
THE DEPARTMENT OF DEFENSE HIGH LEVEL ARCHITECTURE

Judith S. Dahmann

Defense Modeling and Simulation Office
1901 North Beauregard Street
Alexandria, VA 22311, U.S.A.

Richard M. Fujimoto

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280, U.S.A.

Richard M. Weatherly

The MITRE Corporation
7525 Colshire Drive

McLean, VA 22102-3481, U.S.A.
ABSTRACT

The High Level Architecture (HLA) provides the
specification of a common technical architecture for use
across all classes of simulations in the US Department of
Defense. It provides the structural basis for simulation
interoperability. The baseline definition of the HLA
includes (1) the HLA Rules, (2) the HLA Interface
Specification, and (3) the HLA Object Model Template.
This paper describes the motivations and processes used
to develop the High Level Architecture and provides a
technical description of key elements of the architecture
and supporting software. Services defined in the
interface specification for providing time management
(TM) and data distribution management (DDM) for
distributed simulations are described.

1 INTRODUCTION

The Defense Modeling and Simulation Office (DMSO),
is addressing the continuing need for interoperability
among new and existing simulations within the U.S.
Department of Defense through its High Level
Architecture (HLA) initiative. The HLA seeks to
generalize and build upon the results from the
Distributed Interactive Simulation (DIS) world and
related efforts such as the Aggregate Level Simulation
Protocol (ALSP)(Wilson and Weatherly 1994). A goal
of the HLA activity was to develop and recommend an
architecture to the Executive Council for Modeling and
Simulation (EXCIMS) before the end of calendar year
1996. This was achieved, and the EXCIMS in turn, after
appropriate review, recommended the architecture to the
Under Secretary of Defense (Acquisition and
Technology) for approval and standardization. The
baseline HLA definition was approved as the standard
technical architecture for all U.S. DoD simulations on 10
September 1996. This tutorial provides an overview of
the HLA, updating and expanding upon (Dahmann
1997). Additional information concerning the HLA
concept and the DMSO Master Plan is available at
http://www.dmso.mil.

The High Level Architecture (HLA) provides a
common architecture supporting reuse and interoperation
of simulations across the U.S. Department of Defense.
The HLA is based on the premise that no one simulation
can satisfy all uses and users. An individual simulation or
set of simulations developed for one purpose can be
applied to another application under the HLA concept of
the federation: a composable set of interacting
simulations. The intent of the HLA is to provide a
structure which will support reuse of capabilities
available in different simulations, ultimately reducing the
cost and time required to create a synthetic environment
for a new purpose.

The HLA is intended to have wide applicability,
across the full range of defense simulation applications
including training, analysis, and engineering functions, at
a variety of levels of resolution. These widely differing
application areas include a variety of requirements which
had to be considered in the development and evolution
of the HLA.

The definition of architecture used in this effort --
"major functional elements, interfaces, and design rules,
pertaining as feasible to all simulation applications, and
providing a common framework within which specific
system architectures can be defined" -- is one that is
commonly accepted and is consistent with the IEEE
definition of architecture for computer simulations. For
the purpose of this effort, the emphasis is on the
development of a high level architecture which pertains
as widely as possible to all simulation areas and which
will provide a framework for the development of specific
system architectures. The HLA does not prescribe a
specific implementation, nor does it mandate the use of
any particular set of software or programming language.
Over time, as technological advances become available,
new and different implementations will be possible
within the framework of the HLA.

The Department of Defense High Level Architecture 143
2 THE HLA DEVELOPMENT PROCESS

The HLA was developed by the US Department of
Defense (DoD) based on a process involving
government, academia, and industry. In FY94, the
Defense Advanced Research Projects Agency (DARPA)
awarded three industrial contracts for the definition of a
high level architecture. The results of these three
contractor efforts were received in January 1995, and a
core government and academic team combined the best
of those inputs with additional insights from other DoD
modeling and simulation (M&S) projects to arrive at the
initial definition of the HLA. This definition was
presented to the Defense Modeling and Simulation
Office (DMSO)-sponsored Architecture Management
Group (AMG) on 31 March 1995.

The AMG developed the architecture based on
cooperative efforts to apply the HLA in a series of
prototypes designed to ensure that it addressed the broad
set of application requirements for DoD simulations.
The result was the baseline HLA definition, completed in
August 1996 and approved as the standard technical
architecture for all US DoD simulations on 10
September 1996. The AMG continues to evolve the
HLA as needed.

The AMG is made up of representatives of major U.S.
DoD simulation programs. Programs were selected
because they represent the principal simulation
requirements, ranging from analysis to training to test
and evaluation, from detailed engineering representation
to campaign-level warfighting to man-in-the-loop
interactive vehicle simulators. Members, along with their
supporting government and industrial teams, participate
in regular meetings every 6 to 8 weeks to address the key
HLA issues, conduct cooperative prototyping efforts
with other AMG members (prototype federations and
experiments) and participate in technical working groups
to evolve crosscutting technical aspects of the HLA.

It is also very important that the HLA be integrated
into the broader technical community. Work is
underway in a partnership with the Simulation
Interoperability Workshop (SIW) and the Simulation
Interoperability Standards Organization (SISO). The
DIS Workshop (the precursor to the SISO and SIW) was
represented on the AMG during the HLA baseline
development period and has committed to establish
industry standards to support the HLA. This effort was
initiated at the 14th DIS Workshop in March 1996.
3 TECHNICAL ARCHITECTURE

3.1 Motivations

The HLA design is based on certain assumptions. First,
the HLA is based on the premise that no one simulation
can solve all the U.S. DoD functional needs for modeling
and simulation. The needs of the users are too diverse.
The technical complexity of needed implementations is
beyond what has been shown to be possible today or is
reasonably likely in the foreseeable future to be handled
in a single simulation. Further, with changing user
needs, it is just not possible to anticipate how simulations
will be used in the future or in what combinations.
Perhaps equally as important is the changing state of
technology; the HLA will need to allow for leveraging
new technical innovations.

Since it is not possible to anticipate all the uses of
M&S in the U.S. DoD, it is important to think in terms
of multiple simulations which can be reused in a variety
of ways. This means that as simulations are developed,
they must be constructed so that they can be easily
brought together with other simulations, to support new
and different applications. While the HLA attempts to
impose as few constraints as possible on the design of
individual simulations, given the drive for reuse, the
HLA recognizes that simulations themselves will need to
be constructed so that they can easily be extended to
support new features needed by unanticipated
applications.

These assumptions have affected the HLA design in
several ways. Clearly, the architecture itself must have
modular components with well-defined functionality and
interfaces. Further, the HLA has separated the
functionality needed for individual simulations from the
infrastructure required for interoperability among
simulations.

3.2 Functional Overview

Figure 1 shows how an HLA federation is partitioned
into its major functional components. The first key
component are the simulations themselves, or more
generally, the federates. A federate can be a computer
simulation, a manned simulator, a supporting utility
(such as a viewer or data collector), or even an interface
to a live player or instrumented range. All object
representation is in the federates. The HLA imposes no
constraints on what is represented in the federates or how
it is represented, but it does require that all federates
incorporate specified capabilities to allow the objects in
the simulation to interact with objects in other

144 Dahmann, Fujimoto, and Weatherly
Figure 1: Functional View of an HLA Federation

Live
Participants

Data Collector/
Passive Viewer

Interface

Interfaces to
Live Players

Runtime Infrastructure

Simulations

Federation Management Declaration Management
Object Management Ownership Management
Time Management Data DistributionManagment
simulations through the exchange of data supported by
services in the Runtime Infrastructure (RTI).

The second functional component is the RTI. The
RTI is, in effect, a distributed operating system for the
federation. The RTI provides a set of services that
support the simulations in carrying out these federate-to-
federate interactions and federation management support
functions. These services will be discussed later. All
interactions among the federates flow through the RTI.

The third functional component is the runtime
interface. The HLA runtime interface specification
provides a standard way for federates to interact with the
RTI, to invoke the RTI services to support runtime
interactions among federates, and to respond to requests
from the RTI. This interface is implementation
independent and is independent of the specific object
models and data exchange requirements of any
federation.

Two other general capabilities of simulation systems
are supported by the architecture. First, the HLA
supports the passive collection of simulation data and
monitoring of simulation activities. In the HLA, these
tools act in the same way as simulations and interact with
the RTI using the HLA interface.

Second, the HLA supports interfaces to live
participants, such as instrumented platforms or live
command and control (C2) systems. Live participants
interact with the simulated world through something that
acts like a simulation from the point of view of the HLA,
that feeds a representation of the live world into the
simulated world and that projects data from the
simulated world back to the live system.

The HLA is formally defined by three components:
the object model template(Defense Modeling and
Simulation Office 1996), the interface
specification(Defense Modeling and Simulation Office
1996), and the HLA rules(Defense Modeling and
Simulation Office 1996).

3.3 HLA Object Models

HLA object models are descriptions of the essential
sharable elements of the simulation or federation in
'object' terms. The HLA is directed towards
interoperability; hence in the HLA, object models are
intended to focus on description of the critical aspects of
simulations and federations which are shared across a
federation. The HLA puts no constraints on the content
of the object models. The HLA does require that each
federate and federation document its object model using
a standard object model template. These templates are
intended to be the means for open information sharing
across the community to facilitate reuse of simulations.
These completed templates will be openly available, and

The Department of Defense High Level Architecture 145
tools are being developed to allow for automated search
and reasoning about object model template data, to
further facilitate cost-effective information exchange and
reuse.

The HLA specifies two types of object models: the
HLA Federation Object Model (FOM) and the HLA
Simulation Object Model (SOM). The HLA FOM
describes the set of objects, attributes and interactions
which are shared across a federation. The HLA SOM
describes the simulation (federate) in terms of the types
of objects, attributes and interactions it can offer to
future federations. The SOM is distinct from internal
design information; rather it provides information on the
capabilities of a simulation to exchange information as
part of a federation. The SOM is essentially a contract
by the simulation defining the types of information it can
make available in future federations. The availability of
the SOM facilitates the assessment of the
appropriateness of the federate for participation in a
federation.

While the HLA does not define the contents of a
SOM or FOM, it does require that a common
documentation approach be used. Both the HLA FOM
and SOM are documented using a standard form called
the HLA Object Model Template (OMT).

3.4 HLA Interface Specification

The HLA interface specification describes the runtime
services provided to the federates by the RTI, and by the
federates to the RTI. There are six classes of services.
Federation management services offer basic functions
required to create and operate a federation. Declaration
management services provide a means for federates to
declare what information the federate will provide and
require during a federation execution. Object
management services provide creation, deletion,
identification and other services at the object level. State
updates and interactions result in messages being
transmitted to other federates that have indicated interest
in receiving this information. Ownership management
supports the dynamic transfer of ownership of
object/attributes during an execution. This is necessary
because at any instant, only one federate, termed the
“owner,” is allowed to update the value of a particular
attribute. Time management services support
synchronization of runtime simulation data exchange.
Finally, data distribution management services support
the efficient routing of data among federates during the
course of a federation execution. The HLA interface
specification defines the way these services are accessed,
both functionally and in a programmer's interface. The
time management and data distribution management
services are described next in greater detail.
3.4.1 Time Management

Time management is concerned with the mechanisms for
controlling the advancement of each federate in
simulation time (referred to as the federation time axis in
the HLA). In general, time advances must be
coordinated with object management services so that
information is delivered to federates in a timely and
ordered fashion, e.g., to satisfy requirements for
reproducing causal behavior in the system being
modeled. Specifically, a federate may specify that the
messages it sends should be delivered to federates in
receive order or time stamp order (TSO). Advances in
simulation time may or may not be paced to advances in
wallclock time.

Federates will normally use one of the following
approaches to time management:

• paced, independent time advances. Federate time
advances are paced to occur in synchrony with wall
clock time (or scaled wall clock time, derived as a
linear function of wall clock time). The federate
autonomously advances its own time without
coordinating such advances with the RTI. “Human-
in-the-loop” training federates and “hardware-in-the-
loop” test and evaluation federates will typically
utilize this approach.

• paced, coordinated time advances. Federate time
advances are paced to occur in synchrony with
(scaled) wall clock time, but time advances are
coordinated with the RTI to ensure that before-and-
after relationships in the physical system are
properly reproduced. Analytic simulation models
embedded in environments including humans and/or
live elements or physical devices typically utilize
this approach.

• unpaced, coordinated time advances. Federate time
advances are not paced to occur in synchrony with
wall clock time, and the federate coordinates time
advances to ensure before-and-after relationships are
properly modeled. Analytic simulation models
intended to execute “as-fast-as-possible” typically
utilize this approach.

It is anticipated that some federations may include
combinations of federates using different approaches to
time management (e.g., coordinated and independent
time advance federates may be utilized in a single
federation). The time management services are intended
to support federations that include federates with
different ordering and delivery requirements.

The time management services defined in the HLA
are primarily concerned with coordinated time advance

146 Dahmann, Fujimoto, and Weatherly
federates. There are three key components of the time
management services:

1. Logical time: Logical time is synonymous with
federation time for coordinated time advance
federates. Temporal relationships among events are
specified by the logical time values (time stamps)
assigned to the events. In general, at any instant
during the execution, different coordinated time
federates may be at different logical times.

2. Mechanisms to advance logical time: Services are
provided for each federate to advance its own
logical time. Federates must explicitly request
logical time advances, and the advance does not
occur until the RTI issues a grant. If advances in
logical time must be paced to be in synchrony with
wallclock time, such pacing must be done within the
federate(s).

3. Message ordering and synchronization: The RTI
will only grant an advance to logical time T when it
can guarantee all time stamp ordered (TSO)
messages with time stamp less than T (or in some
cases less than or equal to T) have been delivered to
the federate. This guarantee enables the federate to
simulate the behavior of the entities it represents up
to logical time T without concern for receiving new
events with time stamp less than T.

Each federate using logical time must specify a non-
negative lookahead value. If a federate’s current logical
time is T, all TSO messages generated by that federate
must have a time stamp value of at least T plus the
federate’s lookahead. This constraint increases the
amount of concurrent execution in the distributed
simulation.

In order to determine which TSO messages can be
delivered to a federate F without violating the guarantee
that messages are delivered in time stamp order, the RTI
must internally compute a lower bound on the time
stamp (LBTS) of future messages that will be later
received that are destined for F. Only TSO messages
with time stamp less than or equal to F’s LBTS value are
eligible for delivery. At any instant, the RTI may hold
one or more messages with time stamp less than LBTS in
its internal queues. The minimum among the federate’s
LBTS value and messages stored in the RTI’s queues
gives a lower bound on the time stamp of any TSO
messages that will be delivered to the federate in the
future. LBTS is computed within the RTI using a
conservative synchronization protocol, e.g., see
(Fujimoto 1990).

The HLA provides several services to support the
inclusion of optimistic federates, e.g., federates
synchronized using the Time Warp mechanism
(Jefferson 1985). The LBTS value computed by the RTI
enables the federate to compute Global Virtual Time
(GVT). A service for retracting previously scheduled
events is provided, thereby enabling the implementation
of anti-messages. A service is provided to allow
optimistic federates to flush the time stamp ordered
message queue, enabling the optimistic processing of
events. An important property of the time management
services is they ensure that optimistic events (events that
may later be canceled) are not delivered to federates
unless they explicitly request them via the flush queue
primitive, thereby enabling conservative federates to
operate in the same federation with optimistic
simulations without being concerned with having to
implement rollback and message cancellation
mechanisms . At the same time, optimistic federates that
provide this capability can freely exchange optimistic
events.

A federate is said to be time regulating (or
equivalently, time regulation is enabled) if it can send
time stamp ordered (TSO) messages. Information such
as the current logical time and lookahead of time
regulating federates are used by the RTI in LBTS
computations. TSO messages sent by a federate that is
not time regulating are automatically converted to
receive ordered by the RTI. Similarly, a federate is said
to be time constrained (time constrained is enabled) if it
can receive time stamp ordered (TSO) messages. TSO
messages received by a federate that is not time
constrained are automatically converted to receive
ordered by the RTI.

3.4.2 Declaration Management and Data
Distribution Management

Data management (DM) and data distribution
management (DDM) in the HLA are used to specify
which federates should receive messages for each state
update and interaction (Morse 1996). DM services
Publish and Subscribe allow a federate to update and
receive updates to object attributes based solely on
object class. The RTI uses information provided in
publish/subscribe calls to set up filters that direct data
among federates that need them. The object
management’s (OM) Update Attribute Values service
call notifies the RTI that one or more attributes have
been modified. For example, an object might subscribe
to the attribute ‘location’ of all tanks in the battlefield.
However, such filtering will only be appropriate for
relatively small federations. DDM services provide more
powerful data distribution services enabling value-based
filtering(Defense Modeling and Simulation Office 1996).
For example a tank might want to receive data from

The Department of Defense High Level Architecture 147
other tanks only if they are in its visible range. Note that
since the RTI does not know the meaning of object
attributes it cannot provide range-based filtering in this
example. Federates must agree on a filtering strategy to
do this.

The fundamental concept used in the HLA to support
value-based DDM is the routing space. A routing space
is a normalized (coordinate values range from 0.0 to 1.0)
multidimensional coordinate system in which federates
indicate interest in receiving or providing updates via
subscription and update regions. Subscription and
update regions are rectangular (in N dimensions) and are
specified by indicating extents, with one extent for each
dimension. Each extent indicates the portion of that
dimension covered by the region. For example, the
extents [0.0,0.5][0.0,1.0] specify the left half of a two
dimensional routing space. Federates express their
interest in receiving updates from other federates
through subscription regions defined over a routing
space, and are called subscribers (to a specific attribute).
On the other hand, federates that are providing updates
define their update regions over the routing space, and
are called publishers (of a specific attribute). The RTI
detects when subscription and update regions associated
with an attribute overlap, and provides data transfer from
the publisher to all subscribers for all updates to that
attribute.

Figure 2 shows a two-dimensional routing space with
one update U1 and two subscription regions S2 and S3
that belong to federates F1, F2 and F3 respectively.
Since U1 and S2 overlap, the RTI will transmit updates
to attributes by F1 that are associated with this update
region to subscriber F2, but not to F3. Regions can be
changed dynamically by invoking the Modify Region
service.

U1

S2

S3

Figure 2: Update Region U1 and Subscription Regions
S2 and S3 in a Two Dimensional Routing Space
3.5 HLA Rules

Finally, the HLA rules summarize the key principles
behind the HLA. These are divided into two groups:
federation and federate rules. Federations, or sets of
interacting simulations or federates, are required to have
a FOM in the OMT format. During runtime, all object
representation takes place in the federates (not the RTI)
with only one federate owning any given attribute of an
instance of an object at any time. Information exchange
among the federates takes place via the RTI using the
HLA interface specification.

Additional rules apply to individual federates. Under
the HLA, each federate must document their public
information in their SOM using the OMT. Based on the
information included in their SOM, federates must
import and export information, transfer object attribute
ownership, updates attributes and utilize the time
management services of the RTI when managing local
time.

4 HLA PROTOTYPING

The purpose of the HLA baseline development period
was to take the initial HLA definition to develop the
needed specifications and tools to actually use the HLA
to support prototype applications. This prototyping was
directed toward addressing a set of common
issues(Defense Modeling and Simulation Office 1996)
and to evolve the HLA to meet the broad set of needs.
These issues include the technical viability of a single
interface specification to support the wide application
base of the HLA and the technical feasibility of building
an RTI with the necessary range of tools needed by those
applications, the impact of the HLA on simulation
internal development, the utility of the object model
concept and formats throughout the HLA life cycle, the
ability to specify common testing methods, the ability to
operate HLA federations in a secure mode and, finally,
the applicability of the HLA to address the wide range of
US DoD simulation applications.

There were four major prototype implementations of
federations (“proto-federations”) using the HLA to
support the HLA baseline development process. The
simulations incorporated in these proto-federations were
made available, along with their support technical
development teams, by AMG members, as part of the
HLA development process. Each proto-federation
addressed a different corner of the simulation application
domain, and as such, generally typifies one way
simulations will be used in an HLA context.

Several overall points are warranted before the proto-
federations themselves are described. The purpose of

148 Dahmann, Fujimoto, and Weatherly
these prototypes was to develop the HLA though hands-
on experience, not to solve a specific real-world
problem. In several cases the scenarios for the
federations had to be stretched to support the mix of
federates available from the AMG. Second, all four
prototypes used the same architecture, the same interface
specification, the same object model template and, in
fact, the same RTI software implementation.

For HLA baseline development purposes it was
decided to develop one prototype implementation of the
RTI and use that implementation with all the proto-
federations. This was seen as both the most cost-
effective approach and a strategy that would allow for
the examination of the desirability of having not only a
common interface specification, but also one common
implementation which could serve the entire community.
The primary objective of the RTI prototyping was to
provide the other proto-federations with the needed
functionality for them to implement and use the HLA for
their application needs. The RTI prototype also
provided the mechanism to assess the functional and
performance requirements for RTI service provision as
input to future RTI development and transition. The RTI
software is being re-engineered to incorporate the full set
of services defined in the HLA Baseline Definition .

The first proto-federation was called the Platform
Prototype federation. This was a federation of real-time
platform level simulators and simulations which are
current users of IEEE DIS 2.0. The key issues addressed
by this proto-federation were the ability of the HLA to
provide the capabilities now supported by DIS and to
address the issues associated with adapting a current
DIS-enabled system to work under HLA.

The second federation, called the Joint Training
Prototype, was a federation of discrete event
simulations. The key issues for this prototype were the
ability to coordinate multiple discrete event simulations
using the RTI time management services, the ability to
hand-off ownership of attributes in a federation and
options for providing dynamic environmental effects
across a federation.

The third prototype federation was the Analysis
Proto-federation. This proto-federation is comprised of
closed form analytic applications; hence, runtime
efficiency and replicability are important here, since
these simulations will eventually require multiple
executions for analysis purposes. The interest in this
proto-federation was in the time management and data
management services.

The Engineering Prototype federation examined use
of the HLA to support simulations to support system
acquisition using validated, engineering-level
simulations. This proto-federation was particularly
interested in object ownership management which
affords the option of handing off computation of certain
effects during select parts of a scenario to selected
simulation facilities and in performance requirements to
support hardware-in-the-loop applications.

These prototypes were implemented to apply the HLA
to applications which typify its ultimate uses to support
its definition. The results of the prototypes were fed into
the specification and testing procedures through the
working groups. The experiences of the individual
federate developments support assessment of the effect
of the HLA on simulations and offer an experience base
for future users of the HLA.

Finally, the experience of developing these proto-
federations provided the basis for the development of a
general process view of the HLA. While HLA
development focuses on the specification of the technical
components of the architecture, it has been recognized
that it is very important to understand the process which
supports the use of the architecture for different
applications. The baseline definition of the HLA was
developed based on a set of proto-federations. Using the
experience of these proto-federations as a driver, a
general process for the development and execution of
applications using the HLA is being formulated as a
recommended practice to accompany the HLA
definition(Defense Modeling and Simulation Office
1996). Understanding this process is viewed as a very
important element in the development and application of
the HLA.

5 HLA SUPPORT FOR SIMULATION REUSE
AND INTEROPERABILITY

Simulation interoperability is defined as “the ability of a
... simulation to provide services to, and accept services
from, other ... simulations, and to use the services so
exchanged to enable them to operate effectively
together.” (U.S. Department of Defense 1994) This
definition of interoperability reflects the overall
objective of the HLA that different simulations be able to
effectively share data towards a common goal.

As the definition indicates, there are two elements in
interoperation: effective data sharing and consistent data
interpretation. The HLA requires that federates build the
functionality required to interface with the RTI and
exchange data with other federates via the HLA specified
interfaces. This enables federates to participate in
federations, to exchange data, and coordinate their
operations with a federation. The HLA also requires all
federates and federations to document characteristics of
their object representations relevant to other potential
users of the federate or federation. This documentation,
in the form of completed object model templates,

The Department of Defense High Level Architecture 149
facilitates the information exchange needed for a
consistent interpretation of shared data.

Universal interoperability (the ability of any
simulation to interoperate with any other simulation,
regardless of original purpose or technical
implementation) is not feasible with today’s technology.
Realistically, interoperability will be attainable in
degrees, with the required level of interoperability
determined by the needs of the federation user. Where
interoperability deals with the logical exchange of
information between distinct federates during runtime,
reuse refers to the adaptation of components (e.g., ideas,
whole simulations, lines of code) during the development
of a new simulation. Reuse is assisted by having well-
defined modular components (the federates) which share
the common understanding of what is the meaning of the
objects contained within them.

The HLA rules, interface specification, and object
model template provide minimum essential tools for
interoperability. They ensure that the basic capability for
information exchange is in place, they establish the
mechanisms for runtime data transfer, and they provide
the means to identify appropriate simulations for
different purposes. Beyond this, additional
interoperability requires additional consistency in the
internal representation of the simulations themselves.
The extent to which this consistency is required for any
particular application depends on the characteristics of
that application. While the HLA in itself is insufficient
to guarantee interoperability, it provides the technical
framework for simulation and federation developers to
achieve the degree of interoperability needed to achieve
their objectives.

6 HLA TECHNICAL LIBRARY

DMSO has established an on-line HLA Technical
Library, accessible through the DMSO Home Page on
the World Wide Web (http://www.dmso.mil), which
contains not only the HLA Baseline Definition
documents, but a wealth of supporting documentation as
well. This includes test procedures, design details, an
HLA security architecture, examples of the use of the
HLA, and an extensive archive of briefings and
documents, including all of the AMG proceedings
throughout the HLA prototyping phase and published
HLA papers. The HLA Technical Library will continue
to grow and evolve as the HLA itself is carried forward.
It is intended to be an open source for use by
implementors of the HLA.

REFERENCES
Dahmann, J. S. 1997. High level architecture for
simulation. Proceedings of the First International
Workshop on Distributed Interactive Simulation and
Real-Time Applications, 9-14.

Defense Modeling and Simulation Office 1996. Data
distribution and management design document, V0.2.
Washington D.C. December (http://www.dmso.mil).

Defense Modeling and Simulation Office 1996. High
level architecture baseline development plan, V1.7.
Washington D.C. April 1 (http://www.dmso.mil).

 Defense Modeling and Simulation Office 1996. High
level architecture federation and execution process
model, V1.0. Washington D.C. September 6
(http://www.dmso.mil).

Defense Modeling and Simulation Office 1996. High
level architecture interface specification, V.1.0.
Washington D.C. August 15 (http://www.dmso.mil).

Defense Modeling and Simulation Office 1996. High
level architecture object model template. Washington
D.C. August 15 (http://www.dmso.mil).

Defense Modeling and Simulation Office 1996. High
level architecture rules, V1.0. Washington D.C.
August 15 (http://www.dmso.mil).

Fujimoto, R. M. 1990. Parallel discrete event simulation.
Communications of the ACM 33(10): 30-53.

Jefferson, D. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems 7(3): 404-425.

Morse, K. 1996. Interest management in large scale
distributed simulations, University of California,
Irvine.

U.S. Department of Defense 1994. Department of
Defense Directive on modeling and simulation
management (5000.59). Washington D.C. January 4 .

Wilson, A. L., and R. M. Weatherly 1994. The
Aggregate Level Simulation Protocol: An evolving
system. Proceedings of the 1994 Winter Simulation
Conference, 781-787.

AUTHOR BIOGRAPHIES

JUDITH S. DAHMANN is the Chief Scientist for the
U.S. Defense Modeling and Simulation Office. She has
lead the development of the High Level Architecture.

RICHARD M. FUJIMOTO is a professor with the
College of Computing at the Georgia Institute of
Technology. He served as the technical lead in defining
the time management services of the HLA.

RICHARD M. WEATHERLY is the Chief Engineer
for the MITRE Corporation’s Information Systems and
Technology Division. He wrote the first version of the
HLA Interface Specification and lead the RTI 0.X, F.0,
and 1.0 software development teams.

	THE DEPARTMENT OF DEFENSE HIGH LEVEL ARCHITECTURE
	ABSTRACT
	1 INTRODUCTION
	2 THE HLA DEVELOPMENT PROCESS
	3 TECHNICAL ARCHITECTURE
	3.1 Motivations
	3.2 Functional Overview
	3.3 HLA Object Models
	3.4 HLA Interface Specification
	3.5 HLA Rules

	4 HLA PROTOTYPING
	5 HLA SUPPORT FOR SIMULATION REUSE AND INTEROPERABILITY
	6 HLA TECHNICAL LIBRARY
	REFERENCES
	AUTHOR BIOGRAPHIES

