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THE DEPENDENCE OF SOME LOGICAL AXIOMS
ON DISJOINT TRANSVERSALS AND LINKED 8YSTEMS

BY

A. SCHRIJVER (AMSTERDAM)

1. Introduction and definitions. Let # = (B, A, Vv, ~, 0, 1) be a Boole-
an algebra. A subset L of B is called a linked system if aAb # 0 for all a
and b in L. A linked system L is called mawximal if L is not contained in
another linked system. Consider the following axioms on the existence
of these linked systems:

LA (WEAK LINKING AXIOM). Fach Boolean algebra has a maxrimal
linked system.

LA’ (STRONG LINKING AXIOM). Each linked system in a Boolean algebra
18 contained in some maximal linked system.

It is easy to see that these two axioms follow from Zorn’s lemma;
J. van Mill proved that these axioms follow from the Boolean prime ideal
theorem. We shall use the Boolean prime ideal theorem in the following two
forms, both clearly equivalent to the usual Boolean prime ideal theorem ().

FA (WEAK FILTER AXI0M). Each Boolean algebra has an ultrafilier.

FA’ (STRONG FILTER AXIOM). Fach filter in a Boolean algebra is
contained in some ulirafilter.

The equivalence of FA and FA’ follows easily if we make the quo-
tient algebra of the Boolean algebra modulo the filter.

Here we prove that also LA and LA’ are equivalent. Furthermore,
we prove that FA is independent of LA (does not follow from LA) and that
LA is independent of the ZF-axioms by showing that LA follows from the
order extension principle and that C, follows from LA.

OEP (ORDER EXTENSION PRINCIPLE). Each partial order on a set
can be extended to a total order.

C, (AXIOM OF CHOICE FOR n-SETS). Fach family of n-sets has a choice-
Sfunction.

(*) See T. J. Jech, The axiom of choice, Amsterdam-London 1973.
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Recall that an n-set is a set with n elements. Note that OEP follows
from FA and that C, follows from OEP, but that FA is independent of
OEP and that OEP is independent of C, (op. cit.). That is,

FA - OEP — C,,
while none of these arrows can be reversed. We prove
OEP - LA « LA’ - C,.

Another approach to these axioms is by means of so-called disjoint
transversals. Let % and ¥~ be subsets of #(X), the power set of a set X.
A subset Y of X is called a %-transversal if UnY # @ for all U e . The
proposition “there exist & #-transversal and a ¥ -transversal which are
mutually disjoint” is denoted by dt(#,¥").

Clearly, dt(#,v") if and only if dt(¥", ). A set Y is called %-inde-
pendent if no U € % is contained in Y. Then we have dt(#,¥") if and only
if there exists a #-independent ¥ -transversal.

Let 2yn40(X) be the collection of all finite subsets of a set X and
let 2, (X) be the collection of all subsets X’ of X with | X'| < .

We consider the following axioms.

DT (DISTOINT TRANSVERSAL AXIOM). If X 8 a 86t, % and ¥ are subsets
Of Piinite(X) and each two finite subcollections U, of U and ¥, of V" have
dt(%,,7"), then dt(%,v").

DT, ,. If X is a set, U is a subset of 2,,(X), V" is a subset of 2,(X) and
each two finite subcollections U, of U and ¥y of ¥ have At(%,,7",), then
dt(%,v").

In this paper we prove that DT and DT, ; both are equivalent to the
Boolean prime ideal theorem (or to FA). DT, , is too weak to imply DT;
we prove that DT, , is equivalent to LA.

We may consider a subset of #,(X) as the edge set of a graph with
vertex set X. As a side result we give a characterization of pairs of graphs
G, = (X,%) and G, = (X,¥’) such that dt(#,¥"), i.e. such that there
are disjoint subsets X, and X, of X with the following properties: X,
meets every edge of @,, and X, meets every edge of G;. A corollary is
a characterization of classes of graphs

{Giliel} = {(X,u;)|tel} (I is an index set)

such that there is a collection {X;|¢ € I} of pairwise disjoint subsets of X
with the property that X; meets each edge of G; for all ¢ € 1.

2. Equivalence of DT, DT, ;, and FA. In this section we prove the
equivalence of FA, FA’, DT, and all DT,, ,, in case m > 2, n > 2 and not
m = n = 2. Since, clearly, (i) FA implies FA’, (ii) DT implies each DT,, ,,
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and (iii) DT, , implies DT, ; in case m>2, n>2 and not m =n = 2,
it is enough to prove (iv) FA’ implies DT and (v) DT, ; implies FA.

PRroPOSITION 2.1. FA’ implies DT.

Proof. Let X be a set and let  and ¥~ be subsets of Py ;. (X) such
that dt(%,,”?,) for all finite %, <% and ¥, <¥. Assume that
A =(B,A,v, ,0,1) is the Boolean algebra freely generated by X.
Let G = B be the collection

G={Vaz|lUeuju{V 2| Vey}.
zeU zey

We prove that if gi,0s,...,0s €@, then g,Ag,A ... Ag, 5= 0. For
this let %, < % and ¥, < ¥ be finite. We have to prove

a=(A Var( A VI +#0.
Ue#, zeU VeyYy zeV

Since dt(%,, ¥ ,) holds, there are finite subsets X, and X, of X such

that

xlnX3 =G,
X,nU #0O for each Ue%,, and X,nV #0@ for each V ev/,.
Now let
z=( A a)ar( A 7).
zeX,; zeXy

Since X, and X, are disjoint and X is a set of free generators for %,
we have z £ 0. We prove that z < a.
First, let U € %,. Then UnX, # O; take x, € UnX,. Then

z<2, < Vo
zeU

Second, let V € ¥",. Then VnX, # @; take #; € VnX,. Then

2<%, < V7.
zeV '
Hence

0<z<( A Var(A VI =a.

Ue#, zeU Vef‘o zeV

So @ generates a filter, and this filter is contained in an ultrafilter ¥
(by FA’). Now let

X, ={reX|zeF} and X,={weX|ZelF}.

Then, clearly, X, and X, are disjoint. Furthermore, X, is a %-trans-
versal. For let U e %. Then

Vze@@c P,
zeU
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Hence, since F' is an ultrafilter, there is an x € U such that « € F,
i.e. such that # € X,. This means that Un X, 5 @. In the same way one
proves that X, is a ¥ -transversal. Therefore dt(#,¥").

ProrosITION 2.2. DT, ; implies FA.

Proof. Let # =(B,A,v, ,0,1) be a Boolean algebra. We
prove that # has an ultrafilter. For this let

U = {{a,E}AIaeB]
and '
¥ = {{a,b,c}|a,b,0€B and arbrc = 0}.

Now dt(%,, v, for any finite #, = # and ¥", < ¥", since the elements
of B occurring in %, and ¥, generate a finite subalgebra %, of 4. This &,
has an ultrafilter which is a %,-transversal and the complement of which
in B is a ¥ ,-transversal.

Hence, by DT, ;, we have dt(#,¥"). Let F < B be such that F is
a %-transversal and B\ F is a ¥ -transversal. We prove that F' is an ultra-
filter. F is a filter, for suppose a,b € F and ¢ > anb. Then {a,b,c} ¥,
whence

(B\F)n{a,b,c} 0.

This implies ¢ ¢ F, whence ¢ € F, since {¢,¢}nF # . F is also an
ultrafilter; since for all @ € B we have {a, a}nF +# @.

THEOREM 2.1. DT and DT,; are equivalent to the Boolean prime
ideal theorem.

For the proof recall that FA and FA' both are equivalent to the Boolean
prime ideal theorem (op. cit.).

3. Equivalence and dependence of DT, ,, LA, and LA’. In this section
we prove that DT, ,, LA, and LA’ are equivalent. Furthermore, we prove
that these axioms follow from OEP; hence the Boolean prime ideal the-
orem is independent of LA, since it is independent of OEP. We show
also the independence of LA of the ZF-axioms by proving that LA implies C,
(op. cit.). Since, clearly, LA’ - LA, it is enough to prove

OEP ->LA »>DT,, > LA’ and DT,,—>0,.

We remark that for a linked system L in a :Boolea.n algebra # =
(B, A, v,~,0,1) to be maximal it is necessary and sufficient that for
allaeB: aeLor @eL. Also, if L is a maximal linked system, then
for all a, b € B with the property avd =1 we have a € L or b € L.

ProPOSITION 3.1. OEP implies LA.

Proof. Let # = (B, A, Vv, ,0,1) be a Boolean algebra. We
prove that # has a maximal linked system. Let < be the usual partial
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order on B, i.e. let
r<y if and only if Ay = 0.

By OEP, there exists a total order < on B such that ® <y implies
z<y. Now let M = {#|Z < #}. We prove that M is a maximal linked
system.

M is a linked system, for suppose a,be M and and =0, ie. a <b
and b < a. Therefore, also ¢ < b and b < @. Since a,b e M, we also have
d<aand b<b Thus a<b<b< @ <a, whence ¢ = @, which cannot
be the case.

M is also a maximal linked system, since for all a € B we have a < a
or a < @, and hence a € M or @ e M.

ProrosITION 3.2. LA implies DT, ,.

Proof. Let X be a set and let # and ¥~ be subsets of 2,(X) such that
dt(#%,, " ,) for all finite %, < # and ¥, <¥". As in the proof of Proposi-
tion 2.1 let # = (B, A, v, ~, 0, 1) be the Boolean algebra freely generated
by X and let

G={VeelUeulu| V Z|Vev]}.
zeU zeV

Again, @ generates a filter, say F. Now let #, = (By, A, V,~, 0,1)
be the quotient algebra of # modulo the filter F'. Let [b] be the image
of b € B in the quotient algebra. By LA, this quotient algebra has a maximal
linked system, say M. Let X, be the set of all # € X such that [#] is in M.
Let X, be the ‘set of all # € X such that [Z] is in M. Then X;nX, = @.
Also X, is a #-transversal. For let U € #. Then

V #e@ < F,
zeU

Ml=[Va=V[=].
zeU zeU

hence

Therefore, [#] € M for some = € U, hence UnX, # @.
X, is a ¥ "-transversal. For let V €¥". Then

V Ze@ < F,
zeV
hence

1=[V 3z =VIz.
zeV zeV
Therefore, [Z] € M for some » € V, hence VnX, # @. Thus we obtain
dt(#,v).
ProPOSITION 3.3. DT, , ¢mplies LA’

Proof. Let # = (B,A,v, ~,0,1) be a Boolean algebra and let
L < B be a linked system. We have to prove the existence of a ma ximal
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linked system containing L. Write

% = {{w, %}|o e B}u{{r}|» € L}
and

v = {{w,y}|#,y € B and zAy = 0}.

Take finite subsets %, of # and ¥", of ¥". The elements of B occurring
in %, and ¥, generate a finite sub-Boolean algebra &, = (By, A, v, ~,0,1)
of #. Let Ly = LnB,. Since B, is finite, there exists a maximal linked
system M, in %, containing L,.

Now let X, = M, and X, = B\ M,. Then X,nX, =@, X, is a ¥,
transversal, and X, is a ¥ ,-transversal.

So for each finite subsets %, of # and ¥", of ¥~ we have dt(%,,7");
from DT, , it follows that dt(#,¥"), that is, there are disjoint subsets X,
and X, of B such that X, is a #-transversal and X, is a ¥ -transversal.

Let M = X,; then M is a maximal linked system containing L.
M is a linked system, for suppose #, ¥ € M and xAy = 0; then {z,y} ¥,
hence v € X, or y € X,. Since X;nX, =0, wehavexr ¢ X, = M ory ¢ X,
= M, contradicting our assumption. Also L < M, since for all z in L
we have {s}nM = {#}nX, # . Finally, M is maximal, since for all
x € B we have {»,Z}nX, #@,ie.ze€ M or T € M.

ProposITION 3.4. DT, , implies C,.

Proof. Let % be a collection of 2-sets. We have to prove the exist-
cnce of a function, assigning to each set in # an element of that set.
Without restrictions on the generality we may suppose that the sets
in % are pairwise disjoint.

For each finite subset %, of #, there is a set X, such that | X,nU| =1
for all U in #,. This implies dt(%,, %,) for all finite subsets %, of # and,
consequently, dt(%,,%,) for all finite %,, %, < %.

From DT, , we obtain dt(#, %), i.e. there are disjoint sets X, and X,
with the property that | X,nU| = [X,nU| = 1 for all U € %. Now assign
to each set in # the unique element in X, N U. This clearly determines the
required choice-function.

THEOREM 3.1. DT,,, LA, and LA’ are logically equivalent axioms;
LA follows from OEP and LA itself implies C,.

This follows straightforwardly from the foregoing propositions and
the trivial observation LA’ - LA. '

4. Some combinatorial aspects of DT, ,. It is obvious that DT and DT, ,,
have combinatorial aspects. In particular, DT, , gives rise to a question
in the theory of graphs. In this we define a graph as a pair (X, %), where %
is a subset of 2,(X) and @ ¢ %. The elements of X are called vertices and
the elements of # are called edges of the graph. Sometimes we shall speak
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shortly of the graph # instead of (X, #). A graph (X, %) is said to be
bicolourable or bipartite if we can “colour” the vertices with two coiqurs
(i.e. partition the set of vertices X into two classes) such that no edge U
in % is monocoloured (i.e. no edge U in # is contained in one of the classes
of the partition). Hence the graph (X, #) is bicolourable if and only if
dt(#, «). So, by DT, , we have

Pg. A graph (X, %) 18 bicolourable if and only if each finite subgraph U,
8 bicolourable.

This axiom P, is equivalent to C; (op. cit.).

Suppose that we have now two graphs; if we have a characterization
of pairs of finite graphs %, and ¥", with the property dt(%,,7",), then using
DT, , we can extend this characterization to pairs of arbitrary graphs %
and ¥". We now give such a characterization for finite graphs. For this
we define the notion of an alternating path. Let (X, #;) be a graph for
each ¢ e I (I is some index set). Let ¢ € I and j € I. An alternating (¢, j)-
path from 2 to y is a sequence

B =Dgyt = gy By b1y DayeeryBpgy bn2yTp_1y] =gy ¥ =2, (n=1)

such that
(i) @y @1y ..., %, € X and 4y, %y, ...y %,_, €1;

(ii) 2 # 44y, for £ =0,1,...,n—2;

(iii) {wy, Bpyq} e, for k =0,1,...,n—1.

One may consider an alternating (¢, j)-path from 2 to y as a path
from 2 to y in the union of the graphs, in which path the first edge is an
edge of #; and the last edge is an edge of %; and in which two succeeding
edges belong to different graphs (in a sense made more precise above).
The characterization for finite graphs is as follows (here I = {0, 1}).

THEOREM 4.1. Let (X, %,) and (X, %,) be finite graphs (that i3, U, and
U, are finite). Then dt(%,, %,) holds (i.e. there are two disjoint sets X, and X,
such that XonU # O for each U € Uy and X,nU +#* O for each U € U,) if and
only if there is8 no x € X such that there is an alternating (0, 0)-path from
x to x and an alternating (1, 1)-path from x to x.

Proof. We first prove the sufficiency. Suppose that dt(%,,#,)
holds, i.e. there are disjoint sets X, and X, such that X,nU # @ for all
Ue%, and X;nU # @ for all U e#,. Suppose, furthermore, that for
some # € X there is an alternating (0, 0)-path from z to z, say

D==0,0,2,1,23,...,1,2,_,,0,8 = m,,
and an alternating (1, 1)-path from » to =, say

’ ’ 4 Y 4
&=y 1,2,0,8,...,0,8,_1,1,0 = .
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We prove that # € X,nX,, which is a contradiction, since this set is
empty. Suppose that x ¢ X,. Since {r,, #,} € %,, and hence {z,, z,} nX, # 9,
we have @, € X,. This implies #, ¢ X,. Now {v,, #,} € %, 80 {®,, 2}n X,
# @ and x, € X,. This implies », ¢ X,.

By repeating these arguments one finds z, € X,, or z € X,.

By a similar reasoning one finds x € X,. Hence # € X,nX,.

Second, we prove the necessity. Suppose that there is no # € X such
that there are an alternating (0, 0)-path from z to # and an alternating
(1, 1)-path from z to x. We proceed by induction on |X|, which we may
suppose to be finite. If X = @, then the theorem is clearly valid. Suppose
that X s @ and for each pair of graphs (X', %;) and (X', ;) with |X'| <
< |X| we have proved the theorem. Choose # € X arbitrarily. Now there
are two possibilities (which do not exclude each other).

(1) There is no alternating (1, 1)-path from z to .
Let

Ay = {w}u {y | there is an alternating (1, 0)-path from & to y}

and
A, = {y | there is an alternating (1, 1)-path from x to y}.

A, and A, are disjoint, for suppose ¥y € A,nA,. Then there are an
alternating (1, 0)-path from x to y and an alternating (1, 1)-path from y
to #, and hence an alternating (1, 1)-path from z to x. This contradicts
our assumption. Let

X' = X\(4,UA4,),
Uy ={Uet|UcX} and & ={Ueq|UcX}.

Now again, for the pair of graphs (X', ;) and (X', 4;), there is no
# € X' with an alternating (0, 0)-path from z to # and an alternating
(1, 1)-path from z to z. Hence, by induction, since |X'| < |X|, we know
dt(%,, %,), that is, there are disjoint subsets X, and X, of X with the
properties X,n U # @ for all U e, and X;n U # @ for all U e %;.

Let X, = A,UX, and X, = 4,UX;. Then, clearly, X, and X, are
disjoint. We prove that X,nU # @ for all U e, and X,nU # 9 for
all U e %,. Suppose that U € %, and

Then U ¢ X', since, otherwise, U e%, and UnX, = @. Hence
Un(4,v4,) #9. Since UnAd, =0, we have UnAd, #@. Suppose
that we UnA, and U = {u, v} (possibly u = v). Since u € 4,, there
exists an alternating (1, 1)-path from z to ». Now {u, v} € 4,4, hence there
is an alternating (1, 0)-path from 2 to ». But this means that v € 4,
and {u, v}nA4, # 9, which is a contradiction. Hence UnX, # @.
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In the same manner one proves that X, is a #,-transversal.

(2) There is no alternating (0, 0)-path from  to .

This case is treated similarly to case (1).

Since, by assumption, each x € X is in at least one of both cases, we
can always use our induction step.

As a corollary we have .

THEOREM 4.2. Let (X, %,) and (X, %,) be graphs. Under the assump-
tion of the axiom DT, , we have: there are disjoint sets X, and X, such that
XonU #O for all U e, and X,nU £ O for all U e, if and only if
there i3 no © € X with an alternating (0, 0)-path from x to » and an alternating
(1, 1)-path from x to x.

Proof. Since the condition of the non-existence of the two paths
holds for two graphs if and only if it holds for each pair of finite sub-
graphs of these graphs, the theorem follows easily from DT,, and the
foregoing theorem.

The second corollary generalizes Theorem 4.2 to arbitrary collections
of graphs:

THEOREM 4.3. Let (X, %;) be a graph for each i €I (I is an index
set). Under the assumption of thé awiom DT, , we have: there are pairwise
disjoint subsets X, of X (i € I) such that each i € I has X;nU # O for all
U € U; if and only if there is no x € X and no two different i and j (i, € I)
such that there are an alternating (¢, i)-path from x to x and an alternating
(4, 7)-path from = to x. ‘

Proof. Let X = X xI, and

Uy = {{(w,9), (v, i)} | {u, v} e %, i e I},
U, = {{(myz)y (,))} |lzeX, tel,jel,d ?&.7’
Now we leave it to the reader to verify that
(i) There are disjoint subsets X; of X (¢ € I) such that for each ¢ € I
we have X;nU # O for all U e %; if and only if dt(%,, %,).

(ii) There is an % € X such that in (%,, %,) there are an alternating
(0, 0)-path from z to # and an alternating (1, 1)-path from Z to z if and
only if there are # € X, 4, j € I, ¢ # j, with an alternating (¢, ¢)-path from @
to # and an alternating (j, j)-path from z to z.

Thus Theorem 4.3 follows from Theorem 4.2.
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