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THE DENSITY MANIFOLD
AND CONFIGURATION SPACE QUANTIZATION

JOHN D. LAFFERTY

ABSTRACT. The differential geometric structure of a Fréchet manifold of den-
sities is developed, providing a geometrical framework for quantization related
to Nelson’s stochastic mechanics. The Riemannian and symplectic structures
of the density manifold are studied, and the Schrodinger equation is derived
from a variational principle. By a theorem of Moser, the density manifold is
an infinite dimensional homogeneous space, being the quotient of the group of
diffeomorphisms of the underlying base manifold modulo the group of diffeo-
morphisms which preserve the Riemannian volume. From this structure and
symplectic reduction, the quantization procedure is equivalent to Lie-Poisson
equations on the dual of a semidirect product Lie algebra. A Poisson map is
obtained between the dual of this Lie algebra and the underlying projective
Hilbert space.

1. Introduction. The configuration space for a physical problem is a differen-
tiable manifold M, and the appropriate phase space is the cotangent bundle T* M,
which is furnished with a canonical symplectic structure. The quantum state space
is the complex Hilbert space ¥ = L?(u) divided by the multiplicative action of C*,
where u is an appropriate measure on M. The classical Hamiltonian generates a
group of symplectic automorphisms of T7* M, but does not act naturally on ¥. The
term guantization refers to the problem of establishing a correspondence between
the two mathematical frameworks.

Let us briefly adopt the language of categories to discuss this problem in more
detail (see [22]). The classical category C consists of symplectic vector bundles
and symplectic isomorphisms. The quantum category @ is made up of complex
Hilbert spaces, and unitary operators. The most general quantization problem,
therefore, is to determine a functor f: C — @ which is required to obey some auxil-
iary conditions. It is well known however, that no such functor exists, if the bracket
operations are to be preserved. An alternative problem, therefore, is to obtain an
intermediate category I and a pair of functors ¢ «— I — Q. Since the collection
of cotangent bundles lies naturally in (the objects of) C, a natural choice for I is
to consider the collection of smooth manifolds and smooth diffeomorphisms. To
determine a functor from I to Q assume that the manifold M has a distinguished
volume element u and form the Hilbert space ¥ = L2(u). (u is replaced by equiva-
lence classes of measures in the general case.) A quantization procedure may then
involve establishing a correspondence between unitary operators on the Hilbert
space ¥ associated with the manifold M, and Poisson algebras of functions on the
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700 J. D. LAFFERTY

cotangent bundle T*M. We refer to [1, 22] and the references quoted therein for
further discussion of the general topic of quantization.
In this paper, we study an additional structure, formally represented by

C « I - ¢
(1.1) N oL/
I

The objects of I consist of density manifolds: if N is an object of I, N maps
to M(N), an infinite dimensional manifold of probability densities on N. The
cotangent bundle map I — C is then naturally defined, and the map I — Q is
defined as before by choosing a distinguished density. By studying the symplectic
structure of T* M(N), we provide a classical mathematical framework for quantum
theory by passing from finite to infinite dimensional symplectic geometry. Following
Nelson [21], we call this procedure configuration space quantization.

Suppose that M and N are C*° manifolds with distinguished volume elements
dyr and dyz. If we let ¥ (M) = L%(dpz), ¥(N) = L% (dnz), and ¥ (M x N) =
L?(dpz x dyz), we see that there are natural isomorphisms

T*(M x N)~T*M xT*N and X(M x N)~ ¥(M)® ¥(N).

However, the density manifold M(M x N} is much larger than the space of prod-
uct measures M(M) x M(N). We therefore think of M(M) as a mathematical
configuration space and do not assign it interpretational value.

The mathematical structure of configuration space quantization is wholly moti-
vated and guided by stochastic mechanics. In this probabilistic theory, a diffusion is
constructed on the physical configuration space M, and there is a correspondence
between Hamiltonians on the phase space T*M and functionals on the diffusion
process. Although the quantization procedure of Markovian stochastic mechanics
is derived from a variational principle, the collection of regular Borel measures on
path space in this theory does not inherently admit a natural symplectic structure.
The present work may therefore be seen as a geometrization of the deterministic
relations of stochastic mechanics.

2. Conservative diffusion and stochastic mechanics. In this section we
review the basic concepts and constructions of stochastic mechanics in order to
motivate and provide technical as well as conceptual background for the following
sections.

Let M be an n-dimensional C° manifold which is a locally compact Hausdorff
space, and for an interval I C R let the path space ) be defined by

Q=HM
I

(where M denotes the one-point compactification of M) with the product topology.
An element of (2 is an arbitrary function w: I — M. If B denotes the Borel o-algebra
of 0 then a regular Borel probability measure Pr on ({2, B) defines an M-valued
stochastic process &(t):cr over (€2, 8,Pr) by the evaluation map

§(t)(w) = w(t).

Similarly, an M-valued stochastic process over a probability space (S, §, ) induces
a measure on path space by a procedure developed by Nelson; see [20]. We let
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THE DENSITY MANIFOLD 701

Pi, %, and N; denote the o-algebras P, = o{£(s),s < t}, % = o{&(s),s > t}, and
Ny = 0{&(s), s =t} generated by &.
DEFINITION 2.1. We say that {£(¢) }scr is a smooth diffusion if

(2.1) Ed€(t) = Ey(€(t + dt) — £(t)) = B (E(t),t) dt + o(dt),
(2.2) dei(t)de? (t) = o™ (E(t)) dt + o(dt)

in local coordinates g*, where #* and ¢* are smooth functions and o%/ is of strictly
positive type, and if (2.1) and (2.2) hold for the time-reversed process &(t) =

g&(-t), tel.

Here E; denotes the conditional expectation with respect to the o-algebra N,
and o(dt) is interpreted in the probabilistic sense. To be precise, let B; be the
algebra of all uniformly bounded stochastic processes {7;}:c[0,¢] defined over the
same probability space as £ such that

|Ein(dt)loo = O(dt) and |E.n(dt)?|e = O(dt).
Let O; be the ideal of all ¢ € B; such that
|Eec(dt)|oo = o(dt) and |Ei¢(dt)?|eo = o(dt).

Then we write a(t) = B(t) + o(dt) in case a(t) — f(t) € 0;. We assume as part of
the definition that _ '
Eyd. £'(t) = B.(£(2), 1) dt + o(df)
a8’ (8)du?(t) = 07 (£(8)) dt + o(dt)
for smooth functions 3 and 0¥’ defined in the local chart, where d. £%(t) = £(t) —
€(t — dt), dt > 0. The following theorem is an easy consequence of Definition 2.1.

THEOREM 2.2. If € is a smooth diffusion and f € C§°(M X I), the collection
of smooth functions with compact support in M x I, then

detderder = o(dt),
2
i LD _ (Lo 0 i +gt>f(€(t),t),

dtl0 dt 2 0q'0¢ daqt
d*f(f(t)$ t) — 1 1_1 62 6
‘}lltrlr(l)Ee 7t =\"2% 3509 ﬂ. erd BIORY
and under a change of coordinates q* — q’
y 1 gt
) - U
d¢ 2 ey dt + o(dt),
] Bq . 1 : 82
DU - B ¥ 1
il +2" EFETR
iljl aq 3q-7
g’ BqJ

The point of this theorem is that while o' is a contravariant 2-tensor which
defines a Riemannian metric on TM, #* does not transform like a vector and we
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702 J. D. LAFFERTY

must therefore allow for a correction term in defining the drift vector field of the
process £. This is done by setting

(2.3) b =B + iTh07*

where F;k are the Christoffel symbols associated with the Riemannian connection
for the metric 0. (Here and throughout we employ the summation convention
A'B; = ¥, A¥By.) The vector field b = b¢(3/8¢*) is called the forward drift of
the process €. Notice that the choice of metric is intrinsically associated with the
diffusion, and determines its quadratic variation.

Now, from the time-symmetric definition of smooth diffusion one can deduce

the equality q“ = o , and we may therefore define the backward drift vector field
b. = b.(0/0q¢") by

(2.4) b, = B + 4T, 07F
using the same connection.
A smooth diffusion £ has a smooth time-dependent and strictly positive density

p which satisfies
| sdo= [ Eirtew, e
MxI I

for all f € C§°(M x I). The density p therefore satisfies the parabolic forward
Fokker-Planck equation

(2.5) dp/0t = Ap—V - (bp)

(where V- and A are the usual operations on vector fields and scalars associated
with the Riemannian metric ¢). By introducing the forward and backward stochas-
tic derivatives

(2.6) DX(t) = im E[dth(t) Pt],
(2.7) D,.X(t)=‘liitrlr(1) E[d*f;t(t) ft]

for a real-valued stochastic process {X(t)}scr over (2, B, Pr) and utilizing the asso-
ciated stochastic integration by parts formulae, one can then show that the forward
and backward drift vector fields are related by

(2.8) b =b —Vilogp

and, in addition, that p satisfies the antiparabolic backward Fokker-Planck equation
(2.9) Op/dt = —1Ap—V - (bup).

We therefore have that the continuity equation (or current equation)

(2.10) dp/ot = =V - (vp)

and the osmotic equation

(2.11) u* = 3(V'p/p)

hold, when we define the current velocity by v = %(b+b,) and the osmotic velocity
by u = 1(b - b.).
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THE DENSITY MANIFOLD 703

By differentiating (2.11) in time and using (2.10) we find that
(2.12) Ou/dt =-V(iV.v+u-v).

The time evolution of the current velocity, however, is not as easily obtained from
the basic relations governing the infinitesimal characteristics of £. In the context
of stochastic mechanics, dv/dt is obtained from a stochastic variational principle.

Notice that if f € C§°(M x I), then the stochastic derivative D f(£(t),t) is given

by
Df(E(t),t) = SAF(E(t),t) +b- Vf(E(t),t) + Bf(g(tt),t).

We call %A + b - V the forward diffusion operator, and the analogous backward
diffusion operator is given by —%A + b, - V. To extend the stochastic derivatives
to the full tensor algebra requires a stochastic parallel translation map, which we
denote by 7. The correct definition of this map in the context of stochastic me-
chanics was given by Dohrn and Guerra (see [20]). It is obtained by applying a
deterministic translation map to the geodesic approximation of the diffusion, as
follows. Let {n(s)|s € [0, s1]} be a geodesic on M with v(s) = dn/ds the vector
field tangent to n and let ug € T}y(5,) M. Then u(s) = 7(n(s),n(s0))uo is defined to
be the Jacobi field along n with initial condition V,u(sp) = 0; that is, u(s) satisfies

(2.13) D*u/ds + R(u,v)u =0
with initial conditions
(2.14) Du/ds =0, u(so)=wup

where D/ds denotes the covariant derivative along 7, and R is the Riemannian
curvature tensor. It is an elementary fact that every Jacobi field may be obtained by
a variation through geodesics. To construct this variation through geodesics for 7,
let {(s0, )|t € [0, 1]} be a curve satisfying 7(30,0) = 1(s0), 01(50,t)/dtls=0 = uo,
and let {~(s,t)|s € [s0,81]} be the geodesic beginnning at ~(so,t), with initial
velocity 7(7(30), (80, t))v(80), where T denotes the Levi-Civita parallel translation.
It is then easy to check that

u(s) = 97(s,t)/dt|i=0

is the Jacobi field described by (2.13) and (2.14). If one now takes the geodesic ap-
proximation to the diffusion £ and applies 7 to each geodesic segment, the stochastic
differential equation

dY*' = -TL,Y*d¢ — Lo¥y™dt (r;c,r;,,,. - T30, — T4, + W”“)

is obtained, which may be represented intrinsically by the Stratanovich stochastic
differential equation

dY* = Ty Y* odX' + 1R}, Y'o?* dt.

For a tensor field a, the stochastic derivatives Da and D.a are then defined by
setting

Da = lim al—tEt[T(ﬁ(t), §(t + dt))a(é(t + dt), t +dt) — a(§(t),1)]
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704 J. D. LAFFERTY

and
D.a= llm th't[a(E(t), t) — 7(&(t), &(t — dt))a(&(t — dt),t — dt)]
which leads to the relatlons
Da((t),t) = (3ApG +b- V + 8/0t)a(£(t), t),
D.a(&(t),t) = (—3Apc + b - V + 0/8t)a(£(t), t).

The second order operator Apg is the Dohrn-Guerra Laplacian Apg = V*V; — R,
with R. denoting the induced action of the Ricci tensor R on the mixed tensor
algebra T(M). The Laplacian Apg agrees with the de Rham-Kodaira Laplacian
on scalars and 1-forms.

2.1 Stochastic action. From Theorem 2.2 we see that the stochastic increment
dei(t) = €t + dt) — €4(t) does not transform like a vector. To obtain a vector
quantity naturally associated with d¢* we make use of the exponential map of the
Riemannian manifold M. To this end, define d¢ € Ty, M by

expd-e(l) = expgf/dt(dt) = £(t + dt).

Since exp is a local isomorphism, JE is (almost surely) well-defined when dt is
sufficiently small, and 5

E.d€ = b(£(¢),t) dt + o(dt).
Let {n(s)|t < s <t +dt} be the minimal geodesic joining £(¢) and &(t + dt). Then

dn/ds|s=¢ = d€/dt,
t+dt t+dt 2
(L) = (7 )
¢ ds ds

is the square of the Riemannian distance between £(t) and £(¢t+dt). However, since

t+dt dn d’l dn i o
(/ V ds’ ds ) ' ds >dt2+0(dt2) (d¢,dé€) + o(dt?)

we would like to estimate E (df , d£) to o(dt?) in order to provide an approxima-
tion for E[(d¢/dt,dé/dt)]. The point of this calculation would be that although
the paths of ¢ are almost surely nowhere differentiable, if the divergent quantity
limgy 0 Y, E[(d€(tn)/dt, dE(tn)/dt)] dt may be given a well-defined meaning and
expressed in terms of the infinitesimal characteristics of the diffusion &, then it will
serve as the classical action of £ and should determine the appropriate Lagrangian
for the quantization procedure of stochastic mechanics. This idea is realized in the
following theorem of Guerra and Nelson.

THEOREM 2.3. Let {£(t)}icr be a smooth Markovian diffusion on M with for-
ward drift vector field b, and fixt € I. Let dt > 0 be sufficiently small so that

dé = exp 1 (E(t + dt)) € TeyM

is almost surely well-defined. Then

and
dn

(2.15) Et<‘jif ‘flf> S, + 5V b+ R+ 5r +o(1),

where R is the scalar curvature of the metric induced by €.
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THE DENSITY MANIFOLD 705

The important aspect of this result is that the expression (2.15) is renormalizable
in the following sense. The divergent term n/2dt — oo is deterministic; it does not
depend on the particular path, and therefore drops out upon taking variations of
the diffusion £ by processes of identical quadratic variation.

The expression (2.15) for the classical action of a Markovian diffusion leads to
the following notion of criticality. Let ¢ € C§°(M) and let L: TM x I — R be the
Lagrangian on TM given by

(216) L(’U,t) = %(’U, v)ﬂ'(v) - d’(ﬂ'(v)’ t)

where, as before, 2 — (-,-),; denotes the Riemannian metric on TM and m: TM —
M is the canonical projection. If {£(t)}ter is a smooth Markovian diffusion with
forward drift vector field b and diffusion tensor giving the metric (-, -), we may form
the associated Lagrangian Ly: M x I — R by setting

(2.17) Ly(z,t) = (3(b,0) + 1V - b+ LR ~ ) (, ¢).

The associated action is
I[b,to,t1]=E[ / L,,(g(t),t)dt] - / / L(z, t)p(z, £) dt
I MJI

where I = [to,t1]. We may also re-express Ly in the following form, which will be
especially convenient for our later developments.

PROPOSITION 2.4. Let & be a smooth diffusion with forward drift vector field
b, backward drift b., and density p. Then

E[Lb(f(t)at)] =F [(%(’U,’U) - %(u’ u) -

¢+ 55 R) (£(t),1)]
= / (%(U,’U) - %(u’u> - ¢
M

(2.18) 1R) (z,t)p(z, t) dn,

where v = 2(b+b.) and u = 3(b—b.) = 2(Vp/p) are respectively the current
velocity and osmotic velocity vector fields of the diffusion €.

PROOF. By partial integration we see that since p > 0,

e L4 e

But 1(b,5) — (b,u) = 1(v,v) — }(u, u), and since the contributions from ¢ and B
are identical in equations (2.17) and (2.18), the result follows.

REMARK. Notice that we may simply hide the scalar curvature term in the
Lagrangian by setting ¢ = ¢ — %R and considering the Lagrangian Lg(v,t) =
3(v,v) — ¢g(n(v),t). We will therefore not include this term in the following
expressions; the interested reader may refer to [20] and the references quoted therein
for a discussion of this Pauli-DeWitt term.

DEFINITION 2.5. The smooth Markovian diffusion £ is said to be critical for
the Lagrangian L if for each interval [t,t;] C I = [to,t;] and every smooth vector
field 6b with compact support in M x [t,t;] we have that

(2.19) Ifb,t, 1) — I'lY, ¢, t1] = o(8b),
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706 J. D. LAFFERTY

where ¢
1

I'[b',t,t11=E'[ Lova(€/(s),3) ds|
t

Here E’ denotes the expectation with respect to the measure of the smooth Marko-
vian diffusion ¢’ having forward drift vector field b’ = b4 6b, and the same diffusion
tensor and probability density at time ¢ as £(t).

The following theorem is due to Guerra and Morato, and serves to specify the
dynamics of a critical diffusion. The crucial step in the Guerra-Morato variational
principle is the introduction of the stochastic analogue of Hamilton’s principle func-
tion, which is the scalar given by

(2.20) S(&(r),r) = -E [ / " Lo(e(s), 9) ds|e(m) |

and the expansion of the stochastic derivatives of this random variable with re-
spect to both the critical and “variational” processes. The approach given below
is more probabilistic, and assumes less regularity of the principal function than
the method which treats the stochastic differentiation operations as second order
partial differential operators.

THEOREM 2.6. Suppose that S is defined as in (2.19), that the gradient VS
exists in L%(p), and that

(2.20) dS(£(t),t) = VS(&(t), ¢) - dw(t) + O(dt),
where the O(dt) term i3 £(t)-measurable, and w is the underlying Wiener process.

Then the smooth Markovian diffusion £ is critical for L given by (2.16) if and only
if the current velocity v of € satisfies the stochastic Hamilton-Jacobi condition

(2.21) v(z,t) = VS(z,t).
PROOF. As described above, let £’ be the Markovian diffusion with forward drift
vector fleld &' = b+ 6b. Let

e2) M) =ex ([ Gb(eE)s +3 [ Iovceto), e as)

be the Girsanov density associated with £’ (see [12]). Since

ty
Lo(€(e), ) ds| = EIS(€(0),0)] = EIS(€(). M (0)]
t
and S(&(t1),t1) = 0 almost surely, we may use the algebraic identity
d(S(&(s), 8)M(s)) = dS(&(s), s)M(s) + S(&(s),8) dM (s) + dS(&(s), s) dM (s)
to obtain an expression for I by stochastic integration by parts. Because M is
a P,-martingale there will be no contribution from the S(£(s), s) dM(s) term un-

der expectation. Furthermore, by expanding the exponential and again using the
martingale property it is easy to see that

E[dS(£(s),s)dM(s)| = E lv,-s det(s)M (s) ( / e 6b* dw;(s) + o(&b))l

=8|

) s+ds )
= E |V;S(b'ds + dw*) M (s) / 6b* dw; | + o(6b) + o(ds)
-]

= E[V;S6b' M(s) ds] + o(6b) + o(ds).
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THE DENSITY MANIFOLD 707

We therefore have that
t 1 3
~-I=E [ DS(&(s,s))M(s) ds] +E [ V:S6b*(&(8), s) M (s) ds| + o(6b).
t t
Now, from the Markov property it is clear that

(2.23) DS = L,

and, similarly, that D'S’ = Lj. (Note that this remains true for non-Markovian
processes when the stochastic derivatives are taken with respect to the past filtra-
tions.) Expanding the Lagrangians in éb yields

Ly — Ly = (b,6b) + 3V - 6b+ o(6b).
Finally, using the relations
%E’[V 6] = -;- / V - 6bp + o(65) = — E[(6b,u)] + o(5b)

and b — u = v, by combining the above expressions, we arrive at

I'-I=E [ " 0= VS, 66)(€(s), 5)M(s) ds] +0(6b)

t
=FE [/ (v—VS,8b)(€'(s), s)ds] + o(6b).
t
The result now follows since 6b is only restricted to have compact support in M x
[¢,t1].

COROLLARY 2.7. Let £ be critical for L and let S be defined by (2.1). Then
the stochastic Hamilton-Jacobi equation

as 1

(2.24) 313 (VS VS)+¢— (u u) — —V'u=0
holds.
PROOF. By combining the relation (2.23) with (2. 21) we obtain
2§+b VS + AS_ S+(b v)+ = V v= = (b,b)+V-b—¢.

ot

(Recall the above remark regarding the scalar curvature.) Using the relation v+u =
b then yields equation (2.24).

COROLLARY 2.8. The diffusion £ is critical for L iff the Schrodinger equation
N
‘ot

holds for v given by v = eF+*S where u = VR and v = VS are the osmotic and
current velocity vector fields of &, and S is given as in (2.20).

(2.25) —%A + év

PROOF. Combining the stochastic Hamilton-Jacobi equation (2.24) with the
current equation (2.10) expressed in terms of the scalars R and S results in the
nonlinear system

‘Zf +5(V8,98) + 6~ - (VR,VR) - AR =0,
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708 J. D. LAFFERTY

(2.27) %}; +(VR,VS) + AS 0.
A simple computation then shows that the above system is equivalent to the
Schrédinger equation (2.25).

REMARK. We note that a covector term may be included in the above La-
grangians as well. See [20] and §5.

2.2 Paths of density. There are several ways of constructing a smooth Markovian
diffusion on M. Given a collection of vector fields one can construct a stochastic flow
of diffeomorphisms of the frame bundle and project onto M. The familiar method of
taking discrete approximations to It stochastic integral equations yields a diffusion
locally, and the resulting local processes in different charts may be glued together.
A partial differential equations approach begins with an initial density pp and the
drift vector field b(-,t), t € I, and solves the forward diffusion equation to obtain
the probability transition function p, and therefore the measure Pr on path space.

From the point of view of the present paper, it is most natural to suppose that
for each t € I, p(-,t) is a smooth strictly positive probability density on the compact
manifold M. The osmotic velocity, determined by

u=1Vlogp,
is smooth and we may define the current velocity by the relation
v=—lya-192
p ot

which exists since fdp/8t = 0 implies dp/8¢ € Ran(A). Then p satisfies the
forward and backward diffusion equations (associated with b = v+u and b, = v—u)
which have fundamental solutions p and p.. The measure on path space may then
be generated using the transition kernel
P(dzl, t1;... ;dzn, tn) = P:(dzl, ty; T2, t2) : (d(l:,, 1, bio13 %4, t)p (dfl?;, 1)
-p(zi, tiydzigr, t,—+1) <o p(Tpe1,tn—1;dTn, tn).
Thus, a smooth path of densities may be used to generate a Markovian diffusion.

The following theorem, due to Carlen [5], provides the proper mathematical
setting for stochastic mechanics.

THEOREM 2.9. For eacht € [to,t1] = I let p(-,t) be a probability density, and
let u and v be time-dependent vector fields on M which satisfy

(2.28) / / (0, 9) + (4, u)p(z, £) dprz dt < 00

(2.29) /f a:tha:—/f zde:c—// (v, Vfip(z,r)dpzdr

for all s,t € I and f € C(M). Then there is a regular probability measure Pr on
path space Q) such that under Pr, t — &(t) is a square integrable Markov process with
density p(-,t), and the following limits exist strongly in L2(Pr) for any f € Cg°(M):

lim - BU/(6(t + b)) — FENIN] = (3A+b-9) ().
lim BI/(€(t)) — £(6(¢ - )| M) = (=3 +b. - 9) J(£(2)

where b = v + u and b, = v — u are the forward and backward drift vector fields.
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The relevance of the finite action condition (2.28) and the weak continuity equa-
tion (2.29) for stochastic quantization is contained in the following result.

THEOREM 2.10. Let ¢ be a Rellich class potential on M x I and let 1
satisfy |92 = [o, IV¥IIPduz < o00. Then if ¢y = o(-,t) is a solution of the
Schrodinger equation (2.25) with potential ¢ and initial condition 1o (that is, if Yy =
exp(—itH)vg for the Hamiltonian H = —%A + @), then u,v, and p defined by

(2.30) u(z,t) = emv ¥(z,t) #0,
0, ?,D(a:, t) =0,
Viy(z,t)
(2.31) ozt =4 B ¥(z,t) #0,
0, '(ﬁ(:r, t) =0,
and
(2.32) p(x, t) _ w)(z’ t)|2

satisfy the finite action condition (2.28) and the weak continuity equation (2.29).

We refer to [5] for the proofs of these results. We end this section by briefly
discussing the interpretational aspect of Markovian stochastic mechanics. Through
the study of some particular quantum systerms, it has been determined that Marko-
vian stochastic mechanics violates a certain separability property which one may
justifiably demand of a physically tenable theory. This is essentially due to the
fundamental property that a component of a multidimensional Markov process is
not again, in general, a Markov process—the generation of o-algebras does not re-
spect vector space structure. (Consider the sheet component of a Wiener process
on the Riemann surface of \/z.) However, it is not at all clear how the Guerra-
Morato variational principle may be extended to non-Markovian diffusions, or that
such an extension would remove the separability problem.* Thus, from the point
of view of Nelson, one should turn toward the construction of random fields on
physical space-time rather than diffusions on configuration space. See [20, 21] for
a treatment of the locality problem in stochastic mechanics. The point to be made
here is that there is no mention of Markovicity or other restrictions in specifying a
path of densities p. Hence, if a quantization theory can be formulated using paths
of density as the fundamental mathematical objects of consideration, then there
may be no questions of locality or separability directly involved. We carry out this
program in the following sections.

3. The density manifold. Throughout this section, M will denote a C°,
compact, connected, Riemannian n-manifold without boundary. A volume element
is a positive n-form of odd kind, in the sense of de Rham. We let M = M(M)
denote the collection of smooth (= C*°) densities on M. To be precise, let N be

*One approach to this problem uses the homogeneous chaos decomposition of Wiener space as
a basis for a variational principle for non-Markovian semimartingales.
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the vector space of sections of the bundle of smooth n-forms over M, and let K C N

be the closed subspace
={n€N|/ n=0}.
M

Consider the Riemannian volume element djyz = p, form the closed affine subspace
K = K + u, and set

(3.1) M={peK|p=fu locally, with f > 0}.

We may assume, of course, that Vol(M) = [ m M = 1, so that if p € M, then
I} m P =1 Thus, M is an open convex subset of a closed affine subspace of the
vector space N.

In this section we study the manifold structure of M and briefly discuss its
relationship with the group D(M) of diffeomorphisms of M. This relationship is
further developed in §6. Consider the following simple example, which gives an
indication of the interplay between M and D. Let M = S, and let D(S?) denote
the group of orientation preserving diffeomorphisms of St. If n € D(S!), then 7
lifts naturally to a real-valued periodic function (also denoted n) on R. Clearly
n' is a density, and an exercise in calculus shows that D(S!) ~ M(S') x R/2~.
Therefore D(S!) has the same homotopy type as S!, since M is contractible. (This
is the trivial case of the Smale conjecture: D(S™) is homotopically equivalent to
SO(n+1), n=1,2,3,4. The case n = 4 appears to be open.)

This discussion of the relation between the diffeomorphism group and the density
manifold in 3.3 and 3.4 will lead to a treatment of the Fréchet manifold structure of
M and its tangent bundle TM in 3.5 through 3.7. In particular, in 3.5 we develop
the fundamental properties of the osmotic Laplacian A,, which is essential to many
further results. This operator is used to study the geometric structure of M in 3.6
and 3.7.

3.1 Calculus on Fréchet manifolds. We will be working in the C* category, and
therefore briefly recall here some basic facts concerning the Fréchet calculus.

By a grading on the Fréchet space X we mean a family of seminorms {| - |}nen
which generate the topology of X, and which satisfies |-|o < |-|1 < < |'|n <
For example, let V' be a finite-dimensional vector bundle over M, and consider
the space C®(M,V) of smooth sections. Let U, be an open cover of M and let
¢: Uy — V, be local trivializations. For each a, let K, C V, be compact, and set
K, = ¢5;'(K,). Also, assume that

V:0®(M,V) - C®(M,T*M V)

is a bundle connection. Define the family of seminorms {| - |%_ .} by

1% = Z Z supiv,.v,2-~ Vi, f(z)|

J=111,...,8

where the indices %1, ...,i, refer to a basis for TM|y,, and V; is the covariant
derivative for V. By restricting to a countable subcover (or finite in the compact
case) and letting a countable collection of compact sets fill out each coordinate
chart, it is then evident that the above family of seminorms generates a grading for
a Fréchet topology on C*°(M,V) which is independent of the local trivializations
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chosen. In the same fashion one constructs a grading which is compatible with the
topology generated by the Sobolev seminorms.

Although there is no canonical extension of Banach space differential calculus to
Fréchet spaces, the following provides a good working definition.

DEFINITION 3.1. Let X and Y be Fréchet spaces. Suppose that U C X is
open, and that f:U — Y is a continuous map. If z € U and v € X, the directional
derivative of f at z in the direction v is defined to be the element df;(v) of Y given
by

(3.2) df.(v) = lim LET ) = ()
t—0 t
if this limit exists.

Since the vector space £(X,Y) = Hom(X,Y) is not, in general, a Fréchet space
when X and Y are Fréchet the usual notion of C! Fréchet derivative in Banach
spaces, namely, that the mapping z — df; is continuous in the norm topology of
L(X,Y), does not apply. The following weaker criterion is therefore adopted in
Fréchet spaces.

DEFINITION 3.2. The map f:U C X — Y is said to be of class C! in case the
limit df;(v) always exists, and the mapping given by df:U x X — Y, df(z,v) =
df(v) is jointly continuous as a function of two variables. Higher derivatives and
the class C*, k > 2, are defined in the obvious inductive fashion.

Within this framework the basic operations of the calculus are sufficiently well
behaved for our purposes. In particular, the notion of Fréchet manifold, defined in
the obvious way, is well adapted to our study of M. We refer to [11, 17] for further
discussion of the general theory.

REMARK. Apart from certain topological and analytical issues, a large part
of the finite-dimensional geometric theory carries over unchanged to the infinite-
dimensional case when it is formulated in an appropriate algebraic fashion. In [19]
the theory is cast in the abstract setting of Lie modules, which provides a suitable
framework for much of what we shall carry out in later sections.

3.2 The group of diffeomorphisms. We now quickly review the basic facts con-
cerning the group of diffeomorphisms of the compact manifold M. For details and
many further developments we refer to [11] and [17], where the C* point of view
is developed, and to [2] and [6], where the Hilbert manifold case is developed.

Let D(M) denote the group of C* diffeomorphisms of M, with the C* topology.
The tangent space T.D(M) at the identity e is identified with equivalence classes
of smooth curves of diffeomorphisms through e. Thus the Lie algebra L(D(M))
consists of the collection X (M) of smooth vector fields z — V' (z) € T, M with the
C™ topology.

A one-parameter subgroup of D(M) is simply the flow of a vector field V €
X (M), and this flow is defined for all time since M is compact. We therefore
have a map EXP: X (M) — D(M) which takes V € X (M) to the one-parameter
group of diffeomorphisms EXP(tV') satisfying dv/dt = V (v), 4(0) = zo, when we
set v(t) = EXP(tV){(zo). Unlike the situation with finite-dimensional Lie groups,
however, this exponential map does not provide a local chart structure on D(M)
since it is not a local isomorphism—it does not map onto any neighborhood of the
identity. Some more work must therefore be done to provide an atlas for D(M).
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The idea behind providing a chart structure for 2(M) may be thought of as
follows. Let V. C X (M) be a neighborhood of zero which satisfies |v| < ¢ for all
v € V, where || denotes the Riemannian norm on TM. Choose € sufficiently small
so that any two points of M with Riemannian distance less than € may be joined
by a unique geodesic of length less than €, and such that this geodesic is minimal
and depends smoothly on its endpoints. (For example, if M = S™ ¢ < 7 will do.)
Let exp denote the exponential map of M. Then for v € V, the map ¢(v): M — M
given by ¢(v)(z) = exp,(5)(1) may be thought of as mapping z € M to a geodesic
of length |v| < €, and ¢:V, — C°(M, M) is a homeomorphism onto an open set
U C C®(M,M). Define U, by

U = {n € Uc|n is a diffeomorphism}.

Then V. = ¢~*(U,) is open in V,. This provides a local chart ¢:V. — U, at
the identity. A local chart structure for all of D(M) is then obtained by using
the group action. This provides D(M) with the structure of a smooth Fréchet
manifold modelled on the Fréchet space X (M). The Lie product of the Lie algebra
T:D(M) =~ X (M) is minus the usual bracket of vector fields

. 8 . 9 .

t= X]—-.Yz - YJ—.Xl.

[X’ Y] aql g
The minus sign comes from the fact that one works with right- rather than left-
invariant vector fields.
Now the group TD(M) may be expresed as a semidirect product

TD(M) ~ D(M) x, T,D(M),

where T, D(M) is a normal subgroup. In particular, we have that the fiber T, D (M),
for n € D(M), is given by

T,0(M)={V:M - TM|7V(z) = n(z)}.

Thus, 7,0 (M) is the collection of smooth vector fields over 7, represented by the
commutative diagram

™
v,/ =
M 3 M.

We denote the group actions associated with n by R, and L,:
Ly:D(M) —» D(M),  {— LyE=nog,
Ry:D(M) - D(M),  {— Rp§=¢on.

The induced actions on TD(M) are
TL,:TD(M) - TD(M), Ve€TD(M)— TL,Ve=TnoV¢ € TyoeD(M),
TR, TD(M) —» TD(M), V¢e€TD(M)— TRV, =V;on&T¢onD(M),

and these maps are smooth. The adjoint action Ad is therefore given by pushfor-
ward of vector fields:

Ady:T,.D(M) = T.D(M), V — Ad,V = T.(L, 0 Ry-1)V =n.V.

REMARK. From these relations it is clear that when D(M) is modelled on H?,
it is not a Lie group since the group operations are not smooth.
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Two important subgroups of D(M) are the group of volume preserving diffeo-
morphisms
Du(M) ={n € D(M)|n"p = p},
and the group of symplectic diffeomorphisms
D.(M) ={n € D(M)|n*w = w},

in the case that M admits a symplectic structure w. To show that D,(M) is a
closed smooth submanifold of D(M) one considers the cohomology class

(4] = p+ d(C® (A1 (M)))

(where C®°(A*(M)) denotes the smooth exterior k-forms), and shows that the
mapping F: D(M) — (u] described by F(n) = n*pu, is a submersion. Then D, (M) =
F~1(y) is a smooth submanifold, but this only determines the local chart structure
of D, (M) implicitly.

The proof of this fact is similar to that of the following theorem, which is central
to the developments of §6.

THEOREM 3.3. The Lie group D(M) acts transitively on M by pullback of
forms. Furthermore, m: D(M) — M is a principal fiber bundle with structure group
Du(M) and progection mn = n*p.

For a proof of this theorem, which is indicative of the methodology of diffeomor-
phism groups, we refer to [8]. The proof is based on a beautiful (and now standard)
technique due to Moser [18], which generalizes not only to the Darboux theorem,
but to Weinstein’s theorem on normal forms for Lagrangian submanifolds. The
proof given in [11] uses heat equation and inverse function theorem methods.

A density is thus a coset of diffeomorphisms. The Lie algebra L(D,(M)) of
the Lie group D,(M) is the Fréchet space X,(M) = {X € X(M)|V-X = 0},
the space of vector fields which are divergence-free with respect to the measure
u. This follows from the observation that if ¢t — 7 is a curve in D,(M) with
X: =dn/dt € T,;,Du(M), then

0

= an:/‘ = n:(tho,,‘—lll),

and thus V- (X; on; ') = 0. The tangent space T, M should therefore be identified
with GX (M), the gradient vector fields on M, since by the Hodge decomposition

LIOIM))~ X (M)=X,(M)® GX(M).
In other words, m: D(M) — M is a submersion, and we have
PROPOSITION 3.4. There is a short exact sequence of Fréchet spaces given by
0—-TDu(M)->TDM)->T,M—-0
which splits canonically.

In the next two sections we will establish a more concrete description of this
relationship, and, in particular, we shall see how the splitting of this sequence
provides an important feature of the density manifold for our later developments.

3.3 The osmotic Laplacian. There is nothing special about the volume form u
in the above discussion. Indeed, we may let pg € M be an initial density, and for
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t — 1y a path in D(M) with ng = e, let p; = (n¢).po be the push-forward density
path. Then
d M * dpt
0= %(Ut pr) =1y (Lx,om—lpt + —&?)
holds, where X; € T,,D(M) is the vector field over 7, tangent to ¢ — #,. Thus,
under the mapping p; — p:/1t from n-forms to smooth, strictly positive functions,
the continuity equation
Op/0t+V - (zp) =0
holds when we set z; o 7, = X;. Of course, the same equation holds if we replace
zs by z; + z;, where z; is a vector field on M having divergence zero with respect
to the measure p; (x prdpz).
With p = py, suppose that we seek to minimize the energy

(3.3 3 [ lleli®o= 5000,

among all vector fields v which satisfy the continuity equation for p(t) at ¢t = 0.
If v is the unique vector field which minimizes (3.3) then v is orthogonal to all
p-divergence-free vector fields with respect to the inner product ({-,-)),. Thus, since
p>0, v’ is a closed 1-form. Without assumption on the H 1(M,R), we would like
to show that v’ is exact [21].

THEOREM 3.5. Lett — p(t) be a smooth curve in M with p(0) = p. Then there
18 a function S € C®(M), defined uniquely up to a constant, such that

(3.4) 9p/0t|t=0 = =V - (VSp).

PROOF. For the purposes of this proof, let ¥ be the complex Hilbert space
L?(pdpsz) with inner product (-, -)o,

(fr9)o = /M fapdumz,

and let ¥! be the completion of C°°(M) with respect to the bilinear form (-, -);:
1 = —
(o =3 [ (V1. Fapdua+ [ fapda.
M M

Clearly X! is a dense linear subspace of ¥, and is a Hilbert space with larger norm
Ifl1 = |flo, f € ¥!. Thus, it follows that there is a unique positive selfadjoint
operator associated with the quadratic form (-,-); with form domain ¥!. If we
denote this operator by —%Ap, then

(fs g)l = <f, _%Apg)o + (fa g)O
for f € ¥* and g € Dom(—3A,). Furthermore, for g € Dom(—%Ap) we have that

1 1 1Vp 1

Z == XE gy =- .Va.

2A,,g 2Ag+2 P g 2Ag+u Vg

Let %o C ¥ be the closed subspace ¥o = {f € ¥| f;, fp = 0}. Then 34, is an
elliptic operator with discrete spectrum, and kernel consisting of the constants,
which maps ¥p into itself. It also has a bounded inverse (3A,)~!.
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Now, clearly p=1(dp/8t) € X since

10p _d _
LGa)e=af,r=o

1, \"'/ 10p

s=(3) (-3%)
exists in Xp, and by elliptic regularity is C*°. S is the desired solution (up to a
constant) of (3.4).

COROLLARY 3.6. Let pe M. We may write

(3.5) X(M) = GX(M) & X,(M),
where GX (M) 1is the collection of gradient vector fields on M, and X,(M) is or-
thogonal to GX (M) with respect to the bilinear form

(X,Y) s (X, ¥}, = /M<X, Y)o

Thus,

on X(M) x X(M).
PROOF. If z € X (M) we may consider a smooth curve ¢ — p(t) in M with
9p/0t|t=0 = =V - (2p).

The operator %Ap then provides a smooth gradient vector field

o amee (i) (32)

and since P(p)z = 2z — Q(p)z satisfies V - (P(p)zp) = 0, it follows that P(p)z and
Q(p)z are orthogonal with respect to ((-,-)),.

We call the operator A, constructed in Theorem 3.5 the osmotic Laplacian. It
will play an important role in what follows. The advantage of the above construction
is that it goes through in the more general case where M is not compact and the
density p may have nodes.

PROPOSITION 3.7. The collection {A,}pcm 8 a smooth one-parameter family
of elliptic operators with corresponding smooth family of inverses {A;l}pe M-

PROOF. Consider the grading on C®(M) generated by the Sobolev norms

Ifln= Y VoS,
|a|<n
with || the L?(dasz) norm, as in the construction of §2.2. By Sobolev embedding,
this is equivalent to the C™ grading. From general elliptic theory we have that if
the mapping
frLf)=) fu-D*  fe€U,
le|<r
defines a family of elliptic operators of degree r (where generally the coefficients
f = (fa) are sections of a jet bundle) then for g € U, if |f — glo < € one obtains

estimates of the form
|Aln+r < C(lkln +1flnlklo)
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where L(f)h = k. For A,, we require that the osmotic velocities be close,

IV log(p/po)llo < e,

to obtain estimates of the form
(3.7) |AT klnta < C(lkln + |V 10g pln|klo).

REMARK. In considering osmotic diffusion where 8p/dt = 0, the operator %Ap
may be used to construct a measure on path space yielding a symmetric Markov pro-
cess. Recent work has been carried out by D. Bakry and M. Emery [4] on Sobolev
and logarithmic Sobolev inequalities related to A, on noncompact manifolds.

3.4 The Fréchet manifold structure of M. Notice that the appearance of the Lie
derivative in the expression

nt‘(thom-lpt +dpy/dt) =0,

which is equivalent to the continuity equation, transforms the tangent X; to the
path of diffeomorphisms into an ¢mplicit tangent vector z; = X, 07, ! for the path
of densities by the relation dp/dt + V - (zp) = 0. We now provide M with a chart
structure which makes this correspondence explicit.

THEOREM 3.8. Let p € M and let V, be a neighborhood of zero in K = {f €
C®(M)| [5; fdmz = 0} such that A,S < 1 for all S € V,. Let ¢,:V, — M be
the mapping given by ¢,(S) = p— V - (VSp). Then the collection of such pairs
{Vor#p}pem forms a C atlas on M.

PROOF. Let S € V,. Since A,S < 1 we see that ¢,(S) = p—V - (VSp) =
p(1 = A,S) > 0. In addition, since [,,(A,S)p =0, it follows that ¢, maps V, into
M, as claimed.

Recall that a closed subspace of a Fréchet space is again Fréchet. The mapping
S +— ¢,(S) —p = —(A,9)p is a linear, invertible map of K into itself. Since
(p,S) — A,S is smooth, it follows from the open mapping theorem that the set
$,(V,) — p is open in K. Thus, ¢,(V,) is open in M.

Let p1, p2 € M with corresponding charts ¢;: V; — U; C M, ¢ = 1,2, and consider
the composition o

¢=¢1' 0¢2:¢; (U1 NUz) — ¢7 ' (U1 NUa).

Ifp=p1 —V-(VS1p1) = p2 — V- (VSzp2) € Uy NU3, then (Apl‘Sl)pl =p1—p2+
(Ap;S2)p2, so that

S1=¢(S2) = A7) <1 ~2y (Apz)&)

= A1 (1 - Q) + A5} ((A,,ﬁﬂﬁ—j) :

51

noticing that (1—p2/p1), (A,,S2)p2/p1 € K5, = {f| [ fp1 = 0}. From our previous
remarks regarding the osmotic Laplacian it now follows that ¢ is smooth.

Notice that if ¢ — p(t) is a curve through p(0) = p in M, then dp/9t makes sense
as a Gateux derivative. We therefore think of the gradient vector field

_ 1,4 109p
o= v (1a7) (L2) emn
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as an intrinsic tangent vector (or an intrinsic representation) at p since there is no
mention of local charts. A vector field on M is thus a smooth (as a map between
Fréchet spaces) assignment p — X(p) of a gradient vector field X(p) € §X (M) to
each pe M.

A simple consequence of the chart structure provided by Theorem 3.8 is the
following, which provides the most natural framework for working with tensors on

M.

PROPOSITION 3.9. Let X,,..., X, be vector fields on M and let p € M. Then
there i3 a chart ¢:V C GX (M) - U C M with p € M, such that

0 .

_¢°p‘l(t) =X'L(p)a 1=1,...,m,

ot =0
where for each 1, t — p;(t) i3 a curve representing X; at p. In other words, the
intrinsic and local representations of X; agree at p.

PROOF. Let € > 0 be such that the set V = {tX;(p)|t € (—¢,¢),% = 1,...,n}
satisfies p — V - (vp) > 0 for all v € V. Extend V to an open neighborhood
V C X (M) such that again p — V - (vp) > 0 for v € V. Now define ¢: V — M by
¢(v)=p—-V-(vp). Fori=1,...,nlet t— p;(t) represent X; at p. Then

¢ lopi(t)=d" o (p—tV - (Xi(p)p)) + o(dt) = tX;(p) + o(dt)
so that 5
3 Lo pi(t) o Xi(p)
for each 1.

Finally, it will be useful to think of tangent vectors on M as equivalence classes
of vector fields on M, as in the fiber bundle description of Theorem 3.3. To this
end we make the following definition.

DEFINITION 3.10. For each p € M, let =, denote the relation on X (M) x X (M)
defined by X =, Y in case V- ((X —Y)p) = 0. Then =, is an equivalence relation
on X (M) and by Theorem 3.5 there is a unique gradient vector field within each
equivalence class. We denote by Q(p): X (M) — X (M) the projection operator
which takes X € X (M) to the unique gradient vector field Q(p)X in the equivalence
class [X], containing X. For p € M let V, be the collection of equivalence classes
of vector fields on M under the equivalence relation =,. It is then easy to prove

that V = U,V, forms a vector bundle over M with projection 7., such that the
following diagram commutes:

v
v
T

A m

™
"/ Q
M M

“(a)" (32)]

is associated with the path t — p(t) € M.

IE]

Thus, the p-equivalence class

[v], =
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Together with the results of §2.4 then, we may summarize the relationship be-
tween D(M), D,(M), and M in the following commutative diagram:

o,M) & ToM) S ™M 5 v

np, {mp Ml 1Q
Du,(M) <= D(M) S M & TM
3.5 The tangent bundle TM. Let X and Y be vector fields on M. For each
pEM, X(p) € T,M ~ GX(M) is a gradient vector field. Let ((-,-)), be the inner
product

(38) (XY = [ (X0 Y (0)o(a) daez

The mapping p — ({-,-)), determines a weak Riemannian structure on TM. The
term weak is used since the topology generated on T, M by the bilinear form (-, )},
is strictly weaker than the topology inherited from M. Thus, each fiber T,M is a
pre-Hilbert space in the (-, -)), inner product.

DEFINITION 3.11. Let ¢t — p(t) € M be a curve representing X at p € M.
Interpreting Y: M — GX (M) as a map between Fréchet spaces we define XoY (p) €
TyM by
(39) Xo¥(p)= oY ()| =d¥,(~V - (X(o)p).

t=0
To determine the Lie product on TM we need the following lemma.

LEMMA 3.12. Let X =VSx and Y = VSy be vector fields on M. Then
(3.10) (X(p), Y (p)] =, (8,5y)X — (4,5x)Y.

PROOF. Clearly this result only depends on X and Y at p. We need to show
that
(2, (ApSy)X = (8pSx)Y ) = (2, [X(0), Y ()]}
for any Z € GX(M). Since the Riemannian connection on TM is torsion-free,
integrating ((Z, [X,Y])), by parts yields

/ (Z,VxY —VyX)p= / ZYXIV,;Y; - YIV;X;)p
M M
= / (YIV;Z'X; - X'V ,;Z2'Y;)p
M
+ [ (ZX9,(¥7p) - 2YV,(X0).
M
But the second integral above reduces to f,,(Z2'X;A,Sy — Z*Y;A,Sx)p, and thus

(2,1, YN = (Vv Z, XN o — (VxZ, Yo+ (Z,(8,Sy)X — (8,5x)Y]),-

Now, since Z is a gradient vector field on M, YIV,;Z'X; =Y'V'Z;X; = (Y,VxZ).
Therefore we obtain

(Z,[X, Y1) = (Z,(8pSv)X = (8,5x)Y ),
as desired.
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It is instructive to verify this directly. This is accomplished by checking the
identity

Vi((X*ViY: - Y*V X)) + V; ((ka" + yp"—”x") Yip)

-V, ((vkyk + %Y") X*‘p) =0
with the aid of the Ricci identity.

THEOREM 3.13. Let X andY be vector fields on M, and let [X,Y] be the Lie
product of X and Y. Then for each p € M,
(3.11) [X,91(6) =, X 0¥ (o) = ¥ 0 X(p) + [X(s), Y (5)].

PROOF. By the Hahn-Banach theorem it suffices to determine the action of
[X,Y] as a derivation. Thus, let f € C®°(M) be a smooth scalar. Then

[X,Y}f(p) = (XY (£)) - Y(X())()

canonically defines the Lie product. If df, denotes the directional derivative of f
at p as a mapping between Fréchet spaces, then this may be expressed as

[X,Y)5(p) = X(dfo(—=V - (Y (0)0))(0)) = Y (dfo(=V - (X(p)))(p))-
Next, taking a second derivative along integral curves of X and Y we obtain
[X,Y1f(p) = d*f,(=V - (Y (p)p), =V - (X(p)p))
+dfp(=V - (X oY (p)p - 8,SxY (p)p))
~ & f,(=V - (X(p)p), =V - (Y (p)p))
= dfp(=V - (Y 0 X(p)p — A,Sv X(p)p))-
Now d?f, is a symmetric bilinear operator, so the d2f terms cancel. The above
expression thus reduces to

[X.Y)f(p) =dfp(=V - (X oY (p) =Y 0 X(p) + (A,Sy)X — (A,5x)Y)p))
and then from Lemma 3.12 to

[X.Y1f (o) = dfp(=V - (X oY (p) =Y 0 X(p) + [X(p), Y (0)])p))-

Therefore, [X,Y]=XoY —Y o X + [X,Y], as claimed.

Of course, the Jacobi identity follows immediately from the definition of the Lie
product as a bilinear, antisymmetric mapping on derivations of the associative ring
of scalars. However, since §X (M) is not closed as an algebra under the bracket
[-,:] on TM, the Jacobi identity for the bracket [-,-] is not immediately clear from
the expression (3.11). This result is thus most naturally interpreted in the bundle
my: V — M. To verify the Jacobi identity directly, consider the equivalence class
L IIX, Y] Z]], where 3., denotes cyclic summation. A calculation shows that

Zlnx Y1, Z)(o) =, Z Q)X Y], 2] - Z o Q(p)[X,Y))

where we may assume that X,Y, and Z are gradient vector fields which are inde-
pendent of p. Now, in general, we have

do(B,9(0))(v) = B, dgy(v) + Vg - d, (Ypf) ),
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so that letting g = A ! f we obtain
-1 -1 1 VP
dp(A, ) () = A7 | dof(v) = VAL - dp ; (v) ).
Setting f = p~'V - (|X,Y]p), a calculation then shows that

QX)) =4, (-v8; (3910 ) (@

Q(n)(8,52(Q(P)IX, Y] - [X, Y1)
=, 8,S2(Q(IX, Y] - [X,Y]).

Therefore

Y lIXY]2) =) (QIX,Y], 2]+ A,Sz(IX, Y] - Q[X, Y]))-

Taking the p-divergence of both sides, and using Lix y) = [Lx, Ly], with Lxp =
VuXp yields

ZV (X, Y], 21p) = Y_(Q[X,Y] - VV - (2Zp) - Z - VV - ((X,Y]p))

+ ) (X,Y]-Q[X,Y])- VV - (Zp)

=0,

proving that the Jacobi identity holds with respect to the equivalence relation =.

In considering the Jacobi identity for T'M, recall the following definition. A
homogeneous space G/H is said to be reductive if there exists a linear subspace m
of g, the Lie algebra of G, such that

g=hodm,

and Adygm C m, where b is the Lie algebra of H. If p defines the projection onto
b and g defines the projection onto m then since [h,m] C m for such a space it is

obvious that
> plgl€,nl ¢l =0,

for £,m,¢ € m. However, the density manifold M, as a homogeneous space, is not
reductive, and the Jacobi identity must be verified directly.

In conclusion, we make a remark on the cotangent bundle T* M for later reference.
It is a theorem that the topological dual of a nonnormable Fréchet space is not itself
a Fréchet space. Thus, rather than working with the topological dual of T M, which
is a space of distributions, we use the Riemannian structure p — {(-,-)), to identify
the cotangent bundle geometrically.

To be precise, let b: TM — T*M be the bundle isomorphism which is the index
lowering action. This induces a bundle isomorphism b:TM — T*M (onto the
geometric cotangent bundle) by X°(p) = (X(p))’, and the pairing (-,-)), given by

(X, Y),(p) = /Mx"- p)pde = / (X(0). Y (p))pdaz

describes the action of T*M on TM.
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4. Geometry of the density manifold. In this section we investigate the
fundamental properties of the density manifold by studying the Riemannian and
symplectic structures on TM.

4.1 The Riemannian structure. Generally speaking, if £ is a vector bundle over
the manifold N with projection =, the nullspace ker 7. |,, z € T£, is the subspace of
vertical tangent vectors and is naturally isomorphic to the fiber £,(;). A connection
is a choice of a complementary subspace of horizontal vectors. The horizontal lift of
a path in the base space is then defined, which for Fréchet manifolds, however, may
not exist in general. The following result determines the Riemannian connection
on TM, which may be interpreted as a connection for the bundle my:V — M
constructed in the previous section.

THEOREM 4.1. Let X,Y, and Z be vector fields on M. The Riemannian con-
nection, denoted V, 1s given by

(4.1) VxY(p) =, VxY(p) + Vx(»Y (p),
where V i3 the canonical flat connection on TM.

PROOF. There is a trivial parallel translation map 7 = id on T'M, identifying
fibers as Fréchet spaces. Since we assume that p € M satisfies p > 0 locally,
the completions of the fibers under the weak Riemannian structure are unitarily
equivalent as Hilbert spaces. If X € TM and Z € TxTM is represented by the
curve ¢t — W (t), W(0) = X then

(4.2) KZ = lim 7 =X
t—0

defines the flat connection V on TM by

(4.3) KoTXoY =VyxY.

To see that V is, in fact, a flat connection notice that by considering Z: M — TM
as a map between Fréchet spaces we have that

(vayz bt VYVXZ - V[[X,YHZ)(p)
= Vx(dZ,(=V - (Yp))) = Vy (dZ,(=V - (Xp))) — dZ,(-V - (IX, Y]p))
=d*Z,(=V - (Yp),=V - (Xp)) + dZ,(=V - (X oY — (A,5%)Y)p))
—d2Z,(=V - (Xp),=V - (Yp)) = dZ,(=V - ((Y o X — (A,5v)X)p))
—dZ,(—V - ((XoY -Y o X +[X,Y])p))
=0
as in Theorem 3.13.
Now, in general, a connection V on a manifold N, induces a bundle map

Kv:T?N - TN
such that the diagram

N %5 TN
Tl 17"
TN - N
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commutes, where ; and 7 are the usual projections, and such that 7;: T?N — TN
is isomorphic to ker Ky & ker(w.). Furthermore, Ky determines V through the
relation

(4.4) VoW =KoTWoV.

In this way one constructs the Riemannian connection for the group D(M). Let
K be the map associated with the Riemannian connection V on TM as above. If
K:T?D(M) — TD(M) is defined by KY = K oY then the commutativity of the
diagram

20 X 1D
w1l 17"
o L. D

follows from that of the diagram associated with K, and the Riemannian connection
V on TD(M) is then given by
VxY =KoTYoX
(see [6]). The connection ¥V on T'M is then obtained from the fiber bundle structure
of m: D(M) — M by considering the group action of D(M).
To be concrete, think of V =V + V as a sum of the flat connection V, and the

Riemannian connection V on TM acting pointwise on TM. If f € C>®(M), notice
that

Vx(FY)(p) = Vx(fY)(0) + V(o) (f(p)Y (p))
=X()(P)Y(p) + f(P)X oY (p) + f(0)Vx(s)Y (p)
= (X(N)Y + fVxY)(p),
since X(p) - f(p) = 0 when f(p) is interpreted as a scalar on M through a sequence
1 - C®(M,R)* - C®°(M,C®(M,R))* - C®(M,R)* — 1.
Since linearity is trivial, the Kozul axioms are thus verified. If the curve t — p(t)
represents Z at t = 0, then

200 = 5 [ (XG0, Y (0Nt duz

t=0
=/ ((ZoX,Y)+(X,ZoY))dez—/ (X,Y)V - (Zp) dus.
M M

But the last integral may be written as
/ Z(X,Y)pduz = / (V2X,Y) + (X,V5Y))p
M M

and thus,
ZU(X,Y),) = (Zo X +VzX,Y), + (X, ZoY + VY,
= ((VZX +VzX,Y), + ((X,VZY +VzY),
= (VzX,Y), + (X, VzY),.
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Finally, since
VxY = VyX - [X,Y]=VxY -VyX +VxY - Vy X + [X,Y]
=XoY-YoX+[X,Y]-[X,Y]
=0,
the connection V is clearly torsion-free.
We comment that VxY is not a gradient vector field, in general, when X and
Y are. Thus, the connection V is most naturally viewed as a bundle connection for
the bundle 7y:V — M. In so considering V:T'(V) — T'(T*M ® V), the covariant
derivative Vx maps vector fields on M to equivalence classes of vector fields on
M. Finally, note that the ring of scalars C*°(M) = C*(M,R) is canonically
embedded in the ring C*®(M,C>®(M,R)). However, with respect to this larger ring

the connection V does not satisfy the Kozul axioms since Vx(,):'(TM) — I'(TM)
is not linear over C*°(M,R).

COROLLARY 4.2. Lett > p(t) be a path in M with t — v(t) = v(p(t)) € Ty M
the vector field tangent to p. Then the path p i3 a geodesic if and only if

(4.5) 0v/ot + Vv =0.

PROOF. The expression V,v = 0 may clearly be rewritten as (4.5). Notice that
there is equality rather than equivalence in (4.5) since from the general identity

Lywb = (Vau) + zd(u,u)
we have that (V,v)’ = 1d(v,v) is exact.
COROLLARY 4.3. M 13 geodesically incomplete.

Let us now adopt the viewpoint that the curvature of a connection V measures
the extent to which the map X + Vx fails to be a Lie algebra homomorphism.
Again let X,Y, and Z be vector fields on M and interpret Z: M — TM as a map
between Fréchet spaces. The Riemannian connection V on T'M is the sum of a
flat connection and the Riemannian connection on T'M, acting pointwise on M.
Thus, we expect the curvature on TM to involve only the pointwise curvature on
TM, but the projection Q(p) onto the gradient part must be accounted for. We
are interested in the curvature tensor R(w,X,Y, Z) = {(w, R(X, Y)Z), we T*M,
and therefore seek to determine the equivalence class of the algebraic expression

(4.6) R(X,Y)Z=VxVyZ-VyVxZ - Vxy)Z.
To this end note that

VyZ(p) =, Vv Z(p) + Vy () Z(p)

=, Yo Z(p) + Vy () Z(p) — P(0)Vy(5) Z(p),

where the right side is a gradient vector field. Thus,
(47) VxVyZ =, Xo(Y0Z+VyZ—PVyZ)+Vx(YoZ+VyZ - PVyZ).
Writing out the expression for 6[[ x,y]Z gives
Vixyl1Z = (XoY ~Y o X +[X,Y] — P[X,Y]) 0 Z + Vxoy —yox+[x,¥]-PiX,¥) .
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Interchanging the roles of X and Y in (4.7) and forming R, we get that

R(X,Y)Z=Xo(VyZ-PVyZ)+Vx(YoZ+VyZ—PVyZ)
—YO(VXz-—PVxZ) —Vy(XOZ+VXz—PVXZ)
— Vxoy-vox+(X,Y]-P|X,Y|Z

since R(X,Y)Z = VxVyZ-VyVxZ—-V(x,y)Z = 0. Consider the term XoVy Z.
If we express Vy Z in local coordinates on TM then

. d . 9 . o
(48)  (Xovyzy=1 (Y'(p(t))a—q,-ZJ + rzkY’(p(t))Zk(p(t))) ,
where 0p/3t = —V - (Xp), and therefore since these operations are smooth,

: d_,; 0 . o f(d_

I =1 -_Y* 73 J [ Ly k

(X0 Ty 2 = (FY00)) 2 +Th ( 570 2
PV (2 (pl0)) + DY 2% o(1)
dqt T dt
= (VxoyZ + Vy(X 0 2)).

R then simplifies to

R(X,Y)Z= - Xo(PVyZ) +VxVyZ - VxPVyZ +Y o (PVxZ)
—VyVxZ+VyPVxZ-VixvZ+ VpxyZ
— R(X,Y)Z — X o (PVyZ) +Y o (PVxZ)
—VxPVyZ+VyPVxZ+VpxyZ.
Finally, by noticing that

Xo(PVyZ)(p) = ——

since PVy Z = 0 we obtain

PROPOSITION 4.4. Let X,Y, and Z be vector fields on M and let R be given
by (4.6). Then

(49) R(X,Y)Z=,R(X,Y)Z — (VxPVyZ ~VyPVxZ — Vpixy|2
+ AprPVyZ - ApSyPVXZ).

In particular, M has nonzero curvature when the base manifold M is, for exam-
ple, the n-torus T™ provided with the flat metric. In [3], the sectional curvature
of the group of volume preserving diffeomorphisms of the torus T? is described.
The expressions even in the low dimensional case are, in fact, quite complicated.
We expect that in some sense the curvature of M must be dual to that of D,(M);
however, see §5 for further comment.

4.2 The symplectic structure. When we interpret the cotangent bundle T*M
geometrically using the Riemannian structure (-, -)),, as described at the end of §3,
it is clear that the symplectic structure on T*M (= T M) should be

Q(p,v) ((Ula zl)a ('U2, Z?)) = «31702»p - «22, vl»P’
with respect to a local chart.
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In this section we do not interpret T* M geometrically, but go through the for-
malism of pulling back the canonical 2-form to TM using the smooth bundle map
©:TM — T*M, ©(p,v) = (v, ),. The computations are straightforward. We will
work with vectors on TM and T* M as ordered pairs without explicitly mentioning
local representations as this should cause no confusion.

Let m:T*M — M be the canonical projection, and let ((-,-)) denote the pairing
of T*M and T M, thinking of T* M as the functional analytic dual. If w € T*M and
z € T,(T* M), then the map
(4.10) 9:Tw(T*M) — R, P (2) = {w, ma2))

defines the canonical 1-form on T* M, where 7.: T(T* M) — T M is the induced map
of tangent spaces. If z = ({p,w), (v,7)) then mez = (p,v) and 9, (2) = (w, v)).

The canonical 2-form (2 is defined as 2 = dJ. Let z; = ((p,w), (v1,w1)) and
22 = ((p,w), (v2,w2)) € T,,(T*M). Then from the definition of exterior derivative
Qu(z1,22) = ddu (21, 22) = 21 - Fu(22) — 22 - Fu(21) — Fu([21, 22])-

This may be more explicitly expressed as

Qu(21,22) = (v1,w1) - {w,v2)) — (v2,w2) - {w,v1)) = {w, [v1,v2])
= (w,v1 0 v2)) + (w1, v2)) — {w,v2 0 v1))
— {(w2,v1)) — {w,v1 0v2 —vg 0 vy + [v1,V2])

= (w1, v2)) — {wa,v1)) — {w, [v1, ve]).
The familiar (local) formula for the canonical symplectic form is €, (z1,22) =
{(w1,v2) — {w2,v1). Thus, we obtain a correction term involving the pointwise Lie
product of vector fields on M.

Now, let {2 = ©*() be the pullback form. Since the bundle map ©:TM — T*M
is not an isomorphism, {1 is a weak symplectic form. That is, it is a closed and
weakly nondegenerate 2-form on the double tangent bundle T2M = T(TM). If
X1, X €T2M,

Q(Xl’ X2) = Q(T<P : XI,T<P : X2)a
where T'p(, ) (v, w) = (3, D, (v, ), -y + {w, ),), with D, denoting the derivative
with respect to the metric {(-,-)),. To obtain  explicitly, let

X1 = ((p,v), (v1,v2)) € T(p,v) (TM),
Xe = ((pa ’U), (’U3, U4)) € T(p,v) (T'M)
Then
ﬁ(p,v)(X17X2) = ﬁ(p,v)((vlav2), (v3,v4)) = Qo.y, (T - X1, Te - X2)
= Q((v-)),,(('Ul’ DP«'U, '»p -v1 + {(vg, ‘»p)a (vs, Dp«”, '»ﬂ -3 + {(va, »p))
and using the above expression for {2 this becomes
Q(p0)(X1,X2) = D,{(v,v3), - v1 + (v2,v3),
= Dp{(v,v1))p - v3 — (s, v1)p — (v, [v1,v3] ),
Now,

D, (v, u3) 01 = — /M<v,v3>v (010) = (Vs 033y + (0 Vo 3}
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so it is a simple matter to check that f), in fact, takes the form

Qp0) (X1, X2) = Qp0) ((v1,02), (v3,04)) = (v2, v3)p — (va, v1)p,
by using the fact that the connection V is torsion-free and that the v;’s are gradient

vector fields. If q15---19n;q1,- - -, gn are local coordinates on TM and w is the 2-
form & = g;;d¢? A dg*, then we may write
(4.11) Q= / @p.

M

By a second order differential equation on M we mean a section & of the dou-
ble tangent bundle T(T'M) such that if m:TM — M is the canonical projection,
m.£(v) = v. Locally, this means that the second and third components are equal:

£(p,v) = ((p,0), (v,2)), m(p,v) = (p,v).
A second order differential equation & is called a spray in case for s € R, £(sv) =
8.8€(v), where s is identified with the map s: TM — TM which is scalar multipli-
cation.

Now let K:TM — R be the kinetic energy map K(p,v) = -12-||v||,2, = 2 {(v, ).
Let us seek the Hamiltonian vector field associated with K; that is, the vector
field S(p,v) = ((p,v), (f1(p,v), f2(p,v))) such that isQ} = —dK. Computing for
y,w € T? M yields

K (p)w) = =5 [ 0760+ [ (udo = (Tyo,0d, + (o),

We obtain then the relation

(f2, o = (w, f1)o = —{(Vyv, v} — (v, w),.

It follows that fi(p,v) = v and f2(p,v) = —V,v since (Vyv,v) = (Vyv,y), and it
is also clear that S is, in fact, a spray. We thereby recover the geodesic equations
(4.5). A simple computation now gives the expression

(4.12) 02p/3t2 =V - (Vov + (8,8,)v)p)

along an integral curve of the geodesic spray.

4.3 A variational principle.

DEFINITION 4.5. Let po, p1 € M be two (not necessarily distinct) densities. The
path space Q,y ,, M, or briefly QM, consists of all smooth paths p: I = [0,1] - M
from pg to p; in M.

We will not give 1M a topological structure here. (Note that QM is twice
removed from the finite dimensional case.) The tangent space T () at a path p
will be the vector space of all smooth vector fields W (on M) along p for which
W)y =w(1)=0.

Suppose that 7: (M — R is a functional on QM. In order to define the induced
map of tangent spaces 7.: T,{) — Tz, R we make the following standard definition.

DEFINITION 4.6. If p € , a variation of p (keeping endpoints fixed) is a smooth
function p defined on (—¢,e) x M x I, for some € > 0, such that 5(0,-,t) = p(t)
and p(o, -, ) € Qp,,p, M for each a € (—¢,¢€). The variation vector field associated
with the variation p is defined to be the vector field W € T,(} given by

W(t) = 2pat) = Dup(0,-8).
a=0
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Clearly the map p— W € T,f1 is surjective. Thus, if ¥ is a functional on QM we
may define %.:T,Q2 — T, R by

7.(W) = d¥[p(a)]/dala=o

where 7 is a variation of p with variation vector field W.

DEFINITION 4.7. The path p € (M is eritical for the functional #:Q — R in
case P

%.(Dap) = =7 [p(e)] T 0

for each variation p of p.

So, for example, if 7 takes its minimum at p € QM, and if d¥[p]/dw is always
defined, then p is a critical path.

The variational principle discussed above provides a convenient and flexible no-
tion of criticality for the density manifold. It is a simple exercise, for example, to
verify the geodesic equations by this method.

5. Configuration space quantization. Recall now from Theorem 2.3 that
the renormalized classical action associated with a Markovian diffusion £ having
current velocity vector field v = 1(b + b,) and osmotic velocity vector field u =

3(b=b.) = 3(Vo/p) is

1 1 1= 1 1 1
E -2—<b,b)+'2“V'b—<p+-1—2-R] —E[E(v,v)—i(u,u)—§o+ﬁR]
1 1 1
—/Iv!(i(vav)—i(uau)_(p+ﬁR)p

= 3= 3o [ (o= 5F) 0

However, ((u,u)), € C*°(M) is defined pointwise on M since u is not a tangent
vector. We therefore consider V(p) € C*°(M) defined by

(5.1) Ve =g [ e+ [ (0-5R)

as a scalar potential on M. Now consider a smooth time-dependent 1-form A €
T*M, and form the potential

Yoalon) =V + [ (aah - (an)

While V is lifted to TM from M, "V, 4 lives on TM. Using the Riemannian and
symplectic structures of TM we now prove the following.

THEOREM 5.1. The path p € QM 13 critical for the action

Ip.ald] = /, ({0, 90p = Vooa(p,0))

if and only if the Schridinger equation
By _1(1o; .\ (1l
za—t—§<—.V - A ;VJ—AJ Y+ oy

1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



728 J. D. LAFFERTY
holds for ¢. = exp(R + 1S, + 1S4), where v = VS, i3 the vector field tangent to
p, u=VR="Vlogp, and Q(p)A* = VS,.

PROOF. It follows from general principles that we need to determine the second
order vector field Z € T?M associated with the pullback form

Qr, . = (FLy4)" 02
through the relation
1zQL,,4 =dE, 4.

Here FL:TN — T*N denotes the fiber derivative of the Lagrangian L and E, 4
is the associated energy.

Let us first suppose that A = 0. Then since the Lagrangian splits we need only
determine the gradient of V under the weak Riemannian structure ({-,-)), on TM.
In this case, along an integral curve ¢t — (p(t), v(t)) of Z we have that

dv/dt = S(a(t), v(t)) — [grad V (z(t))]o(e)

where [w], denotes the vertical lift of w to T,,(TM), and S is the geodesic spray
constructed in the previous section. Some elementary computations show that

dV(p) v = (v, —3VV - ul, + (v, Vool o — (u, Vou)),.
But this reduces to
dV(p) v= (v, Vo —iVV.-u—- V),
since u is a gradient, and therefore
grad V(p) =, —Vuu(p) — VV - u(p) + V(p)
where Vo is the constant vector field p — V(p) = Vi on M.
Next notice that Apg commutes with V- and V. For if f € C°°(M) then by
Ricci’s identity
ViViVif =V;ViVif — RL;Vif = V;ViVif — RpyVif
so that
ViAf =Vilpaf = VEViVif + RFVif = ApcVif.
We thus have the relation
(5.2) /0t + Vv —Vyu+ $Apgu+ Ve =0

along an integral curve of Z.

Let us now consider the 1-form A. There are two approaches to obtaining the
symplectic gradient associated with the pullback form. The first istolet L4s:TM —
R be given by La(v) = {(A,v),,v € T,M. Then we may form the fiber derivative
FLA:TM - T*M,

FLA(v)-w = (A w),,

and the pullback form QLA = (FLa)*Q. If X1, X3 € T?T M are given by
Xl = ((P,U), (vlaUQ))v X2 = ((p’ ‘U), (’()3,’()4))
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with respect to a local chart, then clearly
Qp,(X1,Xo) = UTFLy - X;,TFL4 - X3)
= Q((Ar))p((Uth«A, Vo - v1), (va, Dp(A, ) - v3)).

The second approach, which we adopt here for simplicity, is to work with the
variational principle of §4, and use the basic properties of the family of Laplacians
p+— A,. We will then need to note that equation (5.2) takes the equivalent form

S, 1 1 1o
a5t T3¢ gww) =5V u=0

upon appropriate normalization of the generating function S,. To this end let 7 be
a variation of p. We need only examine the potential term

IA=// (A, v)pdpzdt
1M

under variations of p, since it is clear that

Do [ (A 45= [ (.49 Dup

For p € M let A(p) =, A(p) = A be the 1-form A(p) = (Q(p)A")®. Then we have

that
IA=// (A, v)pdpz dt
1M

since we assume v to be a gradient. Now, writing A(p(a)) = A(a),
dI A 77)
[p( D Aa),v de:cdt+ (A Dy (7p)) dpz dt.

But now A is exact, so a simple manipulation gives

/I /M<A,Da(w))szdt= - /1 M%Daﬁszdt.

Isolating D7 in the integral [, [,, (DaA(e), v)p requires the identity

DaX(p) =, (X = Q(p)X)(Dap/p)

for the projection X = QX of an arbitrary C° vector field X. To verify this
identity let f € C°(M,C>(M)) be such that [,, f(p)p = 0; that is, f(p) € K, for
each p € M. Then by smoothness of A71,

v, )+ —

(63 Dadgly 0e)) = Azt (Das(ple)) - Vit - Da (L)),
in particular,
_ v
Daf - VA;'f - Dq ( p”) € K, = Dom(A;1).
To see this, set g(a) = A;(L)f(ﬁ(a)). Then Az(q)g(a) = f(p(e)) and
D.f = ApDag + Da(V5/P) - Vg
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Therefore (5.3) follows by applying A;l to both sides of the equation
A,Dog = Daf — Da(Vp/p) - VA;lf
Now apply this to the case where V f(p) = Q(p)X. Then

Da(Q(p)X) = VA,! <Da (%V : (Xﬁ)) ~Q(p)X - D (V_ﬁ))

p)X - —
o (s (82) x-oie o (22)

p
—va; (p (X - QX007 ))
=, (X- Qx>

Apply this identity now to the integral f; f,,(DaA(e),v)pdz dt to obtain

// (Da/i(a),v)dezdtz// (A* — Q(p)A* V) DB dprz dt.
1Jm 1Im

Together with the expression (5.2) it now follows that p € (UM is critical for the
Lagrangian L, 4 if and only if
0S4 1

0s, 1 §
at+2(vv)+so+ (AA)+8—+(A A, v) - 2

is a function of t alone. By normalization of the generating function S, + S4 we
may assume that this expression vanishes. Then under the gauge transformation

(u,u)—%V-u

0S4
A— A-— A cpH¢+—aT
we obtain
asv+1(vv)+<p+ 5(4- A, Ab — A")+@
(59) ot 2 ot

+(/§—-A,v)—lu,u)—-§V-u=0,

5
which, together with the continuity equation, is equivalent to the Schrédinger equa-
tion with ¢ = exp(R + #(S, + S4)), as claimed.

We end this section by commenting briefly on the cases where the densities may
have nodes and where the base manifold M is not assumed to be compact.

Let M be a general smooth Riemannian manifold, and let M be the collection of
smooth densities on M. If p € M, we may form the osmotic Laplacian A, as in §3.3:
Let X! be the completion of C>°(M), the subspace of ¥ = L?(dpsz) consisting of all
smooth functions which are constant outside a compact set, in the norm associated
with the quadratic form

) (hoh =3 [ V1 5apdus+ [ fopdue

Then (-,-); is closeable, and we may let %Ap be the operator corresponding to this
quadratic form.
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Now let t — p(t) be a smooth curve in M with p(0) = p. If the gradient

lap
= -V 1(-7F
V= Ap < at)

exists in L%(p) then by elliptic regularity for A, we may conclude that v is smooth.
The definition of variation of compact support is then made in the obvious way, and
the above results go through under the appropriate modifications. We recall that
for noncompact M the group D(M) becomes less manageable; however, Moser’s
theorem goes through under suitable restrictions on the densities at infinity [7].

The case where p may have nodes is less easily generalized. From the point of
view of stochastic mechanics, the nodes of the density are barriers for the diffusion
on configuration space. More precisely, the following theorem is proved in [20].

THEOREM 5.2. Suppose that M is compact, and that £ s a smooth Markovian
diffusion satisfying
%(DD,E + D.D¢)=-Vp
for some ¢ € C®°(M x I). Let p be the density of £ and set
Ze = {(z,t)|p(z,t) <€} CMx I
Let 7. be the stopping time
Te = inf{tl(f(t),t) € ZE}’

with e = 0o in the event that {t|(£(t),t) € Z;} = O and let & be the Markov
process defined on M = M U {oo} by &:.(s) = €(s A7) and & (7e) = oo. If Pre is
the measure on path space corresponding to &, then

e]i_I,I%) Pre(r: < o0) =0.

However, for technical reasons, this phenomenon is difficult to investigate in the
context of configuration space quantization. Suppose we let Mg be the collection of
smooth densities, possibly with nodes, on M. As before, we let N be the Fréchet
vector bundle over M consisting of the smooth n-forms on M, let K € N be the

closed subbundle
K={n€NI/ n=0},
M

K the affine subspace K + x, and take
Mo={peXl [ sozovrecs,on)
M

where C§° (M) is the collection of smooth nonnegative functions of compact sup-
port on M. Then M is a closed convex subset of a closed affine subspace of N. If
p € Mo, we will denote by Z, the closed subset of M consisting of the zeros of p;
that is, Z, = {z € M|p(z) = 0}. Note that the quadratic form construction of the
operator A, given above applies equally well to the present case where p has nodes
and M is noncompact. However, suppose that p € Mg — M, and let ¢ — p(t) be a
smooth curve in Mg with p(0) = p. Suppose that px € (IM is a sequence of paths
which converge to p in the C* topology. Then we may try to obtain the tangent to
p at t = 0 by considering the operators A,, (o). However, the family {px(0)A,,(0)}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



732 J. D. LAFFERTY

is not uniformly elliptic, and thus, it is not clear, in general, how to obtain esti-
mates guaranteeing the existence of S! € ¥!(p) which is smooth on Z; and satisfies
Op/0t = =V - (VSp) = —pA,S. It therefore does not seem possible to give Mg the
structure of a Fréchet manifold in a manner analogous to the construction of §3.

6. The group of diffeomorphisms over the densities. From the functorial
relation (1.1) we see that the cotangent map M — T*M yields a mechanical system
in C by the procedure of configuration space quantization. In this section we study
the fiber bundle 7: (M) — M as a means of obtaining a structure theorem relating
C and Q.

The essential idea is that the cotangent foliation T* M — M involves an implicit
semidirect product structure since a path of densities is the adjoint flow of the
tangent vector fields. To make this structure explicit, we may canonically lift to
T*D(M). The group D,(M) is then an isotropy subgroup under which the lifted
Hamiltonian system is right-invariant. Dividing out by D,(M) then leads to a
symplectic diffeomorphism with the coadjoint orbits in a semidirect product. The
resulting structure is a special case of a general framework studied in [15] and [10].
We shall refer to [15] for many details and further discussion of the general theory.

6.1 The fiber bundle m: D(M) — M. We begin by collecting some simple facts

relating to the principal bundle 7: D (M) D) M. Recall that projection 7 acts

by pushforward of the Riemannian volume element g, and there is a global trivi-
alization D(M) ~ D,(M) x M. Let V C TD(M) denote the vertical bundle. The
vertical subspace V,,n € D(M), is given by
Vy =kerTy,m = {X € T,D(M)|T,n(X) = 0}.
Suppose that X € V,, C T,,D(M) and let t — n(t) € D(M) be a curve representing
X at . Then
_d
T dt|,_,
so V consists of those vector fields X over 5 such that X on~! has divergence zero
with respect to the pushforward measure 7. u.
Let H,, be the horizontal subspace

H, ={X € T,D(M)|X o~ = VSx,Sx € C®(M)},

and let H = {J, Hy be the corresponding horizontal subbundie. Then clearly
T,0(M)=V,®H,, Hg,=TRH

so that H is a connection with respect to the right action of the structure group
D.(M) on D(M). (Note that ¥ is not a connection with respect to the left action.)
Moreover, TD(M) = H® V is an orthogonal splitting with respect to the weak
metric

(nt o 77_1)*77*/1 =0,
t=0

d
(m)tu = d_

T,n(X) .

(V. WYy = /M<V(X),W(X)>W(X) dnX.

Next, let A € T.D,(M) be a divergence-free vector field on M. Then EXPtA
represents the flow of A, and the fundamental vector field A* is given by

A*(n) = gzn ocEXPtA
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To verify that A*(n) is an element of the vertical subspace V, we simply note that

d
4 (noEXPtA)up = 7 (noEXPtAon ™ 1)uneu

dt];—o t=0
= Lrnoson-1Mupt = Ly, ansp=mLap =0

since the Lie derivative is natural with respect to pushforward. Now define the
connection 1-form w to be the Lie algebra valued 1-form given by w(X) = A in case
A* = vert X where vert X is the vertical projection of X. The form w is well defined
since the group action of D, (M) is free and transitive on fibers. We therefore have
the identities

w(Tno A) =w(A(n)) = 4,

w(X on) =w(TRy 0 X) = Ad,-1w(X) = n*w(X),
and the curvature form Dw is defined in the usual way:
Dw(X,Y) = dw(horiz X, horizY).

Suppose we now ask to what extent the geometries of D, (M) and D(M) may be used
to give information on the geometry of the density manifold M. For the moment
let gp,(m) and gm denote the metrics on the manifolds D,(M) and M. We may
realize the bundle metric gp(ar) by setting

oMy (X, Y) = gu(m X, 1Y) + gp, (ay (w(X), w(Y)).
Then we have that
9o(M)(TRy 0o X, TR, oY) = gu(m.TRy 0o X, 7. TRy oY)
+ 90, (M) (Ady-1w(X), Ady-10(Y))
= gu(mX, YY) + gp, () (0" w(X), 0" w(Y)).

However, the metric on D,(M) is not invariant under the adjoint action. Thus,
this construction does not yield useful geometrical information. Clearly this is an
infinite-dimensional phenomenon. (In fact, a group admits a bi-invariant metric
if and only if its image under the adjoint action is relatively compact.) A related
observation is simply that M is not a reductive homogeneous space, in the classical
sense, as a result of the relation [T, M, T,D,(M)] € T, M. Therefore, the relation-
ship between the geometries of M, D(M), and D,(M) is, indeed, very restricted.
Algebraically, we may set

A¥(g/h) = {w € A¥(g)|w(X1,. .., Xk) = 0 if some X; € h}
with g =T.D and h =T, D,, and then
AL (a/b) = {w € A*(g/B)|Ad p,w = w}.
We thereby obtain a mapping d: A% (g/h) — A5+ (g/h) given by the exterior deriva-
tive, and we infer that the cohomology H*(M) is given by a natural isomorphism
ker d: A% (g/h) — AL+ (g/b)
imd: A~ (g/h) — Ak(g/h)

with the cup product in H*(M) corresponding to the wedge product A. However,
this isomorphism may not be further reduced using the Riemannian structure.

H¥(M) ~
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6.2 Lifting the Hamiltonian. The choice of a connection on a principal bundle

P X B allows one to lift a Hamiltonian on T* B to the cotangent bundle T*P of
the total space. Let us now examine explicitly the cotangent lift of the Hamiltonian
system of the previous sections. For simplicity, we shall disregard the covector and
scalar curvature terms.

To quickly review the standard notations and conventions, let T +— 7; be a curve
of diffeomorphisms. We let X;,...,X, denote a generic coordinate chart on M,
and zy,...,2, the configuration under the motion of the diffeomorphism group;
that is, z; = z(X,t) = n:(X). The Lagrangian velocity V is given by V4(X) =
V(X,t) = dn(X)/0t, and the Eulerian velocity v is determined by v; oy = V4.
We therefore have a commutative diagram

™
Vi Tv'
M N M

The cotangent bundle T*D(M) consists of 1-form densities over the diffeomor-
phisms, so that

T;0(M) ={ap:M = T*" M R A" (M)|oy (X) € Ty x) M ® A (M)}
and the pairing between T, D(M) and T;D(M) is given by

(@, V) = /M «(X) - V(X).

We therefore take the convention that the bundle metric (-, ) on TD(M) induces
the weak metric

(o B = /M«a/u)", 8/ () 00(X)

on T*D(M), where po € M is a given initial density. In short, the bundle isomor-
phism TD(M) — T*D(M) is described by the index lowering action.

DEFINITION 6.1. Let pp € M, n € D(M), and let @Q: X (M) — X (M) be the
projection operator constructed in §3. For n € D(M), we define Q,: T D(M) —
T,D(M) by

QnVa = (Q(Mapo)V on™) on = TRy 0 Q(nepo) o TRy-1V.
From the results of §3 concerning the osmotic Laplacian we have (see also [6])

PROPOSITION 6.2. Q, 13 a smooth operator on T, D(M).

To lift the Hamiltonian

1 1
o) =3 [ wop+s [ wuio+ [ oo
2/m 2/m M
= K(p,v) + V(p)
to the cotangent bundle 7* D (M), we first treat the potential term. Identifying the
density po with the function pp/p, the pushforward density p = n.pg is identified

with the function p(z) = po(X)J,; (X), where J,, is the Jacobian determinant.
Therefore,

/sop=/ o(n(X))po(X) dmX.
M M
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Similarly, if Txn denotes the Jacobian matrix dz/dX then

1Vap(z) _ 1(Txn) 'Vx(po(X)J71 (X)) _
2 p(z) 2 po(X)J7 1 (X) =00

u(z) =

and thus
V(n) = V(p) = V(nupo)
=1 / (U (X), Uy (X)) po(X) dre X + / o(n(X))p0(X) dae X,
2 M M

which lives on D(M).
Finally, letting o € T* D(M) correspond to V € TD(M) under the isomorphism
TD(M) — T*D(M) we form

(6.1) Hp, (1, 09) = 3(QnVi, QnVa) + V().
It is instructive to check directly that this lift is vertical.
PROPOSITION 6.3. The Hamiltonian H,, given above depends smoothly on po,

and is right invariant under the action of the subgroup Do, (M) = {n € D(M)|n.po =
po} of diffeomorphisms which preserve the density pg.

PROOF. Since the projection Q(p) depends smoothly on p, the Hamiltonian
clearly depends smoothly on pg. Invariance of the potential V(n) under the action
of Dy, (M) is also clear by change of variables.

It remains to check equivariance of the projections Q. To this end, let ¢ €
Dpo(M), n € D(M), and V;, € T,D(M) and observe that

QnosTRy 0V = QropVy 0= (Q((n 0 @)spo)Vyodo(nog) )onos
= (Q(n« © $upo)Vnon~)ono¢
= (Q(nepo)Vyon ') onod =TRy0QyuV.

Thus the diagram

0 ™% 71p
Ql lQ
o ™ T1p

is commutative. In addition, it is a simple matter to check that
((TR¢Vn’TR¢Vn»n°¢ = {(Va, Vadn-

Therefore, since the bundle map TD(M) — T*D(M) is equivalent to the index
lowering action, we now have that H,, is D,, (M )-invariant.

6.3 Reduction and semidirect product structure. The invariance under D,, (M) of
H,, on T*D(M) leads to Lie-Poisson equations on the dual of a semidirect product
Lie algebra. The equations are precisely those obtained by the configuration space
quantization of the previous section. Our approach here is based on the work of
Marsden, Ratiu, and Weinstein [15], and we therefore first summarize the essential
points of the theory in the following two theorems.

Let 4: G — Aut(V) be a representation of the Lie group G on the topological
vector space V. The induced Lie algebra homomorphism is denoted v': g — End(V').
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Let S = G x, V be the semidirect product which is the manifold G x V' together
with the group law

(91,v1)(g2,v2) = (9192, v1 + ¥(g1)v2).

If f:g* — R then for u € g*, 6f/6u € g denotes the functional derivative defined
dually by
df(u) -v = (v,6f/6u),

where df is the Fréchet derivative and {,-) denotes the dual pairing of g* and g.
The Lie-Poisson bracket on s* is then given by

©62) (EGHmw) = (i[5, 58] Vo (o (3) 28 - (32) 25

with F,G:s* > R, 6F/éucg, and 6F/SW € V.

THEOREM 6.4. Let J be the moment map for the right action of the semidirect
product S =G X,V onT*S, and let J:T*G x V* — §* be given by

J(ag,p) = (T2 Rg(og), 7" (97 )p),

where ag € T;G and p € V*. Then J i3 a moment map for the action of G x4V

on the Poisson manifold T*G x V*, and both J and J are canonical. Furthermore,
there 18 a canonical map I such that the diagram

T*S
27N
TG xVv: L s
commules.

A further analysis shows a more detailed picture. In particular, an analysis
of the symplectic leaves of T*G x V* shows that if the given Hamiltonian Hp is
right invariant under G, = {g|7*(9)p = p}, then H, induces a Hamiltonian on
T*G/Gy, and via the moment map the reduced space J~1(0,)/Gp, where O, is
the coadjoint orbit of G in g*, is symplectically diffeomorphic to the coadjoint orbit
S - (u,p), p € g*, in s*. Varying p gives a Hamiltonian on s*, and one is led to
derive Lie-Poisson equations on s*, where the bracket is explicit.

THEOREM 6.5. The family {Hp}pev+ of Hamiltonians induces a Hamiltonian

H ons* by
H((T.Rg) g, 7" (67 ") = Hy(ay),
with associated Lie-Poisson equations on s*. In particular, the curve cp(t) € T*G
13 a solution of Hamilton’s equations for Hy if and only if J(cp(t),p) is a solution
of the Hamiltonian system Xy on s*. In addition, the evolution of p is determined
by
p(t) = 7(ep()71)p-
6.4 Semidirect products and the density manifold. Let us now return to the bundle

m:D(M) — M and recall some basic facts regarding the group action of D(M).
Consider the right action (7, ¢) — Ry¢ = ¢on of D(M) on itself. The cotangent lift
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of this action is described by (7, a¢) — (T;onRy-1)*a, and the associated moment
map is given by
JL(om) = (TeLy) oy

which is left-inariant. The left action induces the cotangent lift
(n, o) = (TyogLn-1)" g

with right-invariant moment map

Jr(ay) = (TeRy) oy

where T, R,, is given by right translation. Thus, Jr(ay)€ = (ay, o).

The vector space in the appropriate semidirect product should be identified
with the densities, which is however not a vector space. We therefore take V =
F(M) (= C*(M)) and identify the dual *(M) geometrically with the densities.
Let v: D(M) — Aut(F(M)) be the representation given by pushforward. Then
the induced Lie algebra representation v': X (M) — End(F(M)) is minus the Lie
derivative, v¥'(v)f = —L,f. From the general form of the Lie-Poisson bracket on
the dual of a semidirect product Lie algebra we now easily infer that the bracket
on (X(M) Xy C®(M))* is determined by

6G 6F oF 0G
{F,G}(v,p) = /M <U, [%, %] > p+ /M (Lac/&;g; - LsF/avE) p.

We remark that the Poisson structure described above is essentially the structure
for compressible flow constructed in [15]. To adapt it to our purposes we must take
into consideration the projection operator Q.

Under the isomorphism M =~ 7*(M) the induced representation is again push-
forward, and for pg € M, D,,(M) is now an isotropy subgroup. The moment map
J for the action of the semidirect product D(M) x., F(M) on T*D(M) x F*(M) ~
T*D(M)x M is

J(an, p) = (TeRy)* an,n"p).
Let H be the Hamiltonian on T*D(M) x M given by H(ay,p) = H,(cy), where
H, is given in §5. Then by forming the Hamiltonian H:s* — R through the
composition HoJ = H we reduce to a Hamiltonian system on the dual of the
semidirect product Lie algebra s = X (M) x.» F(M).

It is now straightforward to check that the equations of configuration space
quantization are obtained by solving for the Lie-Poisson equations F = {F,H}.
We omit the details; a similar calculation is carried out in the following section.

Finally, we make the following remark which suggests a more refined structure
for the present situation of lifting a Hamiltonian. Let X be a vector field on M.
Then X (n) = Xon determines a right-invariant vector field on D(M). Now form the
vector field Q, X (n) € T, D(M), which is again right invariant under the induced
action of D(M). From the results of §3, we infer that

[QuX(n), QnY (m)](e)
=QW)(V - Y(X - Q(uX)) - Qu)(V - X(Y - Q(uY)) + Q1 X, Q(r)Y]
= Qe(v ’ Y(X - QeX) -V. X(Y - QCY)) + [QCX, QeY]’

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



738 J. D. LAFFERTY

and that the Jacobi identity holds under projection by Q.. Since we may replace the
form p with any density p € M, we obtain a one-parameter family of Lie algebras
Q,(M) which does not correspond to any one-parameter family of subgroups of
the diffeomorphism group D(M). Since the Hamiltonian on 7*D(M) involves the
projection onto the cotangent bundle of 7% M, in actuality, we are solving for the
Lie-Poisson equations in the one-parameter family of duals of semidirect product
Lie algebras s, = Q, X, F(M). Thus, lifting to a degenerate Hamiltonian on the
total space simply allows the use of the underlying Lie group D(M) to obtain a
single semidirect product Lie algebra s in which the family {s,} is embedded.

6.5 A Poisson map g:5* — ¥. Consider now the symplectic space (¥,w),
where ¥ is the complex Hilbert space ¥ = L%(dpsz) and w is the symplectic form
w(X,Y) =Im(X,Y)y, with (-,-)y the L? inner product of ¥. Let Fy denote the
collection of maps fy: ¥ — R given by

fu(p) = 3(Hp,0)x,

where H is a selfadjoint operator on ¥. The Hamiltonian vector field X5, = Xg
corresponding to fy is given by
Xu(p) =iHp.
The following provides a canonical mapping between X and s*.
THEOREM 6.6. Let s* be the dual of the semidirect product Lie algebra X (M)
Xy C°(M) constructed in the previous section. Let p:s* — X be given by

p(a, p) = efHS,

where VR = u = %Vp/p, and VS = Q(p)v when v’ = a/u. Then p is a Poisson
map when we restrict to those fy € Fy with H of the form H = —A + p, for some
smooth potential o: M — R on M.

As the following proof shows, one may consider more general selfadjoint operators
H = —A + ¢ by taking ¢ to be a Rellich class potential, for example.

PROOF. Let H = —A+V and G = —A + U, where V and U are smooth
potentials. We have that

{fu, fe}u(¥) = w(Xnu, Xg)(¥) = Im(EHp,iGY)x.

If we let ¥ = eR**S then a simple computation shows that this reduces to

(s fan(®) = /M(v ~ U)(AS +2(u, VS))p.

Another computation shows that
1
fuow(an) =3 [ (QWQ0) ~ V- u=(wu) +V)p

with (a/p) =’
Now, thinking of fi op and fg oy as functions of p and v (via the index lowering
action) we see that

——Mg: £ (v,0) = Mg%(v,p) = Q(p)v € X(M).
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Furthermore,

- / )
— Up)|=UecC®M
= ([ ve (M)
(/ Vp) =V e C®(M).
M .
We therefore have that

{fuop, fcop}(v,p)= — /M <v, [”’;vo b, 6]?: p] > p
+ /M (Léfnop/év (6—%;—@) = Lsggop/sv (m;%» p
=~ [ 100 Qo+ [ (Lawnl - LoV s

= /M(Lo(p)vU = LapV)e

since the terms containing

and

<l

6
— V-u+ (u,u
= [t @
are common to both 6 fgo,/6p and 6 fro,/6p and therefore cancel. Simplifying,

we are left with

{fHop fcop}(v,p)= /M(VS VU -VS-VV)p

=/(V—UXAS+%%V$M
M

and the result follows.
It is now a simple matter to check that the multiplicative action of S! on the
collection of unit vectors of ¥ is symplectic, with moment map

(I (), 2) = (z/2)ll]*.

The reduced space is the projective Hilbert space H, which is the symplectic space
of rays in ¥, and the mapping p pulls the action of S* on ¥ back to the identity
on §*. To summarize, we have the diagram

T*M & TD « TDxM J, LAY
mal lp TAN I Lin
M & D T*(D x., C®(M)) H

In conclusion we comment on the indeterminancy in the generating function S,
by considering the manifold of NV indistinguishable particles in M, denoted By (M).
To be precise, let n = dim(M) > 2, set

N
Fn(M) = {(zl,...,xw)eHMm,-;éxj ifi;éj},

i=1
and form an equivalence relation on Fyy (M) by setting z ~ z’ in case the coordinates
of z differ from the coordinates of z’ by an element of Sy, the symmetric group on
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N letters. The manifold By (M) is obtained from Fj (M) modulo this equivalence
relation. The fundamental group m1 Fxy (M) of Fn (M) is the pure braid group with
N strings, and the fundamental group of m; By (M) is called the (full) braid group
of M. 1t is clear then that the natural projection

p:FN(M) i BN(M)

is a covering map, with group of covering transformations Sy. Therefore there is
a canonical isomorphism 7, By (M)/m1Fn(M) ~ Sy. If we choose a base point
zo € Fn(M) for 71 Fn(M) and let Z9 € By (M) be such that p(zo) = Zo, then any
element of 71 By (M) represented by a loop

71— By(M), 4(0) =5(1) = &0,

lifts uniquely to a path v:I — Fy(M) with 4(0) = zo, and (0) — ~(1) defines
a homomorphism o: 7 (Bn(M),Zo) — Sn, with kero = 7 Fy(M). In the case
that dim(M) > 3 and (M) = 0, then m Fy(M) = 0 and Fy(M) is the uni-
versal covering space of By (M) (essentially since any knot may be untied in four
dimensions).

Now consider a critical path of densities on By (M), with tangent v = VS,. If v
is a loop in By (M), it may be that tracing the value of S, around ~ results in initial
and final values differing by an additive constant. If we require that ¢ = ef+iSv
be smooth across the nodes of density, then i changes by a multiplicative constant
¢(v) of modulus 1 which only depends on the homotopy class of ~ in 7 By (M).
Since ¢: 71 By (M) — C is a homomorphism, by restricting to m; By (M)/m1 Fn (M)
we obtain a character of Sy. If 71 Fxy(M) = 0 then % lifts to a well-defined wave
function on F (M), which is either a symmetric or antisymmetric function of its
variables, depending on which character of Sy the map ¢ determines (the identity
or the sign of the permutation) {20].

This observation suggests the following mathematical setup to more directly
account for the indeterminancy in S,. Rather than considering the tangent bundie
T M, one may consider the collection of Lagrangian submanifolds over the densities,
which may be given a symplectic structure. A Lagrangian submanifold L C T*M
which is the graph of the closed form w is then said to be quantizable in case

/ w=2mk(r), k(7)€L
:

for each closed loop &4 in M. In other words, the de Rham cohomology class
[w/27] in H'(M,R) lies in the image of the singular cohomology H!(M, Z). Since
the Lagrangian property is preserved by Hamiltonian vector fields, these observa-
tions suggest a dynamical approach to obtaining representations of diffeomorphism
groups using the machinery of geometric quantization.
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Edward Nelson. Thanks are due to Professors Jerrold Marsden and John Mather
for helpful and interesting conversations.
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