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1. Introduction.1 Tensor-valued functions of tensors appear frequently in continuum
physics, and it would often be useful to have expressions for their derivatives. For
example, one may have a tensor-valued function of a tensor that in turn depends on a real
parameter, such as time, and want the total time rate of change; i.e., suppose X:
R -» Sym(F„), F: Sym( Vn) —> Sym( Vn) and consider the derivative of the composite
function G = F°X. If X and F are differentiable, then G(r) = £>F(X(r))[X(/)]- However,
in the past, the derivative D F has generally been unknown, and researchers have been
forced to approach G without recourse to the chain rule (e.g., see Guo [2] for the case
F(X) = /X or Gurtin and Spear [3] for F(X) = lnX). Of course, the derivative of a
tensor-valued function of a tensor is a topic of interest in its own right.

When F is sufficiently simple, such as a polynomial, DF can be calculated directly from
the definition of the derivative (see Gurtin [1, p. 22]). Sometimes DF can be obtained
indirectly from the defining properties of F (e.g., Hoger and Carlson [4] found Z)/X by
differentiating /X Jx — X). The purpose of the present study is to provide DF in the
general case.

We define the function F through the spectral decomposition of its argument in the
following manner. Given /: R —> R, then F: Sym(K„) -> Sym(K„) is defined by

F(X) = E/(x,)e,(X)®e,(X), (l-l)2

•Received November 19. 1984.
1 Throughout, we use the notation of Gurtin [1] or obvious variants of it. One exception is that our F is not the
deformation gradient of continuum mechanics, but rather is a function on Sym( Vn) into Sym( Vn). Vn is a normed
n-dimensional vector space, usually n = 2 or 3.
2 This is the definition most commonly employed in continuum mechanics; see Rinehart [5] for comparison of
various approaches. Often the domain of / is an open interval in (R, and the domain of F is an open subset of
Sym( Vn). All of our results apply to this situation as well.
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where {xt, x2,..., x„} is the spectrum of X and (e^X), e2(X),..., e„(X)} is an orthonor-
mal basis of eigenvectors of X. The nonuniqueness of {e,(X)} when X has repeated
eigenvalues has been a major source of difficulty in obtaining the derivative of F. We
circumvent this by replacing (1.1) with the equivalent representation

F(X)= E/K)E,(X), (1.2)i=i
where {xl,x2,..., xp} is the set of distinct eigenvalues of X and E,(X) is the eigenprojec-
tion corresponding to xt (i.e., the orthogonal projection operator on the null space of
X - x,l).

The advantages of (1.2) over (1.1) are that the eigenprojections are unique and there are
formulas for them in terms of X and its eigenvalues. Indeed,

I p X - x\
n —i-2-. p >

E,(X) = { J-1 XJ (1.3),v ' \ j*i

U P = 1
(see, e.g., Hoffman and Kunze [6] or Halmos [7]). Of course, the integer p depends on X,
which means that the representation (1.2) for F(X) (as well as the spectral decomposition
of X itself) changes with the number of distinct eigenvalues of X. Nevertheless, we shall
see that (1.2) defines a differentiable function if / has enough derivatives.

Important properties of the eigenprojections that will be used later are

E,(X)E(X) = /^(X)' [=J: (1.4)
10, i* J,

£e,(X) = I. (1.5)
i = i

Our approach is to apply to (1.2) the well-known result that if for each T in a basis for
Sym( Vn) the directional derivative dF(X + aT)/da\a_0 exists in a neighborhood of X and
is continuous at X, then F is differentiable at X and its derivative is given by

Z>F(X)[T] = £f(X + «T)

It is interesting to note that even though the eigenvalues and eigenprojections are not
differentiable at arguments with repeated eigenvalues, the function defined by (1.2) is
differentiable for a sufficiently smooth /.

This program is carried out directly in a self-contained, elementary manner for n = 2 in
Sec. 2. The three-dimensional case is worked out in Sec. 3 first for an X with three distinct
eigenvalues, and then the results are extended to the case of repeated eigenvalues with the
help of a new lemma due to Ball [8], The two-dimensional case also could be handled with
Ball's lemma; however, we feel that the added insight afforded by the completely
elementary treatment in Sec. 2 warrants the extra effort. The ^-dimensional case is
considered briefly in Sec. 4, and a formula for the derivative at an X with n distinct
eigenvalues is given.

Of course, the expressions for derivatives found here agree with those few already
known for polynomials and other simple functions, but now more complicated functions
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such as the tensor logarithm can be differentiated. This is central to the determination in
[9] of the relationship between the time rate of change of the logarithmic strain tensor and
the stretching tensor.

2. The two-dimensional case. In this section, we start with the formulas for the
eigenvalues obtained by solving the characteristic equation and then consider the direc-
tional derivatives of the eigenvalues, the eigenprojections, and the function F defined by
(1.2). The analysis falls naturally into cases determined by the multiplicities of the
eigenvalues.

2.1 The tensor Y(a) = X + aT. In preparation for the calculation of the directional
derivatives of functions of X, we consider the linear perturbation

Y(a) = X 4- aT, a e IR,
where X,Te Sym(F2) are arbitrarily fixed.

The principal invariants of Y(a) are

/j(a) = trX + atrT,

/2(a) = detX + a[(tr X)(tr T) - tr(XT)] + a2detT.
The ordered eigenvalues of Y(a), }\(a) < y2(a), are the roots of the characteristic
equation

y,(«)2 ~ A(a)j,(a) + I2(a) = °-
Thus,

JVi(«) = Ui(«) - iH(a) ' J2(a) = i/i(a) + yd(a) , (2.1.3)
where the discriminant

d(a) = Ix(a)2 - 4/2(«)

= (trX)2 - 4detX + «2[2tr(XT) -(trX)(trT)] + «2[(trT)2 - 4detT]

= (x2 - xJ2 + a2[2tr(XT) -(trX)(trT)] + a2(t2 - t,)2 (2.1.4)
is necessarily nonnegative since Y(a) e Sym(F2). Here, xl < x2 and tl < t2 are the
eigenvalues of X and T, respectively. We note that

y,( 0) = (2.1.5)
which reflects the fact that the eigenvalues of X depend continuously on X.

Since y2(a) - J>i(a) = \Jd(a), it follows from (2.1.4) that the eigenprojections of Y(a),
E,(Y(a)) = E,(a), fall into one of three categories.

Case 1 (xx < x2). Here d(a) > 0 for sufficiently small a, and by (1.3)

rr \ Y(a)-j>2(a)I Y(a)-^(a)I
Ei'a)= r\—rT' E2(«) = ——tt- (2.1.6)

At a = 0, these become

Ei(°) = = Ei(X), E2(0) = = E2(X). (2.1.7)
12 *^21

Case 2 (xx = x2 = x, tx < t2). Here d{a) = a2(t2 - tx)2, and
r ( x Y(a) — y2(a)l Y(a)-^(a)I ,
Ei(a)= \„«t - » E2(a^=_ri7;—■ (2-L8)IK ̂ 2 h) lal(^i h)
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In this case, the eigenprojections are indeterminate at a = 0; and since |a| is not
differentiate at a = 0, its presence in the denominator prohibits the use of FHospital's
rule. However, we can calculate the following one-sided limits.

lim Ej(a)= lim E2(«) = = Et(T),
a-* 0 a —► 0 'i *2

T — t I
lim Ej(a) = lim E2(a) =  — = E2(T).

a—* 0~ a—»0+ ^2 ^1

(2.1.9)

Case 3 (xl = x2 = x, tx = t2 = t). Here d(a) = 0, and
E,(a) = I. (2.1.10)

Remark. Since the eigenprojections are discontinuous at an X with equal eigenvalues,
they clearly are not differentiable there.

2.2 The directional derivatives of the eigenvalues. The derivatives of the eigenvalues of
Y(a) with respect to a are readily calculated from (2.1.3) together with (2.1.2) and (2.1.4).
Due to the presence of \jd(a) in (2.1.3), the analysis is partitioned into the three cases of
the previous subsection.

Case 1 (x, < x2). Equations (2.1.2)—(2.1.4) and (2.1.7) imply

= tr[E,(X)T]. (2.2.1)
=o

Since the directional derivative is continuous in X for each T, we have differentiability in
this case; and

Z>*,(X)[ T] = tr[E,(X)T], (2.2.2)
Remark. (2.2.2) is a well-known result (see, e.g., Kato [10, p. 79]). We have included the

above derivation to keep the exposition self-contained. See Ball [8, Lemma 5.1] for an
alternative elementary treatment.

Case 2 = x2 = x, tl < t2). Here \jd(a) = |a|(f2 ~ 'i)> and only one-sided deriva-
tives exist:

d t \

d+ t \ d' t \ - h.
d+ / \ d~ < \ (2.2.3)

Thus, the eigenvalues do not even have directional derivatives in Case 2. The nonexistence
of dyt/da reflects the fact that we have insisted on the ordering ^(a) ^ y2(a) (cf. the
remark below).

Case 3 (xj = x2 = x, t1 = t2 = t). Here d(a) = 0, and

£yM = t- (2.2.4)
Remark. Of course, we have capitalized on the fact that for n = 2 there are simple

formulas for the eigenvalues. For n - 3,4 the formulas are not simple, and for n > 4 no
such formulas exist. For any n if dyt(a)/da is known to exist, one can proceed (as we do
in Subsec. 3.1 and Sec. 4) by differentiating the characteristic equation. There is no
difficulty as long as the eigenvalues are distinct, but when they coalesce the coefficient of
dyt(a)/da vanishes. In the latter situation, l'Hospital's rule can be used or the characteris-
tic equation can be differentiated again. In any case, the differentiability of the y^a) with
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respect to a is a crucial matter. Rellich [11, pp. 44-45] (see also Kato [10, p. 122]) has
shown that the unorderedy^a) may be chosen so as to be smooth in a.

2.3 The directional derivatives of the eigenprojections. Since
Ei(X) + E2(X) = I, (2.3.1)

it suffices to consider only Ej(X).
Case 1 (xj < x2). Equation (2.1.6) together with (2.1.1), (2.1.5), (2.1.7), (2.2.1), and

(2.3.1) yields

= 0

7 ~ v (T - trtE^X^E^X) - tr[E2(X)T]E2(X)}.
V*1 x2)

(2.3.2)
By continuity, the eigenprojections are differentiable in this case, and

(2.3.3)Z)E,(X)[T] = ~E,.(«)
o-0

Equation (2.3.2) can be cast into a more useful form with the aid of Rivlin's [12] identity
tr(AB)I = AB + BA -(trA)B -(trB)A +(tr A)(trB)I.

We take A = Ex(X), B = T, note from (2.1.7) that tr E((X) = 1, and make the substitution
I = Ej(X) + E2(X) on the right-hand side to get

tr[E1(X)T]l = Ej(X)T + TEx(X) - T +(trT)E2(X).
Multiplication on the right by Ex(X) and use of the properties (1.4) yields

tr[E1(X)T]E1(X) = E1(X)TE1(X),
which with the aid of (2.1.7) becomes

tr[E1(X)T]E1(X) =   - [XTX - x2(XT + TX) + xjj]. (2.3.4)
(x1 - x2)

A similar result holds for E2(X), and consequently (2.3.2) can be written as
dd Ej(a)

da da^

=      [(tr X)(XT + TX) - 2XTX - 2(detX)T]. (2.3.5)
(xi - x2)

Case 2 (xl = x2 = x, t1 < t2). The occurrence of |a| in (2.1.8) restricts us to the
calculation of one-sided derivatives. However, with (2.1.1), (2.1.5), (2.2.3), and l'Hospital's
rule, we get

d -E,(a)
< = 0 da

= 0;
a = 0

thus,
A = 0. (2.3.6)

a = 0

Case 3 (xx = x2 = x, tl = t2 = t). It follows from (2.1.10) that

= 0. (2.3.7)
a = 0
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Remark. Even though the eigenprojections have directional derivatives in all directions
at an X with xx = x2, they are not differentiable there; comparison of (2.3.6) and (2.3.7)
with (2.3.5) shows that the directional derivatives are not continuous at such an X (cf. the
remark at the end of Subsection 2.1).

2.4 The directional derivative of F. Given f:U —> R, we define F: Sym( V2) —► Sym( V2)
by

( j \/(*)I, Xl=X1 = X. (''j
We assume that / has as many derivatives as needed and denote them by primes in the
sequel.

Case 1 (xx < x2). Since
F(X + «T) = F(Y(«)) =/(y1(a))E1(«) +/(j2(a))E2(a),

(2.1.5), (2.1.7), (2.2.1), (2.3.4), and (2.3.5) yield

-£-F(X + aT) =   - *2)[/'(*i) +/'(*2)]
da «-o (Xl - x2)

-2[/(*i) -/(x2)\}XTX + (-(x1 - x2)[x2f'(xJ + xj'{x2)\

+ (x1 + x2)[/(x1)-/(x2)]}(X T + TX)

+ {(*1 - x1)[x\f'(xl) - xlf'(x2j\

-2jc1*2[/(*1)-/(*2)]}t]. (2.4.2)
As expected in this case, there is continuity in X for each T; so F is differentiable, and

(2.4.3)DF(X)[T] = £f(X + aT)
a = 0

Case 2 (xx = x2 = x, tx < t2). Again
F(X + aT) =/(^1(a))E1(a) +/(^2(a))E2(a),

but because of the difficulties with dy,(a)/dct and E,(a) here, we can calculate only
one-sided derivatives. By (2.1.5), (2.1.9), (2.2.3), and (2.3.7),

lim -j-F(X + aT) = lim -^F(X + aT) =/'(x)[r1E1(T) + ?2E2(T)].
a—+0 a—>0 aOL

Hence,

= /'(*) T. (2.4.4)£ F(X + aT)
a-0

It is interesting to note how the discontinuities of E,(a) and dyt(a)/da combine here to
give a continuous result for any choice of /.

Case 3 (xj = x2 = x, t1 = t2 = t). As was noted in Subsec. 2.1, d(a) = 0 here; so it
follows from (2.1.2) and (2.1.3) that ^(a) = y2(a) = \ trX + ^atrT. Consequently,

F(X + aT) =f(x + at )I,
and

-^-F(X + aT)da = /'(*) T.
a-0
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Thus, F has a directional derivative in all cases, and in Cases 2 and 3 it is given by the
same formula. Continuity will be investigated in the next subsection.

2.5 The derivative of F. In the previous subsection, we showed that the function F:
Sym( V2) —> Sym( V2) which is defined by (2.4.1), has a directional derivative,
dF(X + aT)/da\a_0, everywhere and in every direction. When the eigenvalues of X are
distinct, it is given by (2.4.2); and when the eigenvalues of X are equal, it is given by
(2.4.4). In this subsection, we will show that for each T e Sym(I/2), JF(X + al)/da\a_0
is continuous at every X e Sym( V2) and thereby conclude that F is differentiable on
Sym(F2).

Obviously, we have continuity at any X with distinct eigenvalues, so what remains to be
shown is that for dF(X + aT)/d<x)\a_0 given by (2.4.2),

lim -^-F(X + aT)
x-».xi da = /'(*) T (2.5.1)<=o

for any x e IR.
Equation (2.4.2) is of the form

d
^-F(X + «T) = a(x1,x2)XTX + b(xx, x2)(XT + TX) + c(x1,x2)T.

a = 0

(2.5.2)
There is never any difficulty with the tensor factors; indeed,

XTX - x2T and (XT + TX) -» 2xT as X -» xl. (2.5.3)
However, the scalar coefficients are not well defined, and their limits require more study.

Consider

a(xl,x2) =     -j{(*x - x2)[f'(xJ +f'(x2)\ - 2[/(*!) ~f(x2)]}.
(*i - x2)

For any x1 < x2,

I \ I J \ / J \
+ J2a(xx, jc2) = 1

2d f\i- ~ +/'£+-!•& I \
where d is the distance of the point (x1; x2) from the line xl = x2, and (^, I) is the
intersection of the line x1 = x2 with the line normal to it which passes through (x1,x2).
Using the proof of l'Hospital's rule, it is not difficult for one to show that if / is four times
continuously differentiable, then

Obviously,

and therefore

lim a(x,, x2) = \f (£) uniformly w.r.t. £.
d-> o

lim /'"(«)=/'"(*),
k — x

lim a(xy,x2) = if'"(x). (2.5.4)
(xl,x2)->(,x,x)
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In the same manner, we obtain

lim b{xx, x2) = \[hf"(x) - xf "'(x)\,
(A-,, x2)^>(x,x)

lim c(jcx, x2) = 1 [6f'(x) — 6xf"(x) 4- x2f (x)].
(xl,x2)-*(x,x)

Equations (2.5.2)—(2.5.5) imply (2.5.1). Hence, we have established the following

Theorem. Given /: R —> IR, define F: Sym(F2) —> Sym(F2) by

(2.5.5)

F(X) /(x1)E1(X)+/(x2)E2(X), xx*x2,

f(x)I, xx - x2 = X.

Then, if / is four times continuously differentiable on R, F is continuously differentiable
on Sym(V2) and

7 1—- x2)[f'(xx) +f'(x2)] - 2[/(x1) -f(x2)]}xTX
(Xi - x2)

+ { -(*1 - -*2)[*2/'(*l) + xj'(x2)\

+ (xj + x2)[f{xl) - f{x2)} }(XT + TX)

+ {(*1 - x2)\xlf'(x\) + x\2J'{x2)]
-2xxx2[f(xx) - f{x2)]}l], xx =h x2,

Z)F(X)[T] =

f'(x) T, xx = x2 = x.

(2.5.6)

For some choices of / (such as f(x) = x2 or even f(x) = -Jx ), the two formulas in
(2.5.6) admit a common expression for both x1 =£ x2 and = x2. In other cases (such as
f(x) = lnx), they do not.

3. The three-dimensional case. One could proceed here as we did in the two-dimensional
case. However, it is more economical to use Ball's lemma to extend the formula for the
derivative derived for three distinct eigenvalues to the case of repeated eigenvalues. The
notation parallels that used in Sec. 2.

3.1 Three distinct eigenvalues. For X,T e Sym(K3), the characteristic equation of
Y(a) = X + aT is

>.,(a)3 - /1(Y(a))_v,(a)2 + I2(\(a))y,(a) - /3(Y(a)) = 0, (3.1.1)

where the coefficients are the principal invariants

/j(A) = trA, /2(A) = ^[(trA)2 - tr(A2)], 73(A) = detA. (3.1.2)

As noted in the remark following (2.2.4), the unordered >',(«) may be chosen so as to be
smooth functions of a. Consequently, we can differentiate (3.1.1).
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(3.1.3)

The derivatives of the invariants are found by Truesdell and Noll [13, p. 26] to be3

Z>/j(A)[C] = trC, £/2(A)[C] = -tr{[A - /^AflcU
D/3(A)[C] = tr{ [A2 - A(A)A + /2(A)l]c}. /

Equations (3.1.1)—(3.1.3) together with
j,(0) = /,(Y(0)) = /,(X)

yield
d .. I (X - x2I)(X - *3I) J .    - ,rIE'(x>Tl-

In general,

Z)x,(X)[T] = tr[E,.(X)T]. (3.1.4)4
Next we consider the derivatives of the eigenprojections. From (1.3),

= (X - x2I)(X - x3l)

^ ' (Xl-X2)(Xl-X3)'

and, therefore, with (3.1.4) and
X = XjE^X) + x2E,(X) + x3E3(X),

we find that

Z)E1(X)[T]= _ 1 [XT + TX-(s2 + s3)T
\Xi X2)\X1 x3)

- [(x, - Xl)+(Xl - x3)]tr[E1(X)T]E1(X)

-(■*2 - x3){tr[E2(X)T]E2(X) + tr[E3(X)T]E3(X)}]. (3.1.5)
The derivatives of E2 and E3 may be obtained from (3.1.5) by the cyclic permutations
1 -» 2 -» 3 -» 1 of the subscripts. Equation (3.1.5) can be simplified with the aid of
Rivlin's [12] identity

ABA + A2B + BA2 - (tr A)(AB + BA) - (trB)A2

- [tr(AB) -(trA)(trB)]A + -^-[(trA)2 - tr(A2)]B

|^tr(A2B) -(trA)tr(AB) + y(trB)[(trA)2 - tr(A2)]|l = 0.2
Take A = E,(X), B = T, and use the properties (1.4) and trE,(X) = 1 to get

tr[E,(X)T]E,(X) = E,(X)TE,(X). (3.1.6)
Finally, we turn to the derivative of the function F: Sym(F3) Sym(F3) defined by

F(X) = L/(*,)E,.(X).
/=i

3 The derivation in [13] rests on the assumption that A be invertible. This is not essential for the final result; each
principal invariant can be expressed as an easily differentiated function of traces of powers (cf. [14]).
4 Cf. the remark following (2.2.2).
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The differentiability of xi and E, have already been established in the present case;
consequently, if / is differentiable,

DF(X)[T] = £ { /'(x,)Dx,(X)[T]E,(X) + f(x,)DE,(X)[T]}.
1 = 1

Then with (3.1.4)—(3.1.6) and (1.3), we obtain

£>F(X)[T] = (i^ + JF2 + JF3)X2TX2

~[(Xl + x2)&3 + (x2 + x3)^ +(x3 + Xl)J?2](X2TX + XTX2)

+ (xlx2&r3 + x2x3&x + x3x1Jr2)(X2T + TX2)

+ [(xt + x2)2^F3 + (x2 + x3)2^r1 + (x3 + x1)2^'2jxTX

+ [-xlx2(xl + x2)&3 - x2x3{x2 + x3)^x - x3xY{x3 + xx)&2

+ /1+/2+/3KXT + TX)

+ [(XlX2)2^3 +(x2x3)1$rl + (x3x1)2&r2

~Ol + xi)A -(x2 + *3)/l -(*3 + Xi)A]T' (3.1.7)

where

/(■*,)
/ = (x, - Xj)(x, - xk) '

= 7 ~T. 7l[/'(*/) - XJ^A, +/k) ~(xi - xk)(/i +/j)\
(Xi-Xj)2(Xi-Xk)2'

(j^i¥=k^=j). (3.1.8)
3.2 Ball's lemma. According to the results of the previous subsection, F is differentiable

on Sym( V3), except possibly at those tensors with repeated eigenvalues. Recently, Ball [8,
Proposition 2.2] provided a technical lemma which is exactly what is needed here to
establish differentiability where the eigenvalues are repeated without calculating the
individual cases separately as was done in Sec. 2.

The essential ingredient of the lemma is the notion of a sparse set. A set Jfc Rm is
sparse if given any z e Jf and any nonzero f e R"1 there exist sequences {zj} —> z,
{?,} -* £ and a number e > 0 such that for each j = 1,2,... the line segment {Zj + t$f.
t g [0, e]} intersects Jf at most countably often. Then a variant of Ball's lemma suitable
for our purposes may be stated as follows.

Let c R" be open and let Jf c R" be closed and sparse. Let g: <%-> U1 be continuous
on °U and continuously differentiable on °lt — Jf. If for each y e °ll Pi Jf, the limit

lim Dg(x)
x-*y

In our case, we identify Sym(F3) with R6 and take "U = Sym(K3). The exceptional set Jf
exists, then g is continuously differentiable on "ll.

1 fal/a (j)/   C x / 1^,

is the set of tensors in Sym(K3) with repeated eigenvalues. Ball [8, Sec. 5] has shown this
set to be closed and sparse.
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3.3 The continuity of F. Combining (1.2) and (1.3), we see that the function F:
Sym(F3) —> Sym( V3) corresponding to /: IR -* R can be expressed as

- x2)f(x3) + (x2 - x3)f(xt)

F(X) =

(*! - X2){X2 ~ x3)(x3 -

+ (x3 - Xj)/(X2)]X2 + [(x2 - x\)f(x3)

+ {X2 - Xl)f(Xi) +(x] - xl)f{x2)\X
- [(*1 - *2)*l*2/(*3) + (*2 - x3)x2xj(x\) + (*3 ~ *l)*3*l/(*2)]l} »

X1 ^ X2 ^ X3 ^ Xl> (3-3.1)

V \ r{[/(*l) ~/(*)]X ~[Xf(Xl) - ^l/W]1}- *1 * X2 = *3 =
^ A-

(3.3.2)
f(x) I, x1 = x2 = x3 = x. (3.3.3)

The purpose of the present subsection is to show that the function F so defined is
continuous on Sym(F3). Since the demonstration parallels the one in Subsection 2.5, not
all of the details will be presented.

Clearly, F is continuous at any X with three distinct eigenvalues; and at such an X, F(X)
has the form

F(X) = a(x1, x2, x3)X2 + b(x1,x2,x3)X + c(xly x2, x3)I. (3-3.4)
It remains to investigate the limit of this formula as the eigenvalues of X coalesce.

Double coalescence. Consider X -» X, where X and X have eigenvalues xl # x2 + x3 #
x1 and xx ^ x2 = x3 = x, respectively. By (1.5), the spectral decomposition of X can be
written as

X = 3e1E1(X) + x[l - Ex(X)];
and, therefore,

X2 = Xj Ej(X) + x2 [i - Ej(X)],
which with (1.3) becomes

X2= ^ \ x [(*2 ~ s2)X-(x*i2 - ^!-x2)l]. (3.3.5)

The scalar coefficients in (3.3.4) can be handled as follows. First let ( jcx, x2, x3) -> (x1; £, £)
along the line normal to the x2 = x3 plane. Then

a(xx,x2,x3) -+ - -—-7 [/(-xi) -/(£) ~(x1 - £)/'(£)].
(*i - i)

b(x1,x2,x3) ->    ——(-2€[/(*1) —/(€)] +(^i2 - £2)/'U)},
(*i - 0

c(xi,x2,x3) -* -——-[^/(xj + (x1 - 2£)x1/(£) -€(*i ~ 0*i/'(0]
(*i-i)

(3.3.6)
uniformly w.r.t. xl and £. Moreover, the right-hand members in (3.3.6) are continuous in
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xx and £(xj + £). With this observation, we see that the limit of the right-hand side of
(3.3.4) as X -» X is in agreement with (3.3.2).

Triple coalescence. Consider X -» xl. Suppose to begin with that X has eigenvalues
xx + x2 + x3 + x,. To investigate the limits of the scalar coefficients in (3.3.4), we first let
(Xj, x2, x3) -* (£, |, £) along the line normal to the line x1 = x2 = x3. Then

a(x„xi,x,) - 2W _ ^ [(«/, - dMl

+ (d2-d3)d?+(d3-d1)d}]f"tt),

b(Xl,X2,X3)-> (Ji_ di)(di_ d3)(di-dl) {^ ~

+ (dj - dj)dx +(dl - dt)d2\f'U)
+ [K - d2)d] + (d2 - d3)df +(d3 - dJdfcrU)}, (3-3.7)5

■c(xt,x2,x,) - R - d>) {[(d, - djdjt

+ (d2 — d3)d2d3 + (d3 — d^d^dj] /(£)

+ [(^!2 - dj)d3 +(d\ - dl)dx +{dj - dt)d2\tf'U)

+ \[(dl - d2)di+{d2 - d3)d?+(d3 - dx)di}efU)

uniformly w.r.t. £. Here, the dt are the components of the unit vector directed from
(£, £, i) toward (xj, x2, x3). Since the right-hand members of (3.3.7) are continuous in £
and since X2 —> x2I, we see that the limit of the right-hand side of (3.3.4) as X —> xl
agrees with (3.3.3).

If X has two distinct eigenvalues, say xx ¥= x2 = x3 = x, then by (3.3.2) F(X) has the
form

F(X) = r(xj,x)X 4- j(xj,Jc)I.

The limits of the functions r and 5 as X -* xl can be worked out by the method used in
Subsec. 2.5. The result is r(xj, x) -*f'(x), s(xx, x) -> f(x) - xf'(x); consequently,
F(X) -» f(x)I, which is in agreement with (3.3.3).

Thus, we have the following

Theorem. If /: R -> R is three times continuously differentiable, the function F:
Sym(Kj) —> Sym(Fj) defined by (3.3.1)—(3.3.3)6 is continuous.

3.4 Extension to repeated eigenvalues. Finally, in order to invoke Ball's lemma, we must
show that the expression obtained for £>F(X)[T] in Sec. 3.1 for three distinct eigenvalues
has continuous extensions to the two cases of repeated eigenvalues. The limits can be
calculated exactly as in the previous subsection, and the results are summarized in the

5 If the product (d\ - d2)(d2 - d3)(d3 - dx ) = 0, then at least one of the -factors must vanish. Suppose
d-, - t/j = 0. Then x2 ~ £ = _ £. which contradicts our starting assumption.
6 Alternatively, by (1.2) and (1.3) for n = 3.
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following

Theorem. Given /: R -* R, define F: Sym(F3) -> Sym(K3) by
f/(xi)Ei(X) + /(x2)E2(X) + /(x3)E3(X), xxi= x2± x3± xv

F(X) = //(xjE^X) +f(x)[ I - Ej(X)], xx±x2 = x, = x,7
(/(x)I, x1 = x2 = x3 = X.

Then, if / is seven times continuously differentiable on R, F is continuously differentiate
on Sym( V3) and

( !FX + ^2 + ^"3)X2TX2 — [(*! + x2)&3 + (x2 + x3)

+ (x3 + x1)^'2](X2TX + XTX2)

+ (xIx2J?"3 + x2x3!Fx + x3x1^2)(X2T + TX2)

+ [(xi + X2)2^ +(x2 + x3)2Jf1

+ (x3 + XJVJXTX
+ [-x1x2(x1 + x2)^3 - x2x3(x2 + x3)

-x^xj 4- XX)3F2 +/i +/2 +/j](XT + TX)

+ [(x1x2)V3 +(x2x3)V1

+ (x3x1)V2 -(xx + x2)/3 ~(x2 + x3)/xDF(X)[T] =
(x3 + xx)/2]T, x: # x2 # x3 # x1(

■[{(*1 - x)[f'(xi) +/'0)J
(xj - x)3

-2[/(x1)-/(x)]}XTX
+ {-(xi - x)[x/'(x1) + xj'(x)] (3.4.1)

+ (x1 + x)[/(x1)-/(x)]}(XT + TX)

+ {(*i - x)[x2f'(xJ + xi2/(x)]
-2xlx[f(xx) -/(x)] }T], xx # x2 = x3 = x,

/'(x)T, xx = x2 = x3 = x,

where /i and are given by (3.1.8).
Remark. Note that the expression for £>F(X)[T] when the underlying vector space has

dimension n = 3 and X has two distinct eigenvalues is of the same form as the one
appropriate to n = 2 and X having two distinct eigenvalues. There is similar argeement
between the n = 2 and n = 3 cases when X has one distinct eigenvalue in each case. We
conjecture that, in general, the formula for DF(X)[T] depends only on the number of
distinct eigenvalues of X and is independent of the dimension of the underlying space.

7 Here (1.5) has been used to write E2(X)= I-E^X).
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4. The ^-dimensional case for n distinct eigenvalues. Here we sketch the extensions of
the results of Subsec. 3.1 to the ^-dimensional case. We do not consider repeated
eigenvalues; however, for any choice of n and any particular type of coalescence, the
methods of Subsec. 3.4 could be applied.

For X, T e Sym( Vn) the characteristic equation of Y(a) = X + aT is

i(-l)kIk(Y(a))yi(a)n-k = 0, (4.1)
k = 0

where 70 = 1. Since8

Z)/t(X)[T] = tr

differentiation of (4.1) yields9

A
da

k 1
tZ4-h(x)(-x)j
. J-o

k = 1,2

A- »(«)
r = 0

+ N, = 0, (4.2)

where

A, = "j:(-l)kC-k)Ik(\)xrl-k, (4.3)
k-0

N, = tr(N,T), (4.4)

(4.5)n, = E(-i)*r*
k = l

E1/*-i-/x)(-x)J
j-0

By expanding
(xt - JCj) • • • (x, - *,_!)(*, - xl + 1) ■ ■ ■ (x, - x„),

it is not difficult for one to see on comparison with (4.3) that

A, = (x, - *i) • ■ • (*,■ - - */+i) * " " (*/ - *»)■ (4-6)
Similarly, expansion of

(X - Xll) • • • (X - jc,_1I)(X - *(+1I) • • • (X - x„l)
and use of the characteristic equation of X in (4.5) leads to

N,- = -(X - x,l) • • ■ (X - *i_1I)(X - *i+1I) • • • (X - xn\). (4.7)
Equations (4.2), (4.4), (4.6), (4.7), and (1.3) imply

^,(X)[T] = tr[E,(X)T]. (4.8)10
Next we consider the derivatives of the eigenprojections. It is convenient here to write

(1.3) in the form

E,(X)= flP,,(X), (4.9)
7=1

8 Truesdell and Noll [13, p. 26]. Cf. the first footnote in Subsection 3.1.
9 Cf. the remark following (2.2.5).
10 Cf. the remark following (2.2.2).



DERIVATIVE OF A TENSOR-VALUED FUNCTION OF A TENSOR 423

where

f X - Xjl
P,7(X) = / ' ' h (4.10)

11, i=J-
By (4.8) and (4.10),

op, (X)[T] - / _ "lE'(x)Tl1 - tr(lE'(x) - mw«w].
W. t-j.

> *j,
(4.11)

With (4.11), differentiation of (4.9) yields

DE,(X)[T] = £ -4-[P,i(X) • • • P;(,-d(X){T - tr[E,(X)T]l}P,0+1)(X) • • • P,„(X)
7=1 X< J
j*>

-tr{[E,(X)-Ey(X)]T)E,(X)]. (4.12)
Finally, if / is differentiable, then the derivative of the function F: Sym( Vn) -* Sym( Vn)

defined by

F(X) = L/(x,)E,(X)
i=i

DF(X)[T] = t {/'(x,)^,(X)[T]E,(X) + /(x,)Z)E,(X)[T]},
i = i

where Z)x,(X)[T] and Z)E,(X)[T] are given by (4.8) and (4.12), respectively.
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