent to p. Then the path p is a geodesic if and only if

(4.5) dv/dt + Vvv = 0.

PROOF. The expression Vvv = 0 may clearly be rewritten as (4.5). Notice that
there is equality rather than equivalence in (4.5) since from the general identity

Luub = (Vuii)b + \d(u, u)

we have that (yvvf = ¿d(v,v) is exact.

COROLLARY 4.3.   M is geodesically incomplete.

Let us now adopt the viewpoint that the curvature of a connection V measures
the extent to which the map X t-+ Vx fails to be a Lie algebra homomorphism.
Again let X, Y, and Z be vector fields on M and interpret Z: M —► TM as a map
between Fréchet spaces. The Riemannian connection V on TM is the sum of a
flat connection and the Riemannian connection on TM, acting pointwise on M.
Thus, we expect the curvature on TM to involve only the pointwise curvature on
TM, but the projection Q(p) onto the gradient part must be accounted for. We
are interested in the curvature tensor R{u,X, Y, Z) = {(w,R(X,Y)Z)), u €T*M,
and therefore seek to determine the equivalence class of the algebraic expression

(4.6) R(X, Y)Z = VxVyZ - VYVXZ - VÎX,YÎZ.
To this end note that

VyZ(p) =p VYZ(p) + VY{p)Z(p)
=p Y o Z(p) + VY{p)Z(p) - P(p)VY{p)Z(p),

where the right side is a gradient vector field. Thus,

(4.7) VxVyZ =p X o (Y o Z + VYZ - PVYZ) + VX(Y oZ + VYZ - PVYZ).

Writing out the expression for Vjx.yj^ gives

Vjx.yjZ = (X o Y - Y o X + [X, Y] - P[X, Y))oZ + VXoY_YoX+[x,Y]„P[x,Y]Z.
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Interchanging the roles of X and Y in (4.7) and forming R, we get that

R(X, Y)Z = Xo(VYZ- PVYZ) + Vx(YoZ + VYZ- PVYZ)
- y o (vxz - pvxz) -vY(Xoz + vxz - pvxz)
- ^Xoy-yox+lx.yi-Pix.Y]^

since R(X,Y)Z = VxVyZ-VyVx^-Vjx.yj^ = 0. Consider the term XoVyZ.
If we express VYZ in local coordinates on TM then

(4.8) (XoVYZy = | (Y\p(t))-?-Z>+Y\kYi(p(t))Zk(p(t))^ ,

where dp/dt = —V • (Xp), and therefore since these operations are smooth,

(XoVyZ)' = (f ñP«)) ±Z>+T¡k (|Y<(tf))) zk

+ Y*-£-(Z3(p(t))) + Y3kYi±Zk(p(t))

= (vXoYz + vY(XoZ)y.

R then simplifies to

R(X, Y)Z = - X o (PVYZ) + VxVyZ - VxPVyZ + Y o (PVXZ)
- VYVXZ + VYPVXZ - V[x,y]2 + Vp[X,y)Z

= R(X,Y)Z -Xo (PVYZ) + Yo (PVXZ)

- VXPVYZ + VYPVXZ + VP[XtY]Z.
Finally, by noticing that

Xo(PVYZ)(p) = V'(X^pVyZ(p)
P

since PVYZ = 0 we obtain

PROPOSITION 4.4. Let X,Y, and Z be vector fields on M and let R be given
by (4.6).  Then

(4.9) R(X, Y)Z =p R(X, Y)Z- (VXPVY Z - VYPVXZ - VP[x,y] Z
+ APSXPVYZ - ApSYPVxZ).

In particular, M has nonzero curvature when the base manifold M is, for exam-
ple, the n-torus T" provided with the flat metric. In [3], the sectional curvature
of the group of volume preserving diffeomorphisms of the torus T2 is described.
The expressions even in the low dimensional case are, in fact, quite complicated.
We expect that in some sense the curvature of M must be dual to that of Pß(M);
however, see §5 for further comment.

4.2 The symplectic structure. When we interpret the cotangent bundle T*M
geometrically using the Riemannian structure ((•, -))p, as described at the end of §3,
it is clear that the symplectic structure on T*M (« TM) should be

ft(p,v)iivi,zi),(v2,z2)) = {{Zl,V2))p- {(z2,Vi))p,

with respect to a local chart.
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In this section we do not interpret T* M geometrically, but go through the for-
malism of pulling back the canonical 2-form to TM using the smooth bundle map
¡p:TM —*T*M, <p{p,v) = {{v, -))p. The computations are straightforward. We will
work with vectors on TM and T* M as ordered pairs without explicitly mentioning
local representations as this should cause no confusion.

Let 7r:T*M —► M be the canonical projection, and let ((-,-)) denote the pairing
of T* M and TM, thinking of T* M as the functional analytic dual. If w G T* M and
z G TU{T*M), then the map

(4.10) âu:Tu(T*M) - R,        <3u(z) = ((w,tt.2»

defines the canonical 1-form on T* M, where tt«: T(T* M) —► TM is the induced map
of tangent spaces. If z = ((p,w), (v,r])) then ir*z — (p,v) and i?u(z) = ((w,u)).

The canonical 2-form Q is defined as Yl = d#. Let 21 = ((p,w),(t;i,a;i)) and
z2 = ((p, (j), (v2,cj2)) G TU(T*M). Then from the definition of exterior derivative

iîw(*i,*2) = di9w(2i,22) = 21 -öw(z2)-22 -^(^O-^d^i,^!)-

This may be more explicitly expressed as

Ylu(zi,z2) = (vi,uji) ■ ((w,«2» - («2,w2) • ((u,vi)) - ((w, [vi,u2l»
= {{u, «1 o v2)) + ((wi, w2)) - ((w, v2 O Vi))

- «W2,Ul)) - ((w,t>i 0D2 -U2 0V! -r-[«i,V2]))

= ((W1,U2)) - ((W2,«l>) - «W, [V1,U2]))-

The familiar (local) formula for the canonical symplectic form is Ylu{zi,z2) —
(u)i,v2) — (uj2,Vi). Thus, we obtain a correction term involving the pointwise Lie
product of vector fields on M.

Now, let n = ip*Yl be the pullback form. Since the bundle map p:TM ->T*X
is not an isomorphism, Yl is a weak symplectic form. That is, it is a closed and
weakly nondegenerate 2-form on the double tangent bundle T2M = T(TM). If
XuX2eT2M,

Ù{X1,X2) = (l{T<p.Xi,Ttp-X2),
where T<p(p¡v) (y, w) — (y, Dp((v, -))p ■ y + {(w, -))p), with Dp denoting the derivative
with respect to the metric ((-, -))p. To obtain Û explicitly, let

Xi = ((p,v), (vi,v2)) G T,PtV)(TM),

X2 = ((p,v),(v3,v4)) G T{PtV)(TM).

Then

Ù{ptV)(Xi,X2) = Ù{p,v)((vi,v2),(v3,v4)) = Yl{{v.))p(Tv.Xi,T<p.X2)
= n««-»p((t,i'z?/»«1'' "))/> ' Vl + &V2' "))/»)' (v3,Dp((v, -))p ■ v3 + ((«4, -))p))

and using the above expression for Yl this becomes

Q(p,v)(Xi,X2) = Dp{{v,v3))p ■ vi + ((v2,v3))p
- Dp{(v,vi))p ■ v3 - ((v4,vi))p - {{v, [vi,v3]))p.

Now,

Dp{{v,v3))p-vi = - /   (v,v3)V ■ {vip) = {(VVlv,v3))p + {(v,VVlv3))p
Jm
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so it is a simple matter to check that fi, in fact, takes the form

Ù(p,v)(Xi,X2) = Ù(p<v)({vi,v2), (v3,v4)) = ((v2,v3))p- ((v4,vi))p,

by using the fact that the connection V is torsion-free and that the Vi's are gradient
vector fields. If qi,..., qn, qi,..., qn are local coordinates on TM and <I> is the 2-
form ¿D = gijdq3 A dql, then we may write

(4.11) Ù= fJ\
up.

M
By a second order differential equation on M we mean a section £ of the dou-

ble tangent bundle T(TM) such that if n:TM —► M is the canonical projection,
7T»£(t>) = v. Locally, this means that the second and third components are equal:

t(P,v) = ((p,v),(v,z)),    n*£(p,v) = (p,v).

A second order differential equation £ is called a spray in case for a G R, £(au) =
a»a£(i;), where a is identified with the map s:TM —► TM which is scalar multipli-
cation.

Now let K:TM —► R be the kinetic energy map K(p,v) = \\[v[\2 — \((v,v))p.
Let us seek the Hamiltonian vector field associated with K; that is, the vector
field S(p,v) = ((p,v),(fi(p,v),f2(p,v))) such that isYî = -dK. Computing for
y,w G T2M yields

dK(p,v)(y,w) = --      (v,v)V-(yp)+      (v, w)p = «V„v, v))p + {{v, w))p.
¿ Jm Jm

We obtain then the relation

{{Ï2,y))p - i(w,fi))p = -({Vyv,v))p - ((v,w))p.
It follows that fi(p,v) = v and f2(p,v) = —Vvv since (Vyv,v) = (Vvv,y), and it
is also clear that S is, in fact, a spray. We thereby recover the geodesic equations
(4.5). A simple computation now gives the expression

(4.12) d2p/dt2 = V • ((Vvv + (ApSv)v)p)
along an integral curve of the geodesic spray.

4.3 A variational principle.
DEFINITION 4.5. Let po,Pi G M be two (not necessarily distinct) densities. The

path space YlPOtPlM, or briefly YlM, consists of all smooth paths p:I = [0,1] —► M
from po t° Pi h* M.

We will not give YlM a topological structure here. (Note that YlM is twice
removed from the finite dimensional case.) The tangent space TpYl at a path p
will be the vector space of all smooth vector fields W (on M) along p for which
W(0) = W(l) = 0.

Suppose that 7: YlM —► R is a functional on YlM. In order to define the induced
map of tangent spaces 7+:TpYl —* T/[P]R we make the following standard definition.

DEFINITION 4.6. If p G Q, a variation of p (keeping endpoints fixed) is a smooth
function p defined on (s,e) x M x I, for some e > 0, such that p(0, -,i) = p(t)
and p(a, -, •) G np0iPl M for each a G {—£, e). The variation vector field associated
with the variation p is defined to be the vector field W G TpYl given by

W(t)=j-p(a,;t) = Dap(0,;t).
a=0
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= 0
a=0

Clearly the map p i-> W G TpYl is surjective. Thus, if 7 is a functional on YlM we
may define 7*: TpYl -+ T7¡P]R by

7.(W) = d7[T>(a)\/da\a=o
where p is a variation of p with variation vector field W.

DEFINITION 4.7. The path p G YlM is critical for the functional 7: Yl -* R in
case

¿(A,?) = ±m«)\
for each variation p of p.

So, for example, if 7 takes its minimum at p G YlM, and if d7[p]/do: is always
defined, then p is a critical path.

The variational principle discussed above provides a convenient and flexible no-
tion of criticality for the density manifold. It is a simple exercise, for example, to
verify the geodesic equations by this method.

5. Configuration space quantization. Recall now from Theorem 2.3 that
the renormalized classical action associated with a Markovian diffusion £ having
current velocity vector field v = \(b + &*) and osmotic velocity vector field u —
\{b- b.) = \(Vp/p) is

E

= 2«v't,))p- 2ßu'u))'~y (<p~ï237p"

However, ((u,u))p G C°°(M) is defined pointwise on M since u is not a tangent
vector. We therefore consider "V(p) G C°°(M) defined by

(5.1) V(p) = \lM^u)P + fM (v ¿*) ?
as a scalar potential on M.  Now consider a smooth time-dependent 1-form A G
T*M, and form the potential

\,a(p,v) = T>(p) + J   (\(A,A*) - <A,t>>) p.
While V is lifted to TM from M, "V^a lives on TM.  Using the Riemannian and
symplectic structures of TM we now prove the following.

THEOREM 5.1.   The path p G YlM is critical for the action

I<p,a\p\ = j {((v,v))p - \,a(p,v))

if and only if the Schrodinger equation

4?-Kï"-a')(tv'-4')*+*
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holds for ip. = exp(R + iSv + íSa), where v = VSV is the vector field tangent to
p, u = VR = Vlogp, and Q(p)A* = VSA-

PROOF. It follows from general principles that we need to determine the second
order vector field Z &T2M associated with the pullback form

íV* = {FL^Ayü

through the relation
ÍzYIl^,a = dE,pzA-

Here FL.TN —7 T*N denotes the fiber derivative of the Lagrangian L and Ev,a
is the associated energy.

Let us first suppose that A = 0. Then since the Lagrangian splits we need only
determine the gradient of "V under the weak Riemannian structure ((-, -))p on TM.
In this case, along an integral curve 11-* (p(t), v(t)) of Z we have that

dv/dt = S(x(t),v(t)) - [gradV{x{t))}lv{t),

where [w]lv denotes the vertical lift of w to TV(TM), and S is the geodesic spray
constructed in the previous section. Some elementary computations show that

dV(p) ■ v = ({v, -±VV • u))p + ({v, V<p))p - ((u, Vvu))p.

But this reduces to

dV(p)-v = ((v,V<p-±VV -u-Vuu))p,

since u is a gradient, and therefore

grad V(p) =p -Vuu(p) - VV • u(p) + V<p(p)

where V<p is the constant vector field p i-> V<p(p) — V^> on M.
Next notice that ADq commutes with V- and V. For if / G C°°(M) then by

Ricci's identity

ViV-yVfc/ = VjViVfc/ - RiijVd = V3VkVif - RlklJVif

so that
ViAf = V¿ADG/ = VkVkVJ + RkVkf = ADGV¿/.

We thus have the relation

(5.2) dv/dt+ Vvv- Vuu + ±ADGu + V<p = 0

along an integral curve of Z.
Let us now consider the 1-form A. There are two approaches to obtaining the

symplectic gradient associated with the pullback form. The first is to let La-TM —>
R be given by La(v) = ((A,v))p,v €TPM. Then we may form the fiber derivative
FLA:TM->T*M,

FLA(v)-w = ((A,w))p,

and the pullback form ÛLa = (FLAYYl. If XUX2 G T2TM are given by

*i = (ÍP,v),{vi,v2)),    X2 = ((p,v),(v3,v4))
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with respect to a local chart, then clearly

ÙLa (Xi , X3) = Yl(TFLA ■ Xi, TFLA ■ X2)
= Yl{{A,))p((vi,Dp{(A,-))p.vi),(v3,Dp((A,-))p.v3)).

The second approach, which we adopt here for simplicity, is to work with the
variational principle of §4, and use the basic properties of the family of Laplacians
p !-► Ap. We will then need to note that equation (5.2) takes the equivalent form

dSv      1 .      . 1 .      .      1 _
-gf + 2\v>v) + (P- 2^uï ~ 2    ' U =

upon appropriate normalization of the generating function Sv. To this end let p be
a variation of p. We need only examine the potential term

IA= (A,v)pdMxdt
Ji Jm

under variations of p, since it is clear that

Da f (A,A*)p= I (A,A»)Dap.Jm Jm

For p G M let Ä(p) =p A(p) = Abe the 1-form Ä(p) = (Q(p)A*f. Then we have
that

Ia= (Ä,v)pdMxdt
Ji Jm

since we assume v to be a gradient. Now, writing A(p(a)) = A(a),

-r-[p{a)\        = /  /   (DaÄ(a),v)pdMxdt+ /  /   {Ä,Da{vp))dMxdt.
aa q=o     JiJm JjJm

But now A is exact, so a simple manipulation gives

/  /   {Ä,Da{vp))dMxdt= -      /   —^-DQpdMxdt.
JiJm JiJm   öt

Isolating Dap in the integral fr fM(DaA(a),v)p requires the identity

DaX(p)=p (X-Q(p)X)(Dap/p)

for the projection X = QX of an arbitrary C°° vector field X. To verify this
identity let / G C00(M,C°°(M)) be such that ¡M f(p)p = 0; that is, f(p) G Kp for
each p G M. Then by smoothness of A;1,

(5.3)        A, V«)'W°)) - A& (DM«)) - VAT¿}/ - Da (^)) ;
in particular,

Daf - VA;1/ • Da (^A G Kp = DomtA;1).

To see this, set g(a) = Ar(^}/(p(a)). Then Ap(a)g(a) = f(p(a)) and

Daf = ApDag + Da(Vp/p) ■ Vg.
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Therefore (5.3) follows by applying A;1 to both sides of the equation

APDag = Daf - Da(Vp/p) ■ VA;1/.
Now apply this to the case where V/(p) = Q(p)X. Then

Da(Q(p)X) = VA;1 (do (iv • (Xp)) - Q(p)X • Da (^^

= VA;1(v(^)-x-g(p)x-v(^))

= VA;1(±V((X-Q(p)X)Dapfj

=p{X-Q{p)X)^.

Apply this identity now to the integral fj fM(DaA(a),v)pdMxdt to obtain

/ /  (DaÄ(a),v)pdMxdt= / /  (Aö - Q(p)As,v)DapdMxdt.
JiJm JiJm

Together with the expression (5.2) it now follows that p G YlM is critical for the
Lagrangian LV<A if and only if

d^ + \(v,v) + v + \(A,A*) + d-^ + (Ä-A,v)-l-(u,u)-\v-u

is a function of t alone. By normalization of the generating function Sv + S a we
may assume that this expression vanishes. Then under the gauge transformation

dSAA — A,    <p i-> iç + dt
we obtain

(5.9)
+ (Ä - A,v) - -(u,u) - -V  u = 0,2" '   '     2

which, together with the continuity equation, is equivalent to the Schrödinger equa-
tion with ip = exp(R + i(Sv + Sa)), as claimed.

We end this section by commenting briefly on the cases where the densities may
have nodes and where the base manifold M is not assumed to be compact.

Let M be a general smooth Riemannian manifold, and let M be the collection of
smooth densities on M. If p G M, we may form the osmotic Laplacian Ap as in §3.3:
Let M1 be the completion of Cf>(M), the subspace of M = L2(dMx) consisting of all
smooth functions which are constant outside a compact set, in the norm associated
with the quadratic form

(5.5) (f,g)i = \ ¡ (Vf,V~g)pdMx+ f fgpdMx.
¿ Jm Jm

Then (•, -)i is closeable, and we may let \Ap be the operator corresponding to this
quadratic form.
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Now let t H-7 p(t) be a smooth curve in M with p(0) = p. If the gradient

v = -VA:.-if i*p
'  \pdt.

exists in L2 (p) then by elliptic regularity for Ap we may conclude that v is smooth.
The definition of variation of compact support is then made in the obvious way, and
the above results go through under the appropriate modifications. We recall that
for noncompact M the group P(M) becomes less manageable; however, Moser's
theorem goes through under suitable restrictions on the densities at infinity [7].

The case where p may have nodes is less easily generalized. From the point of
view of stochastic mechanics, the nodes of the density are barriers for the diffusion
on configuration space. More precisely, the following theorem is proved in [20].

THEOREM 5.2. Suppose that M is compact, and that £ is a smooth Markovian
diffusion satisfying

\(DD.Z + DtDt:) = -V<p
for some <p G C°°(M x I). Let p be the density of £ and set

Ze = {(x,í)|p(x,í) < e) C M x I.

Let Te be the stopping time

r£ = inf{í|(£(í),í)GZe},

with Te = oo in the event that {í|(£(í),í) G Z£} = 0 and let ££ be the Markov
process defined on M = M U {oo} by ££(a) = £(a A t£) and ££(r£) = oo. //Pr£ is
the measure on path space corresponding to £e, then

limPr£(r£ < oo) = 0.

However, for technical reasons, this phenomenon is difficult to investigate in the
context of configuration space quantization. Suppose we let Mo be the collection of
smooth densities, possibly with nodes, on M. As before, we let Ji be the Fréchet
vector bundle over M consisting of the smooth n-forms on M, let K Ç JJ be the
closed subbundle

< = {,^|/k,.o},
K the affine subspace K + p, and take

Mo = \p G K\ j  fp > 0, V/ G C£+(M) J
where Cq^. (M) is the collection of smooth nonnegative functions of compact sup-
port on M. Then Mo is a closed convex subset of a closed affine subspace of Ji. If
p G Mo, we will denote by Zp the closed subset of M consisting of the zeros of p;
that is, Zp = {x G M|p(x) = 0}. Note that the quadratic form construction of the
operator Ap given above applies equally well to the present case where p has nodes
and M is noncompact. However, suppose that p G Mo - M, and let 1t-> p(t) be a
smooth curve in Mo with p(0) = p. Suppose that pk G fîM is a sequence of paths
which converge to p in the C°° topology. Then we may try to obtain the tangent to
p at t = 0 by considering the operators Apjt(0). However, the family {pk(0)APk(O)}
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is not uniformly elliptic, and thus, it is not clear, in general, how to obtain esti-
mates guaranteeing the existence of S1 G r(1(p) which is smooth on Zcp and satisfies
dp/dt = —V • (VSp) = —pApS. It therefore does not seem possible to give Mo the
structure of a Fréchet manifold in a manner analogous to the construction of §3.

6. The group of diffeomorphisms over the densities. From the functorial
relation (1.1) we see that the cotangent map M i-t- T* M yields a mechanical system
in C by the procedure of configuration space quantization. In this section we study
the fiber bundle n: P(M) -»Masa means of obtaining a structure theorem relating
C and Q.

The essential idea is that the cotangent foliation T* M ^ M involves an implicit
semidirect product structure since a path of densities is the adjoint flow of the
tangent vector fields. To make this structure explicit, we may canonically lift to
T*P(M). The group Pp,(M) is then an isotropy subgroup under which the lifted
Hamiltonian system is right-invariant. Dividing out by PP(M) then leads to a
symplectic diffeomorphism with the coadjoint orbits in a semidirect product. The
resulting structure is a special case of a general framework studied in [15] and [10].
We shall refer to [15] for many details and further discussion of the general theory.

6.1 The fiber bundle ir:P(M) —► M. We begin by collecting some simple facts

relating to the principal bundle it:P(M) -—► M. Recall that projection n acts
by pushforward of the Riemannian volume element p, and there is a global trivi-
alization P(M) sa Pß(M) x M. Let V Ç TP(M) denote the vertical bundle. The
vertical subspace V,j,i7 G P(M), is given by

V„ = kerT^Tr = {X G Tr,P(M)[Tr,Tr(X) = 0}.
Suppose that X G V,, Ç TVP(M) and let 11-> n(t) G P(M) be a curve representing
X at r). Then

T^-t
,   , d(m)*p = -t.t=o dt

inton  x).í?.p = 0,
=0

so V consists of those vector fields X over n such that Xon-1 has divergence zero
with respect to the pushforward measure n*p.

Let H,, be the horizontal subspace

H, = {X G T„P(M)\X o n'1 = VSx, Sx G C°°(M)},
and let H = |J  H,, be the corresponding horizontal subbundle. Then clearly

TVP(M) = V, © H„,    Hfii„ = TÄ£H
so that H is a connection with respect to the right action of the structure group
Pp,(M) on P(M). (Note that M is not a connection with respect to the left action.)
Moreover, TP(M) = H © V is an orthogonal splitting with respect to the weak
metric

((V,W))V= f (V(X),W(X))r,(x)dMX.
Jm

Next, let A G TgP^M) be a divergence-free vector field on M.   Then EXPiA
represents the flow of A, and the fundamental vector field A* is given by

A*{ri)= jnoEXPtA = TnoA.
t=o
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To verify that A* (n) is an element of the vertical subspace Vv we simply note that

d
dt (n oEXP tA).p = —

t=o at
(r/oEXPiAor?_1),i7»p

t=o
= LTr)oAor)-in*p = Lr),Ant,p = r\*LAp = 0

since the Lie derivative is natural with respect to pushforward. Now define the
connection 1-form w to be the Lie algebra valued 1-form given by w(X) = A in case
A* — vert X where vert X is the vertical projection of X. The form w is well defined
since the group action of Pp.(M) is free and transitive on fibers. We therefore have
the identities

w(Tí7oA)=w(A*(í7))=A,
u{X o ij) = u(TRr, oX) = Ad„-1u{X) = r,*ui(X),

and the curvature form Du> is defined in the usual way:

Du{X,Y) = dw(horizX,horizy).

Suppose we now ask to what extent the geometries of Pp.(M) and P(M) may be used
to give information on the geometry of the density manifold M. For the moment
let gv (m) and g m denote the metrics on the manifolds Pp.(M) and M. We may
realize the bundle metric gt)(M) by setting

gD(M)iX,Y) = gM(Tr.X,Ti.Y) + gDii{M)(u(X),uj(Y)).

Then we have that

9D(M)iTRr, oX,TRvoY) = gn^TRr, o X, tt.TÄ,, o Y)
+ ffP(.(M)(Ad^-iw(X),Adt7-iw(y))

= gH(ir,X,Tr*Y) + gDi¡{M)(n*uj(X),r)*uj(Y)).

However, the metric on Pfi(M) is not invariant under the adjoint action. Thus,
this construction does not yield useful geometrical information. Clearly this is an
infinite-dimensional phenomenon. (In fact, a group admits a bi-invariant metric
if and only if its image under the adjoint action is relatively compact.) A related
observation is simply that M is not a reductive homogeneous space, in the classical
sense, as a result of the relation [TßM,TePß(M)\ £ X^M. Therefore, the relation-
ship between the geometries of M, P(M), and P,i(M) is, indeed, very restricted.

Algebraically, we may set

Afc(fl/f)) = W G Ak(g)\uj(Xi,.. .,Xk) = 0 if some Xt G h}
with g = TeP and l) — TeP^, and then

4(s/l)) = We Ak(g/l))\Adltiu} = cj}.
We thereby obtain a mapping d: A*(fl/f)) -♦ A£+1(a/h) given by the exterior deriva-
tive, and we infer that the cohomology Hk(M) is given by a natural isomorphism

'"imAA^/iO-A-to/iO
with the cup product in H*(M) corresponding to the wedge product A. However,
this isomorphism may not be further reduced using the Riemannian structure.
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6.2 Lifting the Hamiltonian. The choice of a connection on a principal bundle
P —r B allows one to lift a Hamiltonian on T*B to the cotangent bundle T*P of
the total space. Let us now examine explicitly the cotangent lift of the Hamiltonian
system of the previous sections. For simplicity, we shall disregard the covector and
scalar curvature terms.

To quickly review the standard notations and conventions, let T \-* nt be a curve
of diffeomorphisms. We let Xi,... ,Xn denote a generic coordinate chart on M,
and Xi,...,xn the configuration under the motion of the diffeomorphism group;
that is, xt = x(X,t) = r)t(X). The Lagrangian velocity V is given by Vt(X) =
V(X, t) = dnt(X)/dt, and the Eulerian velocity v is determined by vtont = Vt.
We therefore have a commutative diagram

/ \Vt

M    ^    M.
The cotangent bundle T*P(M) consists of 1-form densities over the diffeomor-
phisms, so that

T;P(M) = {av:M - T*M ® An(M)\a„(X) G T;{x)M ® AX(M)}
and the pairing between TVP(M) and T*P(M) is given by

(a,V)= f  a(X)-V(X).
Jm

We therefore take the convention that the bundle metric ((•, •)) on TP(M) induces
the weak metric

««,/?))„= f ((a/p)K(ß/p)%x)PoiX)
Jm

on T*P(M), where po £ M is a given initial density. In short, the bundle isomor-
phism TP(M) —► T*D(M) is described by the index lowering action.

DEFINITION 6.1. Let p0 G M, r¡ G P(M), and let Q:X(M) -» X(M) be the
projection operator constructed in §3. For n G P(M), we define QT,:Tr)P(M) —*
Tr,P(M) by

QvVr, = (Q(r),po)Von'1)on = TRvoQ(n,p0)oTRTI-iV.

From the results of §3 concerning the osmotic Laplacian we have (see also [6])

PROPOSITION 6.2.  Qr, is a smooth operator on TVP(M).

To lift the Hamiltonian

H(p,v) = -      (v,v)p+-      (u,u)p+      <pp
¿ Jm ¿ Jm Jm

= K(p,v) + V(p)
to the cotangent bundle T*P(M), we first treat the potential term. Identifying the
density po with the function po/p, the pushforward density p = n*po is identified
with the function p(x) = po(X)Jr1(X), where Jv is the Jacobian determinant.
Therefore,

[ <PP= [ <p(r)(X))po(X)dMX.
Jm Jm
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Similarly, if Txr¡ denotes the Jacobian matrix dx/dX then

..      1 Vap(x)      l(Txr,)-1Vx(p0(X)Jr1(X))
U(I) = 2-pJxT = 2-po(X)Jn-HX)-= U*{X)

and thus

v(n) s V(p) = v(t7.po)

= 5 I (Ur,(X),Ur,(X))po(X)dMX+ f v(r,(X))po(X)dMX,
¿ Jm Jm

which lives on P(M).
Finally, letting a G T*P(M) correspond to V G TP(M) under the isomorphism

TP(M) — T'P(M) we form

(6.1) HP0(n,av) = ¿«Q^,^» + Vfa).
It is instructive to check directly that this lift is vertical.

PROPOSITION 6.3. The Hamiltonian HPo given above depends smoothly on po,
and is right invariant under the action of the subgroup PPo(M) = {n G P(M)[r¡*po =
po} of diffeomorphisms which preserve the density pq.

PROOF. Since the projection Q(p) depends smoothly on p, the Hamiltonian
clearly depends smoothly on po- Invariance of the potential ~V(r¡) under the action
of PPo (M) is also clear by change of variables.

It remains to check equivariance of the projections Qv. To this end, let <j> G
Pp0(M), r¡ G P(M), and Vv G TVP(M) and observe that

Qno^TR^ oVv= Qno^Vr, o 0 = (Q((r) o 0),po)Vr7 o 0 o (rç o 0)_1) o r¡ o <¡>
= iQiV* ° <t>*Po)Vr, o r)'1) o n o (p
= iQ{v*Po)Vv o r,'1) ono<¡, = TR4,o Q^.

Thus the diagram
TP   T-^t   TP
Ql iQ
TP   T-^   TP

is commutative. In addition, it is a simple matter to check that

{{TR^V^TR^VJncp = ((V^V^r,.
Therefore, since the bundle map TP(M) —> T*P(M) is equivalent to the index
lowering action, we now have that HPo is PPo (M)-invariant.

6.3 Reduction and semidirect product structure. The invariance under Ppo (M) of
HPo on T*P(M) leads to Lie-Poisson equations on the dual of a semidirect product
Lie algebra. The equations are precisely those obtained by the configuration space
quantization of the previous section. Our approach here is based on the work of
Marsden, Ratiu, and Weinstein [15], and we therefore first summarize the essential
points of the theory in the following two theorems.

Let 7: G —► Aut(V) be a representation of the Lie group G on the topological
vector space V. The induced Lie algebra homomorphism is denoted 7': g —» End(V).
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Let S = G x-, V be the semidirect product which is the manifold G x V together
with the group law

Í9i,vi) (g2,v2) = (gig2,vi + i(gi)v2).

If f:g* —► R then for p G g*, 6f/6p G g denotes the functional derivative defined
dually by

df(p)-v = (v,6f/6p),
where df is the Fréchet derivative and (-, •) denotes the dual pairing of g* and g.
The Lie-Poisson bracket on 0* is then given by

ror,,     rr^w       ,     /    \SF 6G]\     I      ,(6F\   6G       , I'6G\   6F\(6.2)    {F,G}(Ai,«,) = ^[-,-j) + («,,y(-j._-Y(^j   ^)

with F, G:s* -► R, 6F/6p G g, and 6F/6W G V.

THEOREM 6.4.  Let J be the moment map for the right action of the semidirect
product S = Gx1V onT*S, and let J:T*G x V* -* s* be given by

J(ag,p) = (T;Rg(ag),1*(g-1)p),

where ag G T*G and p G V*. Then J is a moment map for the action of G xn V
on the Poisson manifold T*G x V*, and both J and J are canonical. Furthermore,
there is a canonical map I such that the diagram

T*S

commutes.

A further analysis shows a more detailed picture. In particular, an analysis
of the symplectic leaves of T*G x V* shows that if the given Hamiltonian Hp is
right invariant under Gp = {g\l*(g)p = p}, then Hp induces a Hamiltonian on
T*G/GP, and via the moment map the reduced space J~1(Oli)/Gp, where Op. is
the coadjoint orbit of Ging*, is symplectically diffeomorphic to the coadjoint orbit
S • (p,p), p G g*, in s*. Varying p gives a Hamiltonian on s*, and one is led to
derive Lie-Poisson equations on s*, where the bracket is explicit.

THEOREM 6.5. The family {Hp}p^v' of Hamiltonians induces a Hamiltonian
H on s* by

H((TeRgyag,1*(g-1)p) = Hp(ag),

with associated Lie-Poisson equations on s*. In particular, the curve cp(t) G T*G
is a solution of Hamilton's equations for Hp if and only if J(cp(t),p) is a solution
of the Hamiltonian system Xu on s*. In addition, the evolution of p is determined
by

P(i)=7(cp(<)-1)>

6.4 Semidirect products and the density manifold. Let us now return to the bundle
ir:P(M) —► M and recall some basic facts regarding the group action of P(M).
Consider the right action (n, ç) 1-+ Rr,Ç = (°n of P(M) on itself. The cotangent lift
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of this action is described by (r],a?) i—► (T^i^-O"^ and the associated moment
map is given by

JL(av) = (TeL^y Or,

which is left-inariant. The left action induces the cotangent lift

(t?,af)H-v(T„ofI-,-i)*af

with right-invariant moment map

JR(ar,) = (TeRnyar,

where TeRv is given by right translation. Thus, Jfi(a,,)£ = (a,,, £ on).
The vector space in the appropriate semidirect product should be identified

with the densities, which is however not a vector space. We therefore take V =
7(M) (= C°°(M)) and identify the dual 7*(M) geometrically with the densities.
Let y.P(M) —► Aut(/(M)) be the representation given by pushforward. Then
the induced Lie algebra representation ^:X(M) -* End(7(M)) is minus the Lie
derivative, i'(v)f = —Lvf. From the general form of the Lie-Poisson bracket on
the dual of a semidirect product Lie algebra we now easily infer that the bracket
on (X(M) Ky C°°(M)y is determined by

fr/,„     ,      f   I    \6G 6F]\        f   (T 6F     T 6G\{F,G}(v,p) = Jm (v, [-, jr\)p + JM {L'°/"-6¿ - L»/*>-6¿) P'
We remark that the Poisson structure described above is essentially the structure
for compressible flow constructed in [15]. To adapt it to our purposes we must take
into consideration the projection operator Q.

Under the isomorphism M « 7* (M) the induced representation is again push-
forward, and for po G M, PPo(M) is now an isotropy subgroup. The moment map
J for the action of the semidirect product P(M) «^ 7(M) on T*P(M) x 7*(M) «
T*P(M) x M is

J(ar„p) = ((TeRriyav,r)*p).

Let H be the Hamiltonian on T*P(M) x M given by H(ar),p) = Hp(aT)), where
Hp is given in §5. Then by forming the Hamiltonian H:s* —► R through the
composition H o J = H we reduce to a Hamiltonian system on the dual of the
semidirect product Lie algebra 0 = X(M) Ky 7(M).

It is now straightforward to check that the equations of configuration space
quantization are obtained by solving for the Lie-Poisson equations F = {F, H}.
We omit the details; a similar calculation is carried out in the following section.

Finally, we make the following remark which suggests a more refined structure
for the present situation of lifting a Hamiltonian. Let X be a vector field on M.
Then X(n) — Xon determines a right-invariant vector field on P(M). Now form the
vector field QvX(r)) G Tr)P(M), which is again right invariant under the induced
action of P(M). From the results of §3, we infer that

[Qf7X(r?),Q,y(i?)](e)
= Q(p)(V • Y(X - Q(p)X)) - Q(p)(V • X(Y - Q(p)Y)) + [Q(p)X,Q(p)Y]
= Qe(V • y(X - QeX) - V • X(Y - QeY)) + [QeX, QeY],
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and that the Jacobi identity holds under projection by Qe. Since we may replace the
form p with any density p G M, we obtain a one-parameter family of Lie algebras
Qp(M) which does not correspond to any one-parameter family of subgroups of
the diffeomorphism group P(M). Since the Hamiltonian on T*P(M) involves the
projection onto the cotangent bundle of T*M, in actuality, we are solving for the
Lie-Poisson equations in the one-parameter family of duals of semidirect product
Lie algebras 0P = Qp Ky 7(M). Thus, lifting to a degenerate Hamiltonian on the
total space simply allows the use of the underlying Lie group P(M) to obtain a
single semidirect product Lie algebra 0 in which the family {0p} is embedded.

6.5 A Poisson map p:s* —* rl. Consider now the symplectic space (#,w),
where ri is the complex Hubert space M = L2(d\ix) and ui is the symplectic form
uj(X,Y) = 3m(X, Y)x, with (-, -)y the I? inner product of M. Let 7y denote the
collection of maps /#:#—► R given by

fii(<p) = %(H<p,<p)M,
where H is a selfadjoint operator on M. The Hamiltonian vector field XfH = Xh
corresponding to fa is given by

XH(<p) = iHtp.

The following provides a canonical mapping between M and 0*.

THEOREM 6.6. Lets* be the dual of the semidirect product Lie algebra X(M)
Ky C°°(M) constructed in the previous section. Let p:s* —» )i be given by

p(a,p)=eR+iS,

where VR = u — |Vp/'p, and VS = Q(p)v when v^ = a/p. Then p is a Poisson
map when we restrict to those fu G 7u with H of the form H = —A + <p, for some
smooth potential £>: M —>■ R on M.

As the following proof shows, one may consider more general selfadjoint operators
H = —A + <p by taking <p to be a Rellich class potential, for example.

PROOF. Let H = -A + V and G = -A + U, where V and U are smooth
potentials. We have that

{ftiJahW - oj(XH,XG)(i>) = 3m(iW,iGtp)u.
If we let ip = eR+lS then a simple computation shows that this reduces to

{fH,fahW= I (V-U)(AS + 2(u,VS))p.
Jm

Another computation shows that

h o Pia, P) = \ ¡   {{Q{p)v, Q(p)v) - V • u - <«, u) + V)p
¿ Jm

with (a/p) = v^.
Now, thinking of fjj ° P and /copas functions of p and v (via the index lowering

action) we see that

6fG°P,     -,     6fHop Y<\f\Sv     (v,p) = (v,p) = Q(p)v G X(M).
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Furthermore,

Up)=Ue C°°(M)SpUm>M
and ¿GWV G C°°(M).

"P  \JM       J
We therefore have that
r, , w      -, f   I     \6fH_op   6fGop]\{fHop,fGop}(v,p)= -J^v^—j— ,-g7-\)P

+ Jm \L6f"°^Sv \~bir) ~ Lsf°°*>^ \6T^))P

= -      (v,[Qip)v,Q(p)v])p+ /   (LQlp)vU - LQip)vV)p
Jm Jm

=  /   (lQ(p)vU - LQ(p)vV)p
Jm

since the terms containing

¿ [ (Vu + (u,u))p

are common to both 6fGop/6p and 6füov/6p and therefore cancel. Simplifying,
we are left with

{fHop,fGop}(v,p)= f (VS • VÍ7 - VS • VV>
Jm

= / (V-U)(AS + 2(u,VS))pJm
and the result follows.

It is now a simple matter to check that the multiplicative action of S1 on the
collection of unit vectors of U is symplectic, with moment map

<J„0/0,x} = (x/2)M2.
The reduced space is the projective Hubert space Ñ, which is the symplectic space
of rays in M, and the mapping p pulls the action of S1 on # back to the identity
on 0*. To summarize, we have the diagram

T*M   2-   T*P   <-   T*PxM -^ s*    -£     M

M      Í-     D T*(P k1 C°°(M)) Ü
In conclusion we comment on the indeterminancy in the generating function Sv

by considering the manifold of N indistinguishable particles in M, denoted B^(M).
To be precise, let n = dim(M) > 2, set

FN(M) = I (xt,... ,xN) € JJ M|x¿ ̂ Xj if i ¿ j \ ,

and form an equivalence relation on F^(M) by setting x ~ x' in case the coordinates
of x differ from the coordinates of x' by an element of 5jv, the symmetric group on
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N letters. The manifold BN(M) is obtained from Fn(M) modulo this equivalence
relation. The fundamental group itiFn(M) of Fn(M) is the pure braid group with
N strings, and the fundamental group of -kiBn(M) is called the (full) braid group
of M. It is clear then that the natural projection

p:FN{M)-+BN{M)

is a covering map, with group of covering transformations Sn- Therefore there is
a canonical isomorphism iïiBn(M)I'KiFn(M) k, Sn. If we choose a base point
xo G Fn(M) for itiFn(M) and let Xo G Bn(M) be such that p(x0) = x0, then any
element of tciBn(M) represented by a loop

T.I-*BN{M),    7(0) = 7(1) = x0,

lifts uniquely to a path y.I —► Fn(M) with 7(0) = Xo, and 7(0) *-* 7(1) defines
a homomorphism <7:7Ti(ßjv(M),äo) —* Sn, with kera = ttiFn(M). In the case
that dim(M) > 3 and tti(M) = 0, then mFN(M) = 0 and FN(M) is the uni-
versal covering space of Bn (M) (essentially since any knot may be untied in four
dimensions).

Now consider a critical path of densities on Bn(M), with tangent v = V5W. If 7
is a loop in Bn(M), it may be that tracing the value of Sv around 7 results in initial
and final values differing by an additive constant. If we require that ip = eR+lSv
be smooth across the nodes of density, then ip changes by a multiplicative constant
ç(q) of modulus 1 which only depends on the homotopy class of 7 in ttiBn(M).
Since c: ttiBn(M) —> C is a homomorphism, by restricting to -kiBn(M)/-kiFn(M)
we obtain a character of Sn- If itiFn(M) = 0 then tp lifts to a well-defined wave
function on Fn(M), which is either a symmetric or antisymmetric function of its
variables, depending on which character of Sn the map ç determines (the identity
or the sign of the permutation) [20].

This observation suggests the following mathematical setup to more directly
account for the indeterminancy in Sv. Rather than considering the tangent bundle
TM, one may consider the collection of Lagrangian submanifolds over the densities,
which may be given a symplectic structure. A Lagrangian submanifold L ÇT* M
which is the graph of the closed form w is then said to be quantizable in case

w = 27rfc(7), ¿(7) G Z,

for each closed loop 7 in M. In other words, the de Rham cohomology class
[w/27r] in HX(M, R) lies in the image of the singular cohomology HX(M, Z). Since
the Lagrangian property is preserved by Hamiltonian vector fields, these observa-
tions suggest a dynamical approach to obtaining representations of diffeomorphism
groups using the machinery of geometric quantization.
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