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The Derivation of Performance Expressions

for Communication Protocols

from Timed Petri Net Models

RamiR.Razouk

ABSTRACT

Petri Net models have been extended in a variety of ways and have been
used to prove the correctness and evaluate the performance of communication
protocols. Several extensions have been proposed to model time. This work
uses a form of Timed Petri Nets and presents a technique for symbolically
deriving expressions which describe system performance. Unlike past work on
performance evaluation of Petri Nets which assumes a priori knowledge of
specific time delays, the technique presented here applies to a wide range of
time delays so long as the delays satisfy a set of timing constraints. The tech
nique is demonstrated using a simple communication protocol.

Introduction

The issue of specification and verification of communication protocols has drawn a

great deal of attention. Much of the work in this area has focused on "correctness" issues and

has ignored important "performance" issues. With few exceptions, correctness proofs for

communication protocols have either ignored timing or have attempted to prove that correct

ness is independent of time. The first approach raises serious questions about the usefulness

of the proofs, while the latter approach generally makes proofs more difficult. In some cases

where timing is critical to the correct operation of a system, time-independent proofs may be

impossible. The search continues for a specification method which can bridge the "gap"

between correctness and performance.

Several approaches are currently being used to specify communication protocols.

Semi-formal approaches based on structured English text are quite popular but are ambiguous

and do not lend themselves well to formal analysis. Formal approaches based on axiomatic

specifications [YGH 82], temporal logic [HaOw 80, SaSc 82], extended finite state machines

[BocG 80, SiKa 82], and transmission grammars [TeLi 80] are useful in proving correctness is

sues fail to address timing and performance issues. Petri-Nets, on the other hand, have been

used to specify and prove the correctness of protocols [BeMe 83, BeTe 82, RaEs 80, SymF 80]

and have also been used to analyze performance [MolM 81, RaHO 80, RamC 74, RaPh 83,

SifK 77, VSE 83, ZubW80]. It is this important difference which motivates our work on Petri



This paper presents an approach to performance analysis which derives performance

expressions from Timed Petri Nets. The technique is based on Timed Reachability Graphs

first proposed by Zuberek [ZubW 80] and extended in [RaPh 83], While this paper focuses on

performance we expect that these graphs can be used to prove correctness much as the work by

Berthomieu [BeMe 83] suggests.

Section 1 of the paper reviews the version of Timed Petri Nets we use in this work, and

discusses how these nets differ from Time Petri Nets (introduced by Merlin and Farber [MePa

76] and used in [BeMe 83]) and other time-extensions to Petri Nets. Section 2 of the paper

discusses a technique first proposed by Zuberek for analyzing the performance of Timed Petri

Net models . Section 3 presents a more generalized approach which can be used to symbolical

ly derive performance expressions in nets where specific time delays are not known, but where

a set of timing constraints is known. Section 4 demonstrates the technique by applying it to a

simple communication protocol.

1. Timed Petri Neta

In the description of Timed Petri Nets which follows, we use some notation which re

quires clarification. In particular:

. (i.(p) is used to indicate the number of tokens in place p in marking p..

# (p, /(r)) is used to indicate the number of occurrences of place p in the input bag of place t.

A Timed Petri Net F is defined as follows:

r = (P, T, I, O. E, F, m;„)

Where P is the set of p/ncej in the net.

T is the set of transitions in the net.

I : T —P is the input function for transitions

O : T - P is the output function for transitions

E : T - R is the enabling time function for transitions (we assume non-negative real numbers).

F : T - R is itit firing time function for transitions (we assume non-negative real numbers).

Jig : P - N is the initial marking for the net (non-negative intergers).



The description of a Petri Net only specifies the static relationship between places and

transitions. The dynamic behavior of the net depends of the definition of the semantics of the

underlying model. Below is an informal definition of the semantics of Timed Petri Nets.

Enabling Roles

We assume the normal enabling rules for Petri Nets:

A transition r^CT in a marked Petri Net F with marking p. is enabled if and only if

y- (Pi)^ * (Pi )

Firing Roles ^

A transition tj^T in a marked Petri Net F with marking p, is firable at time t if and

only if it is continuously enabled during the interval r-E{tj) to t. In our version of Timed

Petri Nets we assume that when a transition becomes firable. it must begin firing at that instant

of time (unless disabled by the firing of a conflicting transition). When a transition begins fir

ing, it absorbs tokens from its input places.

If a transition begins firing at time t it is said to be firing during the interval t to

T+F(f^). At time T-I-P(r^) the transition finishes firing and produces tokens on its output

places.

Conflict Seta

Petri Net models use places to model flow of control as well as contention for

resources. Contention for resources is usually modeled using places which are in the input bag

of two or more conflicting transitions. With only a single token in such a place, only one of a

set of conflicting transitions can fire. In the basic Petri Net model, the choice is non-

deterministic. In order to evaluate the performance of a Timed Petri Net it is necessary to

determine the probability that each of a set of conflicting transitions will fire. In this version

of Timed Petri Nets, each net must be partitioned into disjoint sets of conflicting transitions.

These sets are referred to as conflict sets and are formally defined as follows. Every transition

t^ belongs to exactly one conflict set C such that:

C = {fj/(t,)n/(rp^0}



The above definition implies that conflict sets cannot overlap. With each transition

in a conflict set, the user must define a relative firing frequency A firing frequency of zero

indicates that other transitions in the same conflict set, if firable, always have priority. When

a state is reached where one or more transitions in a conflict set is firable (referred to as a de

cision state, or decision node), the probability of firing a firable transition r, is calculated as

follows:

f.

fj
C C firmkU

If only one transition is firable, then the probability of firing it is 1, regardless of firing
frequency.

In order to use conflict sets to calculate firing probabilities as shown above, limitations

must be placed on the Petri Net models. In particular, we require that firing a transition dis

able all conflicting transitions. In other words, only one transition can fire from any conflict

set at any instant of time. Since we consider a transition to be in conflict with itself, this re

quirement eliminates from consideration nets which allow multiple firings (at the same in

stant) of a transition. This is a property which is slightly less restrictive that the T-safeness as

sumption in [BeTe 82] (T-safeness does not admit nets with multiply- enabled transitions).

Figure 1 shows an example of a Timed Petri Net. For the sake of readability we show
the graphical representation of the net. This particular net models a simple protocol based on

unnumbered messages and acknowledgements. In this protocol the sender sends a packet

(transition r^) and waits for an acknowledgement. A timeout (transition »,) is used to recover
from lost packets. The receiver waits for a message and sends an acknowledgement immedi

ately (transition f^). The medium can lose packets (transition r^) and acknowledgements

(transition r,). In its design, this protocol assumes that timeouts are only triggered if the

packet or its acknowledgement have been lost. We assume that the receiver can detect a du

plicate message, but that the sender cannot detect a duplicate acknowledgement. This is a

trivial protocol, which can be easily extended to be more robust by using alternating bits for

message and acknowledgement sequencing. For the sake of brevity, we have opted for the

simpler, less robust, protocol.

The net contains 3 conflict sets containing more than one transition:

1. 0.05, ty 0.95}, modeling a 5% chance of losing packets.



2.

Figure la. Model of Simple Protocol

Transition Enable Time

(milliseconds)

Firing Time
(milliseconds)

0 1

^7 0 1

1000 1

0 106.7

0 106.7

0 13.5

U 0 13.5

U 0 106.7

U 0 106.7

Figure lb. Enabling and Firing Times

{r^: 0, r,: 1}, modeling the fact that r, has priority over whenever they are both fir-

able.

3. {r,: 0.95, r,; 0.05}, modeling a 5% chance of losing aclcnowledgments.

Other Time Extensions

Many other time extensions to the basic Petri Net model have been proposed. Ram-

chandani [RamC 74] first proposed the use of transition delays. These delays are equivalent

to firing times in the model described above. Sifakis [SifJ 77] proposed associating delays with

places instead of transitions. Coolahan and Roussopoulos [CoRo 83] recently used a similar

approach in their work on "time-driven" systems. Associating delays with places instead of

transitions does not increase the power of the model, but adheres to the instantaneous firing

rules of the basic Petri Net model. In fact, transition delays and place delays are equivalent

since a simple procedure can be used to translate one into the other. Molloy [MolM 81] pro-



posed the use of transition delays with exponential distributions in order to use Markov Chain

analysis. Vernon [VSE 83] used delays similar to transition delays in work using the UCLA
Graph Model of Behavior, a form of extended Petri Nets.

Merlin and Farber [MeFa 76] proposed a time extension which is significantly different
than other time extensions. In their Time Petri Net model two values (Min/Max times) are
used to define a range of delays for each transition. The model retains the instantaneous fir

ing rules of the basic Petri Net model by allowing tokens to remain on the input places during
the transition delay. This approach proved particularly well suited for modeling timeouts in
communication protocols. This model of time has been used by Berthomieu [BeMe 83] in
developing techniques to prove the correctness of protocols. On the surface, Min times appear
similar to our enabling times, and Max times appear similar to firing times. The similarity ar
ises from the use of Min times to model timeouts. The only use of enabling times in our
model is also to model timeouts. The similarity is, however, superficial. Min/Max times can

be used to model ranges of delays, while firing times can only model one specific delay value.
As a result, there is more flexibility in Merlin and Farber's model than in the model used in

this paper. In their model, after Min times have elapsed, transitions may fire. When they do
fire, they fire instantaneously. On the other hand, after enabling times have elapsed, transi
tions must begin firing. In Merlin and Farber's model the enabling tokens remain on the input
places, while in our model they are absorbed as soon as the transition begins firing and do not
reappear until the transition finishes firing. The added flexibility of the Merlin and Farber

model does, however, make performance analysis more difficult.

The difference is illustrated in Figure 2. Figure 2a shows a Timed Petri Net with ena

bling and firing times. Figure 2b shows an equivalent Time Petri Net. Since Timed Petri Nets

require that a transition fire as soon as it becomes Arable, an equivalent Time Petri Net must

contain added transitions where the Min time and the Max time are both equal to the enabling
time. These transitions ensure that tokens on the inputs of the Arable transitions are absorbed

immediately. The fixed delays in the Timed Petri Nets can also be modeled with transitions

with equal Min and Max times.

Should Figure 2a be interpreted as a Time Petri Net (Min times as enabling times and
Max times as firing times), it would be possible for a token arriving at place P^ at time 2 to
cause transition t^ to fire instantaneously. It is therefore possible for transition fj to be
prevented from firing even after its Min time has expired. So long as activities which are be

ing modeled by transitions are instantaneous, this view of time is reasonable. If, however,
transitions model activities which consume time (they have a beginning and an end) then our
Timed Petri Nets are more suitable. It is possible to model activities which consume time us

ing Time Petri Nets by using two transitions to model the beginning and the end of each activi-



Figure 2a. Timed Petri Net

A/in(/J=3
A/ax(Q = 7

Figure 2b. Equivalent Time Petri Net

ty. While the event is occurring, the token remains on a place between the two transitions.

In the final analysis, the difference between the two models appears to be one of in

tended use. Timed Petri Nets are used to model fixed delays, and have been extended to

model timeouts. Time Petri Nets are used to model ranges of delays and use the same

mechanism to model timeouts. It is this dual usage of Min times which troubles us. Models

such as the one in figure 2a (interpreted as a Time Petri Nets), do not arise often in practical

situations. It can therefore be argued that the dual usage of Min times is reasonable. We

prefer to view the two mechanisms as distinct. If ranges of delays must be modeled, our ap

proach would be to extend firing times to include time ranges, but to retain enabling times to

model timeouts.



2. Analysis of Timed Petrl Nets

The basis of our technique for deriving performance expressions is the use of Timed

Reachability Graphs. Reachability Graphs are cyclic directed graphs which enumerate all the

reachable states of a system, and which describe all possible transitions between states.

Reachability graphs for un-timed Petri Nets have been used extensively to prove properties re
lated to correctness (such as deadlock-freeness). Each node in such reachability graphs con
sists of a marking describing the state of the net. In [ZubW 80], Zuberek extended reachabili

ty graphs to include time. This was accomplished by adding a time component to each state.

A node in such Timed Reachability Graphs includes a marking and a list of remaining firing
times (RFT) of transitions. This additional component accounts for transitions which are in

the process of firing. In order to accommodate the version of Timed Petri Nets presented

above. Timed Reachability Graphs were extended in [RaPh 83] to include the notion of ena

bling times. In such graphs, the state of a system is characterized by:

1. A marking, indicating the distribution of tokens on places.

2. A vector of remaining enabling times (RET), indicating the amount of time each en

abled transition must remain enabled before it becomes firable.

3. A vector of remaining firing times (RFT), indicating the amount of time each firing
transition must continue to fire before it terminates and places tokens on its outputs.

The reachability graph is constructed by recursively calculating the successors of every
reachable state, starting from some initial state. Figure 3 shows a detailed procedure for cal

culating successors of a state. This procedure is explained in detail in [RaPh 83] and is only
briefly outlined below.

There are two possibilities which arise when calculating the immediate successor(s) of
a particular state S. In the first case, one or more transitions are firable. Since the act of be

ginning to fire is instantaneous, the delay between S and its successor(s) is zero (no time
elapses). Such a state can have more than one successors if several conflicting transitions are

firable.

In the second case, there are no firable transitions. The state is terminal (has no suc

cessors) if no transitions are enabled (have a non-zero RET) or are currently firing (have a
non-zer RFT). In most cases a successor exists. Calculating the successor in such cases re

quires a calculation of the minimum time which must elapse before an action of interest oc

curs. This minimum time can be found by calculating the minimum non-zero RET or RFT.

The only successor to Sis then calculated by allowing that minimum time to elapse (subtracting



Given State S

Let A be the set offirable transitions

if \ * Si

Partition A into firable conflict sets

Let the set of selectors Sel = cross product offirable conflict sets
Calculate the probability of using each selector s in Sel

For every selector s in Sel

generate a successor state S' from S

Remove tokens from input places of transitions in s.
Set theRFTof each transition t^ in s to F(t^).
For every transition which becomes disabled, in S' reset its RET to 0.

Assign a zero time delay to the edge from S to S'
Else

Let Tmin - smallest non-zero RET or RFT in S

Generate state S' from S by subtracting Tminfrom all

non-zero RET and RFT in S

For all transitions t^ whose RFT > 0 in S and RFT = 0 in S'
add tokens to outputplaces of t^

For all transitions tj which become enabled in S'
setRET of tj toE(tj) inS'

Assign Tmin as the time delay for the edge between S and S'

endif

Figure 3. Procedure for Generating Successors of a State S

the minimum time from all the non-zero RET and RFT entries). The existence of only one

successor to each such state plays an important role in the analysis of timed reachability

graphs. Figure 4 shows the timed reachability graph for the net in figure 1.

Zuberek's approach to performance evaluation relies on deriving a Decision Graph

where only the decision nodes of the reachability graph remain (e.g. in Figure 4a, nodes 3 and

11 are the only decision nodes). All other nodes are eliminated and paths through them are

collapsed. Time delays along collapsed paths are accumulated. Figure 5 shows the Decision

Graph derived for Figure 4. Decision graphs can be used to measure system throughput and

resource utilization.

3. Symbolic Timed Reachability Graphs

In this section we generalize the concept of timed reachability graphs in order to ac

commodate cases where specific time delays are not known, and where specific firing frequen

cies are also not known. Our goal is to construct timed reachability graphs where arcs are la

beled with expressions representing both time delays and branching probabilities. To accom

plish this goal it is necessary to determine the conditions under which symbolic time delays can

be introduced into the net without changing the properties of timed reachability graphs which
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Figure 4a. Timed Reachability Graph of Simple Protocol

State Marking RET RFT

Pi Pi Pi p* p» Pe Pi Pt *3 'i *2 '3 '3 u ^9

1 1 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 . 0

3 0 1 0 1 0 0 0 1 1000 0 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 1 1000 0 0 0 0 106.7 0 0 0 0

5 0 0 0 1 0 0 0 1 1000 0 0 0 106.7 0 0 0 0 0

6 0 0 0 1 0 0 0 1 893.3 0 0 0 0 0 0 0 0 0

7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

9 0 0 1 1 0 0 0 1 893.3 0 0 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 893.3 0 0 0 0 0 13.5 0 0 0

11 0 0 0 0 0 1 1 879.8 0 0 0 0 0 0 0 0 0

12 0 0 0 1 0 0 0 1 879.8 0 0 0 0 0 0 0 0 106.7

13 0 0 0 1 0 0 0 1 879.8 0 0 0 0 0 0 0 106.7 0

14 0 0 0 1 0 0 0 1 773.1 0 0 0 0 0 0 0 0 0

15 0 0 0 1 0 1 0 1 773.1 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 13.5 0 0

17 0 0 0 0 1 0 0 1 0 0 0 0 d 0 0 0 0 0

18 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Figure 4b. Description of States in Timed Reachability Graph
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refers to edge i
p refers to the probability of chosing edge i from its source node

refers to the delay for edge i
Figure 5. Decision Graph

make them analyzable.

The technique described above relies heavily on the fact that each transition has a sin

gle know value for its enabling time and firing time. As a result, timed reachability graphs

consist of only two types of nodes:

1. Decision nodes with many successors and a probability associated with each successor,

and

2. Non-decision nodes with only a single successor each.

If it is the case that a specific transition delay is not known, then timed reachability

graphs become more complex. The complexity can be seen even in a simple case where two

transitions (f^ and tj) begin firing at the same time. When the two transitions begin firing, the

state of the net can be characterized by the remaining firing times of the two transitions.

These remaining firing times are exactly the firing times of the transitions (F(r^), and F(r^)). In
calculating successor states we must identify the smaller of the two values. If we do not know

the relationship between the two firing times, three cases must be taken into consideration.

1. F(rJ > F(fp. In this case transition tj will finish firing first and the successor state will

have a remaining firing time for equal to

11



F(r,) - F(g

The edge from the current state to its successor can be assigned adelay of F(f^),

2. F(/,) < F(r^). In this case transition r, will finish firing first and the successor state will

have a remaining firing time for tj equal to

ntj) - F(t^)

The edge from the current state to its successor can be assigned a delay of F(rj).

3. F(t,) = In this case both transitions will finish firing at the same time. The edge
from the current state to its successor can be assigned a delay of F(r^).

Since we assume fixed delays, only one of the above relationships can hold, biit the
reachability graph must include all three possibilities. The above example is quite simple and
assumes only two simultaneously active transitions. If more transitions can fire in parallel,
the size of the graph grows rapidly. In the worst case, if nothing is known a priori about the
enabling and firing times of the transitions, the reachability graph may become unmanageably
large. In order for the reachability graph to be analyzable, the model must include sufficient
timing constraints to guarantee that all vertices which do not involve decisions have at most

one successor each. This is the case when timing constraint are sufficiently specific to identify
the smallest non-zero RET and RFT for every state in the graph. An automated tool could be

designed to prompt designers for timing constraints at the necessary points.

The procedure for constructing timed reachability graphs with symbols in place of
specific times remains the same as figure 3. The differences are

1. Evaluating the smallest non-zero values is replaced by a procedure for evaluating the
smallest value in a set of expressions, given a set of timing constraints.

2. Subtractions must also be done symbolically and expressions must be simplified alge
braically.

3. Calculations of firing probabilities are done symbolically whenever firing frequencies
are not known.

The resulting reachability graph has timing expressions associated with each edge. De
cision graphs can then be constructed and analyzed in order to obtain expressions which
describe the performance of the system. These expressions apply for all enabling times and
firing times which are consistent with the timing constraints of the net.

12



In the next section we demonstrate the above approach on the communication protocol
described earlier.

4. Example: A Simple Commanlcatloo Protocol

to demonstrate the approach described above, we assume that specific values of ena
bling and firing times are not known for the protocol in figure 1. Instead, we assume that the

following constraints apply:

(1) £(r3)>F(f,) +F(r,)+F(g

(2) £(r,)=0 ^,i*3

(3) £(fj = £(r,)

(4) £(g =£(fg)

Constraint 1 simply states that the timeout period must be greater that the round-trip
delay for a message and its acknowledgement. Constraint 2 indicates that only the timeout
transition has a non-zero enabling time. This constraint is only added to simplify the exam
ple. Constraints 3 and 4 specify that the loss of a message requires no more time than its suc

cessful transmission. Without this constraint it would be possible, under some circumstances,

for the safeness assumption to be violated.

The Timed Reachability Graph which satisfies the above constraints is shown in figure
6. In the description below we use the symbols r, and r, in place of the more cumbersome

E(r,) and F(f^).

State 1 in the graph is the initial state and has only one possible successor. That suc

cessor (state 2) is reached when transition 2 begins to fire. State 2 can only lead to state 3
after a delay of In state 3, transition is enabled, and transitions and tj are both fir-

A
able. Transition fires with a probability of , and leads to state 4. Transition t fires

/4 +/5

with a probability of — , and leads to state 5. State 4 has three possible successors. The

calculation of the correct successor depends on the values of f, and . Constraint 1 indicates

Therefore, the only successor to state 4 is reached after a delay of r . The
* •'s

remaining enabling time of in state 9 is therefore t -t,.
*3 's

13



Probability for 3 - 4 =
Probability for 3 - 5 = /I/0^+/f)

»3

Probability for 11 13 =^^JjAfA/-)
Probability for 11 - 12 = yJ/(/J+/J)

Figure 6a. Symbolic Timed Reachability Graph of Simple Protocol

State Markine RET RFT

1 Pi Pi Pt Pi Pi P4 Pi Pi r. t. t. t, r. t
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0
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Figure 6b. Description of States in Symbolic Timed Reachability Graph
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The constraints shown above only influence the construction of the graph in states 4,5,
10, 12 and 13 since these are the only states containing more than one non-zero RET and

RFT. Figure 7 summarizes the constraints which are used in each of these states.

Transition Constraint Used Derived from:

4^9 1
3 ^5

5-6 1.3
•3 '4

10-11

A

1

1

12-14
3 '5 '4 '9

1.4

13 - 15
3 'S '4

1

Figure 7. Timing Constraints Used in Reachability Graph

The derivation of performance expressions from this Symbolic Timed Reachability
Graph follows the same procedure proposed by Zuberek and elaborated in [RaPh 83]. First,
the reachability graph is collapsed into a Decision Graph which contains only decision nodes.
All other nodes are eliminated and the transition delays are summed (here we do it symboli
cally). Figure 8 shows the decision graph. Edge 1 corresponds to the path 3-5-6-7-8-1-2-3.
Edge 2 corresponds to path 11-13-15-16-17-18-1-2-3. Edge 3 corresponds to path 3-4-9-10-11.
Edge 4 corresponds to path 11-12-14-7-8-1-2-3. From the decision graph we derive expres
sions for the rate of traversal (r^)of each edge i. The relative amount of time spent on each
transition can then be calculated as:

w=r^d,

To derive the traversal rates we note that the rate at which an outgoing edge is
traversed is a function of the branching probability for that edge and of the rate at which the

incoming edges are traversed. Therefore, a set of equations can be derived for each r as
shown below:

/4

l=f
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w + /• /^/4+/3
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Figure 8. Decision Graph

By assuming a particular value for any of the r/s we can solve for the remaining vari

ables and obtain a relative traversal rate. Assuming rj= 1, we get:

'-1 = 1,

A
'"3= . •••(—11-V8+/9 ^V4
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The relative amount of time spent on each edge is therefore:

= Ml = '.3+V3+V,

\ (fi
»V, = Tjdj

'3

' ' ' '

"• °'''''' (,']V''.'
J 4

"•4 ='44,= I

While several performance measures can be derived from this graph, we focus on

throughput. To calculate the throughput of the protocol we note that the traversal of edge 2

corresponds to a successfully received and acknowledged message. Therefore, the throughput

of the protocol is simply:

''j

i

If we assume a loss probability of 5% for both packets and acknowledgements, the

throughput expression simplifies to:

18.05

1.95(r +fj+20r, +18.05(r, +f, +f, +f, +r,)
3 '3 'l 's '7 V

Conclnsion

A procedure for symbolically evaluating the performance of systems has been present

ed. The approach is based on generalizing a method first presented by Zuberek for analyzing

Timed Petri Nets. The conditions under which the analysis can be performed have been de

fined in terms of a set of timing constraints to be specified in place of transition enabling and

firing times.

17



This approach to performance analysis makes Petri Nets the only approach to modeling

communication protocols which can be used with the objective of proving correctness and

deriving accurate performance estimates. Work by Berthomieu has already shown that

correctness proofs can be carried out on Time Petri Nets. We expect that Timed Reachability

Graphs can accomplish the same objective since they reveal all the allowed state transitions,

given a set of timing constraints.

The work on Timed Petri Nets continues. We are currently exploring techniques for

constructing and analyzing Timed Reachability Graphs for nets which allow ranges of firing

times. The use of Timed Reachability Graphs for correctness proofs is being explored. There

is also a great deal of interest in developing tools which automate the techniques discussed in

this paper.
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