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ABSTRACT

An atmospheric general circulation model (AGCM) is forced with patterns of observed sea surface tem-

perature (SST) change and those output from atmosphere–ocean GCM (AOGCM) climate change simula-

tions to demonstrate a strong dependence of climate feedback on the spatial structure of surface temperature

change. Cloud and lapse rate feedbacks are found to vary the most, depending strongly on the pattern of

tropical Pacific SST change. When warming is focused in the southeast tropical Pacific—a region of clima-

tological subsidence and extensivemarine low cloud cover—warming reduces the lower-tropospheric stability

(LTS) and low cloud cover but is largely trapped under an inversion and hence has little remote effect. The net

result is a relatively weak negative lapse rate feedback and a large positive cloud feedback. In contrast, when

warming is weak in the southeast tropical Pacific and enhanced in the west tropical Pacific—a strong con-

vective region—warming is efficiently transported throughout the free troposphere. The increased atmo-

spheric stability results in a strong negative lapse rate feedback and increases the LTS in low cloud regions,

resulting in a low cloud feedback of weak magnitude. These mechanisms help explain why climate feedback

and sensitivity change on multidecadal time scales in AOGCM abrupt4xCO2 simulations and are different

from those seen in AGCM experiments forced with observed historical SST changes. From the physical

understanding developed here, one should expect unusually negative radiative feedbacks and low effective

climate sensitivities to be diagnosed from real-world variations in radiative fluxes and temperature over

decades in which the eastern Pacific has lacked warming.

1. Introduction

Climate model simulations of surface temperature

change in response to long-term greenhouse gas forcing

show robust large-scale features: 1) larger warming

generally occurs over land compared to the oceans,

2) warming is amplified at high latitudes, 3) minima in

surface warming occur in the Southern Ocean, and

4) warming is ‘‘El Niño like’’ in the equatorial Pacific

(Collins et al. 2013). Yet during historical climate

change, the spatial structure of surface temperature

change is complicated by different time-scale responses

in the climate system (e.g., Held et al. 2010; Li et al.

2013), unforced variability on annual to multidecadal

time scales (e.g., Kosaka and Xie 2013; Dai et al. 2015),

and temporal and spatial variations in anthropogenic

forcing (e.g., Booth et al. 2012; Boo et al. 2015; Smith

et al. 2015). In particular, atmosphere–ocean general

circulation models (AOGCMs) suggest that surface

temperature change is initially delayed in the southeast

tropical Pacific and Southern Ocean in response to

forcing (e.g., Senior and Mitchell 2000; Held et al. 2010;

Li et al. 2013; Andrews et al. 2015; Armour et al. 2016;

Luo et al. 2017).

Varying with surface temperature change are feedback

processes that directly alter Earth’s energy budget. Well-

established feedback processes are the Planck, lapse rate,

water vapor, cloud, and sea ice/snow surface albedo

feedbacks (e.g., Bony et al. 2006; Flato et al. 2013). There

is an increasing realization that feedback processes are

sensitive to the varying spatial structure of surface tem-

perature change. This has been seen in both idealized

GCM climate change simulations (e.g., Senior and

Mitchell 2000; Williams et al. 2008; Andrews et al. 2012a;

Geoffroy et al. 2013; Armour et al. 2013; Rose et al. 2014;

Kang andXie 2014; Andrews et al. 2015; Rugenstein et al.

2016) and GCMs forced by observed variations in sea

surface temperatures (SSTs) and sea ice (Andrews 2014;

Gregory and Andrews 2016; Zhou et al. 2016).

A dependence of radiative feedbacks on the spatial

structure of surface temperature change may provide a
Corresponding author: Timothy Andrews, timothy.andrews@

metoffice.gov.uk

15 JANUARY 2018 ANDREWS AND WEBB 641

DOI: 10.1175/JCLI-D-17-0087.1

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/
PUBSReuseLicenses).

Unauthenticated | Downloaded 08/26/22 05:20 PM UTC

mailto:timothy.andrews@metoffice.gov.uk
mailto:timothy.andrews@metoffice.gov.uk
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


mechanism to reconcile potential differences between

historical energy budget estimates of climate sensitivity

(which tend to be lower) and those simulated by

AOGCMs forced by CO2 increases (which tend to be

higher) (e.g., Armour 2016; Gregory and Andrews 2016;

Forster 2016; Armour 2017). Similarly, it may explain

why simulated cloud radiative feedbacks derived from

interannual variations in top-of-the-atmosphere (TOA)

radiative fluxes and surface temperature change, the

pattern of which is dominated by El Niño–Southern

Oscillation (ENSO), have been found to be different

from those acting on long-term climate change (e.g.,

Dessler 2013; Zhou et al. 2015).

Despite strong modeling evidence for variation in

climate sensitivity and feedback parameters, a robust

physical understanding of why climate feedbacks de-

pend on the spatial structure of surface temperature

change is currently lacking. Identifying such a mecha-

nism is a necessary first step in assessing the credibility of

the GCM results. Andrews et al. (2015) showed that in

abrupt4xCO2 AOGCM simulations cloud feedbacks

strengthen on multidecadal time scales, in part due to

evolving patterns of east–west tropical Pacific SST

changes, which likely alter lower-tropospheric stability

(LTS) and low cloud cover (e.g., Williams et al. 2008; Qu

et al. 2015a). Zhou et al. (2016) found substantial de-

cadal variations in the strength of cloud feedbacks and

Earth’s energy budget when forcing their AGCM with

historical SST variations. They attributed this to a de-

pendence of tropical-mean low-level cloud change on

lower-atmospheric stability and its relationship to sur-

face warming in tropical ascent and descent regions (see

also Zhou et al. 2017). Here we further develop and

refine these mechanisms, extending them to a wider set

of SST patterns and, like Senior and Mitchell (2000),

identify changes in lapse rates as well as cloud feedbacks

as being driven by a similar mechanism. We begin

(section 2) by describing the experimental design and

various changes in SST patterns that we use in this study.

Section 3 proposes and tests a mechanism that relates

the changes in SST patterns to variations in cloud and

lapse rate feedbacks. Section 4 discusses the robustness

of this mechanism and the implications for observed

climate change.

2. Surface warming patterns and radiative

feedbacks

a. Approach and experimental design

To investigate the dependence of radiative feedbacks

on the pattern of surface temperature change we force

the atmospheric component of the Hadley Centre

Global Environmental Model, version 2 [HadGEM2-A;

a detailed description of the model is provided byMartin

et al. (2011)], with various patterns of SST change.

HadGEM2 is a good choice of model for this in-

vestigation since its change in feedback strength under an

abrupt quadrupling of CO2 is close to that of phase 5 of

the Coupled Model Intercomparison Project (CMIP5)

multimodel-mean change (Andrews et al. 2015); thus, the

variation in feedback strength in HadGEM2 is not un-

usual in comparison to other contemporary models.

Our control experiment is identical to the CMIP5

amip experiment (Taylor et al. 2012); that is, we force

HadGEM2-A with monthly observed SST and sea ice

variations and all forcing agents (e.g., greenhouse gases,

aerosols) for the 30-yr period 1979–2008. Note that

GCMs forced in this way show good agreement with

observed energy budget variations over a range of sur-

face temperature anomalies and time scales (e.g., Allan

et al. 2014; Smith et al. 2015). Our first two perturbation

experiments are identical to the CMIP5 amip4k and

amipFuture experiments (Bony et al. 2011), though we

refer to these experiments with the updated terminology

used in the Cloud Feedback Model Intercomparison

Project (CFMIP) contribution to CMIP6 (amip-p4K and

amip-future4K, respectively) (Webb et al. 2017). amip-

p4K is the same as the amip control experiment, except

that the SSTs are subject to a uniform warming of 4K.

amip-future4k is also the same as the amip control ex-

periment, except the SSTs are subject to a warming

pattern derived from the multimodel ensemble mean

response of AOGCMs forced by a 1%yr21 CO2 in-

crease [details are given in Webb et al. (2017)]. The

perturbation is scaled such that the global-mean SST

increase is 4K relative to the amip control experiment.

Note that in all perturbation experiments it is only the

SSTs that are changed; the sea ice fraction is identical to

the amip control experiment and so the sea ice fraction

feedback is zero by construction.

In a similar way, we add three new SST perturbation

experiments. First, amip-obs4K is the same as the amip

control experiment, except the SSTs are subject to a

warming pattern illustrative of observed twentieth-

century trends. The warming pattern is the linear trend

in SST at each grid box over the period 1900–2012

(calculated from a linear fit to the annual-mean SST

time series) from the amip boundary condition SST

dataset (Taylor et al. 2000; Hurrell et al. 2008). Again,

the pattern is first normalized and then scaled to

ensure a global-mean SST increase of 4K relative to the

amip control experiment, as it is in amip-p4k and amip-

future4k. Note that there will be uncertainty in the ob-

served pattern used here, which we do not address, but

our purpose is to develop a process understanding of the

dependence of climate feedbacks to different SST
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patterns rather than to determine exactly what the pat-

tern of twentieth-century SST change is. Second and

third, amip-fast4k and amip-slow4K are again the same

as the amip control experiment, except this time the

SSTs are subject to a warming pattern derived from the

CMIP5 AOGCM-mean response to an abrupt quadru-

pling of CO2 averaged over years 1–20 (amip-fast4k)

and years 21–150 (amip-slow4K) as derived and detailed

in Andrews et al. (2015, their Fig. 5). Again, the patterns

are normalized and then scaled to ensure a global-mean

SST increase of 4K relative to the amip control exper-

iment. Note that all warming patterns are applied as a

climatological annual mean, except for amip-future4k,

which CFMIP provides as a monthly climatological

warming pattern.

The pattern of 1.5-m near-surface air temperature

change (perturbation minus amip) for each experiment

(except amip-future4k) is shown in Fig. 1a, and the key

feature of each pattern is highlighted in Table 1. Note

that the patterns of surface temperature change over

land and sea ice must be a response to the SST pertur-

bations. Since radiative forcings are unchanged between

the control and perturbation experiments, the net

feedback parameter a (Wm22K21) can be derived

simply from the change in net TOA radiative flux nor-

malized by the global-mean near-surface air tempera-

ture change. The approach used is thus analogous to

how feedback and sensitivity parameters have been

routinely diagnosed and contrasted over many years, for

example, initially using 12-K SST experiments (e.g.,

Cess et al. 1996), and more recently using amip 14-K

SST experiments (Bony et al. 2011; Webb et al. 2017).

The Planck, cloud, lapse rate, water vapor, and surface

albedo feedbacks are isolated using the standard

FIG. 1. (a) Change in near-surface air temperature (1.5m) DT, normalized by global-mean DT, in the various amip-4K experiments

(relative to the amip control). Note that over the oceans, DT closely follows the prescribed patterns of SST change. (b) The resulting net,

lapse rate, and cloud radiative feedbacks to the SST perturbations.
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radiative kernel technique of Soden et al. (2008), ap-

plied to monthly mean data. All results are means over

the 30-yr simulations.

b. Radiative feedbacks

The global-mean radiative feedbacks are shown in

Table 2 and vary substantially depending on the SST

pattern applied. The net feedback parameter ranges

from 20.98Wm22K21 when we force HadGEM2-A

with a pattern of SST change from the later part of

abrupt4xCO2 (amip-slow4K) to21.61Wm22K21when

themodel is forced with observed twentieth-century SST

trends (amip-obs4K). This translates to a range of effec-

tive climate sensitivity (EffCS 5 2F2x/a; i.e., the equi-

librium response to a doubling of CO2 assuming a

constant feedback parameter a)1 from ;5 to 2.6K,

respectively. Note that the model physics is unchanged

between these simulations; the change in sensitivity

occurs purely due to the different pattern of SST

change applied to the model.

When forced with the initial warming pattern of

abrupt4xCO2 (amip-fast4k) the feedback parameter is

more negative (effective climate sensitivity smaller)

than in the amip-slow4K experiment. This implies that

the effective climate sensitivity should increase after

20 yr in abrupt4xCO2 owing to the change in warming

pattern, recovering the results of Andrews et al. (2015)

and Geoffroy et al. (2013) (among others) but using a

different methodology.

The surface albedo feedback is small but positive

owing to the melting of snow cover over land (recall that

the sea ice feedback is excluded by design) and largely

independent of the warming pattern. The global-mean

Planck feedback is also largely independent of the

warming pattern, even though this cannot be the case

regionally since the Planck feedback is the product

of the temperature kernel and the normalized warming

pattern (e.g., Feldl and Roe 2013). Cloud and lapse

rate feedbacks show the largest dependence on

the surface temperature pattern, ranging from 10.40

to10.60Wm22K21 and from21.06 to20.58Wm22K21

in amip-slow4K and amip-obs4K, respectively. Some of

the spread in lapse rate feedback is anticorrelated with

the variation in the water vapor feedback—a well-

known result commonly seen across GCM feedbacks

(e.g., Soden and Held 2006). Cloud and lapse rate

feedbacks vary significantly and explain most of the

variation in the net feedback across the experiments

(both have correlation coefficients r with net feedback

greater than 0.9) and are strongly correlated with each

other (r 5 0.9). This suggests a common mechanism

between cloud and lapse rate variations, which is the

focus of the rest of this study.

Note that the residual (net feedback minus sum of

individual feedbacks as determined from the radiative

kernels) is not negligible, as also seen in other studies

that use radiative kernel techniques (e.g., Vial et al.

2013), and can be interpreted as a nonlinear term (e.g.,

Feldl and Roe 2013). In addition, HadGEM2 has a

mineral dust scheme that has been shown to give rise to

changes in atmospheric dust load and top-of-the-

atmosphere radiation under climate change (e.g.,

Andrews et al. 2012b), which would be aliased into the

residual here. Regardless, the residual is mostly robust

to the warming pattern (Table 2), even at regional scales

(not shown).We further believe that it has no bearing on

our conclusions that cloud and lapse rate feedbacks

show significant dependence on the pattern of warming

since 1) the feedback differences across different

warming patterns are consistent with changes in physical

TABLE 1. Description of the SST perturbation experiments and key features of the surface warming pattern. All experiments are

identical to the control amip experiment (i.e., an atmospheric GCM forced with monthly observed SST and sea ice variations and all

forcing agents for the 30-yr period 1979–2008) except that in each case the SSTs are subject to the addition of the described warming

pattern, each of which are scaled to ensure a global-mean SST increase of 4K relative to the amip control experiment. Note that in all

perturbation experiments the forcing agents and sea ice fraction boundary conditions are unchanged; it is only the SSTs that are perturbed.

Experiment Warming pattern Key feature

amip-obs4K 1900–2012 linear trend of observed SSTs Lack of warming in east Pacific

amip-p4K Uniform warming of 14K Uniform warming

amip-future4K End of 1% CO2 simulation Relatively small warming in the southeast tropical

Pacific and Southern Ocean

amip-fast4K First 20 years of abrupt4xCO2 simulation Relatively small warming in the southeast tropical

Pacific and Southern Ocean

amip-slow4K Years 21–150 of abrupt4xCO2 simulation Relatively large warming in the east Pacific, Southern

Ocean, and high latitudes

1 In this calculation we assume the multimodel-mean effec-

tive radiative forcing of 3.4Wm22 for a doubling of CO2 (F2x)

(Forster et al. 2013) and a typical surface albedo feedback of

10.3Wm22K21 (Flato et al. 2013) (which is added to a).
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processes (e.g., differences in cloud and atmospheric

temperature responses to different warming patterns;

see next paragraph and section 3) and 2) calculating the

feedbacks simply from changes in radiative fluxes

without kernels (e.g., longwave clear-sky or cloud radi-

ative effects) provides consistent results (not shown).

The variation in cloud feedback is dominated by re-

gions of marine stratocumulus in the southeast tropical

Pacific (Fig. 1b, bottom). There exists a strong positive

cloud feedback associated with a reduction in low clouds

in the amip-slow4K experiment; this is weaker in amip-

p4k and amip-fast4k and even changes sign in amip-

obs4K. This is also the dominant feature seen in the

variation of the net feedback parameter (Fig. 1b, top).

The spread in lapse rate feedback is also large in the

tropical Pacific but also shows variations at mid- and

high latitudes too, where it is strong and negative in

amip-obs4K but weak in amip-slow4K (Fig. 1b, middle).

This is clearly illustrated in Fig. 2a, which shows the

zonal-mean profile of the deviation from vertically uni-

form warming [i.e., DT(z) 2 DTsurface, where DT(z) is

the change in air temperature at height z and DTsurface

the surface temperature change], normalized by the

global-mean near-surface air temperature change. The

product of this deviation from vertically uniform

warming with the temperature kernel gives the lapse

rate feedback (Fig. 2b). In all experiments the lapse rate

feedback is strongly negative in the upper tropical tro-

posphere but also at midlatitudes over the Southern

Ocean in amip-obs4K. In contrast, the lapse rate

changes and lapse rate feedbacks are largely restricted

to the upper tropical troposphere in amip-slow4K, rel-

ative to the other patterns, and lack the changes at

midlatitudes.

Our key finding is that in amip-slow4K, where

HadGEM2-A is forced with a pattern of surface tem-

perature change taken from the latter part of the CMIP5

AOGCM abrupt4xCO2 simulation (which has relatively

strong southeast tropical Pacific and Southern Ocean

warming), it simulates a relatively strong positive cloud

feedback in the southeast tropical Pacific and a relatively

weak negative lapse rate feedback. Together these give a

globally less negative feedback parameter and large ef-

fective climate sensitivity. In contrast, when HadGEM2-

A is forced with a pattern of surface temperature change

derived from observed historical climate change (amip-

obs4K) (which has relatively weak warming in the east

Pacific), it simulates a relatively weak (or even negative)

cloud feedback in the east tropical Pacific and a relatively

strong negative lapse rate feedback. Together, these

give a strongly negative feedback parameter and small

effective climate sensitivity. The other warming patterns

and feedback results largely fall between these extremes.

In the next section we propose a mechanism to explain

these dependencies.

3. Mechanism

a. East–west tropical Pacific warming mechanism

We propose a simple mechanism that relates cloud and

temperature lapse rate changes in the tropical Pacific.

First, note that marine low cloud changes are well de-

scribed by reductions in low cloud fraction in response to

local SST increases (e.g., Rieck et al. 2012;Webb andLock

2013; Qu et al. 2014; Brient et al. 2016; Bretherton 2015)

and increases in low cloud fraction in response to increases

in lower-tropospheric stability (LTS 5 u700hPa 2 usrf)

(e.g., Klein and Hartmann 1993; Qu et al. 2014, 2015b),2

where u700hPa and usrf are the potential temperatures at

700hPa and the surface, respectively. This suggests that

low cloud changes depend on local SST changes and re-

mote effects that influence free tropospheric temperatures

and hence lower-tropospheric stability. Second, since

warming in the free troposphere is relatively horizontally

uniform, variations in lapse rate feedback are also de-

termined by the structure of surface temperature change

TABLE 2. Radiative feedbacks (Wm22K21) derived from the various amip-4K experiments. The Planck, lapse rate (LR), water vapor

(WV), surface albedo, and cloud feedbacks are isolated using the standard radiative kernel technique of Soden et al. (2008), applied to

monthlymean data. Results aremeans over the 30-yr simulations. The residual is the difference between the net feedback (change in TOA

radiative flux normalized by global-mean near-surface air temperature change) and the sum of individual feedbacks as determined from

the radiative kernel technique.

Experiment Net Planck LR WV WV 1 LR Albedo Cloud Residual

amip-obs4K 21.61 23.20 21.06 1.82 0.76 0.08 0.40 0.35

amip-p4k 21.31 23.19 20.85 1.75 0.9 0.09 0.49 0.40

amip-future4k 21.37 23.22 21.01 1.88 0.87 0.09 0.45 0.44

amip-fast4k 21.31 23.18 20.81 1.76 0.95 0.10 0.44 0.38

amip-slow4K 20.98 23.16 20.58 1.64 1.06 0.09 0.60 0.42

2Qu et al. (2014, 2015b) actually use the estimated inversion

strength (EIS) of Wood and Bretherton (2006) rather than LTS,

but EIS and LTS have a similar characteristic response (Webb

et al. 2013).
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(Po-Chedley andFu 2012; Flannaghan et al. 2014; Lambert

and Taylor 2014; Ferraro et al. 2015).

Now imagine and contrast two idealized warming sce-

narios, one where warming is focused in regions of strong

subsidence and low cloudiness, such as the southeast

tropical Pacific, and one where warming is focused in

regions of strong convection, such as the west Pacific

warm pool. Note that these are extreme scenarios and in

practice temperature change occurs in both with various

amplitudes. In the first scenario, if tropical warming was

focused in the low cloud regions of the southeast tropical

Pacific then warming would be largely trapped under the

inversion that caps the boundary layer (Zhou et al. 2016,

2017). Thiswould result in a large positive cloud feedback

to the local surface warming but also a significantly re-

duced LTS since there is little temperature change above

the cloud layer in the free troposphere at 700hPa; that is,

du700hPa ; 0, and hence dLTS ; 2dusrf. A reduced LTS

entrains warm and dry air from above, further reducing

the low cloud cover and resulting in an even larger cloud

feedback (e.g., Bretherton 2015). In addition, since the

warming is inefficiently transported to upper levels, the

result is a weak lapse rate feedback. Hence in this sce-

nario cloud feedback is large and positive, while the

negative lapse rate feedback is weak, and so the effective

climate sensitivity is large.

In contrast, in the second scenario, if warming was

focused in the strong convective regions of the west

Pacific and weak in the southeast tropical Pacific, then

warming would be efficiently transported to upper levels

and throughout the free troposphere. The result would

be a strong warming aloft, increasing stability and the

atmospheric lapse rate feedback (e.g., Po-Chedley and

Fu 2012; Flannaghan et al. 2014). Furthermore, the free

tropospheric warming increases LTS in the low cloud

regions, which throttles (or can even offset) the positive

low cloud feedback from local SST changes (e.g., Qu

et al. 2015b; Zhou et al. 2016, 2017), which was already

weak owing to the relatively weak warming in these

regions. Hence in this scenario cloud feedback is small

or negative, while the negative lapse rate feedback is

strong, and so the effective climate sensitivity is small.

b. Can this mechanism explain the variation in

feedbacks?

We test whether such a mechanism is able to explain

the variation in feedbacks seen in our experiments by

creating a simple index that contrasts the normalized

warming pattern averaged over two key approximately

equal area tropical regions of strong ascent and descent:

the west Pacific (158S–158N, 1508–1708E) and the

southeast tropical Pacific (308S–08, 2608–2808E), re-

spectively (see boxes in Fig. 5c below). Defined as

southeast minus west Pacific DT (here DT is the near-

surface air temperature change normalized by the

global-mean change), when this index is .0 it indicates

relatively larger warming in the southeast Pacific (such

as in amip-slow4K) per unit of global temperature

FIG. 2. (a) Zonal-mean profiles of the deviation from vertically uniformwarming [defined as the change in T(z)2 Tsurface, whereT(z) is

the air temperature at height z, and Tsurface is the surface temperature], normalized by global-mean near-surface air temperature change,

due to the various amip-4K SST perturbations. (b) The resulting lapse rate feedbacks in each experiment, which are the product of (a) and

the temperature kernel.

646 JOURNAL OF CL IMATE VOLUME 31

Unauthenticated | Downloaded 08/26/22 05:20 PM UTC



change. Consequently according to the mechanism of

Section 3a we would expect a larger fraction of warming

to be trapped in the boundary layer, reducing low cloud

cover (large positive cloud feedback) and a smaller lapse

rate change (weak negative lapse rate feedback). In

contrast, when the index , 0 it suggests relatively

greater warming in the west Pacific than in the east (such

as in amip-obs4K). Consequently we would expect a

smaller low cloud change (or a change in sign) and a

larger warming of the free troposphere, increasing the

lapse rate and LTS of low cloud regions.

Figure 3 shows that such an index is extremely well

correlated with the global-mean net (r5 0.95), lapse rate

(r5 0.91), and cloud (r5 1.00) feedback variation across

the various patterns of surface temperature change. The

index is able to explain over 80% of the variance for each

variable. Correlating the lapse rate and cloud feedbacks

against 1) solely the southeast tropical Pacific average

(divided by global DT) gives r 5 0.82 and r 5 0.93, re-

spectively, and 2) solely the west Pacific average gives

r 5 20.49 and r 5 20.48 respectively. Thus while the

southeast Pacific index by itself is a reasonably good

predictor of the global-feedback variation, it is the dif-

ference between the east and west tropical Pacific SST

patterns that explains the most variance.

The correlation to the cloud feedback is remarkable

(Fig. 3b). The boundaries of the regions used in the in-

dex were not chosen to maximize this correlation

through trial and error, they were simply chosen to

contrast the key regions of tropical Pacific subsidence

(see Fig. 5c) and, in the case of the southeast tropical

Pacific, a regime of marine low clouds, which are the

basis for the targeted experiments and physical un-

derstanding developed in Sections 3c and 3d. Still, we

test the sensitivity of all three correlations in Fig. 3 to the

boundaries of the regions by expanding and shifting

the regions. The correlations remain at or above 0.9 if

the regions are extended 208 east and west, or 208 north

and south. Similarly, shifting the regions 208 north, south,

or west also gives correlations at or above 0.9. If however,

the regions are shifted beyond the large-scale east–west

Pacific SST differences, for example 208 eastward (which

shifts the southeast tropical Pacific box over the South

American continent), then no significant correlation is

found (r 5 20.03 and r 5 20.13 for the cloud and lapse

rate feedback, respectively). Similarly, shifting the re-

gions too far westward, for example a 908 shift westward,

gives correlations of only 0.2. Hence the correlations of

Fig. 3 are largely robust to the precise size/position of the

regions used in the index, provided they capture the

large-scale differences in east–west Pacific SST patterns.

We caution that this index is not general enough to

explain the variation that might occur under any pattern

of SST change, such as modes of climate variability like

the Pacific decadal oscillation (PDO) (e.g., Newman

et al. 2016). For example, a large positive value could

occur from either large warming in the east tropical

Pacific and none in the west, or a very large warming in

the east Pacific and some in the west. It is not clear that

we should expect these to give the same feedbacks. In

addition, we have focused only on one region of tropical

descent andmarine low clouds, but other regions may be

important under different patterns of SST change (e.g.,

different ocean basins or the high latitudes; see the dis-

cussion in Section 4). Still, these results point to a strong

dependence of cloud and lapse rate feedbacks on the

spatial structure of tropical Pacific warming.

c. Illustrating the mechanism in the southeast tropical

Pacific

To illustrate the mechanism in more detail we focus

on the southeast tropical Pacific. Here low clouds are

FIG. 3. Relationship between a tropical Pacific warming pattern index, defined as the difference between the

normalized southeast and west tropical Pacific warming patterns (see section 3b) and the global-mean (a) net

feedback and (b) cloud and lapse rate feedbacks.
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at a maximum at a height of ;1–1.5 km (Fig. 4a) and sit

under a temperature inversion that caps the boundary

layer (Fig. 4b). Of all the surface warming patterns,

amip-slow4K warms the most near the surface in this

region, yet the least above the boundary layer (Fig. 4c).

The result is a relatively uniform warming profile and

little change in LTS (Figs. 4d,e). The change in LTS

across warming patterns correlates strongly with the

change in low cloud cover (Fig. 4e). In the example of

amip-slow4K, the lack of LTS change gives the biggest

reduction in low cloud cover (Fig. 4e), since there is little

to no LTS-driven cloud changes to offset the large cloud

response to the surface warming. The observed pattern of

temperature change (amip-obs4K) warms the least at the

surface in this region, but above the inversion is more

similar to the other experiments (Fig. 4c) due to remote

warming of the free troposphere. Hence the change in

lower-tropospheric stability (Figs. 4d,e) is by far the

greatest in this experiment, inhibiting the mixing of

warmer and drier air from above, to the extent that it

offsets the local thermodynamic cloud feedback, and

there is actually a slight increase in low cloud fraction

(Figs. 4a,e) and a negative cloud feedback (Fig. 1b).

To establish a connection between stability changes

throughout the column (which sets the lapse rate feed-

back) and low cloud feedback, Fig. 4f shows the correla-

tion between the change in low cloud amount (defined by

the level of maximum low clouds at 1280m in Fig. 4a) and

the stability change [Du(z)2Dusrf] at height z. Above the

inversion, the correlation between the change in atmo-

spheric stability and low cloud remains, even up to 14km.

Hence the variation in lapse rate and low cloud feedbacks

are related through the commonmechanism of changes in

column atmospheric stability, not just LTS changes.

d. Testing the mechanism with 14K patch

experiments

To test the mechanism and proposed physical pro-

cesses further we perform two warming patch experi-

ments where the SSTs are increased by 4K in the west or

southeast tropical Pacific only (Fig. 5a). These experi-

ments are like the 30-yr amip-p4k experiment except the

4K increase is constrained to the regions of the boxes.

Note that these experiments are not used for feedback

calculations since the global-mean surface temperature

change is small.3

When the west Pacific SSTs are increased, the results

confirm that warming is efficiently transported globally

at upper levels in the tropics and to the midlatitudes

(Fig. 5a), helping to explain why those warming pat-

terns that favored the west Pacific have strong lapse

rate feedbacks, even to the midlatitudes and particu-

larly over the Southern Ocean (Fig. 1b, middle; Fig. 2).

Figure 5a also confirms that warming in the west Pacific

FIG. 4. Profiles averaged over the southeast tropical Pacific (308S–08, 2608–2808E) of (a) cloud fraction, (b) temperature, (c) change in

temperature, and (d) change in stability [u(z) 2 usrf]. (e) Relationship between the change in low cloud fraction and change in LTS.

(f) Profile of the correlation between the change in stability at height z in (d) against the change in low cloud cover in (a) at 1280m.

3 See Zhou et al. (2017) for a Green’s function approach to using

patch experiments more widely for feedback analysis.
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ascent region causes a reduction in LTS locally but large

increases remotely, particularly in the tropics. In contrast,

when the southeast Pacific is warmed there is virtually no

warming seen throughout the atmosphere or even locally

at 700hPa. The change in LTS shows a strong reduction

over the southeast Pacific where the local SST warming is

applied but little remote effects, confirming that warming

in the southeast tropical Pacific descent region is largely

trapped under the inversion.

The remote tropical effects of warming in the west

Pacific ascent region are consistent with a Gill-type

dynamical response (Gill 1980). At midlatitudes, west

Pacific warming results in cooling at 700 hPa in parts of

the Pacific (Fig. 5a). This is the result of a poleward

propagating Rossby wave into both hemispheres that

tends toward the east (e.g., Scaife et al. 2016). This is

clearly illustrated by the dipole pattern seen in the

change in 500 hPa geopotential height and reflected in

the change in mean surface level pressure (MSLP)

(Fig. 5b). In the North Pacific, the reduction in MSLP

increases cyclonic rotation (anticlockwise in the

Northern Hemisphere), which leads to an increase in

northerly y winds on its eastern side and reduction on

its western side (Fig. 5b). Consequently warm air is

drawn up from the south on the eastern side of the

North Pacific, and cold air is pulled down from the

north on the western side. An analogous mechanism

occurs in the Southern Hemisphere. These mecha-

nisms are usually studied in the context of global

teleconnections associated with modes of Pacific vari-

ability like ENSO and the PDO (e.g., Scaife et al.

2016). Here we suggest analogous mechanisms are at

work in response to externally forced SST patterns,

and these help explain in part the global-scale atmo-

spheric temperature change patterns and feedbacks

that arise from enhanced warming in the west Pacific.

We do not pursue this further here, but there would be

value in future work studying the dynamical changes

associated with different patterns of SST change and

how it relates to changes in temperature, clouds, and

other climate feedbacks.

4. Summary and discussion

The spatial structure of surface temperature change is

not constant, owing to spatiotemporal variations in

FIG. 5. (a) Change in surface temperature, 700-hPa temperature, LTS, and the zonal-mean temperature profile, for a14-K warming in

the (top) west Pacific and (bottom) southeast Pacific, as outlined by a black rectangle. (b) Dynamical responses to the14-K west Pacific

patch, including change in 500-hPa geopotential height, MSLP, and northerly wind ywind. (c) Climatological subsidence at 500 hPa in the

amip control experiment, with black rectangles indicating the regions we define as west Pacific and southeast Pacific.
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anthropogenic forcing, intrinsic time scales of the re-

sponse of the climate system, and internally generated

coupled atmosphere–ocean variability on various time

scales. Using HadGEM2-A forced with patterns of ob-

served and simulated sea surface temperature change

we have demonstrated a strong dependence of climate

feedback on these variations in surface temperature

change patterns. In particular cloud and lapse rate

feedbacks are found to vary significantly according to

patterns of tropical Pacific warming. When warming is

focused in the southeast tropical Pacific, the warming

reduces the regional lower-tropospheric stability and

low cloud cover but is largely trapped under an inversion

and hence has little remote effect. The net result is a

relatively weak negative lapse rate feedback and a large

positive cloud feedback. In contrast, when warming is

weak in the southeast tropical Pacific and enhanced in

the west tropical Pacific, the warming is efficiently

transported throughout the tropical free troposphere

and to the midlatitudes. The increased atmospheric

stability results in a strong negative lapse rate feedback

and dampens the lower-tropospheric stability change in

the low cloud regions, resulting in a weak (or even a sign

change) low cloud cover change and less positive cloud

feedback.

These results reinforce the findings of Zhou et al.

(2016, 2017), who found a dependence of tropical-mean

low-cloud changes on the contrast between warming in

tropical ascent and descent regions using the Commu-

nity Earth System Model [CESM1.2.1 (CAM5.3)]. We

have identified a similar mechanism in operation in

HadGEM2-A, but using a different methodology and

experimental design. We have additionally assessed the

dependence of climate feedbacks beyond that of clouds

on the structure of SST change. Lapse rate changes were

found to be substantially bigger than cloud feedback

changes in some cases (e.g., comparing amip-obs4K to

amip-slow4K), although some of this variation is anti-

correlated with water vapor feedback changes. Andrews

et al. (2015) showed that longwave clear-sky feedback

processes (which will be dominated by the Planck, lapse

rate, and water vapor feedbacks) robustly became less

negative in CMIP5 AOGCM abrupt4xCO2 experiments

but did not attribute this change to a particular process.

Contrasting feedbacks in the amip-fast4k and amip-

slow4K experiments (which have patterns of SST

change derived from years 1–20 and 21–150 of these

same abrupt4xCO2 experiments, respectively; Table 2)

suggests this is predominantly the result of a weakening

of the negative lapse rate feedback, which is at least

partly due to a shift in the warming pattern away from

the west Pacific ascent region to the east Pacific

with time.

When AOGCMs are forced with an abrupt quadru-

pling of CO2, they generally show a change in feedback

strength—effective climate sensitivity increases—on

multidecadal time scales. The change in feedback

strength in HadGEM2 is close to that of the CMIP5

multimodel-mean change (Andrews et al. 2015); thus

HadGEM2 is not unusual in this respect. This gives us

confidence that the mechanism we describe may be

typical of CMIP5 model responses. Yet an outstanding

question is why do some AOGCMs show larger

changes in feedback strengths than others? One pos-

sible explanation is that some models simply have at-

mospheric feedbacks that are more sensitive to

changes in SST patterns than other models. This is

likely given that differences in atmospheric physics and

parameterizations give rise to a wide range of feed-

backs strengths across models when forced with iden-

tical SST patterns (e.g., Ringer et al. 2014), so a diverse

response to the same change in SST pattern is to be

expected. The experiments used here (amip-fast4k,

amip-slow4K, and amip-obs4K) have been put forward

for inclusion in CFMIP3 (alongside amip-p4k and

amip-future4k) (Webb et al. 2017) for a multimodel

comparison to help quantify this dependence and as-

sess its robustness.

Alternatively, some models may have less constant

feedback strengths in abrupt4xCO2 than other models

because different AOGCMs simulate different changes

in warming patterns. We investigate this in Fig. 6, which

shows the evolution of the east–west tropical Pacific

warming index in CMIP5 abrupt4xCO2 simulations for

the same set of models studied by Andrews et al. (2015).

The index is generally near zero or negative for years

1–20 (Fig. 6a), indicating that most models tend to

simulate a delayed or similar level of warming in the

southeast tropical Pacific compared to the west. Sub-

sequently, for years 21–150, the index is robustly positive

(Fig. 6a), showing that virtually all models simulate a

greater southeast tropical Pacific warming relative to the

west Pacific on longer time scales, both in absolute terms

(Fig. 6a) and relative to the first 20 years (Fig. 6b). This is

consistent with the mechanism proposed here and the

robust increase in cloud feedback found across CMIP5

models during these time periods. However, the varia-

tion in this index is unable to explain the variation in the

change in CMIP5 feedback strengths found in Andrews

et al. (2015). For example, nearly all models show a

cloud feedback that becomes less negative (or more

positive) with time, but the variation in this change

[defined in Andrews et al. (2015) as the change in

feedback over years 21–150 relative to years 1–20]

across CMIP5 models does not significantly correlate

with the change in east–west Pacific warming index of

650 JOURNAL OF CL IMATE VOLUME 31

Unauthenticated | Downloaded 08/26/22 05:20 PM UTC



Fig. 6b (r5 0.2). This could in part be because the index

is not refined well enough to capture key regional

warming contrasts of individual AOGCMs. Another

explanation is that changes in the warming pattern in

other regions, such as at high latitudes or in the

Southern Ocean, could be a significant driver of the

change in global feedback strengths, but this effect will

not be captured by our index since our focus has been

on the tropical Pacific. Alternatively, the lack of cor-

relation could simply suggest that the effect of un-

certainty in the pattern of SST change across models on

the change in feedback strength is small compared to

the differences that arise as a result of the different at-

mospheric physics and parameterizations across the

models, as discussed above. Future model intercompari-

sons will address these issues.

We have focused on the patterns of SST change in the

tropical Pacific as a key driver of climate feedback var-

iation. However, other regions could also be important.

For example, changes in the warming pattern at high

latitudes (e.g., Armour et al. 2013; Rose et al. 2014; Kang

and Xie 2014) and in the Southern Ocean (e.g., Senior

and Mitchell 2000) have also been shown to change

feedback strengths. There would be value in future

FIG. 6. The tropical Pacific warming pattern index [i.e., the difference between the

southeast tropical Pacific DTSEP and west Pacific temperature change DTWP per unit global-

mean surface air temperature change (calculated from the slope of the linear regression of

annual-mean DTSEP2DTWP against global annual-mean surface air temperature change)] in

CMIP5AOGCMexperiments forced by an abrupt quadrupling of CO2, for (a) the fast (years

1–20; blue) and slow (years 21–150; red) responses. (b) The change in tropical Pacific warming

index, calculated as the slow minus fast response.
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targeted experiments analogous to the ones presented

here—including regional patch experiments (e.g., Zhou

et al. 2017)—but focusing on prescribed patterns of SST

change associated modes of climate variability (such as

ENSO and the PDO) and different aspects of the forced

response, including the role of spatiotemporal variations

in the warming patterns of the Southern Ocean and at

high latitudes.

Recent decades have shown global temperature

increases with a lack of warming (or even cooling) in

the eastern Pacific while warming in the western Pa-

cific (e.g., Hartmann et al. 2013; Dai et al. 2015). As-

suming this pattern is the result of unforced climate

variability (e.g., Kosaka and Xie 2013; Dai et al. 2015;

Newman et al. 2016), or even in part the result of

temporal and spatial variations in anthropogenic

aerosol forcing (e.g., Boo et al. 2015; Smith et al.

2015), rather than the long-term response to green-

house gas forcing, then we do not expect it to continue

into the long-term future. This is because the eventual

enhanced warming in the eastern Pacific, Southern

Ocean, high latitudes, and land regions projected by

AOGCMs when forced with long-term greenhouse

gas increases is consistent with physical understanding

(Collins et al. 2013), regardless of whether AOGCMs

struggle to simulate recent decadal trends in SST

patterns (Zhou et al. 2016; Mauritsen 2016). Hence,

from the physical understanding developed here, we

suggest that once this pattern of long-term SST change

fully emerges in the future, then radiative feedbacks—

particularly from cloud and lapse rate feedbacks—will

become less negative and effective climate sensitivity

will rise.
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