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THE DERIVATION OF ANALYTIC DEVICE MODELS
BY ASYMPTOTIC METHODS

CHRISTIAN SCHMEISER} and ANDREAS UNTERREITER{

Abstract. In circuit simulation, device models should be as simple as possible. On the other hand,
physically sound models for the electrical behaviour of semiconductor devices involve nonlinear systems of
partial differential equations posed on domains with complicated geometries. Therefore simplifications have
to be introduced corresponding to certain idealizing assumptions. By the use of asymptotic methods the
simplification procedure can be carried out in a mathematically justifiable way.

This paper presents an overview of recent results on steady state voltage-current characteristics of multi-
dimensional bipolar devices [11], [21] as well as on a new approach to the modelling of the transient behaviour
of pn-diodes via integral equations [23], [24]. These ideas are extended to more general bipolar devices.

1. Introduction. The starting point of our analysis is the classical drift-diffusion model for the
flow of negatively charged electrons (density n(x,?)) and positively charged holes (density p(x,t)) in a
semiconductor. In scaled form it consists of the continuity equations

(1.1a) V-Jn—a—t%:R, —V-Jp—é—{l%:ft,
the current relations

(1.1%) §*3, = pa(Vn = nVV), 63, = -, (Vp + pVV),
and the Poisson equation

(1.1¢) MNMAV=n-p-C

for the electrostatic potential V(x,t). The mobilities y,, p, > 0 and the doping profile C are assumed to

be given functions of position x € €, where the bounded domain Q@ C R*, k = 1,2 or 3, represents the
semiconductor part of the device. We assume the recombination-generation rate to be of the form

R:Q(n,p,x)(np/64—l), Q>0,

including the standard models for band-to-band processes and recombination-generation via traps in the
forbidden band. Since this work is restricted to low injection situations, our model certainly describes the
relevant physical phenomena [11].

The equations (1.1) are in dimensionless form. The reference quantity for the particle densities n,p, C
is the maximal doping concentration Cpgz, i.e. maxq |[C| = 1 holds. The potential has been scaled by
the thermal voltage Uy = kT/q where k, T and ¢ denote the Boltzmann constant, the lattice temperature
and the elementary charge, respectively. The reference length L is the diameter of the device and, thus,
diam(2) = 1. The mobilities are scaled by a characteristic value & and the reference time is given by the
diffusion time L?/(Ur). Finally, the reference value

quUr n?
(1.2) I G

for the electron and hole current densities J,, and J,, respectively, contains the intrinsic density n;. In
low injection situations the factor nZ/Cpa. is a typical minority carrier density. Thus, the value (1.2) is

t Institut fiir Angewandte und Numerische Mathematik, TU Wien, Austria. The work of this author has
been supported by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung and by the Institute
for Mathematics and its Applications with funds provided by the National Science Foundation.

1 Fachbereich Mathematik, TU Berlin, Fed. Rep. of Germany.
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a characteristic value for current densities in low injection. For further details on the scaling of the drift-
diffusion equations we refer to [8] and [11].
The equations (1.1) contain the dimensionless parameters

1 EUT 52 g

o L qC’maz ’ Cma:l: ,

which can be interpreted as scaled versions of the minimal Debye length and of the intrinsic number, respec-
tively.

Subregions of £ where the doping profile C is positive are called n-regions because the positively charged
impurity ions attract electrons. On the other hand, in p-regions the doping profile is negative. The (k — 1)-
dimensional boundaries between n- and p-regions are called pn-junctions. We assume abrupt junctions,
i.e. the doping profile has jumps across these junctions and is bounded away from zero within the n- and
p-regions.

We restrict our attention to bipolar devices. Therefore, the boundary 992 of the device is the disjoint
union of Ohmic contacts Cy, - - -, Cpp, and artificial or insulating boundary segments dQn. At Ohmic contacts
we assume zero space charge and thermal equilibrium:

n—p—C:O, np:64, atCl,"')Cm:

which translates to Dirichlet boundary conditions for the charge carrier densities:

(1.34) n:%(C+\/C’2+464), p:%(——C+\/CZ+4§4), at C1, -+, Crm

For the potential, we have the boundary conditions
(13b) V:‘/bz'—U](t), atCJ’]:l’)m,

where U;(t) — U;j(t) is the external voltage between the contacts C; and Cj, and the built-in potential is
given by

C +/C? ¥ 464

(1.3¢) Vii =In =53

Along the artificial and insulating boundary segments, we assume that the normal components of the electric
field and of the electron and hole current densities vanish. This amounts to homogeneous Neumann conditions
for V, n and p:
vV  on Op
1.3d —=—=——=0, t 00

(1.34) v o b N
where ¥ denotes the unit outward normal.

The formulation of an initial-boundary value problem is completed by prescribing initial conditions for
the carrier densities:

(1.4) n(x, 0) = ng(x), p(x,0) = po(x)

We shall assume that the initial data ng and pp correspond to steady state solutions of (1.1), (1.3).
Important quantities are the currents through the Ohmic contacts. The current I;(t) leaving the device
through the contact Cj is given by
I] = / Jtog -vds
C .

7

in terms of the total current density

AZ_oV
Jiot = Jdn +Jp - ﬁvﬁs
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which is the sum of the particle current densities and the density of the displacement current.

The specific properties of a device are determined by the number and location of the n- and p-regions
as well as of the Ohmic contacts. We consider devices meeting the following requirements: There is a finite
number of open connected n-regions whose union is denoted by Q4. In the same way, the number of p-
regions is finite and their union is denoted by Q_. Each n- or p-region has at most one contact and each
contact is adjacent to only one n- or p-region. The union of the pn-junctions is denoted by I' = Q. NQ_.
Note that these assumptions do not rule out so called floating regions without any contacts. In Figure 1
two-dimensional cross sections of three typical devices are depicted. The pn-diode consists of one n- and
one p-region, each with a contact. The bipolar transistor has three differently doped regions with contacts.
Finally, the thyristor is a pnpn-structure. Figure 1 shows the so called Shockley diode where the two middle
layers are floating regions.

In this paper we both discuss the stationary problem corresponding to (1.1), (1.3) as well as the transient
case. Our objective in both cases is to find simple representations of the steady state and transient voltage-
current characteristics, i.e. the dependence of the currents through the contacts on the m—1 contact voltages
U; = Uy, j=2,---,m. Obviously, the choice of U; does not influence the result. Note that we only need to
compute m — 1 currents, since the total current density is divergence free, implying I +---+ I, = 0.

The dimensionless parameters A and 62 are small compared to 1 in practical applications. Qur approach
is an asymptotic analysis where we let these parameters tend to zero consecutively.

The limit A — 0 corresponds to the physical assumption of zero space charge. Essentially, it amounts to
replacing the left hand side of the Poisson equation (1.1¢) by zero. However, since the problem is singularly
perturbed in terms of A, layer behaviour has to be expected. In particular, the jump discontinuities of
the doping profile cause the limiting potential and the carrier densities to have jumps across pn-junctions.
Also, an initial jump has to be expected for the time dependent problem. The nature of these jumps can
be analyzed by introducing slow variables which are continuous in the limit. The construction of formal
asymptotic expansions — including layer corrections at the pn-junctions and initial layers in the transient
case — and their use for explaining device behaviour has received a considerable amount of attention in the
literature (see [4], [7], (8], [9], [10], [11], [12], [22], [27], [33] for the stationary problem and [16], [17], [30],
[31] for the time dependent case).

A rigorous theory justifying the limiting procedure is incomplete. To the authors’ knowledge, no results
are available for the transient case. For one-dimensional steady state problems the approximations can be
justified [10], [12] by general results for singularly perturbed two-point boundary value problems [25]. In
higher dimensions, a justification for steady states close to thermal equilibrium, i.e. for small encugh applied
voltages, can be found in [7]. A weaker convergence result for arbitrary biases and a simplified problem with
constant mobilities and vanishing recombination-generation rate has been derived in [4]. A generalization of
this result, proven in [21], is stated in section 2 of this work.

In terms of the exponentials of the quasi Fermi levels, which are a convenient choice of variables for
the steady state problem, the limiting stationary problem is a system of two nonlinearly coupled elliptic
equations. The time dependent problem becomes a parabolic-algebraic system in the limit. In the language
of the theory of differential-algebraic equations [3], it is an index 2 problem [1]. This means that the initial
conditions have to satisfy certain compatibility relations which is guaranteed by the assumption that the
initial data originate from steady state solutions. In other words this assumption implies the absence of
initial jumps [16].

A further simplification of the problem is introduced by letting 6 tend to zero. Keeping the applied
voltages fixed as the built-in potential tends to infinity (as 62 — 0, see (1.3b), (1.3¢)) can be interpreted as
a low injection condition.

For steady state problems this limit has been formally carried out in [11} and rigorously justified in [21].
However, the zero space charge and low injection assumptions have already been used for one-dimensional
model problems in the early physical literature on semiconductor devices [26]. In particular, the famous
Shockley equation for the voltage-current characteristic of a pn-diode and the qualitative behaviour of bipolar
‘transistors are derived in this way (see also [29]). Thus, the results presented in section 2 can be seen as an
extension of this early work. In sections 3 and 4 we demonstrate for multi-dimensional models of a pn-diode
and a bipolar transistor, respectively, that the voltage-current characteristic close to thermal equilibrium can
be determined explicitely in terms of the solutions of simple elliptic reference problems. In [21], the same
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methods have been applied for the computation of the forward and reverse bias blocking branches of the
voltage-current characteristics of Shockley diodes. As in [27] for one-dimensional models, a device dependent
parameter is identified whose sign determines whether a given pnpn-structure is a thyristor or behaves like
a pin-diode.

For the transient behaviour of pn-diodes the limit §2 — 0 in the zero space charge problem has been
carried out in [23] and [24]. In section 5 we extend this procedure to general bipolar devices. The limiting
problem consists of linear parabolic equations in the n- and p-regions coupled by interface conditions at the
pn-junctions. For the pn-diode and the bipolar transistor we show in sections 6 and 7, respectively, that
these problems are equivalent to systems of integral equations describing the evolution of the currents in
terms of the evolution of the applied voltages. Similarly to the steady state case, the kernels of the integral
equations are determined by solving simple reference problems.

The question arises if the limit problems depend on the order of the limiting procedures A — 0 and
62 — 0. In [11] it has been shown that for the thermal equilibrium problem (consisting only of a nonlinear
Poisson equation) the limits commute. No proof is available, however, that the limits commute also in
the general case. The limit 62 — 0 leads to a free boundary problem [20] having practical importance in
VLSI applications, since for very small devices A can be considerably large whereas 62 < 1 is always a
safe assumption. It should be mentioned in this context that the distinguished limit A = § — 0 has been
considered in [15]. This amounts to the assumption that the reference length in the scaling is equal to the
intrinsic Debye length.

Finally we want to discuss the limitations of our approach. They originate from keeping the applied
voltages fixed in the course of the limiting procedures. It has already been pointed out that the assumption
of smallness of the applied voltages compared to the built-in potential means low injection. Therefore high
injection effects are neglected. A second source of error is the zero space charge assumption. We neglect
the depletion regions in the neighbourhoods of the pn-junctions. This is justified, because the width of
these regions is of the order of the Debye length which has been assumed to be small compared to other
characteristic length scales in the device. It is well known, however, that the width grows with the potential
Jjump across the junction. Effects involving large applied biases and, therefore, widening depletion regions
have to be accounted for by an asymptotic analysis of a rescaled problem (see [2] [14], [18], [19], [28] for the
stationary problem and [13] for the time dependent case). Unfortunately, in this case the most appealing
feature of the close-to-thermal-eqilibrium results of this work is lost, namely the fact that the voltage-current
characteristics can be given explicitely in terms of the solutions of reference problems independent of the
biasing situation.

2. Steady state problems. The analysis of the stationary problem is greatly facilitated by introducing
the exponentials u and v of the quasi Fermi levels as new variables instead of the carrier densities:

n=:6%"u, p=6%V

This symmetrizing transformation for the contlnulty equations changes the steady state version of (1.1),
(1.3) to the differential equations

V  (pa8%e¥ Vu) = §'R,
(2.1) V- (ppé*e™V Vo) = §'R,
NAV =8%"u-6%"Yv-C,
subject to the boundary conditions

' ov=e Y, V=V, -Uj, at Cj, j=1,---,m,
(2:2) oV du _Ov

v v 6v_0 at 90y -

Now the recombination-generation rate is given by
R=Q(6%" u,6% Vv, x)(uv - 1).
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Note that the differential operators in the continuity equations are formally self-adjoint. Also we expect
the derivatives of u and v to be bounded uniformly with respect to A. This makes them slow variables in
the language of singular perturbation theory. Before we can state the convergence result for A — 0, a few
regularity assumptions for the data are needed: The domain Q is Lipschitz and the (k¥ — 1)-dimensional
Lebesgue measure of the union of the contacts is positive. The Dirichlet boundary data for V, u and v at the
contacts can be extended to Q as functions in H!(2). The nonnegative reaction rate Q in the recombination-
generation term is a smooth function of the carrier densities as well as a bounded function of position. The
doping profile and the mobilities satisfy

CEL®@NW (D),  pnyp € LZ(Q) N HY(R),

where Q5 = Q\ T denotes the semiconductor domain without the pn-junctions. Additionally we assume the
mobilities to be bounded away from zero.

Theorem 2.1. a) ([8]) Under the above assumptions the problem (2.1), (2.2) has a solution (V,u,v) €
(H(2) N L=(2))"

b) ([21]) For every sequence A\ — 0+ there exists a subsequence (again denoted by M) such that corre-
sponding solutions (Vi uy,vg) of (2.1), (2.2) satisfy

Vi — Vo, in L3(Q),

up — up, weakly in H(Q),

vp — vo, weakly in H(Q),
where (Vy, w0, v6) Is a solution of (2.1), (2.2) with A replaced by zero.

Remark. Note that the limiting potential would not satisfy general Dirichlet boundary conditions since
it is determined from an algebraic equation (the reduced Poisson equation). However, the assumption of
zero space charge at the Ohmic contacts is compatible with the limiting problem, and therefore the limiting
solution satisfies the complete set of Dirichlet conditions.

After elimination of the potential the zero space charge equations can be written as

7 1 444 71 444
64Jn:“HC+ C? 4 uv g C?+4 4 quv,
2u 2v
V-J,=-V.J,=R.
The carrier densities are given in terms of u and v by

:%(C+ Cz+464uv>, p:%(——C+ C2+464uv)-

—C+
4 — —
(2.3) 65y = —hp

This shows that

n=C+0(*, p=0(), in Q4 ,

p=-C+0(6%), n=0(, in Q_.
The statement that the density of the majority carriers (electrons in n-regions, holes in p-regions) is close
to the modulus of the doping profile and the density of the minority carriers is small compared to that, is

usually called a low injection condition.
Performing the formal limit 62 — 0 in (2.3) implies

(2.40) Vu=0 in$y, Vo=0 inQ_.

In other words, in each n- or p-region the quasi Fermi level corresponding to the majority carriers is constant.
The current relations for the minority carriers are divided by 6* before passing to the limit. We obtain

V. (%w) =Q@O,IC)(u-v"Y), inQ_,

(2.4b)
v. (ﬁ‘c{ivv) —Q(C,0)(v -y, inQ.
For the limiting minority carrier current densities we have
Jn:%VU in Q_, J,,:—uLCqu in Qg .

Concerning the limit 62 — 0 the following result holds:
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Theorem 2.2. For every sequence 62 — 0+ there exists a subsequence (again denoted by 6%) such that
corresponding solutions (uy,vy) of (2.2), (2.3) satisfy

up — uo, weakly in H'(Q),
vg — vo, weakly in H'(Q),

where the limit (ug, vg) satisfies (2.2), (2.4).

Assuming the constant values of u in the n-regions and of v in the p-regions to be known, the problem
has been reduced to the solution of the linear elliptic equations (2.4b). At first glance, it seems disturbing,
however, that only the minority carrier current densities are determined by the limiting problem. This means
that the total current density is known only at pn-junctions. On the other hand, by current continuity it is
sufficient to know the currents through the pn-junctions for computing the currents through the contacts. In
the following two sections we shall demonstrate that the voltage-current characteristics can be determined
explicitely in terms of a number of device dependent parameters from the simplified problem (2.2), (2.4).

3. The Shockley equation for the pn-diode. We denote the n-region of a pn-diode by €, the
p-region by Q,, the adjacent Ohmic contacts by I', and I'p, respectively, and the pn-junction by T' (see
Figure 2).

. From a simple one-dimensional model problem Shockley (1949, {26]) computed the approximation

(3.1) I=1(" -1)

for the steady state voltage-current characteristic which is now known as the Shockley equation. In (3.1),
I denotes the current through the device and U the contact voltage. The reverse bias saturation current I,
has been determined by Shockley as a function of the doping levels in the n- and p-regions, the mobilities
and recombination parameters. An application of the results of the preceding section will show that the
Shockley equation remains valid in the multi-dimensional case with an appropriately chosen value of I,.

In terms of the contact voltage U, the variables u and v satisfy the boundary conditions

u=v=1, atl,, u=¢', v=eY, atl,.
iFrom (2.4a) we immediately obtain

u=¢Y, inQ,, v=1, inQ,.
For u in ©, and v in Q,, we choose the representations

u=1+(" =1)p,, inQ,, v=eV4+(1-eYp,, inQ,,

in terms of the reference functions ¢, and ,, respectively, solving the problem

(3.20) v. (%wp) =Q(0,|C)p,,  inQy,

(3.20) v. (%ﬂwn) = Q(C,0)pn,  inQn,

(3.2¢) pn=@p,=1, atl, ¢n =0, atTl,, pp=0, atl,.
4 P 14

Important is the fact that ¢, and ¢, only depend on the device but not on the biasing situation. With the
formulas for the current densities from the preceding section we obtain the Shockley equation (3.1) from an
integration along the pn-junction I'. The saturation current is given by

1,:/(“" Vo, - bry ,,>.uds,
NG e ' ?




where ¥ is the unit normal vector along I' pointing into Q,, and C,, (C,) is the doping profile evaluated at
the n-(p-)side of the junction. It is easy to see that both terms which sum up to the integrand are positive.
If a one-dimensional model with constant mobilities and a piecewise constant doping profile is considered,
the differential equations for ¢, and ¢, are linear homogeneous ODEs with constant coefficients. In this
case, I, can be computed explicitely, recovering Shockley’s formulas.

4. The current gain of the bipolar transistor. A bipolar transistor consists of three differently
doped regions each having a contact. Among the two possibilities of npn- and pnp-configurations we choose
to consider the latter. The arguments of this section carry over to npn-transistors with the obvious changes.

Note that three contacts cannot be incorporated into a one-dimensional model. Therefore we have to
assume k = 2 or 3 for the space dimension in this section. Below we shall see that multi-dimensional effects
are indeed important for the performance of bipolar transistors.

The outer (p-)regions are called emitter (Qg) and collector (f2¢), the sandwiched n-region is the base
(2p). The corresponding contacts are denoted by I'g, I'c and I'p, respectively, the emitter junction by I'gp
and the collector junction by I'g¢ (see Figure 3). Contact voltages are measured with respect to the emitter:
Ugg is the base-emitter voltage and Ucg the collector-emitter voltage. The Dirichlet conditions for u and
v are then given by

u=v=1, atlg, u=eUer y=¢Ucr at ¢,

3
u:eUBE, v:e‘UBE, at I'g.

Considering (2.4a) we have
v=1, inQg, u=¢"82  inQp, v=e"YCE  inQc.

For the computation of the flow of minority carriers we again use a representation in terms of reference
functions: U
u=1+(e"BF — 1)y, in Qg,

v=e"UBE 4 (1 — e UBB)p, 4 (e7Ucr — ¢~ UBE)(py in Qp,
u=eVor 4 (V88 _ gUcm)y, in Q¢,

where ¢, and @4 satisfy the differential equations (3.2a), p2 and 3 satisfy (3.2b) and the boundary conditions
for 1, -, 4 are indicated in Figure 3.

The currents Ig, entering the device through the emitter, and I¢, leaving the device through the
collector, can be computed by integrations along the emitter and collector junctions. Then the base current
is given by Ig = Ig — Ic. The bipolar transistor serves as an amplifier in the following way: A certain
collector-emitter voltage is applied and the base current is used for triggering the collector current. Thus,
we are interested in the dependence of I on Ip and Ugg. This is achieved by computing Upg from the
formula for Ig and substituting the result into the equation for I¢. Straightforward algebra gives

a, — age‘UCE

Ic =(1
¢ ( B +a3+a4)a3+a4€_ch

—a;+az

where the parameters ay, - - -, a4 can be given in terms of the reference functions ¢y, - - -, @4, and, in particular,

a; :—/ %”—ng-vds,
I'sc ¥B

Hn H
Vv -uds—/ —L£ Yy, vds,
/FEB Cel %! s Cp 0

holds. Here Cp denotes the doping profile evaluated at the base side of the junctions, with similar definitions
for Cg and Ce.
A measure for the device performance is the common-emitter current gain

a3

dlc  a; —azeUcr
- 613 N a3+a4e—UCE )

B
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For collector-emitter voltages significantly larger than the thermal voltage, 8 can be approximated by a; /a3
which is large iff both terms summing up to az are small compared to @;. Usually the doping in the emitter
region is much higher than that in the base region implying that the ratio between a; and the first term in
ag is large. However, we also require

(4.1) - ﬁP—Vgog vds K — ﬁ&V(pz -vds
rs OB I'sc Cp

which refers only to the base region. The reference function s, describes a situation where the potential
at the emitter junction is raised. The hole current entering through the emitter junction is split into two
parts leaving through the base contact and the collector junction, respectively. The above inequality means
that the current through the base contact is much smaller than that through the collector junction, i.e.
essentially all the holes injected into the base reach the collector. Consider a simplified model with constant
hole mobility, constant doping in the base region and neglecting recombination-generation effects. Then 4
solves the Laplace equation and the validity of (4.1) only depends on the geometry of the base region.

The classical analysis of bipolar transistors (see e.g. [29]) uses a one-dimensional model. As pointed out
above, this means that there is no obvious way of incorporating the base contact into the model. A priori
assumptions on the flow in the base region have to be made. For the classical model it is assumed that the
left hand side of (6.1) vanishes, i.e. there is no minority carrier current through the base contact. However,
situations where in az the second term dominates can be easily imagined. Then it is necessary to use the
more general theory presented here.

5. Time dependent problems. Mathematically, the biggest difference between this section and
section 2 is that only formal limiting procedures are considered for the transient problem whereas these
limits have been rigorously justified for the steady state case.

The limit of the equations (1.1) as A — 0 constitutes a differential-algebraic system in time. If the
algebraic solution component V' (no time derivatives of V appear in the equations) could be determined
from the algebraic equation

(5.1) 0O=n-p-C,

the system would be of index 1 [3]. Since this is not the case we are confronted with a system of higher
index. As usual in the analysis of differential algebraic equations, we differentiate (5.1) with respect to time
and obtain from (1.1a)

(5.2) V(3. +3,)=0.

Since this can be interpreted as an elliptic equation for V, we obtain an index 1 system replacing (5.1)
by (5.2). Therefore the original system is of index 2 in the language of the theory of differential algebraic
equations, as has been pointed out by Ascher [1]. Initial data for the problem have to be compatible with
both (5.1) and (5.2). It has already been observed [16], [30] that initial layers of rapid variation occur if the
initial data do not satisfy (5.1), (5.2). For the steady state solutions used as initial conditions in this work,
these conditions are certainly true and, thus, no initial layers are present.
_ For the further analysis of the transient problem it is convenient to introduce the new variables w and
V by - 5

np = 6w, V=V-V,
where

7. = {111(0/62), in Qy;

! —In(|C|/6%), in Q_

is an approximation for the built-in potential for small 6% V4; = ‘7bi + 0(6%)
The limiting equations for A — 0 in terms of w and V' can be written as

1 Ow
VJ,=-V-J, = —m—67+Q(n,p,x)(w— 1),
(5.3) Vw = pd,/pn —ndp /1y,

~ +
(n+p)VV =VC (1 - "|C|”) — 683/t + Ip/11p)
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with the carrier densities given by

(5.4) n= % (c+Vervastw), = % (-c+Vervasi) .

The boundary conditions at the Ohmic contacts for the new variables read
w=1, V:-Uj(t)+0(64), atC’j,j=1,--',m.

As in the steady state case, jump conditions at the pn-junctions have to be considered. The jump conditions
are the same as for the steady state problem [16]. The variables u and v introduced in section 2 — and
therefore also w = uv — as well as the normal components of the current densities are continuous across the
junctions. From these conditions the equation

w= %ef’-‘a (1 +4/1 +464w/Ci) (1 +4/14 464w/CZ) , on I,

can be deduced, where the subscripts “+” and “—” refer to one-sided limits from the Q- and the Q_-sides,
respectively.
Now we perform the limit §2 — 0. As in the steady state case we obtain from (5.4)

n = max(0, C), p = max(0,-C)

and, in particular, n+p = |C] in the limit. Therefore the last equation in (5.3) implies that V is independent
of position in each n- and p-region. The limiting w satisfies

o {C (V- (8Vw) - Q(C,0x)(w=1),  inQy,

(5.5) E R el (v : (JlfileVw) - Q(0,-C,x)(w — 1)) , in Q_.

The equation at the pn-junctions reduces to

(5.6) w=eV-V , onT.

The initial datum wo(x) for w is the solution of a stationary version of (5.5), (5.6) with the initial values
of V denoted by V(x,0) = V°(x) (constant in each n- and p-region). The new variable

=W — Wy

solves the equations

- 0z C(V-(2Vz)-Q(C,0,x)z), in 0,
(5:7) ER N (v. (%VZ) _ Q(O,——C,x)z), inQ_,

subject to the auxiliary conditions

z2=0, onCy, --,Cp, 2(x,0) =0,

v _v vo_ts0
=eV-"Y* —¢V-"Y+  onT,

(5.8)

z

and homogeneous Neumann conditions along 8€y. Note that the values of z on T are the only inhomo-
geneities in (5.7), (5.8).

Similar comments as in the steady state case are also relevant here. Assuming the (spatially constant)
values of V in each n- and p-region to be given, the flow of the minority carriers can be obtained by solving
the linear problem (5.7), (5.8). The currents through the contacts are computed from the currents through
pn-junctions.



6. Switching of the pn-diode. In this section we present the derivation of an equation relating the
evolution of the contact voltage and the current through a pn-diode as well as the analysis of a model for a
simple switching application in the form of a Volterra integral equation [23], [24].

With the notation of section 3 the last condition in (5.8) reads for the pn-diode

(6.1) z=eV® _elo on T,

where U(t) denotes the contact voltage with the initial value Uq. The current through the diode is given by
I(t) = Ifwe] + I[z](t) where the functional I[-] is defined by

HBn Hp
I[z] = —V —{=V vds.
[2] /r (IC| z)_ (C' z)+ vds
We consider the linear operator A: D(A) — L?(£) with domain
9 0z
D(A) = {zEH (Q)]2z=00nT,UT,, 0—y:00n I,

z=const on T, I[z]:O},

whose action on a function z € D(.A) is defined by the right hand side of (5.7). It is easy to see that A is
symmetric with respect to the L?(£2g)-inner product

2122 Z129
21,29} = ——dx+/ —dx
sy = [ Baxs [ 32

It can be shown [23] that there exists an orthonormal basis of L2(g) consisting of eigenfunctions gy,
k=1,2,---, of a self-adjoint extension of 4. The corresponding eigenvalues A, k = 1,2,---, are negative
and have —oo as their only accumulation point.

The Fourier coefficients in the representation

(6.2) z(x, 1) = sz(t)sok(x)
k=1

of the solution of (5.7), (5.8) satisfy the initial value problems
z'k:/\kzk+<I>kI[z](t), Z)C(O)IO, k=1,2,---,

where & denotes the constant value of i on I'. With (6.1), evaluation of (6.2) on T gives

: . o«
(6.3) eVt _ Vo = / K(t—s)I[2](s)ds, K(t) = Z@ie*"t .
0 k=1
The kernel K is integrable and we introduce the normalized version
~ | © = &}
K(t)=L,K(@), with 7= /0 K(t)dt = I;—_—x—k- .

The choice of the symbol I, for the normalization constant is justified. It is equal to the saturation current
computed in section 3. For the initial current the Shockley equation can be used, and we have

I(t) = I[2)(t) + I, (eY° — 1).

10



Substitution of this relation into (6.3) gives

(6.4) /Ot K(t—s)I(s)ds = L(eV® — 1) — I,(eY — 1) /too K(s)ds.

Equation (6.4) is the main result of this section. It provides the desired relation between the evolution of the
current I{t) and the contact voltage U(t). The integral term on the left hand side accounts for the influence
of the history of the evolution, i.e. in particular for charge-storage effects. The exponentially decaying kernel
K (t) has an integrable singularity at t = 0 (K (t) = O(t~/?) for a one-dimensional model problem [24]).

Instead of solving the eigenvalue problem for the operator A4, the kernel can also be determined from
a Green’s function! Z solving a modified version of problem (5.7), (5.8) where the last condition in (5.8) is
replaced by

a) Z is independent from the position along I' and

b) I[Z](t) = 6(2).

The kernel is then given in terms of the values of Z on I':
Kit)=LZ|r

As in the stationary case, the voltage-current relation can be determined completely in terms of the solution
of a device dependent reference problem.

As expected, (6.4) has the property that I(t) converges as t — oo if and only if U(t) also converges. It
is easy to see that in this case the limiting values satisfy the Shockley equation.

For given contact voltage, (6.4) is a Volterra integral equation of the first kind for I(t). It is well known
that this problem is mathematically ill posed. Jumps in the voltage, for example, correspond to singularities
in the current. Also the purely voltage controlled problem is not very sensible from a physical point of view.
The effect of a serial resistance always has to be taken into account.

The simple switching circuit depicted in Figure 4 has been considered in [23] and [24]. For t < 0 we
assume a steady state with the contact voltage U = Uy and the corresponding current T = I,(eV° — 1). At
time t = 0 the switch S is suddenly thrown to the right. For positive ¢ the relation

V =U(t)+ RI(t)

holds. If this is substituted in (6.4), a nonlinear Volterra integral equation of the second kind for I(t) results:

(6.5) /Ot K(t —s)I(s)ds = I,(e" =1 _ 1) — I,(eV° — 1) /tw K(s)ds.

For this equation the following result can be proven:

Theorem 6.1. ([23]) Equation (6.5) has a unique solution I € C[0,00) N C*(0,00) converging ast — oo
to the unique solution I, of
Too = L(eV ®lee 1),

Finally we wish to demonstrate the capability of the model (6.5) to describe charge-storage effects by
discussing the example of switching a pn-diode from a forward conduction to a reverse blocking state. In this
case Uy > 0 and V < 0 holds. We rescale the current by the modulus of its initial value I(0) = (V — Up)/R:

I:UO_Vy

R

Equation (6.5) in terms of the new variable y reads

t v. U=V
(6.6) eV -Uo)y(t)+1) :1—/ K(t—s) <1—e- ° y(s)) ds.

0

! We are indebted to Pierre Degond for pointing out this fact.
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We wish to discuss a situation where the involved voltages have absolute values large compared to the
thermal voltage, i.e. Uy,—V > 1. The factor

Ug-V
«= RI,elo

in (6.6) is an approximation for the ratio of the initial reverse current immediately after the switching and
the forward current before the switching. We consider the limits Uy — oo and V — —oo keeping the value
of a fixed. As a convenient small parameter we choose

e = 1
T Uy -V
With the new parameters we write (6.6) as
'
(6.7) e~ WO/ = 1 _ / K(t - s)[l — eaRI, — ay(s)]ds.
0

The limit € — 0 in (6.7) has been carried out and justified for a simple model problem with explicitely known
kernel in [24]. The limiting behaviour can be described as follows: Initially, a so called ‘constant current
phase’ appears:

y(t)=-1, for 0 <t <1y,

whose length ¢ is the solution of the equation

(6.8) 0= 1—(1—}-01)/t0 K(s)ds.
0

The constant current phase is a time period where the resistivity of the diode is dominated by the serial
resistance. Its occurrence is a charge-storage effect. When a sufficient amount of excess charges has been
removed the current starts decaying to its steady state value. In this decay phase the exponential in (6.7)

can be neglected, and the approximate solution y(t) is determined from the Volterra equation of the first
kind

t to 1
0=1- / K(s)ds — a/ K(t—s)ds+ a/ K(t — s)y(s)ds, fort >1tg.
0 0 to

The approximate current is continuous, but its derivative in general has a singularity at t = to+ [24].

For the model problem treated in [24] (infinitely long one-dimensional diode) the length of the constant
current phase and the solution in the decay phase have already been computed by Kingston (1954, [5]) and
Lax and Neustadter (1954, [6]). As in the steady state case our analysis leads to an extension of classical
results.

7. The transient behaviour of the bipolar transistor. In this section we show that the currents
through a bipolar transistor and the contact voltages are related by a system of two integral equations.

We recall the transistor geometry considered in section 4 (Figure 3). Then the last condition in (5.8)
can be written as

Use(t) _ ,Ubs y

1]
z=e€ on 'ep, z:eUBC(')—eUBC, on I'gc.

Here Ugg and Ugc denote the base-emitter voltage and the base-collector voltage, respectively; UgE and

Uj ¢ are their values at ¢ = 0.
Similarly to the preceding section we define the current functionals Ig[-] by

Igls) = /FEB [(%w)_ - (%RVZ)+] vds,
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and Ic|[-] analogously by an integral over I'gc. We procede as for the pn-diode by considering the operator
A. Functions in the domain of 4 are now required to be constant along the junctions I'gg and I'ge with
Ig[z] = Ic[z] = 0 for 2 € D(A). We again derive a Fourier series expansion of the solution z of (5.7), (5.8)
in terms of eigenfunctions of 4. Evaluation of this representation on the pn-junctions leads to the system

eUse(t) _ eUgE = /t []{E(i - S)(IE(S) - Ig;) + ]{EC(t — s)(IC(s) — Ig)]ds,
(7.1) 0

eVsc(t) _ ¢Usc — /0 [Kec(t — s)(Ie(s) — Ig) + Kc(t — s)(Ic(s) — I2)]ds.

These integral equations are the equivalent of equation (6.4) for the pn-diode. They relate the contact
voltages to the emitter and collector currents Ig(t) and I¢(t), respectively, whose initial values are denoted
by I} and I2. The kernel functions are given by

oo 00
Kp(t)=) dhe,  Kco(t)=) ®%ie™,
k=1 k=1
o
Kge(t) = Z‘I)Ek‘I)CkeAkt,
k=1

where ®g; and ®gy are the values of the k-th eigenfunction of A at 'gg and I'gc, respectively. An
application of the Cauchy-Schwarz inequality shows that the kernel matrix of the two-dimensional system
(7.1) is symmetric positive definite.

The kernel functions can again be computed by solving parabolic reference problems. We consider a
function Zg solving a version of (5.7), (5.8) with

IE[ZE](t) :(S(t), Ic[ZE](t) =0,

as well as a function Z¢ satisfying

IplZc)(t) =0,  Ic[Zc)(t) = 6(1).
Then the kernel functions are given by evaluation of these Green’s functions at the pn-junctions:

KEg(t) = ZE|rgs Ke(t) = Zelrge Kec(t) = ZElrge = Zclrgs

8. Conclusions. Asymptotic methods have been used to reduce the computation of voltage-current
characteristics of multidimensional bipolar semiconductor devices to the solution of simple, bias-point inde-
pendent reference problems.

For the transient behaviour a new type of models in the form of integral equations has been presented.
These models are well suited for an analysis of switching processes. Furthermore, they are simple enough to
be used in circuit simulation programs as an alternative for equivalent circuit models. Preliminary numerical
experiments [32] indicate that an efficient implementation is possible.
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