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Abstract

Under the in¯uence of randomly occurring disasters, the eventual extinction probability, q, of a birth and
death process, Z, is a random variable. In this paper, we obtain an integral expression for the probability
density function g�x� of q under the assumption that the population process Z is a time homogeneous linear
birth and death process and the disasters occur according to an arbitrary renewal process so that its
interarrival times have a density. An example is provided to demonstrate how to evaluate the integral
numerically. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Consider a birth and death process Z � fZ�t�; t P 0g; with Z�0� � 1: If the evolution of Z is
under the in¯uence of a sequence of randomly occuring disasters, then the probability of ex-
tinction of Z is a random variable and not a constant as is the case in the absence of outside
in¯uence.

In this paper we consider a time homogeneous linear birth and death process Z, under the
in¯uence of randomly occuring disasters whose timing is governed by an arbitrary renewal pro-
cess. Many natural phenomena can be modeled by this process. For example, a population of
boars in the Central Range of Taiwan are living under the risk of forest ®res. We may assume that
the forest ®res occur according to a Poisson process, with each forest ®re killing a binomial
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proportion of the boar population. Between ®res, the size of boar population is modeled by, e.g., a
time-homogeneous Markov branching process. A second example is a population of insects on a
farm. To protect the crops, farmers spray pesticide repeatedly over time. If we assume that the
waiting time between sprays are i.i.d. random variables with a common probability density
function f �t�, then the randomly occurring disasters (sprays) form a renewal process. Each spray
causes a binomial proportion of death of the insects. Between two sprays, the population of in-
sects follows a linear birth and death process.

Still another example is in pharmacology. Suppose a certain anticancer drug is administered to
patients. The drug stays in the body for a period of time whose duration (the residence time)
depends on the rate of metabolism of each individual patient. Here, the drug may be viewed as a
continuous stream of `disasters', and each disaster kills a binomial proportion of cancer cells.
Between two disasters, cancer cells grow and die following a linear birth and death process.

The model of a branching process with random environments has been discussed by many
authors like Athreya and Karlin [1], Kaplan, Sudbury and Nilsen [2]. Some excellent summaries
can be found in [3,4]. The topic was further studied by Brockwell et al. [5]; Pakes [6]; Zeiman [7];
Grey and Lu [8].

The main results we obtained are the integral form of the density of the asymptotic distribution
of the probability of population extinction and its numerical solution if the random disasters are
Poissonian. We believe that these results have not been discussed before in the literature.

The paper is organized as follows. In Section 2 we systematically utilize a regenerative property
of the Z process and an embedded Galton±Watson process with random environments (GWRE
process) to derive the extinction probability after each disaster. It has a very simple form, see (2.7).
In Section 3 we discuss the distribution G�x� of the eventual extinction probability (which is a
random variable). The distribution possesses a density g�x� which is the functional solution to
(3.5). An example is given to illustrate how to obtain the solution numerically.

2. Random disasters

Let Z � fZ�t�; t P 0g; with Z�0� � 1, be the population process under consideration where Z�t�
is the number of individuals that are alive at time t. At the start, Z grows as a time homogeneous
linear birth and death process with birth and death rates k and l until a disaster strikes. Suppose
the population is subject to disasters which occur at random times s1 < s2 < s3; . . . When a di-
saster happens each individual in the population has the probability d of surviving the disaster.
Alternatively we say the killing rate is e � 1ÿ d. It is assumed that the survival event of any
individual is independent of that of the rest in the population. Then, the number of individuals
alive prior to the ith disaster is Z�sÿi � and the number of individuals that survive the ith disaster,
Z�s�i �, is a binomial random variable with parameters d and Z�sÿi �.

Let X � fX �t�; t P 0g be a natural birth and death process, i.e., it is the Z process free of di-
sasters. Let M�s; t� � E�sX �t�� be the probability generating function of the `natural X '. To pro-
ceed, it is convenient to work with the interarrival times of the disasters, namely, ti � si ÿ siÿ1 for
i � 1; 2; . . . and t0 � 0, so that s1 � t1. We assume that t1; t2; t3; . . . are i.i.d. random variables with
density function f �t�.
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By a standard renewal approach (see, e.g., [9]) it is easy to see that the probability generating
function E�sZ�t�

1
�� of the population size right after the ®rst disaster is M��1ÿ e�s� e; t1�.

Now consider the embedded process Zn � Z��Pn
i�1 ti��� which is the number of individuals that

survive the nth disaster. De®ne Tn � �t1; t2; . . . ; tn� 8n P 1 and S�Tn� � �t2; t3; . . . ; tn� 8n P 2, and
let Fn�s; Tn� � E�sZn� be the probability generating function of Zn. Then by the i.i.d. property of
t1; t2; . . . ; we obtain

F1�s; T1� � F1�s; t1� � M��1ÿ e�s� e; t1�;
and for n P 2,

Fn�s; Tn� � E�sZn� � E�E�sZn j Z1�� � E�Fnÿ1�s; S�Tn���Z1

� F1�Fnÿ1�s; S�Tn��; t1�
� M��1ÿ e�Fnÿ1�s; S�Tn�� � e; t1�: �2:1�

De®ne m � m�t� � �lÿ k�t, b � b�t� � �l=�lÿ k���exp�lÿ k�t� ÿ 1�. Then (see e.g., [10] or [11])

M�s; t� � E�sX �t�� � bÿ �bÿ em�s
1� bÿ �1� bÿ em�s : �2:2�

Let bi � b�ti�, mi � m�ti�, Sn �
Pn

i�1 m�ti� and de®ne

A�ti� � ÿ �1ÿ e��bi ÿ emi�;
B�ti� � bi ÿ e�bi ÿ emi�; �2:3�
C�ti� � ÿ �1ÿ e��1� bi ÿ emi�;
D�ti� � 1� bi ÿ e�1� bi ÿ emi�:

Then

F1�s; t1� � M��1ÿ e�s� e; t1� � b1 ÿ �b1 ÿ em1���1ÿ e�s� e�
1� b1 ÿ �1� b1 ÿ em1���1ÿ e�s� e�

� A1s� B1

C1s� D1

; �2:4�

where

A1 � A�t1�; B1 � B�t1�; C1 � C�t1�; D1 � D�t1�:
Similarly, use (2.1),

F2�s; T2� � F1�F1�s; t2�; t1� � �A2s� B2

�C2s� D2� ;

where

A2 � A1A�t2� � B1C�t2� � �1ÿ e�eS2 ÿ �1ÿ e��b2 � e�eS1 ÿ �1ÿ e�2b1;

B2 � A1B�t2� � B1D�t2� � eeS2 � �1ÿ e��b2 � e�eS1 � �1ÿ e�2b1; �2:5�
C2 � C1A�t2� � D1C�t2� � �1ÿ e�eS2 ÿ �1ÿ e��b2 � e�eS1 ÿ �1ÿ e�2b1 ÿ �1ÿ e�2;
D2 � C1B�t2� � D1D�t2� � eeS2 � �1ÿ e��b2 � e�eS1 � �1ÿ e�2b1 � �1ÿ e�2:
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By induction, it can be shown that Fn�s; Tn� � �Ans� Bn�=�Cns� Dn�, where

An � �1ÿ e�eSn ÿ
Xnÿ1

i�1

�1ÿ e�i�bnÿi�1 � e�eSnÿi ÿ �1ÿ e�nb1;

Bn � eeSn �
Xnÿ1

i�1

�1ÿ e�i�bnÿi�1 � e�eSnÿi � �1ÿ e�nb1; �2:6�

Cn � �1ÿ e�eSn ÿ
Xnÿ1

i�1

�1ÿ e�i�bnÿi�1 � e�eSnÿi ÿ �1ÿ e�nb1 ÿ �1ÿ e�n;

Dn � eeSn �
Xnÿ1

i�1

�1ÿ e�i�bnÿi�1 � e�eSnÿi � �1ÿ e�nb1 � �1ÿ e�n:

And the extinction probability right after the nth disaster is

qn � Fn�s; Tn�js�0 �
Bn

Dn
: �2:7�

When e � 0 (i.e., disasters do not cause death) and k > l, then Bn and Dn become telescoping
series that Bn � �l=�lÿ k�� exp�lÿ k�Pn

i�1 ti � l=�kÿ l� ! l=�kÿ l� and Dn � Bn � 1. There-
fore qn ! l=k a.e. If e � 0 and k < l, then qn ! 1 a.e. The special case k � l also implies qn ! 1.

3. Probability of extinction under random disasters

To study the eventual extinction probability of the process Z we utilize the embedded process
fZng1n�1 in which Zn is the population size immediately after the nth disaster. This is a Galton±
Watson process in a random environment. We shall consider the supercritical case, k > l, in
which the extinction is not certain. By (2.7), the extinction probability of Zn, qn, right after the nth
disaster is a random variable which depends on the timing of all previous disasters, i.e.,

qn � qn�t1; t2; . . . ; tn�:
Let Tn and S�Tn� be de®ned as in Section 2, then qn satis®es the following iterative property:

qn�1�Tn�1� � qn�1�t1; t2; . . . ; tn�1�

� P Z
Xn�1

i�1

ti

 !�(
� 0

)

�
X1
m�0

PfZ�t�1 � � mg�qn�t2; . . . ; tn�1��m �3:1�

� F1�qn�t2; . . . ; tn�1�; t1�
� F1�qn�S�Tn�1��; t1�:
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Passing to the limit, the probability of extinction, q � limn!1 qn, of the process fZ�t�; t P 0g is
easily seen to satisfy the equation

q�T � � lim
n!1

qn�Tn� � F1�q�S�T ��; t1�; �3:2�

where T � �t1; t2; . . .� and S�T � � �t2; t3; . . .�
It is worth noting that the almost sure convergence limit, q, of qn, is a random variable which

depends only on the interarrival times and the killing rate.
Based on this equation we shall derive the distribution function of q, G�x� � Pfq6 xg; and

show that the density g�x� of q exists under very mild conditions. The proofs are long and will be
presented in Sections 3.1 and 3.2. They are followed by an example in Sections 3.3 and 3.4.

3.1. Di�erentiability of G

Theorem 1. Under the assumptions stated in Section 2. Let F1�s; t� � M��1ÿ e�s� e; t�, where

M�s; t� is as defined in (2.2). Let F �1 be the inverse of F1 with respect to its first argument, and F ��1 be
the inverse of F �1 with respect to its second argument (see (3.8) and (3.10) below). Assume that the
density f �t� of the interarrival times of disasters is such that o=ox�f �F ��1 �x; y���o=oy�F ��1 �x; y�� exists
and is integrable on �a; 1�, a � max�0; �r ÿ e�=�1ÿ e��, r is the natural extinction probability, i.e.
r � l=k. Then G�x� is differentiable on (0,1) with the only exception x � r.

Proof. By (3.2), conditioning on t1, we obtain

G�x� � P �q�T �6 x�
� EfP �q�T �6 xjt1�g

�
Z 1

0

f �t�Pfq�T �6 xjt1 � tgdt

�
Z 1

0

f �t�PfF1�q�S�T ��; t�6 xgdt

�
Z 1

0

f �t�Pfq�S�T ��6 F �1 �x; t�gdt

�
Z 1

0

f �t�G�F �1 �x; t��dt

�3:3�

since q�T � and q�S�T �� have the same probability distribution. To simplify (3.3), we notice that
when x is ®xed, F �1 �x; t� is a monotone function of t, therefore if we change variable (®x x) by
y � F �1 �x; t�, then t � F ��1 �x; y� for some function F ��1 . Also note that the integration limit t � 0 in
(3.3) corresponds to y � �xÿ e�=�1ÿ e� (for M��1ÿ e�s� e; 0� � �1ÿ e�s� e � x implies
s � �xÿ e�=�1ÿ e�) and t � 1 corresponds to y � 1, therefore by change of variable the last
integral can be written as below and we have
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G�x� �
Z 1

xÿe
1ÿe

f �F ��1 �x; y��G�y�
oF ��1 �x; y�

oy
dy: �3:4�

It is obvious that adding disasters only increases extinction probability; thus 0 < r6 q6 1.
Therefore G�x� � 0 for all 06 x < r, and G�x� is di�erentiable (in fact, G0�x� � 0) at least for
06 x < r. Let us write G�x� � R 1

�xÿe�=�1ÿe� H�x; y�G�y�dy, where H�x; y� � f �F ��1 �x; y��oF ��1 �x; y�=oy.
First we show that G�x� is continuous on [0,1). We already know that G�x� � 0 for all x in �0; r�. It
su�ces to consider r < x0 < x < 1. We have

G�x� ÿ G�x0� �
Z 1

xÿe
1ÿe

H�x; y�G�y�dy ÿ
Z 1

x0ÿe
1ÿe

H�x0; y�G�y�dy

�
Z 1

xÿe
1ÿe

�H�x; y� ÿ H�x0; y��G�y�dy ÿ
Z xÿe

1ÿe

x0ÿe
1ÿe

H�x0; y�G�y�dy:

The continuity of H�x; y� in x and boundedness of G�y� imply that the ®rst integral of the last
equality tends to zero when x tends to x0 from the right. The integrability of H�x0; y� with respect
to G�y� ensures that the last integral also tends to zero as x tends to x0 (see e.g. [12]). Hence G�x� is
right continuous. The proof for the left continuity is similar. Next we show that G�x� is di�er-
entiable on (0,1). Consider for r < x0 < x < 1,

lim
x!x0

G�x� ÿ G�x0�
xÿ x0

� lim
x!x0

Z 1

x0ÿe
1ÿe

H�x; y� ÿ H�x0; y�
xÿ x0

� �
G�y�dy

ÿ lim
x!x0

Z xÿe
1ÿe

x0ÿe
1ÿe

H�x; y� ÿ H�x0; y�
xÿ x0

� �
G�y�dy ÿ lim

x!x0

Z xÿe
1ÿe

x0ÿe
1ÿe

H�x0; y�
xÿ x0

G�y�dy:

The ®rst integral tends toZ 1

x0ÿe
1ÿe

oH�x; y�
ox

����
x�x0

" #
G�y�dy

by the Lebesgue Dominate Convergence Theorem. This integral is ®nite by the assumption of
H�x; y�. The second one tends to zero and the third one tends to a ®nite value both by the Mean±
Value Theorem for integrals, similarly for the case when x tends to x0 from the left. This proves
Theorem 1. �

Remark. Given an arbitrary f �t�, it is not di�cult to check the integrability of the function

o=ox f �F ��1 �x; y��
o
oy

F ��1 �x; y�
� �

since �o=oy�F ��1 �x; y�� is a function of y alone (see 3.11).

3.2. Density of q

Di�erentiating G�x� in (3.3) to obtain the density of q, g�x� � G0�x�, then
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g�x� �
Z 1

0

f �t�g�F �1 �x; t��
oF �1 �x; t�

ox
dt;

or equivalently (replace t by F ��1 �x; y�)

g�x� �
Z 1

xÿe
1ÿe

f �F ��1 �x; y��g�y�
oF �1 �x; t�

ox t�F ��
1
�x;y�

����� �
oF ��1 �x; y�

oy
dy: �3:5�

Unfortunately there is no close form solution of g�x� for the general case in (3.5); however for the
special case that the occurrence of disasters follows a Poisson process, we develop a simple
method that can evaluate the numerical solution easily.

3.3. An example

To illustrate how g�x� can be evaluated, we assume that the occurrence of disasters follows a
Poisson process with intensity a > 0, then the interarrival density is f �t� � aeÿat, t > 0.

By (2.2) and (2.3),

M�s; t� � �lÿ le�kÿl�t� ÿ �kÿ le�kÿl�t�s
�lÿ ke�kÿl�t� ÿ �kÿ ke�kÿl�t�s : �3:6�

F1�s; t� � M��1ÿ e�s� e; t� � �lÿ le�kÿl�t� ÿ �kÿ le�kÿl�t���1ÿ e�s� e�
�lÿ ke�kÿl�t� ÿ �kÿ ke�kÿl�t���1ÿ e�s� e� : �3:7�

To invert F1�s; t� in (3.7) for ®xed t, set x � F1�s; t�, we obtain

s � F �1 �x; t� �
1

1ÿ e
�lÿ ke�kÿl�t�xÿ �lÿ le�kÿl�t�
�kÿ ke�kÿl�t�xÿ �kÿ le�kÿl�t�

�
ÿ e

�
; �3:8�

so that

o
ox

F �1 �x; t� �
1

1ÿ e
�kÿ l�2e�kÿl�t

��kÿ ke�kÿl�t�xÿ �kÿ le�kÿl�t��2 : �3:9�

Next we invert F �1 �x; t� with x ®xed. Put y � F �1 �x; t�, then

t � F ��1 �x; y� �
1

kÿ l
log

�k��1ÿ e�y � e� ÿ l��1ÿ x�
�kxÿ l��1ÿ ��1ÿ e�y � e��

� �
; �3:10�

hence

o
oy

F ��1 �x; y� �
1ÿ e

�k��1ÿ e�y � e� ÿ l��1ÿ ��1ÿ e�y � e�� : �3:11�

If we write c � a=�kÿ l�, then (3.5) becomes
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g�x� � a�kxÿ l�cÿ1

�1ÿ x�c�1

Z 1

xÿe
1ÿe

1ÿ ��1ÿ e�y � e�
k��1ÿ e�y � e� ÿ l

� �c

g�y�dy; �3:12�

for l=k6 x < 1 and g�x� � 0 for all x in �0; l=k�.
Put

c �
Z 1

l
k

1ÿ ��1ÿ e�y � e�
k��1ÿ e�y � e� ÿ l

� �c

g�y�dy �3:13�

then obviously

g�x� � a�kxÿ l�cÿ1

�1ÿ x�c�1
:c

for all x in the interval �l=k; �l=k� � �1ÿ l=k�e�. To determine the value of g�x� for x in the
interval (�l=k� � �1ÿ l=k�e, 1), we observe thatZ 1

xÿe
1ÿe

1ÿ ��1ÿ e�y � e�
k��1ÿ e�y � e� ÿ l

� �c

g�y�dy � cÿ
Z xÿe

1ÿe

l
k

1ÿ ��1ÿ e�y � e�
k��1ÿ e�y � e� ÿ l

� �c

g�y�dy:

The integral can be estimated subinterval by subinterval that g�x� is a certain multiple of c by
Simpson's rule. This will be demonstrated in Section 3.4.

3.4. Numerical results

Suppose k � 6, l � 2, e � 0:4, a � 4. Then (3.12) becomes

g�x� � �4=�1ÿ x�2�
Z 1

�xÿ0:4�=0:6

h�y�g�y�dy; 1=36 x < 1;

where h�y� � �1ÿ �0:6y � 0:4��=�6�0:6y � 0:4� ÿ 2�. Let

c �
Z 1

1=3

h�y�g�y�dy;

then for all x in �1=3; 0:6�, g�x� is a multiple of c. For example,

g�1=3� � 9

Z 1

1=3

h�y�g�y�dy � 9c; g�0:5� � 16c; g�0:6� � 25c; . . .

The values of g�x�, x 2 �0:6; 0:76�, can be estimated from the values of g�x� for x in �1=3; 0:6�. For
example,

g�0:7� � �4=0:09�
Z 1

0:5

h�y�g�y�dy � �4=0:09� c

 
ÿ
Z 0:5

1=3

h�y�g�y�dy

!
:
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Table 1

The density of the extinction probability, g�x�, given by (3.12) (k � 6, l � 2, e � 0:4, a � 4)

x g�x� as multiple of c Numerical values of g�x�
0.333 9.0000c 0.72809

0.367 9.9723c 0.80675

0.400 11.1111c 0.89888

0.433 12.4567c 1.00774

0.467 14.0625c 1.13764

0.500 16.0000c 1.29438

0.533 18.3673c 1.48590

0.567 21.3018c 1.72329

0.600 25.0000c 2.02247

0.633 26.0962c 2.11116

0.667 27.2419c 2.20385

0.700 28.2807c 2.28788

0.733 28.8807c 2.33642

0.767 28.3461c 2.29317

0.800 28.8609c 2.17302

0.833 24.4717c 1.97974

0.867 20.8776c 1.68898

0.900 16.2419c 1.31395

0.933 10.6727c 0.86341

0.967 4.6793c 0.37855

Fig. 1.

C. Lee / Mathematical Biosciences 164 (2000) 93±102 101



The integration limit �1=3; 0:5� is contained in the interval �1=3; 0:6� therefore the integralR 0:5

1=3
h�y�g�y�dy can be estimated by Simpson's rule. (For example, divide �1=3; 0:5� into

f8=24; 9=24; 10=24; 11=24; 12=24g; then

Z 0:5

1=3

h�y�g�y�dy � 0:3636843c

and therefore g�0:7� � 28:2807c). Continue in this way and using the fact that
R 1

1=3
g�x�dx � 1, the

constant c can be determined as c � 0:080899. Table 1 lists 20 values of g�x� and the graph of g�x�
is sketched in Fig. 1.
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