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The study of cumulated jnd scales
began with Fechner; Fechner's law is
such a scale. Psychophysicists have
been deriving such scales and com-
paring them with scales derived in
other ways, notably by fractionation,
ever since, and a lot of controversy
has resulted. The controversy is
particularly hot at present because
Stevens and Galanter (16) and Stevens
(14) have assembled a lot of data
which indicate that cumulated jnd
scales do not agree with magnitude
scales derived by other methods for
intensity continua such as loudness,
brightness, and pain.

Unfortunately, Fechner’s proce-
dure for cumulating jnds, which has
been widely defended but not widely
applied since his day, rests on an as-
sumption which is inconsistent with
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one of his definitions. This means
that cumulated jnd scales developed
by his procedure are incorrect, and
80 comparisons between them and
other kinds of scales are meaningless.

This paper begins by showing that
Fechner’s method contains internal
contradictions for all but a few special
cases, and that it cannot be rescued
by minor changes. It goes on to
derive a new and mathematically ap-
propriate method for cumulating jnd’s.
This method turns out to be the sim-
plest possible one: you can best cumu-
late jnd’s simply by adding them on
top of each other, like a stack of
plates. Unfortunately, the detailed
mathematical equivalent of this very
simple operation is often fairly com-
plicated. A simple but sometimes
tedious graphic procedure, however,
is readily available—and indeed has
customarily been used by most sci-
entists when developing cumulated
ind scales. This paper ends by dis-
cussing practical applications of this
method, the relation it bears to scal-
ing methods based on the law of
comparative judgment, and the cur-
rent controversy about scaling meth-
ods in psychophysics.

The model of a sensation scale. The
psychophysical model of a sensation
scale is a mathematical model; a
sensation scale is an intervening
variable. The rules by which sensa-
tion scales should be constructed are
to some degree arbitrary, limited by
logic, convenience, intuition, and best
fit to data.
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The model of a sensation scale goes
as follows. Corresponding to many
of the major subjective dimensions of
change of sensory experience, there
are primary physical dimensions of
change (e.g., pitch and frequency,
loudness and amplitude, etc.). Once
parametric conditions for significant
variables have been specified, we
assume that a single-valued, mono-
tonic, everywhere  differentiable
(smooth) function exists that relates
the subjective dimension to its cor-
responding  physical  dimension.
From here on, we shall use the words
“dimension” and ‘‘continuum’’ inter-
changeably; we shall usually talk
about a stimulus continuum and its
corresponding sensory continuum,

That is the model, and it is very
easy to state. The big difficulty
comes when we try to decide how to
fit data to it. All methods for doing
this must introduce definitions and as-
sumptions beyond those listed in the
previous paragraph. These differ
from one method to another.

The oldest sensory scaling method,
Fechner’s, is based upon a further
condition that says that any jnd on a
given sensory continuum is subject-
ively equivalent to any other jnd on
that continuum. Whether this added
condition is to be interpreted as
merely a definition of the scale under
consideration or as an assumption is
a matter of opinion. Textbooks usu-
ally say Fechner ‘‘assumed’” that all
jnd’s for a sensory dimension are
equal to one another (1). It is not
easy to know what he had in mind, but
judging by his writings he probably
did view it as an assumption having
implications beyond scale construc-
tion. Since it is not directly observ-
able and since its indirect conse-
quences are highly debatable, others
since Fechner have suggested that it
might better be viewed as a definition.
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It is our view that this is the more
sensible position; it certainly is the
one for us to take in this paper since
our point is a logical one, not a sub-
stantive one. If equality of jnd’s is
taken as a definition, then it cannot be
proved or disproved by any kind of
empirical evidence. An experiment,
for instance, that showed that a tone
20 jnd’s loud is not half as loud (ac-
cording to fractionation judgments)
as a tone 40 jnd’s loud would not
have any relevance to what we may
call Fechner’s definition; it would only
show that the kind of sensation scale
implied by his definition does not
agree with the kind implied by the
definitions used in fractionation ex-
periments. The issue, then, becomes
what are the different scales useful for,
and what is their relationship one to
another. The latter part of this
paper touches briefly on this problem.

The main purpose of the paper is to
explore the consequences of Fechner’s
definition. Therefore, we must be
certain of its meaning, It clearly
does not mean, for instance, that all
jnd’s for loudness contain the same
number of physical units. It is only
on the sensory continuum, not on the
stimulus continuum, that jnd’s are
defined as equal to one another.
Furthermore, this definition holds
only if all stimulus properties except
those on the primary stimulus con-
tinuum remain constant. So there
is no reason, for instance, to expect
that the subjective size of a loudness
jnd at 1,000 cycles per second (cps)
should be the same as that of a loud-
ness jnd at 4,000 cps. Of course, it
would be pleasant if they were equal
in size, but the model does not require
it.

From here on we will talk about
two kinds of jnd’s. A sensation jnd
is the magnitude of a jnd as measured
in the units of the appropriate sensa-
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tion continuum. By definition, all
sensation jnd’s for a given sensation
continuum are equal to one another,
given unchanged values of all stimu-
lus properties except those on the pri-
mary stimulus continuum. A stimu-
lus jnd is the magnitude of the
change on the primary stimulus con-
tinuum, measured in appropriate
physical units, which is just sufficient
to produce a change of one sensation
jnd upward at that point. ( A dis-
cussion of the essentially statistical
nature of jnd’s appears later in this
paper.) In general, stimulus jnd’s
will have different sizes at different
points on the primary stimulus con-
tinuum, The rest of this paper will
not be intelligible unless you keep the
distinction between these two kinds
of jnd’s in mind.

We have assumed that jnd’s are
measured upward on the stimulus
continuum. They could also be meas-
ured downward, and the possibility
exists that the two measurements
might not agree. In fact, they are
certain not to agree if the distance
spanned is more than two jnd’s, and
if the size of the jnd at the end where
measurement starts is used as the
unit of measurement, since this means
that the size of the measurement unit
will be different depending on direc-
tion of measurement. However, such
discrepancies might exist in the meas-
urement of a single jnd; this, if it
happened, would mean that jnd’s are
not suitable units of measurement
unless direction is specified. We have
therefore confined ourselves to upward
jnd’s.

Now we can say exactly what this
paper is about. Given a function
(obtained from experiment, theory,
or both) relating stimulus to sensation
jind’s for all points of the primary
stimulus continuum, what may we in-
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fer about the sensory scale implied by
that jnd function?

Fechner's derivation of Fechner's
law. On October 22, 1850, Fechner
(2) thought up the first (incorrect)
answer to the question which ended
the previous paragraph. Let us call
any function that gives the size of a
stimulus jnd at each point of the
stimulus continuum a Weber function
(corresponding to ‘‘a function relating
stimulus to sensation jnd’s” of the
previous section), and any one-to-one
function based on cumulated jnd’s
which relates the stimulus continuum
to a sensory scale a Fechner function
(corresponding to ‘‘a sensation scale’
of the previous section). These def-
initions do not¢ restrict our attention
to those two special functions which
have come to be known in psycho-
physics as Weber’s law and Fechner’s
law! Fechner believed that the
Fechner function corresponding to
any Weber function could be expressed
as the solution (integral) of a first
order linear differential equation in-
volving that Weber function. He
applied this procedure to Weber's
aw, which asserts that for a given
stimulus continuum the size of the
stimulus jnd, Ax, divided by the
value of the stimulus at that point, x,
is a constant (Ax/x = k). Let us
examine his argument.

If Weber’s law is true, then, since
all sensation jnd’s are equal by defini-
tion, there is a constant 4 such that

Au A

yviaon (1]
where Au denotes the size of the sen-
sation jnd. The heart of Fechner's
solution to his and our basic problem
was to ‘‘rewrite” Equation 1 as the
differential equation

du A

dx ~ x

[2]
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How did Fechner make this step from
differences (deltas) to differentials?
He used what he called a “mathema-
tical auxiliary principle,”’ the essence
of which is that what is true for differ-
ences as small as jnd’s ought also to be
true for all smaller differences and so
true in the limit as they approach
zero (differentials). If this argument
were acceptable (which it is not), the
rest would be simple. Equation 2,
when integrated, yields the familiar
logarithmic relationship between sen-
sation and stimulus which is known as
Fechner’s law.

Fechner thought that his general
procedure ought to be applicable to
any Weber function, not just to
Weber's law. It is not. Except for
a few special cases like Weber’s law,
the definition of sensation jnd’s as
equal and the “mathematical auxili-
ary principle”’ are mutually contra-
dictory. For example, consider the
Weber function Ax/x* = k. Then,
following Fechner's procedure, we
should write:

Au_ 4 o
A w2 2POS0 T
Integrating, we get
u =B — 4
x

Let us now check to see whether this
new Fechner function satisfies the
definition which says that sensation
jnd’s are equal to one another. If we
are at point x on the stimulus contin-
uum, a stimulus jnd, according to the
Weber function used in this example,
is kx%. The sensation increment cor-
responding to this change, the sensa-
tion jnd at this point, is therefore
given by:

u(x + kx?) — u(x)
=B —

Ak
14 kx

A4 B+A

(x + kx?) *
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which is clearly not a constant for any
value of the constant 4 except zero.

This, although only one example, is
typical in the sense that almost any
example you could think of would
show the same discrepancy. Only for
a very few Weber functions—some
pathological ones, Weber's law, and
its generalization Ax = kx 4 ¢—does
the ‘“‘mathematical auxiliary princi-
ple” yield a Fechner function with
equal jnd’s. We will not take space
to prove this formally, but a formal
proof is available,

The functional equation solution.
We have shown that Fechner’s pro-
cedure involves a self-contradiction.
We shall show later that it leads to
wrong results in all important cases
except Weber's law. Obviously the
“mathematical auxiliary principle”
is wrong and must go.

How, then, should we cumulate
jnd’s? The simplest, most obvious
procedure (which has very often been
used exactly because it is simplest and
most obvious) is simply to add them
up one at a time. If the first jnd on
a primary stimulus continuum is 3
stimulus units, then two points on our
cumulated jnd scale should be 0, 0 and
1, 5, where the first number is the
scale value on the v axis and the
second number is the corresponding
stimulus value on the x axis. If we
then find that the size of the stimulus
jnd at 5 on the stimulus continuum is
is 8, then the third point is 2, 13. If
we find that the size of the stimulus
jnd at 13 is 10, then the fourth point
is 3, 23, and so on.

Fechner and some of his more
modern imitators went way out of
their way to avoid this simple and
sensible procedure; in retrospect it is
hard to decide why they did so. At
any rate, the next two sections of this
paper will develop a formal mathema-
tical solution to Fechner's mathema-
tical problem—a solution which turns
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out to be the mathematical equivalent

of the simple graphical or arithmetic

technique discussed in the previous
paragraph. The mathematical prob-
lem centers about how to fill in the
curve between the discrete points
arrived at by the graphical method.

What mathematical tools can we
use to replace Fechner’s ‘‘mathemati-
cal auxiliary principle’”’? Equation 1,
and the corresponding ones based on
other Weber functions, can be solved
directly without any mathematical
auxiliary principles or other further
assumptions. They are examples of
what mathematicians call functional
equations. The papers on which
most of our discussion is based (5, 6)
were published in the 1880s, twenty
years after Fechner first published
his work.

The kind of functional equation
implied by the definition of equality of
sensation jnd’s is soluble for a very
wide class of Weber functions. Un-
fortunately, there is an infinity of
inherently different solutions to each
of these equations. However, further
consideration of what we mean by a
sensation scale will lead us to proper-
ties which we usually take for granted
and which are enough to narrow the
solutions down to just one interval
scale, unique except for its zero point
and unit of measurement. It isinter-
esting that in the case of the linear
generalization of Weber’s law, and in
that case only, the functional-equation
solution is the same as that obtained
by Fechner's auxiliary principle; for
all other Weber functions the two
solutions are different.

First, we will state the general
mathematical problem and its solu-
tion. Let %, x > 0, denote a typical
value of the stimulus continuum, and
let # denote the (unknown) Fechner
function. Let g be the (given) Weber
function; i.e., a stimulus magnitude
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¥, ¥ 2 %, is detected as larger (in a
statistical sense) than xif y > x + ¢
(x), whereas it is not discriminated as
different from x if x <y <x -+ g(x).
We write ¥ + g(x) = f(x). By def-
inition, a sensory jnd at the sensation
#(x) is given by the increment?

ulf(x)] — u(x)

(In the usual “delta” notation, g{x)
=Ax and u[f(x)]— u(x) = Au.)
The condition that sensation jnd’s be
equal simply means that all sensation
jnd's are a constant, which we may
take to be 1 for convenience, since an
arbitrary change of unit does not
matter. Thus, we have our major
mathematical problem:

Find those real-valued differ-
entiable functions %, defined for
all x > 0, such that «[f(x)] —
u(x) = 1,forallx > 0,

Note that we have said those func-
tions, not that function, for there may
be more than one such function.
This uniqueness question has not
traditionally been raised, for so long
as the problem was formulated in
terms of linear differential equations,
the uniqueness theorems of that
branch of mathematics insured only
one solution. In the realm of func-
tional equations, we have no such
assurances.

It is very lucky that the functional
equation which has arisen in this prob-
lem is one of the more famous in the

? Throughout this paper we shall have to
use functions of functions. In general, if v
and w are two real-valued functions of a real
variable x, v[w(x)] denotes the number ob-
tained by calculating ¥ = w(x) and then find-
ing v(y). Clearly, the order of writing » and
w is material, for s[w(x)] does not generally
equal w[w(x)]. Consider, for example, v(x)
= gx, where a + 1, and w(x) = &% Then,
v{w(x)] = v(x?) = ax?, whereas w[v(x)] =
w(ex) = a%?,
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literature; it is called Abel’s equation.?
The principal results we shall need
concerning this equation were pre-
sented by Koenigs (5, 6) in 1884 and
1885.4 First, we will present his
uniqueness results, which illustrate the
method of attack and lead up to the
general solution. Suppose that #(x)
is a solution to Abel’s equation, and
suppose p(x) is an arbitrary periodic
function with period 1—in other words,
any function satisfying

ple+1) = px)

K sin 2xx is periodic with period 1,
and so is an example of a function
p(x). It is easly to show that the
function u#,(x) = uo(x) + plue(x)] is
also a solution to Abel’s equation:

up f(x) ] = wol f(w) ]+ p{uolf(x) ]}
Ttao(x) +pL1+uo(x) ]
L+uo(x) +pluo(x) ]
14u,(x)

Furthermore, it can be shown that if
u and u* are two solutions to Abel’s
equation, then there exists a periodic
function p with period 1 such that

u(x) = u*(x) + plu*(x)]

Thus, if we have any solution % to
our problem and if we choose p to be a
differentiable periodic function with
period 1, then u, = uy + p(u,) is also
differentiable and solves the problem.

In the case of Weber's law, we
have f(x) = kx, £ > 1, and the dif-

1
ferentiable function wu#(x) = 12%1; is

3 Sometimes this equation is spoken of as
the Abel-Schroder equation, but more often
Abel’s name is attached to this equation and
Schroder’s name to the equation »[f(x)] =
cv(x), which arises from Abel's equation
through the substitution v = ¢,

4 We are indebted to Richard Bellman of
the RAND Corportion for directing us to the
literature on the Abel equation.
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easily shown to satisfy the condition
of equal sensation jnd's. Therefore,

log % ( log %
log & log %

is also a solution if p is differentiable
and periodic with period 1.

There is an infinity of such func-
tions $, and so in infinity of different
solutions to the problem for any
Weber function, including Weber’s
law. This, of course, is quite unsatis-
factory; later on we will show that one
of the properties that we usually at-
tribute to jnd’s, and which as yet we
have not used, enables us to insure a
unique solution. However, first it
will be useful to present Koenigs’s re-
sults on the existence of solutions to
Abel’s equation.

The existence of solutions to Abel's
equation. In psychophysical prob-
lems, there is always a threshold
R > 0, such that g(x) is not observ-
able in the range 0 < x < R. Thus,
it is only a matter of convenience what
we assume about the behavior of g
near 0; we shall suppose that

g(0) =0 and 0 <g'(0) < =

where g'(x) = d_g It is known also

dx

from experimental work that g is
never 0 and that on the whole it will
increase with x, except for limited
ranges of some stimuli, where it may
decrease slowly. With little or no
loss of generality, we may suppose it
never decreases so rapidly as to have a
slope less than —1. In other words,
we also assume:

g(x)>0 and g'(x)>—1 for x>0

From these assumptions, it follows
that f(x) = x + g(x)has these prop-
erties:
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f if strictly monotonic in %, i.e., if
x < v, then f(x) <jf(»); 0 is the
only fixed point of f (x is a fixed
point if f(x) = x); and 1 < f(0)
< oo,

The strict monotonicity of f implies
that there exists an inverse function
f1, i.e., a function such that

@] =% = ff(x)]
It is easy to show that:

S is strictly monotonic increas-
ing, x is a fixed point of f~* if and
onlyif x = 0, 0 < f~(0) < 1.

Observe that if we know a solution v
to the equation

ff1x)] =1+ (3]
then % = — v is a solution to
ulf(x)] =1+ u(x) [4]

So it will suffice to deal with f~*. If,
in addition to the three properties
mentioned, f~! is analytic, i.e., if there
exist constants ¢, such that

®
Z a'ixiy

=0

) =

then Koenigs has shown that a differ-
entiable solution exists to Abel’s
equation. In applications, analytic-
ity is no real restriction. For simplic-
ity of notation, let us denote f~! by &;
then Koenigs' theorem (which is not
easy to prove) may be expressed as
follows: Let 2™ denote the #nth iterate
of & (e, 2™ (x) is the result of »
successive applications of 2 beginning
at the point x), and let

— hin )(x)
#() = Iim EroyT

then ¢ exists and is differentiable, and
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is a solution to Abel's Equation 3.
Therefore, since #’(0) = 1/f/(0),

_ log ¢(x)
log f'(0)

is a solution to Equation 4 and so to
our problem.

The difficult part of the proof is to
show that the limit exists. Assuming
that it does, it is easy to show that
uo(x) is a solution. Since A[f(x)] = «,

) (x)

uol f(x)]

_ . ™[ f(x)] )
-t 1m 5] /10670
= {“’g 7o)

BV (x) ,

X G /1 ©
_ , n—~1) (x)
= log f'(0) + log hm [h’(O)]""l

1ng'(())

=1+ uo(x)

The evaluation of the above limit
for ¢ is rarely a simple task. Fur-
thermore, the conditions under which
it has been shown to exist and to pro-
vide a solution to Abel’s equation are
only sufficient conditions—there are
other circumstances in which solu-
tions exist. For example, the func-
tion f(x) = ax?, b # 1, fails to satisfy
1 < f(0) < =, yet by direct verifica-
tion one can show that

log log [all (b—l)x]
_logd

satisfies w#o(ax?) = 1 + #uo(x). The
function f(x) = x -+ ax® also fails to
meet the same condition, but a solu-
tion probably exists in this case too.
Presumably, other functions can be
found which approximate empirical
data and which meet the assumed con-
ditions, but it remains to be seen
whether the limit ¢ can be evaluated.

uo(x) =
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The difficulty is, first, in inverting f,
and second, in finding a simple ex-
pression for 2¢). Since this is gener-
ally difficult, we doubt that the mathe-
matics of this section will be useful to
psychophysicists who want a non-
graphic method for cumulating jnd’s.
It should be pointed out again that
for the empirically important Weber
function g(x) = kx + ¢ the solution is
known: it is
log (kx + ¢)
log (1 + &)

A further definition of the semnsation
continuum. So far we have examined
two formulations of Fechner's prob-
lem, both of which are unsatisfactory.
The first, that of Fechner, contains an
internal contradiction. The second,
the functional equation formulation,
we have shown can be solved. Un-
fortunately, we have also shown that
it has infinitely many families of
different solutions, which is intoler-
able. In this section we shall propose
an addition to the second formulation
which amounts to a method of sum-
mating jnd’s. We shall show that if
we demand a particular form of in-
variance of distances measured in jnd
units, then there is a unique (except
for zero and unit) sensation scale for
each of a wide variety of Weber func-
tions, and for Weber’s law this sensa-
tion scale is Fechner's law.

The common psychological custom
for measuring distances in jnd's be-
tween two points is to use the size of
the jnd at the lower point as the unit
of measurement. Although it is rarely
if ever explicitly stated, it is certainly
implicitly assumed that if the dis-
tances ab and cd are both « stimulus
jnd’s in length, then they have an
equal number, say K(a), of sensation
jnd’s. As a formal mathematical
condition, this states that

ulx + og(®)] — u(x) = K(e)

uo(x) =
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where K is some fixed, but unknown,
function of a. It can be shown, first,
that if # is a solution to this problem,
dx
g(x)
given by Fechner, but, second, that
there are no solutions except when
g{x) = cx (Weber's law). We will
not present a proof of this result since
it is a blind alley, but we believe that
it suggests that this customary meas-
urement of distances should be aban-
doned.

We must now consider how such
distances really should be measured.
If x and vy are more than one jnd
apart, we may expect the size of the
jnd to change as we go from x to #.
That fact should be taken into account
in using jnd’s as units of measure-
ment; failure to take it into account is
what makes Fechner's auxiliary prin-
ciple and the standard measuring pro-
cedure unacceptable. We shall pro-
ceed to formulate this more sensible
method of using jnd’s as measuring
units.

Let f(x) = x + g(x); then the point
f(x) is one x-jnd larger than x. The
point fLf(x)] = f®(x) is one f(x)-jnd
larger than f(x). In general f™(x) is
one f V) (x)-jnd larger than the point
=Y (x). Clearly, for y > x, we can
find some integer % such that

f(n)(x) < y <f(n+1) (x)

and it is reasonable to say that v is
between # and # + 1 jnd’s larger than
x. For the moment, let us suppose
that ¥ was chosen so that y = f® (x),
then we can say y is exactly » jnd's
larger than x. It seems plausible to
require that the same be true of the
sensory continuum, i.e.,

uf®(x)] ~ux) =n

In words, we are saying that if point
y is 20 stimulus jnd’s higher than

then it must be the integral
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point x on the stimulus continuum,
then it must also be 20 sensation
jnd’s higher than point x on the sensa-
tion continuum. If the above condi-
tion is met for # = 1 (in other words,
if all sensation jnd’s for a given sensory
continuum are equal), then it must
also be met for all larger values of #,
since

ulf® ()] — u(x)
u{flf" )]} — u(x)
1+ ulf® ()] — u(x)

]

="n

But this takes care of relatively few
points, and does not allow us to say
exactly how many jnd’s ¥ is from x un-
less the difference is a whole number of
jnd’s. We must find a definition
which tells us how to subdivide a jnd
into fractional parts. How to do this
is not obvious, since the definition of
distances given above involves iterates
of f, and these are apparently defined
only for integers. Fortunately, it is
possible to generalize the notion of
an iterate to arbitrary, rather than
integral, indices. This problem is
closely related to that of Abel's func-
tional equation which Koenigs ex-
amined; we shall be able to use his
results,

First, we can set up some properties
that a generalized iterate f®(x),
where { is any non-negative number,
should meet. In essence, they
amount to stipulating that f®*(x)
should coincide with the usual defini-
tion when ¢ is an’integer and that the
same law of composition should hold.
Formally, it is sufficient to require
that

fO@) =%, fO) = f(x)

and for every s and ¢ > 0,

FeR0 () = FOLF ()]
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For integers, the generalized iterate
coincides with the usual notion, as you
can see, by repeatedly applying the
last condition to the second one.

We have already presented a result
of Koenigs which showed that if f is
strictly monotonic and analytic, 1 <
f'(0) < », and 0 is the only fixed
point of f, then there exists a function
¢ defined in terms of the iterates of
S such that

o) = log ¢(x)
" log £(0)

is a basic solution to Abel's equation.
This means that ¢ is itself a solution
to what is called Schroder’s equation

o[f(x)] = (0)v(x)

which is obtained from Abel’s by tak-
ing exponentials on both sides. Using
this fact and following Koenigs, it is
easy to show that ¢! exists and that
the function

fO ) = ¢7H{Lf"(0) ' (%))

satisfies the three conditions of a gen-
eralized iterate. We show the latter.
First,

fO(x) = ¢ [op(x)] =«
Second,

fO ) = ¢ [f'(0)(x)]

And so, using the fact that ¢ satisfies
Schroder’s equation,

o[fP(x)] = f(0)¢(x) = ¢[f(x)]
Hence,
FO@x) = f(x)
Finally,
ISIVEION
=¢'[[f'(0) o (o7 {[f'(0) ]9 (x)})]
=¢{[f"(0) JLf'(0) o (%)}
=¢H{[f(0) I*'o(x)}
= fle+D) (x)
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So, with this definition of the gen-
eralized iterate, we can generalize the
above definition of distances in jnd’s
to prescribe how to deal with fractional
jod’s.

We reformulate our major mathe-
matical problem:

Given a Weber function g
which is analytic, g'(x) >—1
for all x > 0, g’(0) > 0, and g(0)
= 0, to find those functions % (x)
such that «[f®(x)] — u(x) = ¢,
forallx > 0,and all ¢ > 0, where
f® is the generalized iterate of

Jx) = x + gx).

Note that by setting ¢ = 1, this con-

dition implies the equality of sensation
jnd’s.

: log ¢(x)

F h a =t

irst, we show that uq(x) Tog F/(0)

solves the reformulated problem:

ug f P (x) ] — uo(x)
_ log o[ [ (x)]  log ¢(x)
log f'(0) log f(0)
_ log {[/'(0)J'¢(x)} — log ¢(x)
log f'(0)
_ tlog f'(0)
~ log f(0)
=t

Second, from the results about Abel’s
equation, we know that if there are
any other solutions to this problem,
they must be of the form u, = u, +
P (o), where p is periodic with period
1. For u, actually to solve the re-
formulated problem, it is necessary
that for every t > 0,

t=u[fOx)] — uy(x)
= uo[f ()] + p{udf* ()]}
— so(x) — pluc(x)]
t+ plt + uo(x)] — pluc(x)]

It
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Thus, for every t > 0,
plt + wo(x)] = pluo(x)]

That is, » must be periodic with every
period ¢, and so p Is a constant. Thus,
up to an additive constant, %, is the
unique function which solves our re-
formulated problem.

In nonmathematical language, in-
troducing the method of measuring
fractional jnd’s has enabled us fo
eliminate all solutions to Abel’s equa-
tion save u,, thus cutting down the
number of acceptable solutions from
infinity to one.

We conclude, therefore, that the
condition stated in the reformulated
problem constitutes an acceptable
definition of a psychophysical sensa-
tion continuum, in the sense that it
vields a unique Fechner function for
any reasonable Weber function. We
also find that for Weber's law this
condition yields Fechner's law. The
solution of our reformulated problem
may cause unhappiness because it
is not the same as the integral “solu-
tion"’ proposed by Fechner, except in
the special case of the linear general-
ization of Weber's law. However,
we have already shown that the inte-
gral “‘solution’ contradicts the defini-
tion of equal sensation jnd’s.

It is sad that the integral is not the
right solution, for its evaluation is
often easy, and we fear that noworking
psychophysicist will find in our math-
ematics a tool for determing a sum-
mated jnd scale any better or more
efficient than the simple graphic pro-
cedure of adding jnd’s up one at a
time.

The statistical nature of jnd’s. So
far we have sounded as though we
were treating jnd’s as fixed quantities,
although every psychophysicist knows
that jnd’s are statistical fictions, de-
fined by an arbitrarily chosen cutoff
on a cumulative frequency curve.



232

However, we now show that our
method of reducing the infinity of
solutions to Abel's equation to one is
equivalent to treating jnd’s as just
such statistical fictions.

We start with the old, famous psy-
chological rule of thumb: equally often
noticed differences are equal, unless
always or never noticed. We define
P(y,x) as the probability that y is
discriminated as larger than x. Now,
this rule of thumb simply means that
on the sensation continuum the func-
tion P(y,x) is transformed in such a
way that it no longer depends on x and
y separately, but only on the differ-
ence of their transformed wvalues.
Put another way, the subjective con-
tinuum # is a strictly monotonic trans-
formation of the stimulus continuum
such that the probability that a
change of & units on the sensation
scale will be detected depends only
upon §, and not on the place at which
& begins or ends.

Formally, if we are at a point x of
the stimulus continuum, and there-
fore at #(x) on the sensation scale,
and if a stimulus vy is presented such
that #(y) = u(x) + 8§, then the chance
that v will be detected depends upon
5, but not on x. If we note that

y = uu(x) + o]
then the condition is that
P{u[u(x) + 81, x} = P©)

Our problem is to decide under what
conditions this problem has a solution
and what that solution is. To this
end, we make the assumption that for
each x, P(y,x) is a strictly monotonic
increasing function of y.

We show the following: If the
above problem has a solution, then
there exists a function f(x) such that
P[f®"(x), x] is independent of x,
where f (x) is the #t" iterate of f(x)
previously defined. The function

R. DuncaN Luce anp Warp Epwarps

f(x) — x is a Weber function natu-
rally defined in terms of P, If there
is a solution, it is unique and it is the
solution %, to Abel's equation u[f(x)]
— u{x) = 1. In other words, if there
is any solution to the problem of
equally often noticed differences being
equal, then it is unique and it is the
solution to our proposed reformula-
tion of Fechner's problem.

The proof is comparatively simple
and runs as follows. Suppose there
exists a solution # to the condition
that Pl{u [ u(x) + 6], %} is inde-
pendent of x for all §> 0. Since P
is strictly montonic in ¥y for all x,
there is a unique solution to P(y,x)
=k for each kB, 0 <k < 1; call it
y = fi(x). For any §, let & = P(8),
and so by our assumption % must
satisfy

w ' [u(x) + 0] = fo(x)
where we have written fi for frg).
Applying # to this, we have

u[f(x)] — u(x) = 8
Let f = fi. We observe thatifé = 0,
then fo(x) = x. Suppose we choose
any 8, e> O and let y = f.(x); then

8 =ulfi(»)] — u()
= u{fs fe(x) 1} — ulf(x)]

w{fslfe(x) 1} — ulx) — ¢

Thus,
w{fll fe@) ]} —u(x) =8+
But, from above,

Ul fore(®)] — ule) = 5 + ¢

S0
Ul fore(x)] = u{fBUt(x)]}
whence
Sore(x) = fil fe(x)]

Thus, we have shown that f; must
satisfy the three conditions of a gen-



DERIVATION OF SUBJECTIVE SCALES

eralized iterate of f, i.e., fs = f©® for
all 8, so a necessary condition for a sol-
ution is that

PLI® (x), x]

shall be independent of x. From the
fact that u[fs(x)] — u(x) = 6 =
ulf® (x)] — u(x), it follows that the
solution is unige and that it is the
same as that given for our reformula-
tion of Fechner's problem.

It probably is not obvious, but the
point of this section extends beyond
sensory psychophysics into the scaling
procedures based on Thurstone’s law
of comparative judgment. Case V of
that law is based on the assumption
that equally often noticed differences
are equal unless always or never
noticed. This fact has two interest-
ing implications. The first and more
obvious one is that these two appar-
ently different branches of psycho-
ological measurements are actually
doing the same thing (namely, using
a measure of confusion as a unit of
measurement by assuming that con-
fusion is equal at all places on the sub-
jective scale). The second, less obvi-
ous implication is that perhaps sensory
psychophysics can profit by consider-
ing, as Thurstone and his followers
have, scaling methods with less rigid
assumptions which nevertheless are
based on confusability data. One of
us (Luce) will pursue this possibility
further in a forthcoming book}(7).

Graphic methods for cumulating jnd's.
Psychophysical data do not come in
mathematical form. In order to ap-
ply our method for cumulating jnd’s
(or Fechner's, for that matter), it is
necessary either to put the Weber
function into equation form, or else
to develop a graphic equivalent of the
appropriate mathematical operations.
The graphical equivalent of Fechner's
technique is well known, although
rarely used (see, e.g., 15, pp. 94 and

The size

How to cumulate jnd’s.
of the jnd at the origin is marked off on the x
axis to find point A4, the size of the jnd at 4 is

Frc. 1.

marked off to find point B, and so on. The
stimulus values 4, B, C, . . . correspond to
the points 1, 2, 3, . . . on the cumulated jnd
scale.

147-148). It is, of course, wrong,
since Fechner's technique is wrong.
If our technique is to be of greatest
applicability, we should provide a
graphic equivalent also. Unfortu-
nately, it seems difficult to find a truly
convenient one. The only method we
know of is to go back to the basic idea
of adding up jnd's—the idea that one
jnd plus one jnd is two jnd's. The
method of applying this basic idea is
given in Figure 1, and was discussed
earlier in the paper. Its error char-
acteristics are abour the same as
those of the graphic techniques of
integration which have been used in
the past. Unfortunately, the method
is tedious; if there are 170 jnd’s
between absolute threshold and the
upper limit of discrimination, then 170
separate operations are required to
determine the cumulated-jnd scale.
The errors in these successive oper-
ations do not multiply, however.
Practial effects of the new procedure.
No doubt it is important to under-
stand Fechner's logical error and to
know how to avoid it, but the burning
question for working psychophysicists
is: What, if anything, does this do to
the currently accepted conclusions
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about the uselessness of adding up
jnd’s?

First, it is easy to show that under
some circumstances the difference
between integration and the func-
tional-equation solution is substan-
tial. Consider the class of Weber
functions g(x) = ax'*e: if e is greater
than zero, the asymptotic error of
the integral solution as x approaches
infinity is infinite ; while if ¢ is less than
zero, the asymptotic error is zero.
Of course, if ¢ equals zero (Weber's
law), the two procedures give identical
results. The order of magnitude of
the error for small numbers of jnd's
depends on the constants in the equa-
tion; it can be of significant size even
if e is less than zero. One way of
looking at it is that the integral solu-
tion is the approximation given by
the first two terms of a Taylor series
expansion of the functional equation;
all square and higher power terms of
the expansion are omitted:

ule + g(0)] —ux) =1
u(x) + u'(x)g(x)

+ u' (x) %x!)ﬁ +. .
' (x)g (x)

. —ux)

i

+ u"(x)g(z’?2 o

A number of experimental deter-
minations of jnd’s, particularly for
intensive continua, produce a curve of
g(x)/x that first falls and then is flat
—a function often well approximated
by g(x) = kx + ¢. However, for
some continua the picture is less sim-
ple. There are some (pitch, for ex-
ample) where the curve appears to
rise again at the high end. The {fall-
ing section of these curves corresponds
to the case e < 0; the flat section cor-
responds to the case ¢ = 0; the rising
section corresponds to the case e > 0,
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However, the x-axis of such graphs
is usually plotted logarithmically.
This means that the rising section may
cover most of the range within which
the stimulus can be varied—a fact
which the logarithmic x-axis tends to
conceal. So it is quite possible that
the error in using the integration tech-
nique is substantial for many sense
modalities and for large ranges within
each.

But the possibility of error is ir-
relevant unless someone has actually
made the error. Has anyone? Ex-
tensive examination of the literature
suggests that the answer is that not
very many such errors have occurred.
Some authors are quite unclear about
how they added up jnd’s, but many of
them have preferred the step-by-step
method which corresponds to the
functional-equation solution because
it was very simple to do. How
simple it is, of course, depends on the
number of jnd’s to be added; we
doubt very much if the jnd’s for pitch
will ever be added this way, since there
are several thousand of them. We
have found only one clear instance
(15) in which the graphic equivalent
of integration has been used (to cum-
ulate pitch jnd’s, as it happens),
though it has been vigorously recom-
mended. The general avoidance of
the graphic equivalent of integration
may be caused by shrewd intuition
that something is wrong with Fech-
ner's mathematical auxiliary princi-
ple. Or it may simply be a rare
instance in which the fear of mathe-
matical complexity has benefited sci-
ence.

Do cumulated jnd's agree with other
scales? The results of cumulating
jnd’s have often been compared with
the results of other psychophysical
procedures (4). The most common
finding has been that the cumulated
jnd scales do not agree with scales de-
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termined by fractionation or direct
magnitude estimation, at least for
such continua as loudness. A review
of this literature might seem appropri-
ate here, but it is quite unnecessary,
since the relation between scales based
on confusion data (like cumulated
jnd scales) and those based on frac-
tionation or magnitude estimation
has been extensively and excellently
discussed in recent studies by Stevens
(14), Stevens and Galanter (16), and
Piéron (8, 9, 10).

The controversy over the relation
between cumulated jnd scales and
scales determined by other methods is
embedded in a larger, sometimes acri-
monious controversy about the rela-
tionships among various methods of
sensory scaling. To some extent we
shall have to enter the fray.

The first and most important ques-
tion is this: Do the different scaling
procedures, if properly used, lead to
different scales? Unless we reject a
great many experiments as improperly
performed, we must answer ‘“‘Yes.”
But the issue is not as simple or un-
ambiguous as that answer. For ex-
ample, Garner (3) has developed a
loudness scale based on both fraction-
ation and multisection judgments that
fits a large number of experimental
results in auditory psychophysics
better than does the old sone scale
(his paper was written prior to the
development of the new sone scale
[137]). Figure 2 shows the relation-
ship between that scale and a cumu-
lated jnd scale for loudness prepared
by us from Riesz’s data (11, 12). The
two scales seem to be roughly linearly
related—but does it mean anything
for the controversy? Riesz’s proce-
dure has often been criticized, and his
data are almost 30 years old. The
form of Garner's scale (which is all
that matters for this argument) is
based primarily on his multisection

. 11
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Fic. 2. The relation between Garner’s
loudness scale and Riesz's cumulated jnd
scale. The old sone scale (ASA loudness
scale) and Stevens’s recent revision of it are
included for comparison.

rather than his fractionation data.
Scales based upon multisection data
usually agree with those constructed
by confusability methods; the explan-
ation proposed by critics of these
methods is that the adjustment of five
or six stimuli in a multisection experi-
ment may produce confusion among
the tones being adjusted. If this
argument is correct, and if the form
of Garner's scale is based upon multi-
section data, it is not surprising that
the two agree. QOur reason for so
extensive a discussion of Garner's
scale is that loudness is the central
battleground of this controversy. If
the verdict of psychophysical history
is that confusability and multisection
scales give results different from frac-
tionation results for loudness, then
psychologists will amost certainly
assume that the two procedures yield
different results in other intensive (or,
as Stevens calls them, Class 1 or
prothetic) continua. Unfortunately,
even in psychophysics, not enough uni-
versally accepted data are available to
settle the argument.

If confusability scales and scales
based upon fractionation or direct
magnitude estimation agree, no prob-
lem arises. If not (and we suspect
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they will not), psychophysicists must
still evaluate each kind of procedure
and its resulting scale. Some psycho-
physicists feel that fractionation and
magnitude estimation have great face
validity, and that confusability scales
are distortions of the scales obtained
by these procedures. They say that
fractionation and estimation scales
correspond to what Ss say they feel,
they are obtained by straightforward
procedures rather than indirect ones,
and, after all, what logic is there in
basing a measure of magnitude on
variance or ‘“noise.”’

Other psychophysicists feel that
confusability scaling is the better
method. They say that fractionation
and estimation data are unreliable,
variable, and, as a rule, at least frac-
tionation data cannot be turned into
scales unless obtained from a “‘good,”
which means extensively trained, sub-
ject. The estimation techniques have
not been used enough times in enough
places to indicate clearly what effect,
if any, training may have on the re-
sults. Confusability scales can be
obtained from untrained Ss who have
no idea what form of scale is wanted
from them; they can even be obtained
from animals.

Each group asserts that its preferred
scales are more nearly consistent with
the bulk of psychophysical data than
the other kind of scales; each group
can produce impressive arguments to
buttress its claim,

Still another position is possible:
perhaps two different kinds of sen-
sory processes are being tapped by
these two different kinds of proce-
dures. If so, both kinds of scales are
useful, but for different purposes.
This could well be the eventual end-
point of the argument.

Yet another source of confusion in
the argument is the treatment of in-
dividual differences. The custom has
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been to take means or medians, and
recently a number of psychophysicists
have raised vigorous questions about
the appropriateness of doing so.
W. J. McGill® is currently attempting
to find a better way of respecting in-
dividual differences while still obtain-
ing a ‘‘universal” scale. It will be
interesting to see what light serious
attempts to do justice to individual
differences sheds on the differences
between the two classes of scales.

The status of cumulated jnd’s has
been controversial for more than a
hundred years, and this paper is not
intended as an attempt to settle the
controversy. Our main point is that
Fechner's problem has been improp-
erly formulated and that the integral
usually offered as a solution is not in
fact a solution when the Weber func-
tion differs from g(x) = kx + ¢. We
have also developed what appears to
be the correct solution, only to find
that in computational work it has
usually been used in spite of its dis-
agreement with the integral solution.
This means that our clarification of
the logical issues underlying Fech-
ner's formulation does little to change
the status of the present, primarily
empirical, controversy about scaling
methods. However, one of us (Luce
[77]) has recently developed a way of
dealing with confusability data based
on a simple axiom which, if it works
out successfully, may resolve the
difficulty by changing our ideas about
the meaning of confusability scales;
this development will be described in
another publication.

SuMMARY

Fechner's method for adding up
just noticeable differences (jnd's) to
obtain sensory scales is based on a

5W. J. McGill, Personal communication,
1957.
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mathematical error: he used a differ-
ential equation approximation to a
functional equation instead of the
functional equation itself. The func-
tional equation can, however, be
solved directly. The solution coin-
cides with the differential equation
solution only in the special case in
which the linear generalization of
Weber’s law holds exactly. The
mathematical properties of the formal
solution are such that it probably
will not be very useful for practical
computation, but the extremely sim-
ple graphical procedure of adding up
jnd’s one at a time is the graphical
equivalent of the mathematically
correct solution. The amount of
difference between the two proce-
dures can be calculated for some
special cases; its size depends on the
form of the function relating size of
jnd’s to stimulus magnitude.

This error does not seem to have
any significant impact upon the con-
troversy over the relation between
cumulated jnd scales and scales based
on fractionation and direct estimation
data because most psychophysicists
have, in fact, ignored the recom-
mended (incorrect) procedure and
have stubbornly summated jnd's in
the obvious and correct way.
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