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THE DENSITY TOPOLOGY

FRANKLIN D. TALL

The density topology on the real line is a strengthening of
the usual Euclidean topology which is intimately connected with
the measure-theoretic structure of the reals. The purpose of
this note is to treat the density topology from a modern
topological viewpoint.

1. Introduction. A sprinkling of papers has been published
by analysts on the density topology. We summarize the important
results from the literature, and contribute some new ones. These
mainly concern the characterization of certain subspaces, and considera-
tion of cardinal invariants. Many of the topics we touch upon can be
treated in more general measure-theoretic structures than the real line,
but this does not appear to be particularly fruitful topologically. The
organization of this paper is as follows: in §2, results stated explicitly or
inherent in the literature are given; in §3, some new results are obtained,
especially concerning various subspaces of X; in §4, the implications for
X of various set-theoretic hypotheses are examined.

2. Definitions and results from the literature.

DEFINITION 2.1. A measurable set E C R has density d at x if

2h

exists and equals d. Different authors use slightly different definitions of
density but they all agree in case d = 1 and therefore determine the same
topology. Denote by φ(E), {x GR: d(x, E) = 1}. Let A ~ B mean
Λ Δ S (the symmetric difference of A and B) is a nullset (i.e. has
measure zero).

THEOREM 2.2. (See e.g. [12].) Let A be measurable. Then

(1) φ(A)~A,
(2) ifA-B, then φ(A) = φ{B\
(3) φ(0) = 0 andφ(R) = R,
(4) φ(AΠB)=φ(A)Γ)φ(B),
(5) if A C β, then φ(A) C φ(B).
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THEOREM 2.3. (See e.g. [2].) The family of all measurable sets E
such that φ(E)D E is a topology on R, henceforth denoted by (X, 3~) or
just X if confusion is unlikely. Clearly SΓ is stronger than the usual
topology.

THEOREM 2.4 [2]. X is not normal; however X is Tz\, in fact given
disjoint sets F and K, one closed in X, the other in the Euclidean topology,
there exists a continuous function f: X—»[0,1] such that f~ι(0) = F and

We shall later give a number of different proofs that X is not
normal. That X is T$ is proved in [2] using a consequence in [19] of the
important Lusin-Menchoff Theorem:

THEOREM 2.5. Suppose (in the Euclidean topology) that Fis closed,
B is Borel, F C B, and for every x E F, d(x, B)= 1. Then there is a
perfect set P, F C P C B, such that for every x E F, d(x,P) = l.

THEOREM 2.6 [14].

(1) The Borel subsets of X are precisely the measurable sets.
(2) Every Borel subset ofX is a Gδ, in fact the intersection (or union)

of an open Fσ and a closed Gδ, namely any E =
(E Π φ(E)) U(E- φ{E)\ and similarly for X - E.

(3) Every regular open set is a Euclidean Fσ8.

THEOREM 2.7. The following conditions on a subset Y of X are
equivalent:

(1) Y is a nullset,
(2) Y is nowhere dense,
(3) Y is first category,
(4) Y is closed discrete.

The equivalence of the first three is shown in [12], as well as that
nowhere dense sets are closed, and hence closed discrete. If a closed
discrete set were not a nullset, it would include a nonmeasurable
set. But nonmeasurable sets are not closed. For a proof of 2.7 in a
more general context, see [10].

THEOREM 2.8. RO(X), the regular open algebra ofX, is the reduced
measure algebra $ of measurable sets modulo nullsets. Moreover
φ(A) = A if and only if A is regular open.

The former is easily seen, since RO(X) can be characterized as open
sets modulo first category sets [4]. The latter is proved in [12].
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THEOREM 2.9. X satisfies the countable chain condition; indeed X
has property (K): every uncountable collection of open sets has an
uncountable subcollection such that each pair meet.

This follows from the corresponding result for measure algebras [6].

THEOREM 2.10. X is connected [3]. However, there is a T^ en-
largement £f of 3~ which satisfies 2.7 inter alia, which is extremally
disconnected and the Stone-Cech compactification of which coincides with
the Stone space of $ [14].

THEOREM 2.11. X is neither separable nor first countable, but is
hereditarily Baire (every subspace of X is Baire).

This follows immediately from the facts that countable sets are
nowhere dense and that first category sets are nowhere dense and closed.

THEOREM 2.12. The continuous real-valued functions of X are of
Baire class 1 and hence are continuous in the Euclidean topology except on
a set of Euclidean first category [3].

The continuous real-valued functions on X are in fact the "approxi-
mately continuous" functions. There is an extensive literature concern-
ing these which does not however consider their topological
aspects. See Goffman's papers for some references.

One may conclude various things about X from the fact that it has a
weaker separable metric topology. For example,

THEOREM 2.13. X has a countable point-separating open cover and
a regular Gδ-diagonaί

Both properties are possessed by the Euclidean topology and are
preserved by strengthening a topology.

X possesses a variety of completeness properties. For definitions
and proofs see [18].

THEOREM 2.14. X is cocompact, strongly a-favorable, and
pseudocomplete.

3. New results. We now move on to some simple applications
of the above results.

THEOREM 3.1. Every Y C X is the union of a CCC (countable
chain condition) set and a closed discrete set.
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Proof. Y = (Y Π int Ϋ) U (Y Π (Ϋ - int Ϋ)). The first term is CCC
since that property is inherited by open sets and by dense sets. The
second is a subset of a nowhere dense set, and hence is closed discrete.

COROLLARY 3.2. Every discrete subspace of X is closed.

Proof. Using the Theorem, we see that a discrete Y is the union of
a countable (hence closed) set and a closed set.

COROLLARY 3.3. X is hereditarily subparacompact (every subspace
has the property that open covers have σ-discrete closed refinements).

Proof. It suffices to prove CCC subspaces Y of X are subpara-
compact. Given an open cover 0 of Y, refine it by an open cover °U such
that the closures of elements of °U refine 0. Let {Cn}n<ω be a maximal
disjoint collection of open sets, each included in an element of °U. Then
Y- Un<ωCn is nowhere dense in Y, hence in X, hence is closed
discrete. A σ-discrete closed refinement of ϋ can then_be obtained by
taking the points of Y — U n < ω C n as one level, and the Cn's as the other
levels.

DEFINITION 3.4. A space is K-compact if every closed discrete
subset of it has cardinality < K. A space is (σ-) metacompact if every
open cover has a (σ-) point-finite open refinement. A space is collec-
tionwise Hausdorff if for each closed discrete subset Y there exist
pairwise disjoint open sets, each containing exactly one element of Y.

THEOREM 3.5.

(1) If Y C X is Hrcompact, Y is hereditarily Lindelόf
(2) IfYQX is either collectionsise Hausdorff or σ- metacompact, Y

is the union of a hereditarily Lindelόf set and a closed discrete set.
(3) X is neither collectionwise Hausdorff nor σ-metacompact.

Proof. It is easily seen that subparacompact Nrcompact spaces are
Lindelόf. Since closed subsets of X are Gδ 's, Lindelόf subsets are
hereditarily Lindelόf. If Y is collectionwise Hausdorff, it is the union of
an Mj-compact set and a closed discrete set. In [17] it is shown that CCC
Baire σ-metacompact spaces are Lindelόf, which completes the proof of
the second part, and also shows X is not σ-metacompact. X is clearly
not collectionwise Hausdorff.

THEOREM 3.6.

(1) Countably compact subsets of X are finite.
(2) 2H°-compact subsets of X either are nonmeasurable or have

cardinality < 2H°.
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The first is because countable sets are closed discrete, the second
because every measurable set of power 2*° includes a nullset of power 2M°.

Our next theorem provides a proof of the nonnormality of X using
very little information about its measure-theoretic structure, in contrast
to other proofs [2], [14].

THEOREM 3.7. Let Y be a normal topological space such that
\RO(Y)\< 2\ Then Y is K-compact.

COROLLARY 3.8.

(1) X is not normal,
(2) if Y C X is normal, Y is the union of a 2H°-compact set and a

closed discrete set,
(3) // 2H° < 2Hϊ and Y C X is normal, Y is the union of a hereditarily

Lindelόf set and a closed discrete set.

We first prove the Corollary. To see that X is not normal, we note
that | J R O ( X ) | = 2*°, while X is not 2N°-compact. To prove the second
part, we note as before that Y = (Y Π int Ϋ) U (Y Π (Ϋ - int Ϋ)). Surely
RO(int Y) C RO(X). On the other hand, Y is dense in int Y, and it is
easily verified that in general, for a regular space Z, Y dense in Z implies
\RO(Y)\ = \RO(Z)\. Thus \RO(Y Hint Ϋ)\^2"°, so YΠintΫ is
2K°-compact, and if 2"°<2Nl, Nrcompact and therefore hereditarily
Lindelof.

Theorem 3.7 provides a useful method for showing many spaces not
to be normal. The idea is due to B. Sapirovskiϊ [15]. To prove it,
suppose Y is not K-compact but is normal. Let Z be a closed discrete
subspace of Y of cardinality K. Let K be any subset of Z. By
normality, there exists an open set UKD K such that Uκ Π (Z - K) = 0.
Int Uκ is regular open and includes K. It is not difficult to establish that
K->int Uκ is a one-one map from the power set of Z into RO(Y).

Another way of proving the nonnormality of X is to again observe
that X is not 2M°-compact, and that there are only 2*° real-valued
continuous functions on X, not enough to provide sufficiently many
Urysohn functions. The fact that there are only 2H° real-valued continu-
ous functions on X follows from the fact that they are all of Baire class 1,
i.e. limits of sequences of ordinary continuous functions.

The proof of nonnormality of X in [2] yields further information:
disjoint Euclidean-dense sets cannot be separated by a Urysohn
function. In particular, the rationals and {rV2: r rational} cannot
be. On the other hand, since X is regular and countable sets are closed,
it is not difficult to show that disjoint countable sets have disjoint open
sets about them. I have been unable to determine whether disjoint
closed sets, one of which is countable, have disjoint open sets about
them.
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Analogous results to those for normality hold for countable
paracompactness, thanks to the following result, which can be proved by
an analysis of [1].

THEOREM 3.9. Let Y be a countably paracompact space such that
IRO (Y) I ̂  K. Then Y is K -compact.

COROLLARY 3.10.

(1) X is not countably paracompact,
(2) if Y C X is countably paracompact, Y is the union of a

2"°-compact set and a closed discrete set,
(3) // 2*° = Hi and Y C X is countably paracompact, Y is the union

of a hereditarily Lindelδf set and a closed discrete set.

In view of the well-known analogies between measure and category
[12], it is natural to ask whether there is a category analogue of the
density topology. If this question is formulated precisely in a natural
way, the answer is no.

THEOREM 3.11. There is no topology if on the real line such that
Y = (R, Sf) has the following properties

(1) Y is regular,
(2) RO(Y) = $}', the reduced Borel algebra of Euclidean Borel sets

modulo Euclidean first category sets.
(3) if U is Euclidean open and N is Euclidean first category, then

Proof We first recall some facts about Boolean algebras (see e.g.
[4]). If si is a Boolean algebra, define a partial order on P = si - {0} by
a ^ b if a Λ b = a. A subset D of P is dense if for each a EP there is a
dED such that d g a. For any space Z, the g in RO(Z) is just
inclusion. A π-base for a space Z is a dense subset of the inclusion
ordering on the nonempty open sets. Thus, if Z is regular, there are
π-bases of regular open sets and these are exactly the dense subsets of
RO{Z) (more precisely RO(Z)-{0}). Finally, we recall from [4] that
Sδ; has a countable dense subset and is atomless (no minimal elements in
the partial order).

Returning to the Theorem, we see that Y has a countable π-base
and is therefore separable. But this contradicts (3).

(3) may be replaced by
(3') every first category subset of Y is nowhere dense in Y. The

point is that, since £8' is atomless, Y has no isolated points, so countable
sets are first category.
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4. Set theory. There has lately been considerable interest in
the question of the existence of hereditarily Lindelof nonseparable
regular spaces [13]. A Souslin space is one, and Hajnal and Juhasz [5]
construct one, assuming the continuum hypothesis. A much simpler
example than theirs, also assuming the continuum hypothesis, is due to
H. E. White [18], who, unaware of the problem, failed to make the
(trivial) observation that the hereditarily Lindelof subspace of the density
topology he constructed is nonseparable. We shall elaborate on the
example here.

A Sierpinski set is a set of reals which has countable intersection
with every nullset.

LEMMA 4.1 [16]. The continuum hypothesis implies the existence of
an uncountable Sierpinski set.

THEOREM 4.2. Y C X is hereditarily Lindelof if and only if Y is a
Sierpinski set.

COROLLARY 4.3. The continuum hypothesis implies the existence of
a hereditarily Lindelof nonseparable, regular Baire space.

The corollary is immediate. To prove the theorem, observe that if
Y is hereditarily Lindelof, then every closed discrete subspace is
countable. Conversely, if Y is a Sierpinski set, then every nowhere
dense subset of Y is countable. Therefore, by 3.1, Y is the union of a
CCC set Yλ and a countable set Y2.

LEMMA 4.4. A space is hereditarily Lindelof if and only if it is CCC
and nowhere dense subsets are Lindelof

The proof is left to the reader. Y then is the union of a hereditarily
Lindelof set and a countable set, and so is hereditarily Lindelof.

It is set-theoretic folklore that there are models of set theory in
which 2*°>Hι and there are uncountable Sierpinski sets, and that there
are models of set theory in which there are no uncountable Sierpinski
sets. Thus

THEOREM 4.5. It is consistent with the axioms of set theory that
2"° > Hι and there exists a hereditarily Lindelof nonseparable regular space.

THEOREM 4.6. It is consistent with the axioms of set theory that the
only hereditarily Lindelof subspaces of X are the countable ones.
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It is perhaps of interest that an uncountable Sierpinski set may be
used to construct a hereditarily Lindelof nonseparable subspace of
βN - N. First we note that in Scheinberg's extremally disconnected
strengthening of the density topology [14], uncountable Sierpinski sets
are again hereditarily Lindelof nonseparable. Scheinberg's space has
the Stone space of the reduced measure algebra for its Stone-Cech
compactification. Kunen [8] has proven that this Stone space is embed-
ded in βN-N.

We next prove some more consistency results.

DEFINITION 4.7. A space is metalindelδf if every open cover has a
point-countable open refinement. A space has caliber Hi if every
point-countable open cover is countable.

THEOREM 4.8. The assertions that X is not metalindelόf and that X
has caliber Mi are consistent with and independent of the axioms of set
theory.

Proofs. Consistency is provided by Martin's Axiom plus 2"°>M1,
independence by the continuum hypothesis. Martin's Axiom plus 2M° > Hλ

implies the union of Hλ nullsets is a nullset [11]. A CCC space in which
the union of Hx nowhere dense sets is first category, has caliber H}

[17]. X is not Lindelof, so if it has caliber Hi it is not metalindelόf. By
arguing as in 3.5, one can in fact prove that if the union of Hi nullsets is a
nullset then every metalindelόf subset of X is the union of a hereditarily
Lindelof set and a closed discrete set.

One can prove that the continuum hypothesis implies X does not
have caliber Mi by the same methods used to establish this result for the
Stone space of the reduced measure algebra in [9]. However it will also
follow immediately once we get X metalindelόf, which is a consequence
of

THEOREM 4.9. If every set of power < 2H° has measure zero, then
every open cover of X has a point — < 2H° open refinement.

Proof. Let X = {xa}a<2"0. Let °U = {Uβ}β<2^ be an open cover of
X. For each α, let f(a) be the least β such that xa E Uβ. Let

Vβ = Uβ-{xa:a<β and f(a)έβ}.

Then V = {Vβ}β<2*o is the desired refinement.
We next consider the cardinal invariants of X. For definitions, see

[7], Since X has a closed discrete subspace of cardinality 2"% we have
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THEOREM 4.10. The spread, weight, and Lindelδf number of X are
all 2H\

Since countable sets are closed, it is easy to see that

THEOREM 4.11. The density, tightness, τr~ weight, and character ofX
are all uncountable but ^ 2*°.

Similarly,

THEOREM 4.12. Suppose every set of reals of power < 2M° has meas-
ure zero. Then the density, tightness, π-weight, and character are all 2M°.

Thus Martin's Axiom or the continuum hypothesis settles the
question. For any space Y, it is known that d(Y)g π(Y), t(Y)^χ(Y),
π(Y)^d(Y)-χ(Y). We shall show that for the density topology,
d(X)^t(X) and hence π(X)^χ(X). This follows from measure-
theoretic characterizations of the density and tightness.

THEOREM 4.13.

(1) d(X) is the least cardinal K such that there is a subset of X of
cardinality K with outer measure 1.

(2) t(X) is the least cardinal K such that every nonnullset includes a
subset of power ^ K with the same outer measure.

COROLLARY 4.14. d(X) ^ t(X), ττ(X) S χ(X).

Proof It is clear that d and t are respectively at least as big as the
cardinals defined on the right. A set of outer measure 1 is clearly
dense. Similarly, if every nonnullset Y include^a subset Z of powers
κ_ with the same outer measure, then if x E Y, either x E Y or x E
Z Hence t(x, Y)^κ.

The next few words are directed to an audience versed in set
theory. In the model obtained by adjoining M2 random reals to a model
of the continuum hypothesis, it is well-known that 2*° = M2 and that the
reals of the ground model have outer measure 1 in the extension. K.
Kunen pointed out to the author that in fact in this model every
nonnullset includes a subset of power Mi with the same outer
measure. On the other hand, he noted that by adjoining Mi random
reals to a model of Martin's Axiom plus 2*° > Mi, one obtains a model in
which there is a set of power Mi with outer measure 1, and yet there is a
set of power > Mi (namely the reals of the ground model) which does not
include any subset of power Mt with the same outer measure. Thus

T H E O R E M 4 . 1 5 . It is c o n s i s t e n t t h a t d { X ) = t ( X ) = H X < 2*°.
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THEOREM 4.16. It is consistent that d(X)< t(X).

By the remarks at the end of §3, the question of whether the
7r-weίght of X can be less than continuum translates into asking whether
there can be a dense subset of the reduced measure algebra of cardinality
less than continuum. In response to the author's question, R. M.
Solovay and K. Kunen both proved that in the model obtained by
adjoining K2 Sacks reals to a model of the continuum hypothesis, there is
such a dense set of power Hλ. Kunen's proof also established that in that
model the character of X is Hx. Thus

T H E O R E M 4 . 1 7 . It is consistent that π ( X ) = χ ( X ) = H{< 2K°.

In conclusion, I should like to thank the referee for his helpful
comments.
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