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ABSTRACT

We examine the relation between the density variance and the mean-square Mach number in supersonic, isothermal
turbulence, assumed in several recent analytic models of the star formation process. From a series of calculations
of supersonic, hydrodynamic turbulence driven using purely solenoidal Fourier modes, we find that the “standard”
relationship between the variance in the log of density and the Mach number squared, i.e., σ 2

ln ρ/ρ̄ = ln
(
1 + b2M2

)
,

with b = 1/3, is a good fit to the numerical results in the supersonic regime up to at least Mach 20, similar to previous
determinations at lower Mach numbers. While direct measurements of the variance in linear density are found to
be severely underestimated by finite resolution effects, it is possible to infer the linear density variance via the
assumption of log-normality in the probability distribution function. The inferred relationship with Mach number,
consistent with σρ/ρ̄ ≈ bM with b = 1/3, is, however, significantly shallower than observational determinations of
the relationship in the Taurus Molecular Cloud and IC5146 (both consistent with b ≈ 0.5), implying that additional
physics such as gravity is important in these clouds and/or that turbulent driving in the interstellar medium contains
a significant compressive component. Magnetic fields are not found to change this picture significantly, in general
reducing the measured variances and thus worsening the discrepancy with observations.
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1. INTRODUCTION

The last few years have seen an increasing number of analytic
models of the star formation process that use the log-normal
density probability distribution function (PDF) produced by
supersonic turbulent flows to predict statistical quantities such as
the initial and/or core mass function (e.g., Padoan & Nordlund
2002; Hennebelle & Chabrier 2008, 2009) and the star formation
rate (Krumholz & McKee 2005; Padoan & Nordlund 2009). A
key assumption in these models is a relationship identified in
early numerical studies between the PDF width—the density
variance or standard deviation—and the root-mean-square (rms)
Mach number M in supersonic, isothermal turbulence. The
relationship is generally assumed to be linear in the standard
deviation of linear density, i.e.,

σρ/ρ̄ = bM, (1)

where b is a constant of order unity and density is scaled in terms
of the mean, ρ̄. For a log-normal distribution, this is equivalent
to

σ 2
s = ln

(
1 + b2M2

)
, (2)

where s ≡ ln(ρ/ρ̄), such that σs is the standard deviation in the
logarithm of density.

Apart from the early empirical findings of Vazquez-Semadeni
(1994), Padoan et al. (1997b), and Passot & Vázquez-Semadeni
(1998), there is no clear reason why the relationship should
be of this form. Mathematically, the appearance of a log-
normal distribution can be understood as a consequence of the
multiplicative central limit theorem assuming that individual

4 Current address: Ecole Normale Supérieure de Lyon, CRAL, 69364 Lyon
Cedex 07, France.

density perturbations are independent and random (Vazquez-
Semadeni 1994; Passot & Vázquez-Semadeni 1998; Nordlund
& Padoan 1999). In physical terms this has been interpreted
as meaning that density fluctuations at a given location are
constructed by successive passages of shocks with a jump
amplitude independent of the local density (e.g., Ballesteros-
Paredes et al. 2007; Kritsuk et al. 2007; Federrath et al. 2010).
However, it has not so far proved possible to analytically predict
the relationship based on these ideas (though see Padoan &
Nordlund 2009). Thus, a common approach in numerical studies
of turbulence—usually at a fixed Mach number—has been to
measure the parameter b, assuming Equation (2), that gives best-
fitting log-normal to the time-averaged PDF. However, reported
estimates for b are widely discrepant. For example, Padoan et al.
(1997b) found b ≈ 0.5 while more recently Kritsuk et al. (2007)
(at Mach 6) find a much lower value of b ≈ 0.26 and Beetz et al.
(2008) find b ≈ 0.37, while Passot & Vázquez-Semadeni (1998)
found b ≈ 1 (though with some confusion over σs versus σρ/ρ̄).

Federrath et al. (2008) and Federrath et al. (2010) reconcile
these results in part by the finding that the width of the
PDF depends not only on the rms Mach number but also on
the relative degree of compressible and solenoidal modes in
the turbulence forcing, with b = 1/3 appropriate for purely
solenoidal and b = 1 for purely compressive forcing. This is in
keeping with earlier discussions by Passot & Vázquez-Semadeni
(1998) and Nordlund & Padoan (1999, p. 222), the latter authors
noting that “for compressional forcing at low Mach numbers
(leading to an ensemble of sound waves), the standard deviation
is expected to be equal to the rms Mach number itself.”

Observationally, the log-normality of the three-dimensional
(3D) PDF is reflected in the two-dimensional (2D) column
density PDF, for example, as measured from dust extinction
maps (e.g., Lombardi et al. 2006, 2008, 2010; Kainulainen
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et al. 2009)—at least in earlier stages of molecular cloud evolu-
tion, suggesting that this phase could be dominated by roughly
isothermal turbulence in which self-gravity is relatively unim-
portant. Only for seemingly more evolved clouds (including
Taurus) do Kainulainen et al. (2009) see significant tails at
higher (column) densities (similarly found by Lombardi et al.
2010). However, measurements of the projected 2D variance (or
PDF) cannot be directly used to constrain the relationship with
Mach number. Recently, Brunt et al. (2010a, hereafter BFP)
have shown how projection effects can be overcome to infer
the 3D density variance from column density observations, in
turn leading to a method for extracting the unprojected (3D)
density PDF from the observational data (Brunt et al. 2010b).
This enables the relationship between the standard deviation in
linear density and Mach number to be tested observationally,
with initial application to Taurus finding b = 0.48+0.15

−0.11 (Brunt
2010). A similar method was employed by Padoan et al. (1997a)
to infer the 3D density variance from extinction measurements
in IC5146, similarly finding b ≈ 0.5.

The problem with all of the above is that calculations—or
observations—performed at a single (rms) Mach number can
only ever assume the relationship given by Equation (2) or
Equation (1) and cannot be used to constrain it unless a range of
Mach numbers are studied. Indeed, Lemaster & Stone (2008,,
hereafter LS08)—performing a series of calculations with Mach
numbers in the range 1.2 � M � 6.8—find a relationship

σ 2
s = 0.72 ln

(
1 + 0.5M2) − 0.20, (3)

based on a fit to measurements of the mean in the logarithm of
density, s̄, as a function ofM, which we have here converted to a
σs–M relation using s̄ = −σ 2

s /2. However, this three-parameter
fit is clearly not unique, and it remains to be determined whether
this or a similar relationship continues to hold at higher Mach
numbers.

The present study is motivated by a need to compare
the theoretical predictions with the observational constraints.
In particular, LS08 only perform calculations up to M ≈
6.8—corresponding to one-dimensional (1D) line full width at
half-maximum of ∼1.6 km s−1 (at 10 K), which is rather low in
terms of what is found in the real interstellar medium (ISM). In
particular, Taurus has M ∼ 17, so a study going up to (at least)
Mach 20 or so is needed. Our aim in this Letter is precisely this:
to pin down the theoretical relationship—with as few assump-
tions as possible—up to sufficiently high Mach numbers that
a meaningful comparison can be made with observed molecu-
lar clouds. While additional physics such as non-isothermality
(e.g., Scalo et al. 1998), the multiphase nature of the ISM, and
self-gravity (e.g., Klessen 2000; Kritsuk et al. 2010) are all ex-
pected to change the theoretical predictions at some level, the
isothermal, non-self-gravitating case is an important reference
point that remains theoretically uncertain. Furthermore, a clear
prediction for this simple case can be used to gauge the relative
importance of such additional physics in observed clouds.

2. METHODS

2.1. Log-normal Distributions

The log-normal distribution is given by

p(s)ds = 1√
2πσ 2

s

exp

[
−1

2

(
s − s̄

σs

)2
]
ds, (4)

where s ≡ ln(ρ/ρ̄) such that s̄ and σs denote the mean
and standard deviation in the logarithm of (scaled) density,
respectively, and ρ̄ is the mean in the linear density. The mean
and variances in a log-normal distribution are related by

s̄ = −1

2
σ 2

s , (5)

and
σ 2

ρ/ρ̄ = exp
(
σ 2

s

) − 1. (6)

2.2. Numerical Simulations

We have performed a series of calculations of supersonic
turbulence, solving the equations of compressible hydrodynam-
ics using an isothermal equation of state (with sound speed
cs = 1) and periodic boundary conditions in the 3D do-
main x, y, z ∈ [0, 1]. Initial conditions were a uniform den-
sity medium ρ = ρ̄ = 1 with zero initial velocities. Tur-
bulence was produced by adding a random, correlated stir-
ring force, driving the few largest Fourier modes 1 < k < 3
with a random forcing pattern, slowly changed according to an
Ornstein–Uhlenbeck (OU) process, such that the pattern evolves
smoothly in space and time (Schmidt et al. 2009; Federrath et al.
2010). The driving, and the phantom smoothed particle hydro-
dynamics (SPH) code employed, is described in detail in Price &
Federrath (2010, hereafter PF10; see also Federrath et al. 2010).
Calculations were evolved for 10 dynamical times (defined as
td ≡ L/(2Mcs)), using only results after 2td such that tur-
bulence is fully established (e.g., Federrath et al. 2009). The
amplitude of the driving force was adjusted to give rms Mach
numbers in the range 1 � M � 20 by varying the energy input
per Fourier mode proportional to the Mach number squared, i.e.,
Estir ∝ M2 while the correlation time for the OU process was
set to td (for the nominally input M).

Most importantly, unless otherwise specified we have driven
the turbulence using purely solenoidal Fourier modes. Thus,
according to the heuristic theory of Federrath et al. (2010)
we should expect a relationship of the standard form (2) with
b ≈ 1/3.

2.3. Measuring the Density Variance

We consider a range of methods for measuring the density
variance from the simulations.

1. Measure the linear variance, σ 2
ρ/ρ̄ , directly—with no as-

sumptions about log-normality or otherwise—and fit the
measured relation as a function of M.

2. Measure the logarithmic variance σ 2
s directly and fit the

measured relation. Infer σρ/ρ̄ assuming a log-normal PDF
via Equation (6).

3. Measure s̄ and fit the measured relation. Infer σs using
Equation (5) and in turn σρ/ρ̄ using Equation (6).

4. Determine the value of σs that gives the best-fitting PDF
in a restricted range around the mean. Infer σρ/ρ̄ using
Equation (6).

The objection to method 1 is that it is sensitive to the tails of
the density distribution, where time-dependent fluctuations and
intermittency effects can cause deviations from log-normality
(Kritsuk et al. 2007; Federrath et al. 2010; PF10). On the
other hand, no assumptions are made regarding the PDF, while
methods 2–4 assume a priori that the PDF is log-normal, though
for methods 2 and 3 only for obtaining the linear variance.
Method 4 is the usual approach used to fit b for a given Mach
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number, if one additionally assumes the relationship given by
Equation (2)—an assumption we do not need to make here since
a range of Mach numbers are examined.

While the results are discussed in more detail below, essen-
tially we find that methods 1–4 all give similar results for σs ,
independent of numerical resolution, but that direct measure-
ments of σρ/ρ̄ (method (1)) are highly resolution dependent.

Volume-weighted variances were computed from the (mass-
weighted) SPH data by interpolating the density field to a
grid. We found that this procedure gave better results than
the direct calculation from the particles we have previously
advocated (PF10), particularly at high Mach numbers (M � 10)
where assuming that the volume element m/ρ is constant over
the smoothing radius is an increasingly poor approximation.
However, capturing the full resolution in the density field was
found to require an adaptive rather than fixed mesh.

All plots show volume-weighted quantities, time-averaged
over 81 snapshots evenly spaced between t/td = 2 and
t/td = 10, with error bars showing the (temporal) 1σ deviations
from these values.

3. DENSITY VARIANCE–MACH NUMBER RELATION IN
SUPERSONIC, ISOTHERMAL TURBULENCE

3.1. σs as a Function of M
The direct measurements of the standard deviation in the log

density, σs , are shown in Figure 1 from the results of calculations
performed using 1283, 2563, and 5123 SPH particles, using
methods (2) and (4) (see the legend). Dashed lines show the
standard relation (Equation (2)) with b = 1/3 and b = 1/2,
while the dotted line shows the best-fitting relationship found
by LS08 (Equation (3)). Both the b = 1/3 curve, expected
for solenoidally driven turbulence (Federrath et al. 2008, 2010)
and the LS08 fit show reasonable fits to the data, and indeed
cannot be distinguished given the time variability present in
the calculations. However, adopting b = 0.5 is clearly not
consistent with our solenoidally driven results. The results are
also consistent with our earlier findings (PF10), that showed a
convergence in both grid and SPH methods toward b ≈ 0.35–0.4
at Mach 10.

The measured value of σs cannot be compared to observa-
tions, since only the 3D variance in the linear density can be
observationally inferred (e.g., using the BFP method). Thus, it
is necessary to either measure or infer the linear variance from
simulations to make this comparison.

3.2. Direct Measurement of σρ/ρ̄

A direct measurement of the linear density variance is difficult
even with high-resolution simulations, demonstrated in Figure 2,
that shows the directly measured σ 2

ρ/ρ̄ as a function of σ 2
s .

The dashed line shows the expected relationship for a log-
normal distribution (Equation (6)). The exponential relationship
is resolved only at the lowest Mach numbers, M � 5,
corresponding to σ 2

s � 1.4, while at higher Mach numbers
σρ/ρ̄ is a strong function of resolution, most easily demonstrated
by interpolating the highest resolution SPH calculations (5123

particles) to fixed grids of decreasing resolution (see the legend).
This dependence is the reason why we eventually interpolated
the SPH data onto an adaptive mesh, refined such that Δx < h
for all cells within the smoothing radius 2h of any given particle,
in order to obtain a result for σρ/ρ̄ that captures the maximum
resolution available in the SPH simulations, though we remain
limited by the intrinsic resolution of the simulations. PF10

RMS Mach number

s
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0

0.5
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1.5

2

5123 parts -> AMR grid (eff. 81923)

b=1/3

b=1/2

LS08

2563 parts -> AMR grid (eff. 40963)
1283 parts -> 5123 grid

*

*

* * * 5123 parts -> AMR grid, PDF fitted around mean
2563 parts -> AMR grid, PDF fitted around mean
1283 parts -> 5123 grid, PDF fitted around mean

Figure 1. Measured relationship between the (volume-weighted) standard
deviation of the logarithm of density σs as a function of rms Mach number
from a series of solenoidally driven supersonic turbulence calculations. The
points show time averages, with error bars showing (temporal) 1σ deviations.
The dashed lines show the standard relation (Equation (2)) with b = 1/3
and b = 1/2, while the dotted line shows the best-fitting relationship found by
Lemaster & Stone (2008; Equation (3)). Differences between directly measuring
σs (open circles, filled circles, and plus signs) compared to fitting the PDF
around the mean (∗, ×, and squares) are not significant (i.e., smaller than the
time-dependent fluctuations). Overall, the results are consistent with b = 1/3, as
expected for solenoidally driven turbulence from Federrath et al. (2008, 2010),
and indistinguishable from the LS08 best fit.

(A color version of this figure is available in the online journal.)

found that SPH simulations at Mach 10 resolved a maximum
density at 1283 particles similar to that captured on a fixed
grid at 5123 grid cells. This is consistent with the results here,
where it is necessary to refine the grid to an effective 81923

for the Mach 20 calculations employing 5123 SPH particles.
It is also evident that fully resolving the strong fluctuations
in the linear density at high Mach number is intractable with
current computational resources. Our findings also suggest that
the linear density variance is likely to be severely underestimated
by limited observational resolution, so the results in Taurus and
IC5146 are almost certainly lower limits (see also Brunt 2010).

3.3. σρ/ρ̄ as a Function of M: Comparison to Observations

The direct—but resolution limited—measurements for σρ/ρ̄ ,
computed without assumptions from the adaptive mesh refine-
ment (AMR) grid, are shown in Figure 3 (see the legend,i.e.,
method (1) above). A better approach is to use the fact that
the measurements for σs are resolution independent (Figure 1),
meaning that we can use the assumption of log-normality to
infer the fully resolved value for σρ/ρ̄ , i.e., using Equation (6)
(method 2). The standard deviations computed in this way are
also shown and as expected are consistent with a linear σρ/ρ̄–M
relation with b = 1/3 for solenoidal forcing (Federrath et al.
2008, 2010), and also with the LS08 best fit, the latter translated
in terms of σρ/ρ̄ using Equation (6).

We are now in a position to compare with the observational
results. It should first be noted that the assumption of the
σs–σρ/ρ̄ relation for the simulations essentially gives us an upper
limit on σρ/ρ̄ , whereas (see above) the finite resolution of the
observations almost certainly gives a lower limit on the variance.
The results from Padoan et al. (1997a; in IC5146: b = 0.5±0.05
at Mach 10) and Brunt (2010; in Taurus, Mrms = 17.6±1.8 and
σρ/ρ̄ = 8.49+1.85

−1.71) are also plotted, both of which are consistent
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Figure 2. Relationship between the linear and logarithmic density variance as
a function of both intrinsic SPH resolution (number of particles) and the grid
size used to compute the variances (see the legend). While the measurements
of σ 2

s are resolution independent, there is a strong dependence on both the SPH
and grid resolution in the directly measured linear variance, σ 2

ρ/ρ̄ . Using an
AMR grid to compute volume-weighted variances captures the full density field
resolution in the SPH simulations, but even in the highest resolution calculations
(5123 particles), σ 2

ρ/ρ̄ is severely underestimated compared to the expected
exponential relationship (Equation (6), dashed line) for M � 5.

(A color version of this figure is available in the online journal.)

with b = 0.5 but clearly inconsistent with the calculations of
purely solenoidally driven turbulence.

The other extreme is given by the b = 1 line in Figure 3, cor-
responding to purely compressive forcing (Federrath et al. 2008,
2010). Data points from two 10243 grid simulations of purely
solenoidal and purely compressive forcing by Federrath et al.
(2008, 2010) are also shown (cyan triangles). Clearly, purely
solenoidal and purely compressive forcing seem inconsistent
with the observations, while a mixture and/or the addition of
gravity can fit the observations, best fit by a linear relation with
b ≈ 0.5. The σρ–M plane, however, needs to be populated
with many more observational measures to draw more definite
conclusions about, e.g., regional and evolutionary variations.

4. DENSITY VARIANCE–MACH NUMBER RELATION IN
MHD TURBULENCE

Since molecular clouds are observed to be magnetized, we
have additionally computed a series of magnetohydrodynamics
(MHD) calculations, driven identically to their hydrodynamic
counterparts but with an initially uniform magnetic field thread-
ing the box. These have been computed on a fixed grid using
the flash code, as described in Federrath et al. (2010), PF10,
and Brunt et al. (2010a, 2010b; note that the driving routines are
implemented identically in both the SPH and grid code). The
magnetic field strength in the MHD calculations is characterized
by the ratio of gas-to-magnetic pressure β = P/Pmag in the ini-
tial conditions, where Pmag = 1

2B2/μ0. As done previously, we
have also examined the effect of resolution, with a finding simi-
lar to the hydrodynamic case, namely, that direct measurements
of σρ/ρ̄ are strongly resolution affected (underestimated)—even
at modest Mach numbers, similar to the results shown in
Figure 2, but that measurements of σs are resolution independent
(at � 2563 grid cells).

Figure 4 shows the results, similar to Figure 1 for the
hydrodynamic case and overplotted with the hydrodynamic

RMS Mach number
0 5 10 15 20
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5123 SPH, from σs

IC5146

Taurus

b=1

b=1/3

LS08

2563 SPH, from σs

1283 SPH, from σs

*

*

* * * 5123 SPH, direct σρ/ρ0

2563 SPH, direct σρ/ρ0

1283 SPH, direct σρ/ρ0

10243 grid comp./sol.
IC5146, Taurus

Figure 3. Directly measured or inferred (see the legend) standard deviation of
the linear density σρ/ρ̄ as a function of rms Mach number from the solenoidally
driven supersonic turbulence calculations. For comparison, observational de-
terminations by Padoan et al. (1997a) and Brunt (2010) in IC5146 and Taurus
(respectively) are shown, together with the expected b = 1/3 and b = 1 linear
relationships for solenoidal and compressive forcing (respectively; Federrath
et al. 2008, 2010), including the corresponding data points from Federrath et al.
(2010; 10243 grid; cyan triangles). Direct measurements of σρ/ρ̄ are resolution
limited (see Figure 2), although the values inferred by assuming Equation (6)
are upper limits, whereas the observations are likely to be lower limits. The dis-
crepancy between solenoidally driven simulations and observations indicates
that some amount of gravity and/or compressive driving is necessary to explain
the observational results.

(A color version of this figure is available in the online journal.)

b = 1/3 and b = 1/2 relationships (dashed lines) as well
as the best-fitting MHD relationship found by LS08. The most
obvious difference with MHD is that the density variances are
significantly lower than their hydrodynamic counterparts at high
(sonic) Mach number M � 10 —though conversely marginally
higher at lower Mach numbers. On the whole increasing the
field strength seems to decrease the mean σs slightly. While
a complete MHD study is beyond the scope of this Letter,
the results clearly illustrate a shallower relationship than the
hydrodynamic b = 1/3 curve at high Mach number, with σs

only weakly dependent on M in this regime (for β � 1). Thus,
if anything, adding magnetic fields decreases the variance in the
density field, worsening the discrepancy with observations.

5. CONCLUSIONS

We have measured the relationship between the density vari-
ance and the mean-square Mach number from a series of sim-
ulations of supersonic, isothermal, solenoidally driven turbu-
lence over a wide range of Mach numbers (1 � M � 20). We
find that the standard relationship given by Equation (2) with
b = 1/3 provides a good fit to the data over this range, con-
sistent with the heuristic theory of Federrath et al. (2010) for
solenoidal driving and with similar measurements by Lemaster
& Stone (2008) at lower Mach numbers. While it is difficult to
measure the variance in linear density directly from simulations
with finite resolution, the inferred relationship (Equation (1),
with b = 1/3) appears inconsistent with observational deter-
minations (b ≈ 0.5) in Taurus and IC5146, suggesting that
additional physics such as gravity is important in these clouds
and/or that some form of compressive driving is relevant. This
is consistent with the findings of Kainulainen et al. (2009) and
Lombardi et al. (2010) for Taurus, where self-gravity is invoked
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Figure 4. Same as Figure 1 but for a series of 2563 grid-based MHD calculations
with field strength characterized by the ratio of gas-to-magnetic pressure β (see
the legend). There is a general decrease in the measured variance in the MHD
simulations at high Mach number, though no clear trend with magnetic field
strength. The best-fitting relationship found by LS08 for strong field MHD
calculations (dotted line) is consistent with our β = 1 results in a similar
parameter range (M � 6), but too steep at higher M. The β < 0.05 points
refer to calculations employing β = 0.05, 0.01, and 0.02 at Mach 4, 10, and
20, respectively.

(A color version of this figure is available in the online journal.)

to explain the deviation from log-normality in the high density
tail of the (column) density PDF. Magnetic fields do not help to
explain the discrepancy.
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Württemberg Stiftung grant P-LS-SPII/18.

REFERENCES
Ballesteros-Paredes, J., Klessen, R. S., Mac Low, M.-M., & Vazquez-Semadeni,

E. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil
(Tucson, AZ: Univ. Arizona Press), 63

Beetz, C., Schwarz, C., Dreher, J., & Grauer, R. 2008, Phys. Lett. A, 372,
3037

Brunt, C. M. 2010, A&A, 513, A67
Brunt, C. M., Federrath, C., & Price, D. J. 2010a, MNRAS, 403, 1507 (BFP)
Brunt, C. M., Federrath, C., & Price, D. J. 2010b, MNRAS, 405, L56
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJ, 688, L79
Federrath, C., Klessen, R. S., & Schmidt, W. 2009, ApJ, 692, 364
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M.

2010, A&A, 512, A81
Hennebelle, P., & Chabrier, G. 2008, ApJ, 684, 395
Hennebelle, P., & Chabrier, G. 2009, ApJ, 702, 1428
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35
Klessen, R. S. 2000, ApJ, 535, 869
Kritsuk, A. G., Norman, M. L., Padoan, P., & Wagner, R. 2007, ApJ, 665, 416
Kritsuk, A. G., Norman, M. L., & Wagner, R. 2010, ApJ, 727, L20
Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250
Lemaster, M. N., & Stone, J. M. 2008, ApJ, 682, L97 (LS08)
Lombardi, M., Alves, J., & Lada, C. J. 2006, A&A, 454, 781
Lombardi, M., Lada, C. J., & Alves, J. 2008, A&A, 489, 143
Lombardi, M., Lada, C. J., & Alves, J. 2010, A&A, 512, A67
Nordlund, Å. K., & Padoan, P. 1999, in Interstellar Turbulence, ed. J. Franco &

A. Carraminana (Cambridge: Cambridge Univ. Press), 218
Padoan, P., Jones, B. J. T., & Nordlund, A. P. 1997a, ApJ, 474, 730
Padoan, P., & Nordlund, Å. 2002, ApJ, 576, 870
Padoan, P., & Nordlund, A. 2009, arXiv:0907.0248
Padoan, P., Nordlund, A., & Jones, B. J. T. 1997b, MNRAS, 288, 145
Passot, T., & Vázquez-Semadeni, E. 1998, Phys. Rev. E, 58, 4501
Price, D. J. 2007, PASA, 24, 159
Price, D. J., & Federrath, C. 2010, MNRAS, 406, 1659 (PF10)
Scalo, J., Vazquez-Semadeni, E., Chappell, D., & Passot, T. 1998, ApJ, 504,

835
Schmidt, W., Federrath, C., Hupp, M., Kern, S., & Niemeyer, J. C. 2009, A&A,

494, 127
Vazquez-Semadeni, E. 1994, ApJ, 423, 681

5

http://adsabs.harvard.edu/abs/2007prpl.conf...63B
http://dx.doi.org/10.1016/j.physleta.2008.01.009
http://adsabs.harvard.edu/abs/2008PhLA..372.3037B
http://adsabs.harvard.edu/abs/2008PhLA..372.3037B
http://dx.doi.org/10.1051/0004-6361/200913506
http://adsabs.harvard.edu/abs/2010A&A...513A..67B
http://adsabs.harvard.edu/abs/2010A&A...513A..67B
http://dx.doi.org/10.1111/j.1365-2966.2009.16215.x
http://adsabs.harvard.edu/abs/2010MNRAS.403.1507B
http://adsabs.harvard.edu/abs/2010MNRAS.403.1507B
http://dx.doi.org/10.1111/j.1745-3933.2010.00858.x
http://adsabs.harvard.edu/abs/2010MNRAS.405L..56B
http://adsabs.harvard.edu/abs/2010MNRAS.405L..56B
http://dx.doi.org/10.1086/595280
http://adsabs.harvard.edu/abs/2008ApJ...688L..79F
http://adsabs.harvard.edu/abs/2008ApJ...688L..79F
http://dx.doi.org/10.1088/0004-637X/692/1/364
http://adsabs.harvard.edu/abs/2009ApJ...692..364F
http://adsabs.harvard.edu/abs/2009ApJ...692..364F
http://dx.doi.org/10.1051/0004-6361/200912437
http://adsabs.harvard.edu/abs/2010A&A...512A..81F
http://adsabs.harvard.edu/abs/2010A&A...512A..81F
http://dx.doi.org/10.1086/589916
http://adsabs.harvard.edu/abs/2008ApJ...684..395H
http://adsabs.harvard.edu/abs/2008ApJ...684..395H
http://dx.doi.org/10.1088/0004-637X/702/2/1428
http://adsabs.harvard.edu/abs/2009ApJ...702.1428H
http://adsabs.harvard.edu/abs/2009ApJ...702.1428H
http://dx.doi.org/10.1051/0004-6361/200913605
http://adsabs.harvard.edu/abs/2009A&A...508L..35K
http://adsabs.harvard.edu/abs/2009A&A...508L..35K
http://dx.doi.org/10.1086/308854
http://adsabs.harvard.edu/abs/2000ApJ...535..869K
http://adsabs.harvard.edu/abs/2000ApJ...535..869K
http://dx.doi.org/10.1086/519443
http://adsabs.harvard.edu/abs/2007ApJ...665..416K
http://adsabs.harvard.edu/abs/2007ApJ...665..416K
http://dx.doi.org/10.1086/431734
http://adsabs.harvard.edu/abs/2005ApJ...630..250K
http://adsabs.harvard.edu/abs/2005ApJ...630..250K
http://dx.doi.org/10.1086/590929
http://adsabs.harvard.edu/abs/2008ApJ...682L..97L
http://adsabs.harvard.edu/abs/2008ApJ...682L..97L
http://dx.doi.org/10.1051/0004-6361:20042474
http://adsabs.harvard.edu/abs/2006A&A...454..781L
http://adsabs.harvard.edu/abs/2006A&A...454..781L
http://dx.doi.org/10.1051/0004-6361:200810070
http://adsabs.harvard.edu/abs/2008A&A...489..143L
http://adsabs.harvard.edu/abs/2008A&A...489..143L
http://dx.doi.org/10.1051/0004-6361/200912670
http://adsabs.harvard.edu/abs/2010A&A...512A..67L
http://adsabs.harvard.edu/abs/2010A&A...512A..67L
http://adsabs.harvard.edu/abs/1999intu.conf..218N
http://dx.doi.org/10.1086/303482
http://adsabs.harvard.edu/abs/1997ApJ...474..730P
http://adsabs.harvard.edu/abs/1997ApJ...474..730P
http://dx.doi.org/10.1086/341790
http://adsabs.harvard.edu/abs/2002ApJ...576..870P
http://adsabs.harvard.edu/abs/2002ApJ...576..870P
http://www.arxiv.org/abs/0907.0248
http://adsabs.harvard.edu/abs/1997MNRAS.288..145P
http://adsabs.harvard.edu/abs/1997MNRAS.288..145P
http://dx.doi.org/10.1103/PhysRevE.58.4501
http://adsabs.harvard.edu/abs/1998PhRvE..58.4501P
http://adsabs.harvard.edu/abs/1998PhRvE..58.4501P
http://dx.doi.org/10.1071/AS07022
http://adsabs.harvard.edu/abs/2007PASA...24..159P
http://adsabs.harvard.edu/abs/2007PASA...24..159P
http://dx.doi.org/10.1111/j.1365-2966.2010.16810.x
http://adsabs.harvard.edu/abs/2010MNRAS.406.1659P
http://adsabs.harvard.edu/abs/2010MNRAS.406.1659P
http://dx.doi.org/10.1086/306099
http://adsabs.harvard.edu/abs/1998ApJ...504..835S
http://adsabs.harvard.edu/abs/1998ApJ...504..835S
http://dx.doi.org/10.1051/0004-6361:200809967
http://adsabs.harvard.edu/abs/2009A&A...494..127S
http://adsabs.harvard.edu/abs/2009A&A...494..127S
http://dx.doi.org/10.1086/173847
http://adsabs.harvard.edu/abs/1994ApJ...423..681V
http://adsabs.harvard.edu/abs/1994ApJ...423..681V

	1. INTRODUCTION
	2. METHODS
	2.1. Log-normal Distributions
	2.2. Numerical Simulations
	2.3. Measuring the Density Variance

	3. DENSITY VARIANCE–MACH NUMBER RELATION IN SUPERSONIC, ISOTHERMAL TURBULENCE
	3.1. σs as a Function of M
	3.2. Direct Measurement of σρ/ ρ
	3.3. σρ/ ρ as a Function of M: Comparison to Observations

	4. DENSITY VARIANCE–MACH NUMBER RELATION IN MHD TURBULENCE
	5. CONCLUSIONS
	REFERENCES

