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1. Introduction

We describe a relationship between the derived category of equivariant coherent
sheaves on a smooth projective-over-affine variety, X, with a linearizable action
of a reductive group, G, and the derived category of coherent sheaves on a GIT
quotient, X//G, of that action. Our main theorem connects three classical circles
of ideas:

• Serre’s description of quasicoherent sheaves on a projective variety in terms
of graded modules over its homogeneous coordinate ring,
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• Kirwan’s theorem that the canonical map H∗
G(X) → H∗(X//G) is surjec-

tive [18], and
• the “quantization commutes with reduction” theorem from geometric quan-
tization theory equating h0(X,L)G with h0(X//G,L) when the lineariza-
tion L descends to the GIT quotient [26].

Let us recall the construction of a GIT quotient. A G-linearized ample line
bundle L defines an open semistable locus Xss ⊂ X, defined to be the complement
of the base locus of invariant global sections of Lk for k ≫ 0. We denote the
quotient stack X = X/G, and in this paper the term “GIT quotient” will refer to
the quotient stack Xss = Xss/G, as opposed to the coarse moduli space of Xss/G.

In order to state the main theorem, we will need to recall the equivariant “Kempf-
Ness (KN) stratification” of X \Xss by connected locally-closed subvarieties [10].
We formally define a KN stratification and discuss its properties in Section 2. The
stratification is determined by a set of distinguished one-parameter subgroups, λi :
Gm → G, and open subvarieties of the fixed locus of λi denoted σi : Zi →֒ X. We
will also define integers ηi ≥ 0 in (4). Because Zi is fixed by λi, the restriction of
an equivariant coherent sheaf σ∗

i F is graded with respect to the weights of λi.

We denote the bounded derived category of coherent sheaves on X by Db(X),

and likewise for Xss.1 Restriction gives an exact dg-functor i∗ : Db(X/G) →
Db(Xss/G), and in fact any bounded complex of equivariant coherent sheaves on
Xss can be extended equivariantly to X. The main result of this paper is the
construction of a functorial splitting of i∗.

Theorem 1.1 (Categorical Kirwan surjectivity, preliminary statement). Let X be
a smooth projective-over-affine variety with a linearized action of a reductive group
G, and let X = X/G. Specify an integer wi for each KN stratum of the unstable

locus X \ Xss. Define the full subcategory of Db(X),

Gw :=
{

F
�

∈ Db(X)
∣
∣λi-weights of H∗(Lσ∗

i F
�

) lie in [wi, wi + ηi)
}

.

Then the restriction functor i∗ : Gw → Db(Xss) is an equivalence of categories.

Remark 1.2. The general version, described in Section 2, identifies Gw as a piece of
a semiorthogonal decomposition of Db(X), and it applies to any (possibly singular)
stack X such that X \ Xss admits a KN stratification (Definition 2.2) satisfying
Properties (L+) and (A).

The simplest example of Theorem 1.1 is familiar to many mathematicians: pro-
jective space P(V ) can be thought of as a GIT quotient of V/Gm. Theorem 1.1

identifies Db(P(V )) with the full triangulated subcategory of the derived category
of equivariant sheaves on V generated by OV (q), · · · ,OV (q+dimV −1). In partic-
ular, the semiorthogonal decompositions described in Section 3 refine and provide
an alternative proof of Beilinson’s theorem that the line bundles OP(V )(1), . . . ,

OP(V )(dimV ) generate Db(P(V )).
Serre’s theorem deals with the situation in which G = Gm, X is an affine cone,

and the unstable locus consists only of the cone point; in other words, one is

1On a technical note, all of the categories in this paper will be pre-triangulated dg-categories,
so Db(X) denotes a dg-enhancement of the triangulated category usually denoted Db(X). However,
all of the results will be statements that can be verified on the level of homotopy categories, such
as semiorthogonal decompositions and equivalences of categories, so we will often write proofs on

the level of the underlying triangulated category.
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studying a connected, positively graded k-algebra A. The category of quasicoherent
sheaves on Proj(A) can be identified with the full subcategory of the category of
graded A-modules graded in degree ≥ q for any fixed q. This classical result has
been generalized to noncommutative A by M. Artin and J. J. Zhang [3]. D. Orlov
studied the derived category and the category of singularities of such an algebras in
great detail in [21], and much of the technique of the proof of Theorem 1.1 derives
from that paper.

In the context of equivariant Kähler geometry, one can consider Theorem 1.1 as
a categorification of Kirwan surjectivity. Kirwan surjectivity applies to topological
K-theory in addition to cohomology [13], and one immediate corollary of Theorem
1.1 is an analogous statement for algebraic K-theory.

Corollary 1.3. The restriction map on algebraic K-theory Ki(X) → Ki(X
ss) is

surjective.

In a follow-up paper, we will describe more precisely how to recover cohomolog-
ical Kirwan surjectivity from Theorem 1.1 as well.

The fully faithful embedding Db(Xss) ⊂ Db(X) of Theorem 1.1 and the more pre-
cise semiorthogonal decomposition of Theorem 2.10 correspond, via Orlov’s analogy
between derived categories and motives [20], to the claim that the motive Xss is
a summand of X. Via this analogy, the results of this paper bear a strong formal
resemblance to the motivic direct sum decompositions of homogeneous spaces aris-
ing from Bia�lynicki-Birula decompositions [8]. However, the precise analogue of
Theorem 1.1 would pertain to the equivariant motive X/G, whereas the results of
[8] pertain to the nonequivariant motive X.

The “quantization commutes with reduction” theorem from geometric quanti-
zation theory relates to the fully-faithfulness of the functor i∗. The original con-
jecture of Guillemin and Sternberg, that dimH0(X/G,Lk) = dimH0(Xss/G,Lk),
has been proven by several authors, but the most general version was proven by
Teleman in [26]. He shows that the canonical restriction map induces an isomor-
phism RΓ(X/G,V) → RΓ(Xss/G,V) for any equivariant vector bundle such that
V|Zi

is supported in weight > −ηi. If V1 and V2 are two vector bundles such
that the λi-weights of V|Zi

lie in [wi, wi+ηi), then the fact that RHom
�

X(V1,V2) →
RHom

�

Xss(V1|Xss ,V2|Xss) is an isomorphism is precisely Teleman’s quantization the-
orem applied to V2 ⊗ V∨

1 ≃ RHom(V1,V2).
In Section 4, we apply Theorem 1.1 to construct new examples of derived equiv-

alences and embeddings resulting from birational transformations, as conjectured
by Bondal and Orlov [7]. The G-ample cone in NS1

G(X) has a decomposition into
convex conical chambers within which the GIT quotient Xss(L) does not change
[10], and Xss(L) undergoes a birational transformation as [L] crosses a wall be-
tween chambers. Categorical Kirwan surjectivity provides a general approach to
constructing derived equivalences between the quotients on either side of the wall:
in some cases both quotients can be identified by Theorem 1.1 with the same sub-
category of Db(X/G). This principle is summarized in Ansatz 4.11.

For a certain class of wall crossings, balanced wall crossings (Definition 4.4), there
is a simple criterion for when one gets an equivalence or an embedding in terms of
the weights of ωX |Zi

. When G = T is abelian, all codimension-1 wall crossings are
balanced. In particular, we are able to prove that any two generic torus quotients
of an equivariantly Calabi-Yau variety are derived equivalent. For nonabelian G,
we consider a slightly larger class of almost balanced wall crossings. We produce
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874 DANIEL HALPERN-LEISTNER

derived equivalences for flops which excise a Grassmannian bundle over a smooth
variety and replace it with the dual Grassmannian bundle, recovering recent work
of Will Donovan and Ed Segal [11, 12].

Finally, in Section 5 we investigate applications of Theorem 2.10 beyond smooth
quotient stacks X/G. We identify a criterion under which Property (L+) holds
for a KN stratification, and apply it to hyperkähler reductions. We also explain
how the Morita theory of [5] recovers derived Kirawn surjectivity for certain com-
plete intersections and derived categories of singularities (equivalently categories of
matrix factorizations) “for free” from the smooth case.

The inspiration for Theorem 1.1 was the grade restriction rules for the category
of boundary conditions for B-branes of Landau-Ginzburg models studied by Hori,
Herbst, and Page in [14], as interpreted mathematically by Segal [24]. The essential
idea of splitting was present in that paper, but the analysis was only carried out
for a linear action of Gm, and the category Gw was identified in an ad-hoc way.
The main contribution of this paper is showing that the splitting can be globalized
and applies to arbitrary X/G as a categorification of Kirwan surjectivity, and that
the categories Gw arise naturally via the semiorthogonal decompositions to be
described in the next section.

1.1. Author’s note. The author would like to thank his Ph.D. adviser Constantin
Teleman for introducing his work [26], and for his support and useful comments
throughout this project. The author would like to thank Daniel Pomerleano for
many enlightening conversations, and for explaining how to recover derived cate-
gories of singularities using Morita theory. The author would also like to thank
Anatoly Preygel for useful conversations about derived algebraic geometry and for
carefully reviewing Section 5. Finally, the author thanks Yujiro Kawamata for sug-
gesting that the author apply the author’s methods to hyperkähler reduction and
flops of Grassmannian bundles, and Kentaro Hori for carefully reviewing this work
and discovering some mistakes in the first version of this paper.

The problems studied in this paper overlap greatly with the work [4], although
the projects were independently conceived and carried out. The author learned
about [4] at the January 2012 Conference on Homological Mirror Symmetry at
the University of Miami, where the authors presented a method for constructing
equivalences between categories of matrix factorizations of toric LG models. In
the finished version of their paper, they also treat the general VGIT for smooth
quotients X/G, and present several new applications. Here we work in slightly
more generality and emphasize the categorification of Kirwan surjectivity, as well as
some applications to hyperkähler quotients. We hope that the different perspectives
brought to bear on the subject will be useful in elucidating further questions.

1.2. Notation. We will work over an algebraically closed field of characteristic
zero, although we expect that some version of these results hold in characteristic p as
well. We will denote schemes with Roman font, X,S, Z, etc. Throughout the paper,
most of the schemes we encounter will have a specified action of an algebraic group,
in which case we denote the corresponding quotient stacks as X,S,Z respectively.
Sheaves will be denoted with Roman font as well, and sheaves of algebras will be
denoted O,A, etc.

For stacks and schemes, we will work with several variants of the derived category.
We use cohomological indexing conventions, so F

�

= · · · → F i → F i+1 → · · · .
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THE DERIVED CATEGORY OF A GIT QUOTIENT 875

Db(X) will denote the derived category of OX-modules with coherent, bounded

cohomology. Perf(X) ⊂ Db(X) will denote the subcategory of perfect complexes.
Dqc(X) will denote the unbounded derived category of complexes with quasicoherent

cohomology, and D+(X) (resp. D−(X)) will denote the category with coherent,

bounded below (resp. above) cohomology. The category Db
S(X) ⊂ Db(X) will

denote the category of complexes whose cohomology sheaves are set-theoretically
supported on S (after restricting to a local atlas on X).

Unless otherwise specified, all functors between derived categories are derived.
For instance, if j : S → X is a morphism of stacks, j∗ denotes the derived pullback
Lj∗. At times we will revert to the classical notation Lj∗, Rπ∗, etc. to prevent
confusion with the nonderived versions of the functors. We underline functors to
denote the sheaf-theoretic version, so Hom(E

�

, F
�

) denotes the derived sheaf-Hom
and ΓS(F

�

) denotes the derived subsheaf with supports.
We will sometimes make use of the standard t-structures on Dqc(X) and its

variants, which we denote with a superscript Dqc(X)
≤p and Dqc(X)

≥p. We will also

encounter subcategories of Db(X) defined by various “weight conditions”, which we

denote using subscripts such as Db(X)≥w and Db(X)<w.

2. The main theorem

First we shall review the properties of the Kempf-Ness (KN) stratification of the
unstable locus in geometric invariant theory and establish notation. Then we will
formulate and lay out the proof of Theorem 1.1. The key technical results that
comprise the proof will be treated separately in Section 3.

2.1. Equivariant stratifications in GIT. First let us recall the construction of
the KN stratification of a projective-over-affine variety X ⊂ Pn×Am invariant with
respect to the action of a reductive group G. We let L := OX(1) with a chosen
linearization. We fix an inner product on the cocharacter lattice of G which is
invariant under the Weil group. This allows us to define a conjugation-invariant
norm |λ| of any one-parameter subgroup (1-PS) such that |λ| > 0 for any nontrivial
1-PS.

For any 1-PS, λ : Gm → G, the blade associated to a connected component
Z ⊂ Xλ is defined to be the locally closed subvariety

(1) Yλ,Z := {x ∈ X| lim
t→0

λ(t) · x ∈ Z} ⊂ X.

The natural projection map π : Yλ,Z → Z is affine with connected fibers, hence Yλ,Z

is connected. g ∈ G acts on the set of such pairs (λ, Z) by g · (λ, Z) = (gλg−1, gZ).
Up to this action we can assume that λ factors through a fixed choice of maximal
torus of G, and the set of possible Z appearing in such a pair is finite.

One constructs the KN stratification iteratively by selecting a pair (λi, Z
∗) which

maximizes the numerical invariant

μ(λ, Z) :=
−1

|λ|
weightλ L|Z ∈ R

among those (λ, Z) for which Z is not contained in the union of the previously
defined strata. One defines the open subvariety Zi ⊂ Z∗ to consist of those points
not lying on previously defined strata, and the blade Yi := π−1(Zi) ⊂ Yλi,Z∗ .
Finally we define the new stratum to be Si = G · Yi. We repeat this process until
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876 DANIEL HALPERN-LEISTNER

there are no pairs with μ(λ, Z) > 0 in which Z is not contained in the union of the
previously defined strata.

By construction, the stratification is pre-ordered by the value of the numerical
invariant μ, but for clarity we will always choose a refinement to a total ordering
by integers.2 It is a nontrivial fact that the iterative procedure outlined above
produces strata such that

S̄i \ Si and Ȳi \ Yi ⊂
⋃

j>i

Sj ,

so the Hilbert-Mumford procedure leads to an ascending sequence of G-equivariant
open subvarieties Xss := X0 ⊂ X1 ⊂ · · · ⊂ Xn = X. It is evident that the
stratification of Pn × A

m induces the stratification of X, and in fact the Hilbert-
Mumford procedure can fail to produce such a stratification if X is not projective-
over-affine.

For each i we define the subgroup Li ⊂ G to be the set of l ∈ G which centralize
λi and such that l(Zi) ⊂ Zi.

3 Likewise, we define the parabolic subgroup Pi ⊂ G of
all p ∈ G such that λi(t)pλi(t)

−1 has a limit in Li as t → 0. Li is a Levi component
of Pi, so we have the semidirect product sequence

(2) 1 �� Ui
�� Pi

�� Li
��

��
1 ,

where Ui ⊂ Pi is the unipotent radical. The locally closed subvarieties Si enjoy
some special properties with respect to λi (see [18], [10] and the references therein):

(S1) Zi is fixed by λi and equivariant with respect to Li. Yi is Pi-equivariant,
and the canonical projection πi : Yi → Zi given by

πi : x 	→ lim
t→0

λi(t) · x

is algebraic, affine, and equivariant in the sense that it intertwines the
canonical quotient homomorphism Pi → Li.

(S2) The canonical map G×Pi
Yi → G · Yi =: Si is an isomorphism.

(S3) The conormal sheaf N∨
Si
X = ISi

/I2
Si

restricted to Zi has positive weights
with respect to λi.

Remark 2.1. Properties (S1) and (S3) hold for any subvariety of the form G · Yλ,Z ,
where Yλ,Z is a blade defined as in (1), so (S2) is the only property essential to the
strata arising in GIT. Note also that when G is a torus, then Li = Pi = G and
Yi = Si for all i, so (S2) is automatic, and the description of the stratification is
much simpler.

Due to the iterative construction of the KN stratification, it will suffice to analyze
a single closed stratum S ⊂ X. Our proof of the main theorem will be a simple
induction from the case of a single closed stratum. We will simplify notation by
dropping the index i everywhere.

Property (S2) implies that as stacks the natural map Y/P → S/G is an equiv-
alence, and we can therefore identify the category of G-equivariant quasicoherent

2Alternatively, one could index the stratification by the values of µ by defining Yµ to be the

union of all of the blades with a fixed numerical invariant and specifying different distinguished
1-PS’s for each connected component. The arguments and results of this paper are essentially
unmodified by allowing such disconnected strata.

3In general any g ∈ G which commutes with λi must permute the connected components of
Xλi ; however, if G is connected, then the centralizer of any 1-PS is connected, so the condition
that l(Zi) ⊂ Zi is unnecessary. In this case if limt→0 λi(t)pλi(t)

−1 exists, then it must be in Li.
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sheaves on S with the category of P -equivariant quasicoherent sheaves on Y . Ex-
plicitly, the equivalence is given by restricting a quasicoherent sheaf to Y and
remembering the P -equivariant structure. We will also use j to denote the closed
immersion of stacks Y/P →֒ X/G.

If we let P act on Z via the projection P → L, then (S1) lets us identify Y =
Spec

Z
(A), where A = OZ ⊕

⊕

i<0 Ai is a coherently generated P -equivariant OZ-
algebra, nonpositively graded with respect to the weights of λ. Thus quasicoherent
sheaves on the quotient stack S can further be identified with quasicoherent P -
equivariant A-modules on Z. We will return to this description and study the
category Db(S) in detail in Section 3.

Definition 2.2 (KN stratification). Let X be a quasiprojective variety with a
linearizable action of a reductive group G. A closed Kempf-Ness (KN) stratum is a
closed subvariety S ⊂ X such that there is a λ and an open-and-closed subvariety
Z ⊂ Xλ satisfying properties (S1)-(S3). We will introduce standard names for the
morphisms

(3) Z
σ �� Y ⊂ S

j
��

π

�� X .

If X is not smooth along Z, we make the following technical hypothesis:

(†) There is a G-equivariant closed immersion X ⊂ X ′ and a KN stratum
S′ ⊂ X ′ such that S is a union of connected components of S′ ∩X and X ′

is smooth in a neighborhood of Z ′.

Let Xu ⊂ X be a closed equivariant subvariety. A collection of locally closed
subvarieties Si ⊂ Xu, i = 1, . . . , n, will be called a KN stratification if Xu =

⋃

i Si

and Si ⊂ X −
⋃

j>i Sj is a closed KN stratum for all i.

Remark 2.3. The technical hypothesis is only used for the construction of Koszul
systems in Section 3.3. It is automatically satisfied for the GIT stratification of a
projective-over-affine variety.

In order to state our main theorem (Theorem 2.10 below), we will introduce two
additional hypotheses on the KN strata:

(A) π : Y → Z is a locally trivial bundle of affine spaces, and

(L+) the derived restriction along the closed immersion σ : Z →֒ S of the relative
cotangent complex, Lσ∗L

�

S/X , has nonnegative weights w.r.t. λ.

We will use the construction of the cotangent complex in characteristic 0 as dis-
cussed in [19].

Example 2.4. Let X ⊂ Pn be a projective variety with homogeneous coordinate
ring A. The affine cone SpecA has Gm action given by the nonnegative grading
of A and the unstable locus is Z = Y = S = the cone point. OS can be resolved
as a semifree graded dg-algebra over A, (A[x1, x2, . . .], d) → OS with generators of
positive weight. Thus L

�

S/Z = OS ⊗ Ω1
A[x1,...]/A

has positive weights. Property (A)

is automatic, as Y = Z.

Example 2.5. Consider the graded ring k[x1, . . . , xn, y1, . . . , ym]/(f), where the
xi have positive degrees, the yi have negative degrees, and f is a homogeneous
polynomial such that f(0) = 0. This corresponds to a linear action of Gm on an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



878 DANIEL HALPERN-LEISTNER

equivariant hypersurface Xf in the affine space An
x × Am

y . Assume that we have
chosen the linearization such that S = {0} × Am

y ∩Xf . One can compute

L
�

S/Xf
=

{
(OSdx1 ⊕ · · · ⊕ OSdxn)[1], if f /∈ (x1, . . . , xn),
(OSf → OSdx1 ⊕ · · · ⊕ OSdxn)[1] if f ∈ (x1, . . . , xn),

where in the latter case the map is determined by f 	→ df mod dy1, . . . , dym.
Because the xi have positive degree, one sees that Property (L+) fails if and

only if f ∈ (x1, . . . , xn) and deg(f) < 0. Furthermore, Property (A) amounts to S
being an affine space, which happens iff deg f ≥ 0, so that S = Am

y , or deg f < 0
and the reduction of f modulo (x1, . . . , xn) is linear in the yi.

Remark 2.6. In Example 2.5, one could flip the linearization so that S′ = An
x ×

{0} ∩Xf is unstable, with distinguished 1-PS λ(t) = t−1. In order for Properties
(A) and (L+) to hold in both linearizations, there are only two possibilities: either
deg f = 0 or deg f < 0 (resp. deg f > 0) and the reduction of f modulo (x1, . . . , xn)
(resp. (y1, . . . , ym)) is linear.

As Example 2.5 shows, Properties (A) and (L+) can be fairly restrictive. For-
tunately these properties hold automatically when X is smooth.

Lemma 2.7. Let X be smooth in a neighborhood of Z. Then Z, Y , and S are
smooth, and π : Y → Z is a bundle of affine spaces as in (A). Furthermore, X is
smooth in a neighborhood of S, and Property (L+) holds automatically.

Proof. The fact that Z is smooth and π : Y → Z is a bundle of affine spaces (hence
smooth) is Bia�lynicki-Birula’s theorem. S is smooth by (S2). Any G-equivariant
open neighborhood of Z contains S, hence X is smooth in a neighborhood of S. It
follows that j : S →֒ X is a regular embedding, so L

�

S/X ≃ N∨
SX[1] is locally free

on S, and (L+) follows from (S3). �

In addition to Example 2.4, we will study other singular examples where (A)
and (L+) hold in Section 5, where we apply our results to hyperkähler reductions.

2.2. Statement and proof of the main theorem. As discussed in the intro-
duction, we will consider a quasiprojective variety X with a linearizable action of
a reductive group G and an open subvariety Xss ⊂ X. We will use the symbol X
to denote the quotient stack X/G, and likewise for Xss. We let {Si}i=1,...,N be a
KN stratification (Definition 2.2) of Xu = X \ Xss. As the statement of Theorem

1.1 indicates, we will construct a splitting of Db(X) → Db(Xss) by identifying a

subcategory Gw ⊂ Db(X) that is mapped isomorphically onto Db(Xss). In fact we
will identify Gw as the middle factor in a large semiorthogonal decomposition of
Db(X).

For each KN stratum, let σi : Zi →֒ Si and ji : Si →֒ X denote the respective
inclusions. When it is clear from context, we will use σi rather than ji ◦σi to denote
the inclusion Zi →֒ X. Recall the shriek pullback functor j!i : D+(X) → D+(Si)
which assigns j!iF

�

= HomU(OSi
, F

�

|U), regarded as an OSi
-module, where U is

an open substack containing Si as a closed substack.
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Definition 2.8. For each KN stratum, choose an integer wi ∈ Z, and denote the
corresponding function w : {0, . . . , N} → Z. Define the full subcategories of Db(X):

Db
Xu(X)≥w := {F

�

∈ Db
Xu(X)

∣
∣∀i, λi-weights of H

∗(σ∗
i F

�

) are ≥ wi },

Db
Xu(X)<w := {F

�

∈ Db
Xu(X)

∣
∣∀i, λi-weights of H

∗(σ∗
i j

!
iF

�

) are < wi },

Gw :=

{

F
�

∣
∣
∣
∣

∀i, λi-weights of H∗(σ∗
i F

�

) are ≥ wi and
λi-weights of H∗(σ∗

i j
!
iF

�

) are < wi

}

.

We refer to the conditions defining Gw as a grade restriction rule.4

When X is smooth in a neighborhood of each Zi, one can characterize Gw and
Db

Xu(X)<w in terms of σ∗
i F

�

, which avoids the reference to the stratum Si. This
will be useful when we apply categorical Kirwan surjectivity to a variation of the
GIT quotient in Section 4. In Section 3.5 we will discuss further ways to describe
these categories.

By Lemma 2.7, L
�

Si/X
[−1] ≃ N∨

Si
X is a locally free sheaf when X is smooth in a

neighborhood of each Zi. In this case det(N∨
Si
X) is an equivariant invertible sheaf

and its restriction to Zi is concentrated in a single nonnegative weight with respect
to λi (it is 0 iff N∨

Si
X = 0). We define

ηi := weightλi
det(N∨

Si
X)|Zi

(4)

= weightλi
det(N∨

Yi
X)|Zi

− weightλi
det(gλi>0).

The second equality follows from three facts: the conormal sequence 0 → N∨
Si
X →

N∨
Yi
X → N∨

Yi
Si → 0; Property (S2) implies thatN∨

Yi
Si ≃ (gλi<0)

∨; and det(gλi<0)
∨

has the same λi weight as det(gλi>0) because det(g) has weight 0.

Lemma 2.9. If X is smooth in a neighborhood of each Zi, then

Db
Xu(X)<w := {F

�

∈ Db
Xu(X)

∣
∣∀i, λi-weights of H∗(σ∗

i F
�

) are < wi + ηi },

Gw :=
{
F
�
∣
∣∀i, λi-weights of H∗(σ∗

i F
�

) lie in [wi, wi + ηi)
}
.

Proof. By Lemma 2.7, the inclusion ji : Si →֒ X is a regular embedding, so j!i ≃

det(NSi/X)⊗ j∗i . Therefore, for F
�

∈ Db(X), the weights of σ∗
i j

!
iF

�

are < w if and
only if the weights of det(NSi/X)|Zi

⊗ σ∗
i (F

�

) are < w. The lemma now follows
from the fact that the line bundle det(NSi/X) must be concentrated in a single
weight, which we have defined to be −ηi. �

We denote a semiorthogonal decomposition of a triangulated category D by full
triangulated subcategories Ai as D = 〈An, . . . ,A1〉. This means that all morphisms
from objects in Ai to objects in Aj are zero for i < j, and for any object E ∈ D
there is a sequence 0 = E0 → E1 → · · · → En = E with Cone(Ei−1 → Ei) ∈ Ai,
which is necessarily unique and functorial.5 In our applications D will always be

4In a large class of examples, the paper [15] defines subcategories of Db(X) which are described
explicitly in terms of generating sets of invertible sheaves. Our Gw agree with those studied in
the examples of [15], so we have adopted the terminology “grade restriction rule” even though our
definition of Gw is different.

5There are two additional equivalent ways to characterize a semiorthogonal decomposition:
1) the inclusion of the full subcategory Ai ⊂ 〈Ai,Ai−1, . . . ,A1〉 admits a left adjoint (is left
admissible) ∀i, or 2) the subcategory Ai ⊂ 〈An, . . . ,Ai〉 is right admissible ∀i. In some contexts
one also requires that each Ai be admissible in D, but we will not require this here. See [6] for
further discussion of semiorthogonal decompositions.
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a pre-triangulated dg-category, in which case if Ai ⊂ D are full pre-triangulated
dg-categories, then we will abuse the notation D = 〈An, . . . ,A1〉 to mean that
there is a semiorthogonal decomposition of homotopy categories, in which case D is
uniquely identified with the gluing of the Ai. We can now state our main theorem.

Theorem 2.10 (Derived Kirwan surjectivity). Assume that each Si satisfies Prop-
erties (L+) and (A). Then there are semiorthogonal decompositions

Db
Xu(X) = 〈Db

Xu(X)<w,D
b
Xu(X)≥w〉,(5)

Db(X) = 〈Db
Xu(X)<w,Gw,D

b
Xu(X)≥w〉,(6)

and the restriction functor i∗ : Gw → Db(Xss) is an equivalence of categories.

Furthermore, we have PerfXu(X)≥v ⊗
L Db

Xu(X)≥w ⊂ Db
Xu(X)≥v+w.

The technical heart of this result is Theorem 3.35 below, which is the special
case of Theorem 2.10 in which N = 1, so Xu consists of a single closed KN stratum
S ⊂ X. Section 3 consists of the proof of Theorem 3.35, but here we observe how
the general statement follows from the case of a single stratum.

Proof. We proceed by induction on the ascending sequence of open substacks, with
X0 = Xss and Xi := Xi−1∪Si for i = 1, . . . , N . We also define Xu

n := S1∪· · ·∪Sn ⊂
Xn. We proceed by induction on N , with the base case where N = 0 and Xss = X.

Consider the closed KN stratum Sn ⊂ Xn. Theorem 3.35 provides the semior-
thogonal decomposition

Db(Xn) = 〈Db
Sn

(Xn)<w, G̃w,D
b
Sn

(Xn)≥w〉,

where G̃w ⊂ Db(Xn) consists only of complexes satisfying the grade restriction

rule along Sn. The category G̃w is mapped isomorphically onto Db(Xn−1) via
restriction. Using this isomorphism and the inductive hypothesis, we obtain a 5-
term semiorthogonal decomposition of Db(Xn),

(7) 〈Db
Sn

(Xn)<w,D
b
Xu

n−1
(Xn−1)<w,G

n
w,D

b
Xu

n−1
(Xn−1)≥w,D

b
Sn

(Xn)≥w〉,

where Gn
w is the subcategory defined by the grade restriction rules for the KN

stratification S1, . . . ,Sn ⊂ Xn.
Note that an F

�

is supported on Xu
n if and only if its restriction to Xn−1 is sup-

ported on Xu
n−1. It follows that the first two terms in the semiorthogonal decom-

position (7) generate the subcategory Db
Xu

n
(Xn)<w, and the last two terms generate

Db
Xu

n
(Xn)≥w. Furthermore, Db

Xu
n
(Xn)<w and Db

Xu
n
(Xn)≥w generate Db

Xu
n
(Xn). The

theorem follows by induction. �

The semiorthogonal decomposition in this theorem can be refined further by
using ideas of Kawamata [17], and Ballard, Favero, and Katzarkov [4]. Consider the

stack Zn := Zn/Ln and the canonical projection πn : Sn → Zn, and let Db(Zn)w
denote the full subcategory of complexes whose cohomology is concentrated in
weight w with respect to λn. Corollary 3.28 implies that for each Xn appearing
in the proof of Theorem 2.10, (jn)∗π

∗
n : Db(Zn)w → Db(Xn) is a fully faithful
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embedding. Thus as an immediate consequence of Corollary 3.28 and the proof of
Theorem 2.10, we have

Amplification 2.11. Assume that for each stratum, the restriction of the relative
cotangent complex, σ∗

nL
�

Sn/X
, has strictly positive weights with respect to λn. Then

the categories Db
Xu(X)≥w and Db

Xu(X)<w admit semiorthogonal decompositions

Db
Xu(X)≥w = 〈Db(Z1)w1

,Db(Z1)w1+1, . . . ,

Db(Z2)w2
,Db(Z2)w2+1, . . . , . . . ,

Db(ZN )wN
,Db(ZN )wN+1 . . .〉,

Db
Xu(X)<w = 〈 . . . ,Db(ZN )wN−2,D

b(ZN )wN−1,

. . . ,Db(Z2)w2−2,D
b(Z2)w2−1, . . . ,

. . . ,Db(Z1)w1−2,D
b(Z1)w1−1〉

which can be combined with Theorem 2.10 to obtain an infinite semiorthogonal
decomposition of Db(X).

Remark 2.12. By an infinite semiorthogonal decomposition we mean that the sub-
categories are semiorthogonal to one another, and every object can be constructed
via a finite sequence of mapping cones from objects in the subcategories.

Remark 2.13. If we let L′
i := Li/λi(Gm), then Zi → Zi/L

′
i is a Gm-gerbe. The

pullback functor identifies Db(Zi)0 with Db(Zi/L
′
i), and Db(Zi)w is the derived

category of bounded coherent sheaves twisted by the wth power of this Gm-gerbe.

In the remainder of this section we discuss two example applications of Theorem
2.10 in situations of interest.

Example 2.14 (Derived category of a Grassmannian). The Grassmanian of d-
dimensional subspaces of An can be obtained as a GIT quotient of the space, V , of
n× d matrices by GLd acting by g ·M := Mg−1 for g ∈ GLd and M ∈ V . In this
case

λi = diag(1, . . . , 1, t, . . . , t
︸ ︷︷ ︸

i times

), Zi = Yi =

⎧

⎪⎪⎨

⎪⎪⎩

[ ∗
︸︷︷︸

n×(n−i),

full rank

|0]

⎫

⎪⎪⎬

⎪⎪⎭

,

and the stratum Si consists of all matrices of rank n − i. One can choose weights
wi such that Kapranov’s exceptional collection corresponds to vector bundles of
the form OV (W ), where W is an irreducible representation of GLd satisfying the
grade restriction rules. However, one can also choose the wi such that there are no
sheaves of the form OV ⊗W in Gw. See Example 4.12 for a closely related example
and a more detailed discussion of the stratification.

Example 2.15 (Elaboration of Serre’s theorem). Let Z be a quasiprojective scheme
and A =

⊕

i≥0 Ai a coherently generated sheaf of graded algebras over Z, with

A0 = OZ . Letting X = Spec
Z
(A), the grading defines a Gm action on X, and we

take the unstable stratum to be j : Z →֒ X.
This is a slight generalization of Example 2.4, and the argument for why (A)

and (L+) hold applies in this more general setting. Theorem 2.10 gives a precise

relationship between Db(X/Gm) = Db(gr−A), the derived category of sheaves of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



882 DANIEL HALPERN-LEISTNER

coherent graded A-modules, and Db(X − S/Gm) = Db(Proj
Z
(A)).6 There is an

infinite semiorthogonal decomposition,

Db(gr−A) = 〈. . . ,Db(Z)w−1,Gw,D
b(Z)w,D

b(Z)w+1, . . .〉,

where Db(Z)w denotes the subcategory generated by j∗ D
b(Z)⊗OX(−w), where

Gw =

{

F
�

∈ Db(X/Gm)

∣
∣
∣
∣

H∗(j∗F
�

) has weights ≥ w, and
H∗(j!F

�

) has weights < w

}

,

and where the restriction functor Gw → Db(Proj
Z
A) is an equivalence.

2.3. Explicit constructions of the splitting and integral kernels. Theorem
2.10 states that the restriction functor Gw → Db(Xss) is an equivalence of dg-
categories. We now discuss the inverse functor a bit more explicitly. We start with
a single closed KN stratum S ⊂ X, which satisfies (L+), and we assume that the
λ-weights of σ∗L

�

S/X are strictly positive, so that Amplification 2.11 holds. We let

V := X−S.
Given G

�

∈ Db(V), it is always possible to choose a complex F
�

∈ Db(X) such
that F

�

|V ≃ G
�

. By Lemma 3.36, there is a unique a ≤ b with a maximal and b
minimal such that the λ-weights of σ∗j!F

�

are < b and the λ-weights of σ∗F
�

are
≥ a. Let E

�

∈ Db(Z)a be the lowest nonvanishing weight subcomplex of σ∗F
�

;7

then the semiorthogonal decomposition of Proposition 3.9 and Remark 3.19 imply
that there is a canonical morphism j∗F

�

→ π∗E
�

. The corresponding morphism
F
�

→ j∗π
∗(E

�

) induces an isomorphism between the complexes concentrated in
weight ≤ a after applying σ∗.

Assume that a < w, and define a new object (F
�

)′ with (F
�

)′|V ≃ G
�

by the
exact triangle

(F
�

)′ → F
�

→ j∗(π
∗E

�

) ��� .

The λ-weights of σ∗(F
�

)′ are ≥ a+1. Furthermore, the λ-weights of σ∗j!j∗π
∗(E

�

)
are ≤ a, so σ∗j!(F

�

)′ will still have λ-weights < b unless a = b, in which case
σ∗j!(F

�

)′ will at least have λ-weights < w. Iterating this procedure, we will even-
tually have an object F

�

such that F
�

|V ≃ G
�

, the λ-weights of σ∗F
�

are ≥ w, and
the λ-weights of σ∗j!F

�

are < max(w, b).
If b > w, then by an entirely dual procedure we let E

�

be the subcomplex of
σ∗j!F

�

= σ∗j!F
�

in weight b and consider the cone of a canonically defined map
(F

�

)′ = Cone(j∗π
∗E

�

→ F
�

). The λ-weights of σ∗(F
�

)′ will still be ≥ w, but
σ∗j!(F

�

)′ will have λ-weights < b−1. We can repeat this procedure until we finally
have an F

�

∈ Gw such that F
�

|V ≃ G
�

. Theorem 2.10 now implies that this F
�

is
the unique lift of G

�

lying in Gw.
When there are multiple strata, we must repeat this procedure to lift the object

inductively over each stratum as in the proof of Theorem 2.10. This process is
quite complicated, especially when there are multiple strata. Fortunately, in many
examples it suffices to directly construct such a lift for a single universal example
in order to obtain an integral kernel for the functor Db(Xss) → Gw ⊂ Db(X).

Let us assume for simplicity that Xss is a smooth and proper stack, so that

• the diagonal Xss → Xss × Xss is finite (it is affine because Xss is a global
quotient and proper by the assumption that Xss is separated) and

6We should take Proj
Z
(A) to mean the DM stack (Spec

Z
(A) − Z)/Gm. This will only be a

scheme if A is generated in degree 1, so that Gm acts freely on Spec
Z
(A)− Z.

7The object j∗F
�

will not be cohomologically bounded, but its lowest weight space will be.
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• the push forward π∗ : Dqc(X
ss) → Dqc(Spec k) preserves bounded coherent

objects (this requires characteristic 0).

Under these hypotheses the diagonal sheaf O∆, which is the push forward of OXss

along Xss → Xss × Xss, lies in Db(Xss × Xss). Consider the product Xss × X =
(Xss ×X)/(G×G), and the open substack Xss ×Xss whose complement Xss ×Xu

has the KN stratification Xss ×Si. It is immediate that Properties (A) and (L+)
hold for this KN stratification, so one can uniquely extend the diagonal sheaf, O∆,
to a complex, Õ∆, in the subcategory Gw with respect to this stratification.

Consider the integral functor Db(Xss) → Db(X) with kernel Õ∆:

Φ : F
�

	→ (p2)∗(Õ∆ ⊗ p∗1(F
�

)).

Because Xss is smooth, F
�

is perfect, and the object Õ∆ ⊗ p∗1F
�

is bounded with

coherent cohomology. It follows that (p2)∗(Õ∆ ⊗ p∗1F
�

) ∈ Db(X).

Lemma 2.16. For all F
�

∈ Db(Xss), Φ(F
�

) ∈ Gw.

Proof. We consider the fiber square

Xss × Zi

σ′
i ��

p′
2

��

Xss × X

p2

��

Zi
σi �� X

By base change σ∗
i Φ(F

�

) ≃ (p′2)∗(σ
′
i)

∗(Õ∆⊗p∗1F
�

). We have p∗1F
�

∈ Db(Xss×Zi)0,
where the weight is with respect to the distinguished 1-PS on the right factor, and
Õ∆ ∈ Db(Xss × X)≥wi

by hypothesis. It follows that (σ′
i)

∗(Õ∆) ⊗ (σ′
i)

∗p∗1F
�

∈

Db(Xss × Zi)≥wi
, and thus σ∗

iΦ(F
�

) ∈ Db(Zi)≥wi
. A similar argument shows that

σ∗
i j

!F
�

∈ Dqc(Zi)<wi
. �

Furthermore, Φ(F
�

)|Xss is canonically isomorphic to the push forward to Xss of
O∆⊗p∗1F

�

. Because the integral functor with kernel O∆ is just the identity, we have

a canonical isomorphism Φ(F
�

)|Xss ≃ F
�

. Therefore, Φ : Db(Xss) → Gw ⊂ Db(X)

is the inverse of the restriction equivalence Gw → Db(Xss).

3. Homological structures on the unstable strata

In this section we will study in detail the homological properties of a single closed
KN stratum S := S/G ⊂ X as in Definition 2.2. We will also let V denote the open

complement V = X−S and study the relationship between Db(X) and Db(V).
Our main theorem is Theorem 3.35, which is the key to the inductive proof of

Theorem 2.10. In fact, Theorem 3.35 is just a summary of several results throughout
this section. Before launching into the technical content, we give an overview of
the ideas which follow.

Our main conceptual tool is the notion of a baric decomposition, which was
introduced and used to construct ‘staggered’ t-structures on equivariant derived
categories of coherent sheaves [1].

Definition 3.1. A baric decomposition of a triangulated category D is a family
of semiorthogonal decompositions D = 〈D<w,D≥w〉 such that D≥w ⊃ D≥w+1, or
equivalently D<w ⊂ D<w+1, for all w. The baric decomposition is bounded if
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D =
⋃

v,w(D≥w∩D<v). If D ⊂ Dqc(X) for some stack X, then we say that the baric

decomposition ismultiplicative if E
�

⊗D≥w ⊂ D≥w+v whenever E
�

∈ D≥v∩Perf(X).

Although the connection with GIT was not explored in the original development
of the theory, baric decompositions arise naturally in this context. In Proposition
3.9 we establish a multiplicative baric decomposition on Db(S) when Y → Z is flat.

Because λ(Gm) is central in L and stabilizes Z, objects in Db(Z/L) decompose
canonically as a direct sum of weight eigencomplexes. This is no longer true in
Db(S), but the baric decomposition assigns to each object a canonical subquotient
in weight w.

Example 3.2. Consider the case when S ≃ Spec k[x1, . . . , xn]/Gm, where the
Gm action is determined by a choice of a negative grading on each xi. Then
D<w = Db(S)<w is the triangulated category generated by graded modules whose
nonzero weight spaces have weight < w.

After some technical preparations in Sections 3.2 and 3.3, we show that whenS ⊂
X satisfies Property (L+), the categories generated by the pushforward of Db(S)≥w

and Db(S)<w in Db(X) remain semiorthogonal. This provides (Proposition 3.25) a

multiplicative baric decomposition Db
S(X) = 〈Db

S(X)<w,D
b
S(X)≥w〉, where Db

S(X)
denotes the derived category of complexes of coherent sheaves on X whose restriction
to V = X−S is acyclic. One nice consequence of this machinery is a generalization
of Teleman’s “quantization commutes with reduction theorem” (Theorem 3.29).

In Section 3.6 we use the baric decomposition of Db
S(X) to analyze the cate-

gory Db(X) itself. On the level of derived categories of quasicoherent sheaves, the
inclusion DS,qc(X) ⊂ Dqc(X) always admits a right adjoint RΓS. However for

F
�

∈ Db(X), the object RΓS(F
�

) no longer has coherent cohomology.
Our main observation, which holds assuming Property (A), is that for F

�

∈
Db(X), it is possible, informally speaking, to keep only the piece of RΓS(F

�

)
whose homology has weight ≥ w, and that this new object β≥wRΓS(F

�

) has
bounded coherent cohomology. Thus we construct a right adjoint to the inclu-
sion Db

S(X)≥w ⊂ Db
S(X), and dually we construct a left adjoint for the inclusion of

Db
S(X)<w.

It follows that if we define Gw ⊂ Db(X) to be the right orthogonal to Db
S(X)≥w

and left orthogonal to Db
S(X)<w, then there is a 3-term semiorthogonal decompo-

sition

Db(X) = 〈Db
S(X)<w,Gw,D

b
S(X)≥w〉.

The Quantization Theorem, Theorem 3.29, says precisely that Gw is mapped fully-
faithfully to Db(V) under restriction, and in fact the restriction functor gives an

isomorphism Gw ≃ Db(V).

3.1. Quasicoherent sheaves on S. Recall the structure of a KN stratum (3) and
the associated parabolic subgroup (2). By Property (S1), S := S/G ≃ Y/P via the
P -equivariant inclusion Y ⊂ S, so we will identify quasicoherent sheaves on S with
P -equivariant quasicoherent OY -modules. Furthermore, we will let P act on Z via
the projection P → L. Again by Property (S1), we have Y/P = Spec

Z
(A)/P ,

where A is a coherently generated graded OZ-algebra with Ai = 0 for i > 0, and
A0 = OZ . Thus we have identified quasicoherent sheaves on S with P -equivariant
quasicoherent A-modules on Z′ := Z/P .
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Remark 3.3. The stack Z := Z/L is perhaps more natural than the stack Z′. The
projection π : Y → Z intertwines the respective P and L actions via P → L, hence
we get a projectionS → Z. Unlike the mapS → Z′, this projection admits a section
Z/L → Y/P . In other words, the projection A → A0 = OZ is L-equivariant, but
not P -equivariant. We choose to work with Z′, however, because the map S → Z

is not representable, so the description of quasicoherent sheaves on S in terms of
“quasicoherent sheaves on Z with additional structure” is less straightforward.

We will use the term OZ′ -module to denote a quasicoherent sheaf on the stack
Z′ = Z/P . λ fixes Z, so P -equivariant OZ-modules have a natural grading by the
weight spaces of λ, and we will use this grading often.

Lemma 3.4. For any F ∈ QCoh(Z′) and any w ∈ Z, the OZ-submodule F≥w :=
∑

i≥w Fi of sections of weight ≥ w with respect to λ is P -equivariant.

Proof. λ(Gm) commutes with L, so F≥w is an equivariant submodule with respect
to the L action. Because U ⊂ P acts trivially on Z, the U -equivariant structure on
F is determined by a coaction a : F → k[U ] ⊗ F , which is equivariant for the Gm

action. We have

a(F≥w) ⊂ (k[U ]⊗ F )≥w =
⊕

i+j≥w

k[U ]i ⊗ Fj ⊂ k[U ] ⊗ F≥w.

The last inclusion is due to the fact that k[U ] is nonpositively graded, and it implies
that F≥w is equivariant with respect to the U action as well. Because we have a
semidirect product decomposition P = UL, it follows that F≥p is an equivariant
submodule with respect to the P action. �

Remark 3.5. This lemma is a global version of the observation that for any P -
moduleM , the subspaceM≥w with weights≥ w with respect to λ is a P -submodule,
which can be seen from the coaction M → k[P ] ⊗ M and the fact that k[P ] is
nonnegatively graded with respect to λ.

It follows that any F ∈ QCoh(Z′) has a functorial factorization F≥w →֒ F ։

F<w. Note that as Gm-equivariant instead of P -equivariant OZ -modules there is
a natural isomorphism F ≃ F≥w ⊕ F<w. Thus the functors (•)≥w and (•)<w are
exact, and if F is locally free, then F≥w and F<w are locally free as well.

We define QCoh(Z′)≥w and QCoh(Z′)<w to be the full subcategories of QCoh(Z′)
consisting of sheaves supported in weight ≥ w and weight < w respectively. They
are both Serre subcategories, they are orthogonal to one another, (•)≥w is right
adjoint to the inclusion QCoh(Z′)≥w ⊂ QCoh(Z′), and (•)<w is left adjoint to the
inclusion QCoh(Z′)<w ⊂ QCoh(Z′).

Lemma 3.6. Any F ∈ QCoh(Z′)<w admits an injective resolution F → I0 →
I1 → · · · such that Ii ∈ QCoh(Z′)<w. Likewise any F ∈ Coh(Z′)≥w admits a
locally free resolution · · · → E1 → E0 → F such that Ei ∈ Coh(Z′)≥w.

Proof. First assume F ∈ QCoh(Z′)<w, and let F → I0 be the injective hull of F
in QCoh(Z′).8 Then I0

≥w ∩F<w = 0, and hence I0
≥w = 0 because I0 is an essential

extension of F . QCoh(Z′)<w is a Serre subcategory, so I0/F ∈ QCoh(Z′)<w as
well, and we can inductively build an injective resolution with Ii ∈ QCoh(Z′)<w.

8The injective hull exists because QCoh(Z′) is cocomplete and taking filtered colimits is exact.
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Next assume F ∈ Coh(Z′)≥w. Choose a surjection E → F where E is locally
free. Then E0 := E≥w is still locally free, and E≥w → F is still surjective. Because
Coh(Z′)≥w is a Serre subcategory, ker(E0 → F ) ∈ Coh(Z′)≥w as well, so we can
inductively build a locally free resolution with Ei ∈ Coh(Z′)≥w. �

We will use this lemma to study the subcategories of Db(Z′) generated by
Coh(Z′)≥w and Coh(Z′)<w. Define the full triangulated subcategories, where ?
can denote either −,+, b, or blank:

D?(Z′)≥w = {F
�

∈ D?(Z′)|Hi(F
�

) ∈ QCoh(Z′)≥w for all i},

D?(Z′)<w = {F
�

∈ D?(Z′)|Hi(F
�

) ∈ QCoh(Z′)<w for all i}.

For any complex F
�

we have the canonical short exact sequence

(8) 0 → F
�

≥w → F
�

→ F
�

<w → 0.

If F
�

∈ Db(Z′)≥w, then the first arrow is a quasi-isomorphism, because (•)≥w is

exact. Likewise for the second arrow if F
�

∈ Db(Z′)<w. Thus F
�

∈ Db(Z′)≥w iff it is

quasi-isomorphic to a complex of sheaves in Coh(Z′)≥w, and likewise for Db(Z′)<w.

Proposition 3.7. These subcategories constitute a baric decomposition

Db(Z′) = 〈Db(Z′)<w,D
b(Z′)≥w〉.

This baric decomposition is multiplicative in the sense that

Perf(Z′)≥w ⊗Db(Z′)≥v ⊂ Db(Z′)≥v+w.

It is bounded, meaning that every object lies in D≥w ∩ D<v for some w, v. The

baric truncation functors, the adjoints of the inclusions D≥w,D<w ⊂ Db(Z′), are
exact.

Proof. If A ∈ Coh(Z′)≥w and B ∈ Coh(Z′)<w, then by Lemma 3.6 we resolve B

by injectives in QCoh(Z′)<w, and thus RHom(A,B) ≃ 0. It follows that Db(Z′)≥w

is left orthogonal to Db(Z′)<w. QCoh(Z′)≥w and QCoh(Z′)<w are Serre subcate-

gories, so F
�

≥w ∈ Db(Z′)≥w and F
�

<w ∈ Db(Z′)<w for any F
�

∈ Db(Z′). Thus the

natural sequence (8) shows that we have a baric decomposition and that the right
and left truncation functors are the exact functors (•)≥w and (•)<w respectively.
Boundedness follows from the fact that coherent equivariant OZ-modules must be
supported in finitely many λ weights. Multiplicativity is also straightforward to
verify. �

Remark 3.8. A completely analogous baric decomposition holds for Z as well. In
fact, for Z the two factors are mutually orthogonal.

⋆ ⋆ ⋆

Next we turn to the derived category of S. The closed immersion σ : Z →֒ Y is
L equivariant, hence it defines a map of stacks σ : Z → S. Recall also that because
π : S → Z′ is affine, the derived push forward Rπ∗ = π∗ is just the functor which
forgets the A-module structure. Define the thick triangulated subcategories:

D?(S)<w = {F
�

∈ D?(S)|π∗F
�

∈ D(Z′)<w}, ? = −,+, b, or blank,

D?(S)≥w = {F
�

∈ D?(S)|Lσ∗F
�

∈ D−(Z)≥w}, ? = −, b.
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In the rest of this subsection we will analyze these two categories and show that
they constitute a multiplicative baric decomposition.

Proposition 3.9. Let S be a KN stratum such that π : Y → Z is flat. Then the
categories Db(S) = 〈Db(S)<w,D

b(S)≥w〉 constitute a multiplicative baric decom-
position, and the truncation functors satisfy

σ∗(β≥wF
�

) ≃ (σ∗F
�

)≥w and σ∗(β<wF
�

) ≃ (σ∗F
�

)<w.

The baric decomposition restricts to a bounded multiplicative baric decomposition
of Perf(S), and if Z →֒ Y has finite tor dimension, then the baric decomposition

on Db(S) is bounded as well.

Note that when Property (A) holds, then π : S → Z is flat and σ : Z →֒ Y
has finite tor dimension. We will prove the proposition after collecting several key
lemmas on the structure of the category D−(S).

Lemma 3.10. Any object F
�

∈ D−(S) admits a presentation as a right-bounded
complex of the form A⊗ E

�

, where Ei ∈ Coh(Z′) are locally free.

Proof. By the standard method of constructing resolutions by vector bundles, it
suffices to show that every object F ∈ Coh(S) admits a surjection from an object
of the form A ⊗ E with E ∈ Coh(Z′) locally free. Regarding F as a coherent A-
module on Z and forgetting the A-module structure, F is a union of its coherent
OZ′ -submodules F ′ ⊂ F [2]. Thus F is a union of the coherent A-submodules
A · F ′, and because F is coherent and A is Noetherian, one must have F = A · F ′

for some coherent OZ′ -submodule F ′. Finally we choose a surjection E → F ′ from
a locally free sheaf on Z′, and it follows that A⊗ E → F is surjective. �

Complexes on S of the form A⊗E
�

, where each Ei is a locally free sheaf on Z′,
will be of prime importance. Note that the differential di : A⊗ Ei → A⊗ Ei+1 is
not necessarily induced from a differential Ei → Ei+1. However we observe

Lemma 3.11. If E ∈ QCoh(Z′), then A · (A ⊗ E)≥w = A ⊗ E≥w, where the left
side denotes the smallest A-submodule containing the OZ-submodule (A⊗ E)≥w.

Proof. By definition the left-hand side is theA-submodule generated by
⊕

i+j≥w Ai

⊗Ej and the right-hand side is generated by
⊕

j≥w A0 ⊗ Ej ⊂ A ⊗ E≥w. These
OZ-submodules clearly generate the same A-submodule. �

This guarantees that di(A⊗Ei
≥w) ⊂ A⊗Ei+1

≥w , so A⊗E
�

≥w is a subcomplex and
E≥w is a direct summand as a nonequivariant OZ -module, so we have a canonical
short exact sequence of complexes in QCoh(S):

(9) 0 → A⊗ E
�

≥w → A⊗ E
�

→ A⊗ E
�

<w → 0.

We observe the following extension of Nakayama’s lemma to the derived category.

Lemma 3.12 (Nakayama). If F
�

∈ D−(S) and Lσ∗F
�

≃ 0, then F
�

≃ 0.

Proof. The natural extension of Nakayama’s lemma to stacks is the statement that
the support of a coherent sheaf is closed. In our setting this means that if G ∈
Coh(S) and G⊗OZ = 0, then G = 0, because supp(G)∩Z = ∅ and every nonempty
closed substack of S intersects Z nontrivially.

If Hr(F
�

) is the highest nonvanishing cohomology group of a right bounded
complex, then Hr(Lσ∗F

�

) ≃ σ∗Hr(F
�

). By Nakayama’s lemma σ∗Hr(F
�

) = 0 ⇒
Hr(F

�

) = 0, so we must have σ∗Hr(F
�

) �= 0 as well. �
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With this we can explicitly characterize the category D−(S)≥w:

Lemma 3.13. F
�

∈ D−(S)≥w iff it is quasi-isomorphic to a right-bounded complex
of sheaves of the form A⊗ Ei with Ei ∈ Coh(Z′)≥w locally free.

Proof. We assume that Lσ∗F
�

∈ D−(Z)≥w. Choose a right-bounded presentation
by locally free sheaves A⊗ E

�

≃ F
�

and consider the canonical sequence (9).
Restricting to Z gives a short exact sequence 0 → E

�

≥w → E
�

→ E
�

<w → 0. The

first and second terms have homology in Coh(Z)≥w, and the third has homology in
Coh(Z)<w. These two categories are orthogonal, so it follows from the long exact
homology sequence that E

�

<w is acyclic. Thus by Nakayama’s lemma A ⊗ E
�

<w is
acyclic and F

�

≃ A⊗ E
�

≥w. �

Using this characterization of D−(S)≥w we have semiorthogonality:

Lemma 3.14. For all F
�

∈ D−(S)≥w and G
�

∈ D+
qc(S)<w, we have

RHomS(F
�

, G
�

) = 0.

Proof. By Lemma 3.13 it suffices to prove the claim for F
�

= A ⊗ E with E ∈
Coh(Z′)≥w locally free. Then A ⊗ E ≃ Lπ∗E, and the derived adjunction gives
RHomS(Lπ∗E,G

�

) ≃ RHomZ′(E,Rπ∗G
�

). π is affine, so Rπ∗G
�

≃ π∗G
�

∈
D+

qc(Z
′)<w. The claim follows from the fact that QCoh(Z′)≥w is left orthogonal

to D+
qc(Z

′)<w. �

Remark 3.15. The category of coherent OS-modules whose weights are < w is a
Serre subcategory of Coh(S) generating Db(S)<w, but there is no analogue for

Db(S)≥w. For instance, when G is abelian there is a short exact sequence 0 →
A<0 → A → OZ → 0. This nontrivial extension shows that RHomS(OZ ,A<0) �=
0, even though OZ has nonnegative weights.

Every F ∈ Coh(S) has a highest weight subsheaf, F≥h, when regarded as an
equivariant OZ-module, where by definition F≥h �= 0 but F≥w = 0 for w > h.
Furthermore, because A<0 has strictly negative weights the map

(F )≥h → (F ⊗OZ)≥h

is an isomorphism of L-equivariant OZ -modules. Using the notion of highest weight
submodule we prove

Lemma 3.16. Let A⊗E
�

∈ Db(S) be a right-bounded complex as above. Assume
that either of the following holds:

• Z is smooth;
• π : S → Z′ is flat.

Then A⊗E
�

≥w and A⊗E
�

<w have bounded cohomology. If A⊗E
�

is perfect, then

so are A⊗ E
�

≥w and A⊗ E
�

<w.

Proof. First we show that for W sufficiently large, A⊗ E
�

≥W ≃ 0. By Nakayama’s

lemma and the fact that A ⊗ E
�

has bounded cohomology, it suffices to show
(Lσ∗F )≥W ≃ 0 for any F ∈ Coh(S), and this follows by constructing a resolution
of F by vector bundles whose weights are ≤ the highest weight of F .

Now assume that A ⊗ E
�

≥w+1 ∈ Db(S). It follows from the sequence (9) that

A⊗E
�

<w+1 has bounded cohomology. Applying (9) to the complex A⊗E
�

≥w gives

0 → A⊗ E
�

≥w+1 → A⊗ E
�

≥w → A⊗ E
�

w → 0,
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where E
�

w denotes the subquotient of E
�

concentrated in weight w. In order to

show that A⊗ E
�

≥w ∈ Db(S), it suffices to show that A⊗ E
�

w ∈ Db(S).

The differential for the complex A ⊗ E
�

w is uniquely determined by the P -
equivariant maps of OZ-modules di : Ei

w → A⊗ Ei+1
w , which must factor through

Ei+1
w ⊂ A ⊗ Ei+1

w because that is precisely the subsheaf of weight w. It follows
that E

�

w, the highest weight subsheaves of A ⊗ E
�

<w+1, are a subcomplex as P -
equivariant OZ-modules, and A⊗E

�

w = Lπ∗(E
�

w). Furthermore, E
�

w is a summand
of A⊗E

�

as nonequivariant OZ -modules and thus has bounded cohomology. If we
assume that π : S → Z′ is flat, then it follows that Lπ∗(E

�

w) ∈ Db(S) as well.
Under the hypothesis that Z is smooth, we modify the previous argument slightly.

If Z is smooth, then so is Z′, so the complex E
�

w is actually in Perf(Z′). It follows that
A⊗ E

�

w = Lπ∗(E
�

w) is perfect as well, and in particular has bounded cohomology.
If A⊗E

�

is a right bounded complex, then E
�

= OZ ⊗A (A⊗E
�

), regarded as
a complex of L-equivariant OZ-modules, is precisely σ∗(A ⊗ E

�

). The final claim
in the lemma regarding perfect complexes follows from two observations: 1) the

baric truncation functors on Db(Z) preserve perfect complexes, and 2) F
�

∈ Db(S)
is perfect if and only if σ∗F

�

is perfect. To prove the second claim, note that an
object in D−(S) is perfect if and only if its pullback to Y/L is perfect. Furthermore,

if F
�

∈ Db(Y/L) and F
�

|Z is perfect, then F
�

is perfect in an L-equivariant open
neighborhood of Z, and the only such open subset is all of Y . �

Proof of Proposition 3.9. Lemma 3.14 implies Db(S)≥w is left orthogonal to G
�

∈

Db(S)<w. In order to obtain baric truncations for F
�

∈ Db(S), we choose a
presentation of the form A ⊗ E

�

with E
�

∈ Coh(Z′) locally free. The canonical
short exact sequence (9) gives an exact triangle A ⊗ E

�

≥w → F
�

→ A⊗ E
�

<w ���.
By Lemma 3.16 all three terms have bounded cohomology, thus our truncations are
β≥wF

�

= A⊗E
�

≥w and β<wF
�

= A⊗E
�

<w. The claim about the restrictions σ∗β≥w

and σ∗β<w follows from the observation that applying the functor σ∗ ≃ OZ ⊗A (•)
to the sequence (9) gives the sequence (8) for σ∗F

�

.
If F

�

∈ Perf(S), then by Lemma 3.16 so are β≥wF
�

and β<wF
�

. The multi-

plicativity of Db(S)≥w follows from the fact that Db(Z)≥w is multiplicative and the
fact that Lσ∗ respects derived tensor products.

Every M ∈ Coh(S) has a highest weight space, so M ∈ Db(S)<w for some w.

This implies that any F
�

∈ Db(S) lies in Db(S)<w for some w. The analogous

statement for Db(S)≥w is false in general, but if F
�

∈ Db(S) is such that σ∗F
�

is cohomologically bounded, then F
�

∈ Db(S)≥w for some w. The boundedness
properties follow from this observation. �

Combining the fact that σ∗β≥w ≃ (σ∗(•))≥w and σ∗β<w ≃ (σ∗(•))<w with
Nakayama’s lemma, Lemma 3.12, gives the following:

Corollary 3.17. Let S be a KN stratum such that π : Y → Z is flat, and let
F
�

∈ Db(S). Then F
�

∈ Db(S)≥w if and only if σ∗(F
�

) ∈ D−(Z)≥w, and F
�

∈

Db(S)<w if and only if σ∗ D−(Z)<w.

It is useful to have a more flexible method of computing the truncations β≥w

and β<w, as well as a more explicit description of the category

Db(S)w := Db(S)≥w ∩Db(S)<w+1.
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Amplification 3.18. Let S be a KN stratum such that π : Y → Z is flat. For any
F
�

∈ Db(S), β≥wF
�

and β<wF
�

can be computed from a presentation F
�

≃ A⊗E
�

with Ei ∈ Coh(Z′) coherent but not necessarily locally free. Furthermore, regarding

π as the morphism S → Z, the pullback functor π∗ : Db(Z)w → Db(S)w is an
equivalence. Thus if σ : Z →֒ Y has finite tor dimension, we have an infinite
semiorthogonal decomposition

Db(S) = 〈. . . ,Db(Z)w,D
b(Z)w+1, . . .〉.

Proof. For E ∈ Coh(Z′), Corollary 3.17 implies that A⊗E ∈ Db(S)≥w if and only
if E ∈ Coh(Z′)≥w, and likewise for < w. Thus

A⊗ E
�

≥w → F
�

→ A⊗ E
�

<w ���

is an exact triangle exhibiting F
�

as an extension of an object in D−(S)<w by an
object of D−(S)≥w. It follows that the morphism β≥wF

�

→ F
�

factors uniquely
through A⊗E

�

≥w. Furthermore, σ∗β≥wF
�

→ σ∗(A⊗E
�

≥w) is an equivalence, so it

it follows from Lemma 3.12 that β≥wF
�

→ A⊗ E
�

≥w is an equivalence, and hence

β<wF
�

≃ A⊗ E
�

<w.
In fact for any coherent A-module M there is a coherent E ∈ Coh(Z′) and a

surjection A⊗E ։ M which is an isomorphism on highest weight subsheaves, and
one can use this fact to construct a presentation of this form in which Ei

≥w = 0 for

i ≪ 0. So in fact β≥wF
�

is equivalent to a finite complex of the form A⊗ E
�

≥w.

Regarding σ as a morphism Z → S, the functor (σ∗(•))≥w is the inverse to

π∗ : Db(Z)w → Db(S)w. Because σ is a section of π, we have a canonical map

(σ∗π∗(E
�

))≥w → E
�

which is an isomorphism for E
�

∈ Db(Z)w. Furthermore, for
any object of the form F = A⊗ E with E ∈ Coh(Z)w, we have

π∗((σ∗F
�

)≥w) ≃ π∗E ≃ F
�

.

It follows that π∗ is fully faithful on Coh(Z)w. By the previous paragraph, objects

of the form A⊗E with E ∈ Coh(Z)w generate Db(S)w as a triangulated category,
so π∗ is an equivalence. The existence of an infinite semiorthogonal decomposition
follows formally from the existence of a bounded baric decomposition. �

Remark 3.19. The baric decomposition of Proposition 3.9 extends uniquely to a
baric decomposition

Dqc(S) = 〈Dqc(S)<w,Dqc(S)≥w〉.

The category Dqc(S)<w can still be described as those F
�

∈ Dqc(S) such that
Hp(F

�

) has weight < w for all i. However, there are objects F
�

�= 0 for which
σ∗F

�

= 0, so σ∗ can no longer be used to characterize Dqc(S)≥w and Dqc(S)<w.

The baric decomposition of Dqc(S) follows from the fact that the stack S is
perfect in the sense of [5], so we can apply a general fact about compactly generated
categories.

Lemma 3.20. Let T be a cocomplete triangulated category which is the homotopy
category of a pre-triangulated dg-category, and let C ⊂ T c be a triangulated subcat-
egory of compact objects which generates T . If C = 〈A,B〉, then T = 〈Ā, B̄〉, where
Ā (resp. B̄) denotes the smallest cocomplete triangulated subcategory containing A
(resp. B). The projection functors onto Ā and B̄ commute with colimits.
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Proof. By Brown-Neeman representability B̄ is right admissible, so we have T =
〈B̄⊥, B̄〉. A lies in B̄⊥ because A ⊂ T c, and it generates because A and B together
generate T .

If we let M = lim−→Mα, then by the functoriality of homotopy colimits we can

form the exact triangle

lim−→ iRB̄Mα → M → lim−→ iLĀMα,

where iR
B̄

and iL
Ā

denote the right and left adjoints of the respective inclusions

of subcategories. The first term lies in B̄ and the third term lies in Ā, so using
the semiorthogonal decomposition of T we have canonical isomorphisms iL

Ā
M ≃

lim
−→

iL
Ā
Mα, and likewise for iR

B̄
M . �

3.2. The cotangent complex and Property (L+). We review the construction
of the cotangent complex and prove the main implication of the positivity Property
(L+):

Lemma 3.21. If S →֒ X satisfies Property (L+) and F
�

∈ Db(S)≥w, then
Lj∗j∗F

�

∈ D−(S)≥w as well.

We can inductively construct a cofibrant replacement OS as an OX-module: a
surjective weak equivalence ϕ : B

�

։ OS from a sheaf of commutative dg-OX-
algebras such that B

�

≃ (S(E
�

), d), where S(E
�

) is the free graded commutative
sheaf of algebras on a graded sheaf ofOX-modules, E

�

, with Ei locally free and Ei =
0 for i ≥ 0. Note that the differential is uniquely determined by its restriction to E

�

,
and letting e be a local section of E

�

we decompose dB(e) = dB,−1(e)+dB,0(e)+· · · ,
where dB,i(e) ∈ S

i+1(E
�

).
We let Dqc(B

�

) and Dqc(OS) denote the homotopy categories of sheaves of qua-
sicoherent dg-modules over the respective sheaves of commutative dg-OX-algebras.
Because ϕ is a quasi-isomorphism, the pair of adjoint functors

(10) (•)⊗B
� OS : Dqc(B

�

) �� Dqc(OS) : ϕ∗��

are mutually inverse equivalences of categories, where ϕ∗ denotes the functor which
simply regards a dg-OS-module as a dg-B

�

-module via ϕ. It is evident that this
equivalence restricts to an equivalence of the full subcategories D− consisting of
complexes with coherent cohomology sheaves, vanishing in sufficiently high coho-
mological degree.

The B
�

-module of Kähler differentials is

B
� δ
−→ Ω1

B
�

/OX
= S(E

�

)⊗OX
E
�

with the universal closed degree 0 derivation over OX defined by δ(e) = 1 ⊗ e and
extended to all of B

�

by the Leibniz rule. The differential on Ω1
B
�

/OX
is uniquely

determined by its commutation with δ

d(1⊗ e) = δ(de) = 1⊗ dB,0(e) + δ(dB,2(e) + dB,3(e) + · · · ).

By definition

L
�

(S →֒ X) := OS ⊗B
� Ω1

B
�

/OX
≃ OS ⊗ E

�

,

where the differential is the restriction of d0.
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Proof of Lemma 3.21. For any M
�

∈ D−(S), the equivalence (10) implies that we
can find a unique (up to weak equivalence) B

�

-module of the form B
�

⊗OX
F
�

such
that OS ⊗B

� (B
�

⊗ F
�

) ≃ M
�

. Here we are assuming that each F i is a locally free
OX-module and F i = 0 for i ≫ 0. The differential on B

�

⊗ F
�

= S(E
�

) ⊗ F
�

is
determined by the Leibniz rule and the homomorphism of OX-modules d : F

�

→
B
�

⊗ F
�

.
Locally we can choose a trivialization of F i given by sections {fα} and trivial-

izations of F j for j > i given by sections {fβ}. We define the structure constants
gβα ∈ S(E

�

) by the formula

(11) d(1⊗ fα) =
∑

gβα ⊗ fβ,

where gβα ∈ Bi−j for fβ ∈ F j . From this we see that OS ⊗B
� (B

�

⊗F
�

) is precisely
the complex F

�

|S, where the differential is d(fα) =
∑

ϕ(gβα)fβ . Thus up to quasi-
isomorphism we may assume that M

�

= F
�

|S with this differential.
We can regard j∗(M

�

) as the complex OS ⊗OX
F
�

with an appropriate differ-
ential, and the canonical map B

�

⊗ F
�

→ OS ⊗ F
�

is a right-bounded resolution
of the latter by locally free OX-modules (this expresses the fact that the unit of
adjunction of (10) is a quasi-isomorphism). It follows that

Lj∗j∗(M
�

) ≃ OS ⊗OX
(B

�

⊗ F
�

) ≃ S(E
�

)⊗ F
�

|S.

As before the differential is determined, via the Leibniz rule, from its restriction to
F
�

= S0(E
�

)⊗ F
�

. Choosing local trivializations as above, the differential is given
by the same formula (11), where the right-hand side is interpreted as an element of
S(E

�

)⊗ F
�

|S. We let P
�

= S(E
�

)⊗ F
�

|S ∈ D−(S) denote this complex.
Note that dB,−1 = 0 after restricting to S, so the differential on P

�

satisfies

d(Si(E
�

)⊗ F
�

|S) ⊂
⊕

j≥i

S
j(E

�

)⊗ F
�

|S.

Thus if we let Tz denote the endomorphism of P
�

which scales Si(E
�

)⊗ F
�

by zi,
the rescaled differential dz = Tz ◦ d ◦ Tz−1 is polynomial in z, and thus defines a
family, P

�

z , of complexes of OS-modules over A1 which is trivial over A1 − {0}, by
which we mean an element of D−(S × A1) such that all fibers away from 0 ∈ A1

are isomorphic to P
�

.
In order to prove the lemma, we must show that if M

�

|Z has λ-weights ≥ w,
then so does P

�

|Z = P
�

1 |Z. We observe that setting z = 0, the differential on P
�

z is
precisely the differential on the tensor product complex, so

P
�

0 ≃ S(L
�

S/X)⊗M
�

.

By hypothesis L
�

S/X|Z → (L
�

S/X|Z)≥0 is a weak equivalence, so SZ(L
�

S/X|Z) →

SZ((L
�

S/X|Z)≥0) is a weak equivalence with a complex of locally free sheaves gen-

erated in nonnegative weights. Thus assuming (M
�

|Z)<w = 0 we have

(P
�

0 |Z)<w ≃ (S(L
�

S/X|Z)≥0 ⊗ (M
�

|Z))<w ∼ 0.

Because P
�

z |Z ∈ D−(A1 × Z), semicontinuity implies that (P
�

z |Z)<w = 0 for all
z ∈ A1, and the lemma follows. �
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3.3. Koszul systems and cohomology with supports. We recall some prop-
erties of the right derived functor of the subsheaf with supports functor RΓS(•).
It can be defined by the exact triangle RΓS(F

�

) → F
�

→ i∗(F
�

|V) ���, and it
is the right adjoint of the inclusion DS,qc(X) ⊂ Dqc(X). It is evident from this

exact triangle that if F
�

∈ Db(X), then RΓS(F
�

) is still bounded, but no longer
has coherent cohomology. On the other hand the formula

(12) RΓS(F
�

) = lim
−→

Hom(OX/I
i
S, F

�

)

shows that the subsheaf with supports is canonically a colimit of coherent com-
plexes.

We will use a more general method of computing the subsheaf with supports
similar to the Koszul complexes which can be used in the affine case.

Lemma 3.22. Let X = X/G, where X is quasiprojective scheme with a linearizable
action of an algebraic group G, and let S ⊂ X be a KN stratum. Then there
is a direct system K

�

0 → K
�

1 → · · · in Perf(X)[0,N ] along with compatible maps
K

�

i → OX such that

(1) H∗(K
�

i ) is supported on S.
(2) lim

−→
(K

�

i ⊗ F
�

) → F
�

induces an isomorphism lim
−→

(K
�

i ⊗ F
�

) ≃ RΓS(F
�

).

(3) Cone(K
�

i → K
�

i+1)|Z ∈ Db(Z)<wi
where wi → −∞ as i → ∞.

We will call such a direct system a Koszul system for S ⊂ X

Proof. First assume X is smooth in a neighborhood of S. Then OX/Ii
S is perfect,

so (12) implies that the derived duals K
�

i = (OX/Ii
S)∨ satisfy properties (1) and

(2) with K
�

i → OX the dual of the map OX → OX/I
i
S. We compute the mapping

cone
Cone(K

�

i → K
�

i+1) =
(
Ii
S/Ii+1

S

)∨
=
(
j∗(S

i(N∨
SX))

)∨
,

where the last equality uses the smoothness of X and S. Because Property (L+)
is automatic for smooth X, it follows from Lemma 3.21 that Lj∗j∗(S

i(N∨
SX)) ∈

Db(S)≥i, hence Cone(K
�

i → K
�

i+1) has weights ≤ −i, and the third property
follows.

If X is not smooth in a neighborhood of S, then by hypothesis we have a G-
equivariant closed immersion φ : X →֒ X ′ and closed KN stratum S′ ⊂ X ′ such
that S is a connected component of S′ ∩ X and X ′ is smooth in a neighborhood
of S′. Then we let K

�

i ∈ Perf(X) be the restriction of Lφ∗(OX′/Ii
S′)∨. These

K
�

i still satisfy the third property. The canonical morphism lim
−→

(K
�

i ⊗ F
�

) →

RΓS′∩XF
�

is an isomorphism because its push forward to X′, lim
−→

φ∗(K
�

i ⊗ F
�

) →
φ∗RΓS′∩X(F

�

) = RΓS′φ∗F
�

, is an isomorphism. Thus the K
�

i form a Koszul
system for S′ ∩ X. Because S is a connected component of S′ ∩ X, the complexes
RΓSK

�

i form a Koszul system for S. �

We note an alternative definition of a Koszul system, which will be useful below.

Lemma 3.23. Property (3) of a Koszul system is equivalent to the property that
for all w,

Cone(K
�

i → OX)|Z ∈ Db(Z)<w for all i ≫ 0.

Proof. Let us denote C
�

i := Cone(K
�

i → OX). By the octahedral axiom we have
an exact triangle

(13) C
�

i [−1] → C
�

i+1[−1] → Cone(K
�

i → K
�

i+1) ��� .
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So the property stated in this Lemma implies property (3) of the definition of a
Koszul system.

Conversely, let K
�

i be a Koszul system for S ⊂ X. We have an exact triangle
lim
−→

K
�

i → OX → lim
−→

C
�

i ���, which in light of the isomorphism RΓSOX ≃ lim
−→

K
�

i

implies that lim
−→

C
�

i ≃ i∗OV. Combining this with Remark 3.19 and Lemma 3.20
we have

0 = β≥wj
∗ lim
−→

C
�

i ≃ lim
−→

β≥wj
∗C

�

i .

On the other hand the exact triangle (13) shows that β≥wj
∗C

�

i → β≥wj
∗C

�

i+1 is
an isomorphism for i ≫ 0. It follows that for i ≫ 0, β≥wj

∗C
�

i = 0, and hence

j∗C
�

i ∈ Db(S)<w. �

3.4. Quasicoherent sheaves with support on S, and the quantization the-
orem. We turn to the derived category Db

S(X) of coherent sheaves on X with

set-theoretic support on S. We will extend the baric decomposition of Db(S) to

a baric decomposition of Db
S(X). Using this baric decomposition we will prove a

generalization of the quantization commutes with reduction theorem, one of the
results which motivated this work.

Definition 3.24. We define the thick triangulated subcategories of Dqc(X):

D?(X)≥w := {F
�

∈ D?(X)|Lj∗F
�

∈ D−(S)≥w}, ? = b or −,

D?(X)<w := {F
�

∈ D?(X)|Rj!F
�

∈ D+(S)<w}, ? = b or + .

Futhermore we define D?
S(X)≥w := DS(X) ∩ D?(X)≥w and D?

S(X)<w := DS(X) ∩

D?(X)<w.

Proposition 3.25. Let S ⊂ X be a KN stratum satisfying Properties (A) and
(L+). There is a bounded multiplicative baric decomposition

Db
S(X) = 〈Db

S(X)<w,D
b
S(X)≥w〉,

which is compatible with the baric decomposition of Db(S) in the sense that j∗β≥w ≃
β≥wj∗ and j∗β<w ≃ β<wj∗.

Proof. Let A,B ⊂ Db(X) be the full subcategories generated under cones and shifts

by j∗(D
b(S)≥w) and j∗(D

b(S)<w) respectively. By Lemma 3.21, Lj∗j∗(D
b(S)≥w)⊂

D−(S)≥w, and so Lemma 3.14 implies that B ⊂ A⊥. Consider the full subcategory

A ⋆ B ⊂ Db
S(X) consisting of those F

�

which admit triangles A
�

→ F
�

→ B
�

���

with A
�

∈ A and B
�

∈ B. The right orthogonality B ⊂ A⊥ implies that A ⋆ B is
triangulated as well.

For any F
�

∈Db(S) we have the exact triangle j∗β≥wF
�

→ j∗F
�

→ j∗β<wF
�

���,

so j∗ D
b(S) ⊂ A ⋆ B. But the smallest full triangulated subcategory containing

j∗ D
b(S) is Db

S(X), so we have a semiorthogonal decomposition Db
S(X) = 〈B,A〉.

Finally, using the adjunctions Lj∗ ⊣ j∗ and j∗ ⊣ Rj! we can give alternate charac-
terizations:

F
�

∈ A ⇔ RHom
�

X(F
�

, j∗G
�

) = 0, ∀G
�

∈ Db(S)<w

⇔ RHom
�

S(Lj∗F
�

, G
�

) = 0, ∀G
�

∈ Db(S)<w

⇔ Lj∗F
�

∈ D−(S)≥w.

A similar computation shows that B = Db
S(X)<w.
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The fact that the baric decomposition is multiplicative follows from the descrip-
tion of Db

S(X)≥w in terms of the λ-weights of Lσ∗F
�

∈ D−(Z). Boundedness follows
from the boundedness of the baric decomposition of Proposition 3.9 and the fact
that j∗ D

b(S) generates Db
S(X) under shifts and cones. �

Remark 3.26 (Baric truncation functors are right t-exact). By construction the

baric truncation functors on Db(S) are right t-exact. It follows that for F
�

∈
Db(S)≤0,

β≥wj∗F
�

:= j∗β≥wF
�

∈ Db
S(X)≤0,

and β<wj∗F
�

∈ Db
S(X)≤0 as well. Furthermore, Db

S(X)≤0 is the smallest subcate-

gory of Db(X) which contains j∗(D
b(S)≤0) and is closed under extensions. It follows

that β≥w and β<w are right t-exact on the category Db
S(X).

The following is an extension to our setting of an observation which appeared in
[4], following ideas of Kawamata [17]. There the authors described semiorthogonal
factors appearing under VGIT in terms of the quotient Z/L′.

Amplification 3.27. Define Db
S(X)w := Db

S(X)≥w ∩ Db
S(X)<w+1. If the weights

of L
�

S/X |Z are strictly positive, then j∗ : Db(S)w → Db
S(X)w is an equivalence with

inverse β<w+1Lj
∗(F

�

).

Proof. This is a consequence of the proof of Lemma 3.21, which can be used to
show that for F ∈ Db(S)w the cone of the canonical morphism Lj∗j∗F

�

→ F
�

lies in D−(S)≥w+1. In that proof we showed that Lj∗j∗F
�

is a deformation of
S(L

�

S/X) ⊗ F
�

. Using the same construction one can check that the counit of

adjunction, Lj∗j∗M → M , is a deformation of the augmentation map, S(L
�

S/X)⊗

F
�

→ OS ⊗OS
F
�

= F
�

. By hypothesis, Cone(S(L
�

S/X) → OS) ∈ D−(S)≥1, so

Cone(S(L
�

S/X)⊗ F
�

→ F
�

) ∈ D−(S)≥w+1,

and the claim follows from semicontinuity as in the proof of Lemma 3.21. �

Corollary 3.28. If L
�

S/X |Z has strictly positive weights, then the baric decomposi-

tion of Proposition 3.25 can be refined to an infinite semiorthogonal decomposition

Db
S(X) = 〈. . . ,Db(Z)w−1,D

b(Z)w,D
b(Z)w+1,D

b(Z)w+2, . . .〉,

where the factors are the essential images of the fully faithful embeddings j∗π
∗ :

Db(Z)w → Db
S(X).

Next we will use the baric decomposition of Proposition 3.25 to generalize a
theorem of Teleman [26], which (for smooth X) identifies a weight condition on an
equivariant vector bundle V which implies that Hi(X,V)G ≃ Hi(Xss,V)G.

Theorem 3.29 (Quantization Theorem). Let S ⊂ X be a KN stratum satisfying
Properties (A) and (L+). Let F

�

∈ D−(X)≥w and G
�

∈ D+(X)<v with w ≥ v; then
the restriction map

RHomX(F
�

, G
�

) → RHomV(F
�

|V, G
�

|V)

to the open substack V = X \S is an isomorphism.

First we observe that the t-structure on D+
S(X) preserves the subcategory

D+
S(X)<w.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



896 DANIEL HALPERN-LEISTNER

Lemma 3.30. Let F
�

∈ D+
S(X); then the following are equivalent:

(1) F
�

∈ D+
S(X)<w,

(2) τ≤mF
�

∈ Db
S(X)<w for all m, and

(3) Hm(F
�

) ∈ Db
S(X)<w for all m.

Proof. It is clear that (3) ⇒ (2) ⇒ (1), so we must show that (1) ⇒ (3). If Hp(F
�

)
is the lowest nonvanishing homology sheaf, then we have an exact triangle

Hp(F
�

)[−p] → F
�

→ τ>pF
�

���,

so by an inductive argument it suffices to show that Hp(F
�

) ∈ Db
S(X)<w. By

Remark 3.26, we have that β≥wHp(F
�

)[−p] ∈ Db
S(X)≤p. It follows that

Hom(β≥wH
p(F

�

)[−p],Hp(F
�

)[−p]) → Hom(β≥wH
p(F

�

)[−p], F
�

)

is an isomorphism.
The object β≥wHp(F

�

)[−p] lies in the category generated by j∗ D
b(S)≥w, so

the adjunction j∗ ⊣ j! and the hypothesis that j!F
�

∈ D+(S)<w implies that
Hom(β≥wHp(F

�

)[−p], F
�

) = 0. This in turn implies that the canonical map
β≥wHp(F

�

)[−p] → Hp(F
�

)[−p] is the zero map. This cannot happen unless

β≥wHp(F
�

) = 0, or in other words Hp(F
�

) ∈ Db
S(X)<w. �

Proof of Theorem 3.29. This is equivalent to the vanishing ofRΓS(RHomX(F
�

, G
�

)).
By the formula

Rj!HomX(F
�

, G
�

) ≃ HomS(Lj∗F
�

, Rj!G
�

)

it suffices to prove the case where F
�

= OX , i.e., showing that RΓS(G
�

) = 0
whenever G

�

∈ D+(X)<0.

Lemma 3.22 provides a system K1 → K2 → · · · of perfect complexes in Db
S(X)<1

such that

RΓS(G
�

) = lim−→RΓ(K
�

i ⊗G
�

) ≃ lim−→
i,m

RΓ(τ≤m(K
�

i ⊗G
�

)),

so it suffices to prove the vanishing for each term in the colimit. We have

j!(K
�

i ⊗G
�

) = j∗(K
�

i )⊗ j!G
�

,

so K
�

i ⊗ G
�

∈ D+
S(X)<0. Lemma 3.30 implies that τ≤m(Ki ⊗ G

�

) ∈ Db
S(X)<0 for

all m. Finally, the category Db
S(X)<0 is generated by objects of the form j∗F

�

with

F
�

∈ Db(S)<0, and thus RΓ(F
�

) = 0 for all F
�

∈ Db
S(X)<0. �

3.5. Alternative characterizations of Db(X)<w. Both the categories Db(X)<w

and Db
S(X)<w involve the condition j!F

�

∈ D+(S)<w. In practice, it is convenient
to have alternative ways of describing this condition which explicitly only depend
on F

�

in a neighborhood of Z.
When S satisfies Property (A), σ : Z → S has finite tor dimension, so σ∗j! maps

Db(X) to the full subcategory D+(Z) ⊂ Dqc(Z). If we use j to also denote the closed
immersion j : S/L → X/L, then the diagram

(14) D+(X/G)
j!

��

��

D+(S/G)

��

σ∗

��▼
▼▼

▼
▼
▼
▼
▼
▼▼

▼

D+(X/L)
j!

�� D+(S/L)
σ∗

�� Dqc(Z/L)
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canonically commutes. Thus σ∗j! canonically factors through the pullback func-
tor Db(X) → Db(X/L), which is the forgetful functor regarding a G-equivariant
complex as an L-equivariant complex.

We will introduce a slight abuse of notation and use σ! to denote the composition

(15) σ! : Db(X) → Db(X/L)
Hom(OZ,•)
−−−−−−−→ D+(Z).

Note that this is not the right adjoint of σ∗ : D+(Z) → D+(X), as σ : Z → X is not
a closed immersion. However, it has many of the same formal properties, such as
the formula σ!(K

�

⊗ F
�

) ≃ σ∗(K
�

)⊗ σ!(F
�

) for K
�

∈ Perf(X).

Proposition 3.31. Let F
�

∈ Db(X) and assume that S satisfies Property (A).
Then the following are equivalent:

(1) σ!F
�

∈ D+(Z)<w+a,
(2) σ∗j!F

�

∈ D+(Z)<w,
(3) j!F

�

∈ D+(S)<w,

where we define the integer

(16) a := weightλ det(NZY ) + weightλ det(gλ<0).

Before we prove this proposition, we prove the following.

Lemma 3.32. If S satisfies Property (A), then for F
�

∈ Db(X),

(17) σ!(F
�

) ≃ σ∗j!(F
�

)⊗ det(NZY )⊗ det(gλ<0)[−c],

where c is the codimension of Z →֒ S.

Proof. From the commutative diagram (14), it suffices to pass to X/L via the
forgetful functor, and thus we may regard σ! as the usual shriek-pullback for the
closed immersion Z/L → X/L.

Property (A) implies that Z →֒ Y is a regular embedding. Furthermore, Prop-
erty (S2) guarantees that Y ≃ P ×P Y →֒ S ≃ G ×P Y is a regular embedding
with normal bundle OY ⊗ gλ<0, where the P -equivariant structure is given by the
adjoint action of P on gλ<0 = g/g≥0. It follows that (17) holds, with σ∗ instead of
σ∗j!, as an isomorphism of functors D+(S/L) → D+(Z/L). The claim follows by

pre-composing with j! : Db(X/L) → D+(S/L). �

We also observe a dual form of Nakayama’s lemma:

Lemma 3.33. If F
�

∈ D+(S) and σ!F
�

≃ 0, then F
�

≃ 0.

Proof. For the moment consider F
�

to be an L-equivariant complex on S via the
forgetful functor. Let ωS be an L-equivariant dualizing complex on S and ωZ =
σ!ωS the corresponding dualizing complex on Z. We have that F

�

∈ D+(S/L) is
zero if and only if D(F

�

) ∈ D−(S/L) is zero. Furthermore, σ!F
�

≃ D(σ∗D(F
�

)),
so if σ!F

�

= 0, then σ∗
D(F

�

) = 0, and by Nakayama’s lemma, Lemma 3.12, each

homology sheaf of F
�

∈ Db(S/L) vanishes in a neighborhood of Z. Because each
Hi(F

�

) is actually a G-quivariant sheaf and S is the only G-equivariant open subset
containing Z, Hi(F

�

) = 0 for all i. �

Proof of Proposition 3.31. The equivalence between (1) and (2) follows immedi-
ately from formula (17) and the fact that expression (16) is the λ-weight of the
invertible sheaf det(NZY ) ⊗ det(gλ<0). To show that (2) is equivalent to (3) it
suffices to show that G

�

∈ D+(S) lies in D+(S)<w if and only if σ∗G
�

∈ Dqc(Z)<w.
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(3) ⇒ (2):
If G

�

∈ D+(S)<w, then

Hp(σ∗G
�

) ≃ Hp(σ∗τ≥pG
�

) ≃ lim
−→
m

Hp(σ∗τ≤mτ≥pG
�

).

This lies in QCoh(Z)<w because each τ≤mτ≥pG
�

∈ Db(S)<w and Dqc(Z)<w is

closed under colimits. As remarked above, Property (A) implies that σ∗G
�

∈ D+(Z)
as well.
(2) ⇒ (3):

Let G
�

∈ D+(S) and assume that σ∗G
�

∈ Dqc(Z)<w. Property (A) implies that
σ∗ has finite tor dimension, so σ∗τ≤mG

�

agrees with σ∗G
�

in low cohomological
degree relative to m. It follows that for any l > 0, we can choose m ≫ l such that

σ∗β≥wτ
≤mG

�

≃ β≥wσ
∗τ≤mG

�

∈ Db(S)≥l.

Consequently σ!β≥wτ
≤mG

�

∈ Db(Z)≥l−c, where c is the codimension of Z →֒ Y .

Lemma 3.33 implies that β≥wτ
≤mG

�

∈ Db(S)≥l−c.
Because we could have chosen l and m arbitrarily large, we have that for any

E
�

∈ Db(S)≥w,

Hom(E
�

, G
�

) ≃ Hom(E
�

, τ≤mG
�

) ≃ Hom(E
�

, β≥wτ
≤mG

�

) ≃ 0.

Finally, if G
�

∈ D+(S) and Hom(E
�

, G
�

) = 0 for all E
�

∈ Db(S)≥w, then
G
�

∈ D+(S)<w. To show this one proceeds inductively by showing that the lowest
homology sheaf of G

�

must lie in Coh(S)<w, or else it would receive a nonzero map
from A⊗ (Hmin(G

�

))h. �

Remark 3.34. The functors σ∗, σ! : Db(X/L) → D±(Z/L) commute with the forget-

ful functors Db(X/L) → Db(X/λ(Gm)) and D±(Z/L) → D±(Z/λ(Gm)). Therefore

assuming (A), an object F
�

∈ Db(X) lies in Db(X)<w (respectively Db(X)≥w) if
and only if when we forget all but the equivariance with respect to Gm, we have
σ∗F

�

∈ D−(Z/λ(Gm))≥w (respectively σ!F
�

∈ D+(Z/λ(Gm))<w+a).
One can even refine this to a pointwise criterion. Each point of Z defines a

morphism of stacks p : ∗/Gm → X. Using Nakayama’s lemma, Lemma 3.12, one

can show that F
�

∈ Db(X)≥w if and only if p∗F
�

∈ D−(∗/Gm)≥w for all points in
Z. Likewise we can define

p!(F
�

) := Hom
�

X(p∗k, F
�

|X/λ(Gm)) ∈ D+(∗/Gm)

for each point of Z, and using the dual form of Nakayama’s lemma, one can show
that F

�

∈ Db(X) lies in Db(X)<w if and only if p!(F
�

) ∈ D+(∗/Gm)<w+a for all
points in Z. We omit the proofs of these facts, as we will not explicitly use them
here.

3.6. Semiorthogonal decomposition of Db(X). In this section we construct the

semiorthogonal decomposition of Db(X) used to prove the categorical Kirwan sur-
jectivity theorem. We will prove:

Theorem 3.35. Let S ⊂ X be a closed KN stratum (Definition 2.2) satisfying

Properties (L+) and (A). Let Gw = Db(X)≥w ∩Db(X)<w. Then

Gw =

{

F
�

∈ Db(X)

∣
∣
∣
∣

λ-weights of H∗(σ∗F
�

) are ≥ w, and
λ-weights of H∗(σ!F

�

) are < w + a

}

,
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where a is defined as in (16). There are semiorthogonal decompositions

Db(X) = 〈Db
S(X)<w,Gw,D

b
S(X)≥w〉,

and the restriction functor i∗ : Db(X) → Db(V) induces an equivalence Gw ≃
Db(V), where V = X−S.

The first key observation is that if S ⊂ X is a KN stratum satisfying Property
(A), then for any F

�

∈ Db(X), the weights of σ∗F
�

are bounded below, and the
weights of σ!F

�

are bounded above.

Lemma 3.36. Let S ⊂ X be a KN stratum satisfying Property (A). Then

Db(X) =
⋃

v<w

(

Db(X)≥v ∩Db(X)<w

)

.

Proof. Let K
�

i be a Koszul system for S. Lemma 3.23 implies that for i ≫ 0 we

have that Cone(σ∗K
�

i → OZ)| ∈ Db(Z)<0. Because objects of Db(Z) decompose
canonically into a direct sum of weight spaces under the λ action, it follows that
OZ is actually a direct summand of σ∗K

�

i .

Now let F
�

∈ Db(X). Because K
�

i ⊗ F
�

is supported on S, it lies in Db
S(X)≥a ∩

Db
S(X)<b for some a and b because the baric decomposition of Db

S(X) is bounded.
This is equivalent to the weights of σ∗(K

�

i ⊗ F
�

) ≃ σ∗K
�

i ⊗ σ∗F
�

being bounded
below and, by Proposition 3.31, the weights of σ!(K

�

i ⊗ F
�

) ≃ σ∗K
�

i ⊗ σ!F
�

being
bounded above. Because OZ is a direct summand of σ∗K

�

i , it follows that the
weights of σ∗F

�

are bounded below and the weights of σ!F
�

are bounded above. �

Using this result, we explicitly construct right adjoints for each of the inclusions
Db

S(X)≥w ⊂ Db(X)≥w ⊂ Db(X).

Lemma 3.37. Let S ⊂ X be a KN stratum satisfying Property (A), and let K
�

i be

a Koszul system for S. Let F
�

∈ Db(X). Then for sufficiently large i the canonical
map

β≥w(K
�

i ⊗ F
�

) → β≥w(K
�

i+1 ⊗ F
�

)

is an equivalence. It follows that the complex

(18) β≥wΓS(F
�

) := lim
−→
i

β≥w

(
K

�

i ⊗ F
�)

lies in Db
S(X)≥w. The functor β≥wΓS, defined by (18), is a right adjoint to the

inclusions Db
S(X)≥w ⊂ Db(X)≥w and Db

S(X)≥w ⊂ Db(X).

Proof. By hypothesis C
�

i := Cone(K
�

i → K
�

i+1) is a perfect complex in Db
S(X)<wi

,

where wi → −∞ as i → ∞. By Lemma 3.36, we have F
�

∈ Db(X)<N for some N ,

so if wi +N < w we have C
�

i ⊗ F
�

∈ Db
S(X)<w and

Cone
(
β≥w(K

�

i ⊗ F
�

) → β≥w(K
�

i+1 ⊗ F
�

)
)
= β≥w(C

�

i ⊗ F
�

) = 0.

Thus the direct system β≥w(K
�

i ⊗ F
�

) stabilizes, and the expression (18) defines a

functor Db(X) → Db
S(X)≥w.

The fact that β≥wΓS is the right adjoint of the inclusion follows from the fact

that elements of Db
S(X) are compact in D+

S,qc(X) [23]. For G
�

∈ Db
S(X)≥w, we

compute

RHom(G
�

, β≥wΓSF
�

) ≃ lim
−→
i

RHom(G
�

,K
�

i ⊗ F
�

) ≃ RHom(G
�

, F
�

). �
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Because Db
S(X)≥w is generated by j∗ D

b(S)≥w, the right orthogonal to D
b
S(X)≥w

is Db(X)<w. Lemma 3.37 gives semiorthogonal decompositions

Db(X)≥w = 〈Gw,D
b
S(X)≥w〉, Db(X) = 〈Db(X)<w,D

b
S(X)≥w〉,

whereGw := Db(X)≥w∩D
b(X)<w. What remains is to show that Db(X)≥w ⊂ Db(X)

is right admissible.

Lemma 3.38. The inclusion of the subcategory Db(X)≥w ⊂ Db(X) admits a right
adjoint β≥w(•) defined by the exact triangle

β≥wF
�

→ F
�

→ β<w

(
(K

�

i )
∨ ⊗ F

�
)
��� for i ≫ 0.

Proof. First note that for F
�

∈ Db(X) and for i ≫ 0, Cone(K
�

i → K
�

i+1)
∨ ⊗ F

�

∈

Db(X)≥w. It follows that the inverse system (K
�

i )
∨ ⊗ F

�

stabilizes, as in Lemma
3.37.

Consider the composition F
�

→ (K
�

i )
∨⊗F

�

→ β<w((K
�

i )
∨⊗F

�

). With β≥wF
�

defined as above, the octahedral axiom gives an exact triangle

Cone(F
�

→ (K
�

i )
∨ ⊗ F

�

) → β≥wF
�

[1] → β≥w((K
�

i )
∨ ⊗ F

�

) ��� .

Lemmas 3.23 and 3.36 imply that for i ≫ 0, β≥wF
�

∈ Db(X)≥w and is thus right

orthogonal to Db
S(X)<w. It follows that β≥wF

�

is functorial in F
�

and that this

functor is a right adjoint to the inclusion Db(X)≥w ⊂ Db(X). �

Proof of Theorem 3.35. The existence of the semiorthogonal decomposition follows
formally from the adjoint functors constructed in Lemmas 3.37 and 3.38. The fully-
faithfulness of i∗ : Gw → Db(V) is Theorem 3.29. Any F

�

∈ Db(V) admits a lift

to Db(X), and the component of this lift lying in Gw under the semiorthogonal

decomposition also restricts to F
�

; hence i∗ : Gw → Db(V) is essentially surjective.
�

Recall from Lemma 2.9 that when X is smooth in a neighborhood of Z, the
condition that σ∗j!F

�

∈ Dqc(Z)<w is equivalent to the condition that σ∗F
�

∈
Dqc(Z)<w+η, where we define η := weightλ det(N

∨
SX)|Z. This allows us to restate

our main theorem in a form which will be convenient for the applications in Sec-
tion 4.

Corollary 3.39. Let S ⊂ X be a KN stratum such that X is smooth in a neigh-
borhood of Z. Let Gw = Db(X)≥w ∩Db(X)<w. Then

Gw = {F
�

∈ Db(X)|λ-weights of H∗(σ∗F
�

) lie in [w,w + η)},

where η is the weight of det(N∨
SX). There are semiorthogonal decompositions

Db(X) = 〈Db
S(X)<w,Gw,D

b
S(X)≥w〉,

and the restriction functor i∗ : Db(X) → Db(V) induces an equivalence Gw ≃
Db(V).
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4. Derived equivalences and variation of GIT

We apply Theorem 2.10 to the derived categories of birational varieties obtained
by a variation of the GIT quotient. First we study the case where G = Gm, in
which the KN stratification is particularly easy to describe. Next we generalize this
analysis to arbitrary variations of GIT, one consequence of which is the observation
that if a smooth projective-over-affine variety X is equivariantly Calabi-Yau for
the action of a torus, then the GIT quotient of X with respect to any two generic
linearizations are derived-equivalent.

A normal projective variety X with linearized Gm action is sometimes referred
to as a birational cobordism between X//LG and X//L(r)G, where L(m) denotes
the twist of L by the character t 	→ tr. A priori this seems like a highly restrictive
type of VGIT, but by Thaddeus’ master space construction [27], any two spaces
that are related by a general VGIT are related by a birational cobordism. We also
have the weak converse due to Hu and Keel:

Theorem 4.1 (Hu and Keel). Let Y1 and Y2 be two birational projective varieties;
then there is a birational cobordism X/Gm between Y1 and Y2. If Y1 and Y2 are
smooth; then by equivariant resolution of singularities X can be chosen to be smooth.

The GIT stratification for G = Gm is very simple. If L is chosen so that the
GIT quotient is an orbifold, then the Zi are the connected components of the fixed
locus XG and Si is either the ascending or descending manifold of Zi, depending
on the weight of L along Zi.

We will denote the tautological choice of 1-PS as λ+, and we refer to “the
weights” of a coherent sheaf at point in XG as the weights with respect to this
1-PS. We define μi ∈ Z to be the weight of L|Zi

. If μi < 0 (respectively μi > 0),
then the maximal destabilizing 1-PS of Zi is λ

+ (respectively λ−). Thus we have

Si =

{

x ∈ X

∣
∣
∣
∣
∣

lim
t→0

t · x ∈ Zi if μi < 0

lim
t→0

t−1 · x ∈ Zi if μi > 0

}

.

Next observe the weight decomposition under λ+:

(19) Ω1
X |Zi

≃ Ω1
Zi

⊕N+ ⊕N−.

Then Ω1
Si
|Zi

= Ω1
Zi

⊕N− if μi < 0 and Ω1
Si
|Zi

= Ω1
Zi

⊕N+ if μi > 0, so we have

(20) ηi =

{
weight of detN+|Zi

if μi < 0,
−weight of detN−|Zi

if μi > 0.

There is a parallel interpretation of this in the symplectic category when the
base field k = C. A sufficiently large power of L induces an equivariant projective
embedding and thus a moment map μ : X → R for the action of S1 ⊂ C∗. The
semistable locus is the orbit of the zero fiber Xss = C∗ ·μ−1(0). The reason for the
collision of notation is that the fixed loci Zi are precisely the critical manifolds of
μ, and the number μi is the value of the moment map on the critical set Zi.

Varying the linearization L(r) by twisting by the character t 	→ t−r corresponds
to shifting the moment map by r, so the new zero fiber corresponds to what was
previously the fiber μ−1(−r). For noncritical moment fibers the GIT quotient
will be a DM stack, and the critical values of r are those for which the weight of
L(r)|Zi

= 0 for some i.
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Figure 1. Schematic diagram for the fixed loci Zi. Si is the as-
cending or descending manifold of Zi depending on the sign of μi.
As the moment fiber varies, the unstable strata Si flip over the
critical sets Zi.

Now we return to a general base field k. Say that as r increases it crosses a critical
value for which L(r)|Zi

has weight 0, so μi > 0 > μ′
i. The maximal destabilizing 1-

PS, λi, flips from λ− to λ+, and the unstable stratum, Si, flips from the descending
manifold of Zi to the ascending manifold of Zi. We apply (20) to compute

(21) η′i − ηi = weight of ωX |Zi
.

Thus if ωX has weight 0 along Zi, the integer ηi does not change as we cross the
wall. The grade restriction window of Theorem 2.10 has the same width for the
GIT quotient on either side of the wall, and it follows that the two GIT quotients
are derived equivalent because they are identified with the same subcategory Gw of
the equivariant derived category Db(X/G). We summarize this with the following.

Proposition 4.2. Let L be a critical linearization of X/Gm, and assume that Zi

is the only critical set for which μi = 0. Let a be the weight of ωX |Zi
, and let ǫ > 0

be a small rational number.

(1) If a < 0, then there is a fully faithful embedding

Db(X//L(ǫ)G) ⊆ Db(X//L(−ǫ)G).

(2) If a = 0, then there is an equivalence

Db(X//L(ǫ)G) ≃ Db(X//L(−ǫ)G).

(3) If a > 0, then there is a fully faithful embedding

Db(X//L(−ǫ)G) ⊆ Db(X//L(ǫ)G).

The analytic local model for a birational cobordism is the following.

Example 4.3. Let Z be a smooth variety and let N =
⊕

Ni be a Z-graded locally
free sheaf on Z with N0 = 0. Let X be the total space of N—it has a Gm action
induced by the grading. Because the only fixed locus is Z, the underlying line
bundle of the linearization is irrelevant, so we take the linearization OX(r).

If r < 0, then the unstable locus is N− ⊂ X, where N− is the sum of negative
weight spaces of N , and if r > 0, then the unstable locus is N+ (we are abusing
notation slightly by using the same notation for the sheaf and its total space). We
will borrow the notation of Thaddeus [27] and write X/± = (X \ N±)/Gm.
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Inside X/± we have N∓/± ≃ P(N∓), where we are still working with quotient
stacks, so the notation P(N∓) denotes the weighted projective bundle associated to
the graded locally free sheaf N∓. If π∓ : P(N∓) → Z is the projection, then X/±
is the total space of the vector bundle π∗

∓N∓(−1). We have the common resolution

OP(N−)×SP(N+)(−1,−1)

��♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

		◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

π∗
+N−(−1) π∗

−N+(−1)

Let π : X → Z be the projection; then the canonical bundle is

ωX = π∗(ωZ ⊗ det(N+)
∨ ⊗ det(N−)

∨),

so the weight of ωX |Z is
∑

i rank(Ni). In the special case of a flop, Proposition 4.2
says:

if
∑

i rank(Ni) = 0, then Db(π∗
+N−(−1)) ≃ Db(π∗

−N+(−1)).

4.1. General variation of the GIT quotient. We will generalize the analysis
of a birational cobordism to a special kind of variation of the GIT quotient which
we will call balanced. Until this point we have taken the KN stratification as given,
but now we must recall its definition and basic properties as described in [10].

Let NSG(X)R := NSG(X) ⊗ R denote the extension of scalars of the group
of equivariant invertible sheaves modulo homological equivalence. For any L ∈
NSG(X)R one defines a stability function on X:

ML(x) := max

{
−weightλ Ly

|λ|

∣
∣
∣
∣
λ s.t. y = lim

t→0
λ(t) · x exists

}

,

where ML(•) is upper semicontinuous and M•(x) is lower convex and thus contin-

uous on NSG(X)R for a fixed x. A point x ∈ X is semistable if ML(x) ≤ 0, stable
if ML(x) < 0 and Stab(x) is finite, strictly semistable if ML(x) = 0, and unstable
if ML(x) > 0.

The G-ample cone CG(X) ⊂ NSG(X)R has a finite decomposition into convex
conical chambers separated by hyperplanes – the interior of a chamber is where
ML(x) �= 0 for all x ∈ X, so Xss(L) = Xs(L). We will focus on a single wall-
crossing: L0 will be a G-ample invertible sheaf lying on a wall such that for ǫ
sufficiently small L± := L0 ± ǫL′ both lie in the interior of chambers.

Because the function M•(x) is continuous on NSG(X)R, all of the stable and un-
stable points of Xs(L0) will remain so for L±. Only points in the strictly semistable
locus, Xsss(L0) = {x ∈ X|ML(x) = 0} ⊂ X, change from being stable to unstable
as one crosses the wall.

In fact Xus(L0) is a union of KN strata for Xus(L+), and symmetrically it can
be written as a union of KN strata for Xus(L−) [10]. Thus we can write Xss(L0)
in two ways:

(22) Xss(L0) = S±
1 ∪ · · · ∪S±

m±
∪ Xss(L±),

where S±
i are the KN strata of Xus(L±) lying in Xss(L0).

Definition 4.4. A wall crossing determined by L± = L0 ± ǫL′ will be called
balanced if m+ = m− and Z+

i ≃ Z−
i under the decomposition (22).
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By the construction of the KN stratification in GIT, we can further rigidify
this picture. One can find λi and locally closed Zi ⊂ Xλi such that the λ±

i are
distinguished 1-PS’s for the KN strata S±

i , and Z+
i = Zi/Li = Z−

i .

Proposition 4.5. Let a reductive G act on a projective-over-affine variety X. Let
L0 be a G-ample line bundle on a wall, and define L± = L0 ± ǫL′ for some other
line bundle L′. Assume that

• for ǫ sufficiently small, Xss(L±) = Xs(L±) �= ∅,
• the wall crossing L± is balanced, and
• for all Zi in Xss(L0), (ωX)|Zi

has weight 0 with respect to λi.

Then Db(Xss(L+)) ≃ Db(Xss(L−)).

Remark 4.6. Full embeddings analogous to those of Proposition 4.2 apply when the
weights of (ωX)|Zi

with respect to λi are either all negative or all positive.

Proof. This is an immediate application of Theorem 2.10 to the open substack
Xs(L±) ⊂ Xss(L0) whose complement admits the KN stratification (22). Because
the wall crossing is balanced, Z+

i = Z−
i and λ−

i (t) = λ+
i (t

−1), and the condition
on ωX implies that η+i = η−i . So Theorem 2.10 identifies the category Gw ⊂

Db(Xss(L0)) with both Db(Xs(L−)) and Db(Xs(L+)). �

Example 4.7. Dolgachev and Hu study wall crossings which they call truly faithful,
meaning that the identity component of the stabilizer of a point with closed orbit
in Xss(L0) is C∗. They show that every truly faithful wall crossing is balanced
[10, Lemma 4.2.3].

Dolgachev and Hu also show that for the action of a torus T , there are no
codimension 0 walls and all codimension 1 walls are truly faithful. Thus any two
chambers in CT (X) can be connected by a finite sequence of balanced wall crossings,
and we have

Corollary 4.8. Let X be a projective-over-affine variety with an action of a torus
T . Assume X is equivariantly Calabi-Yau in the sense that ωX ≃ OX as an
equivariant OX-module. If L0 and L1 are G-ample invertible sheaves such that
Xs(Li) = Xss(Li), then Db(Xs(L0)) ≃ Db(Xs(L1)).

A compact projective manifold with a nontrivial C∗ action is never equivariantly
Calabi-Yau, but Corollary 4.8 applies to a large class of noncompact examples. The
simplest are linear representations V of T such that detV is trivial. More generally
we have

Example 4.9. Let T act on a smooth projective Fano variety X, and let E be an
equivariant ample locally free sheaf such that det E ≃ ω∨

X . Then the total space
of the dual vector bundle Y = SpecX(S∗E) is equivariantly Calabi-Yau and the
canonical map Y → Spec(Γ(X,S∗E)) is projective, so Y is projective-over-affine
and by Corollary 4.8 any two generic GIT quotients Y//T are derived-equivalent.

WhenG is nonabelian, the chamber structure of CG(X) can be more complicated.
There can be walls of codimension 0, meaning open regions in the interior of CG(X)
where Xs �= Xss, and not all walls are truly faithful [10]. Still, there are examples
where derived Kirwan surjectivity can give derived equivalences under wall crossings
which are not balanced.
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Definition 4.10. A wall crossing, determined by L± = L0 ± ǫL′, will be called
almost balanced if under the decomposition (22), m+ = m−, and one can choose
maximal destabilizers such that λ−

i = (λ+
i )

−1 and the closures of Z+
i and Z−

i agree.

In an almost balanced wall crossing for which ωX |Zi
has weight 0 for all i, we

have the following general principal for establishing a derived equivalence:

Ansatz 4.11. One can choose w and w′ such that G+
w = G−

w′ as subcategories of

Db(Xss(L0)/G), where G±
• is the category identified with Db(Xss(L±)/G) under

restriction.

Note that even when ωX |Xss(L0) is equivariantly trivial, the ansatz does not

follow tautologically as it does for a balanced wall crossing, because the Z±
i are not

identical but merely birational. Still one can verify the ansatz in some examples.
For instance, one can recover a result of Segal and Donovan [11]:

Example 4.12 (Grassmannian flop). Choose k < N and let V be a k-dimensional
vector space. Consider the action of G = GL(V ) on X = T ∗ Hom(V,CN ) =
Hom(V,CN ) × Hom(CN , V ) via g · (a, b) = (ag−1, gb). A 1-PS λ : Gm → G
corresponds to a choice of weight decomposition V ≃

⊕
Vα under λ. A point (a, b)

has a limit under λ iff

V>0 ⊂ ker(a) and im(b) ⊂ V≥0,

in which case the limit (a0, b0) is the projection onto V0 ⊂ V . There are only two
nontrivial linearizations up to rational equivalence, OX(det±). A point (a, b) is
semistable iff any 1-PS for which λ(t) · (a, b) has a limit as t → 0 has nonnegative
pairing with the chosen character, det±.

In order to determine the stratification, it suffices to fix a maximal torus of
GL(V ), i.e. an isomorphism V ≃ Ck, and to consider diagonal one-parameter sub-

groups (tw1 , . . . , twk) with w1 ≤ · · · ≤ wk. If we linearize with respect to det−1,
then the KN stratification is indexed by i = 0, . . . , k − 1:

λi = (1, . . . , 1, t, . . . , t) with i ones,

Zi =

{(
[
� 0

]
,

[
∗
0

])

,
with ∗ ∈ Mi×N ,
and � ∈ MN×i full rank

}

,

Yi =

{
([

� 0
]
, b
)
,
with b ∈ Mk×N arbitrary,
and � ∈ MN×i full rank

}

,

Si = {(a, b)|b arbitrary, rank a = i}.

So (a, b) ∈ X is semistable iff a is injective. If instead we linearize with respect to
det, then (a, b) is semistable iff b is surjective, the λi flip, and the critical loci Zi

are the same except that the role of � and ∗ reverse in the description of Zi. So
this is an almost balanced wall crossing with L0 = OX and L′ = OX(det).

Let G(k,N) be the Grassmannian parametrizing k-dimensional subspaces V ⊂
C

N , and let 0 → U(k,N) → ON → Q(k,N) → 0 be the tautological sequence of
vector bundles on G(k,N). Then Xss(det−1) is the total space of U(k,N)N and
Xss(det) is the total space of (Q(N − k,N)∨)N over G(N − k,N).

In order to verify that G+
w = G−

w′ for some w′, one observes that the repre-
sentations of GLk which form the Kapranov exceptional collection [16] lie in the

weight windows for G+
0 ≃ Db(Xss(det−1)) = Db(U(k,N)N ). Because U(k,N)N is a

vector bundle over G(k,N), these objects generate the derived category. One then
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verifies that these objects lie in the weight windows for Xss(det) and generate this
category for the same reason. Thus by verifying Ansatz 4.11 we have established
an equivalence of derived categories,

Db(U(k,N)N ) ≃ Db((Q(N − k,N)∨)N ).

The astute reader will observe that these two varieties are in fact isomorphic,
but the derived equivalences we have constructed are natural in the sense that they
generalize to families. Specifically, if E is an N -dimensional vector bundle over a
smooth variety Y , then the two GIT quotients of the total space of

Hom(OY ⊗ V, E)⊕Hom(E ,OY ⊗ V )

by GL(V ) will have equivalent derived categories.

The key to verifying Ansatz 4.11 in this example was the simple geometry of
the GIT quotients Xss(det±) and the fact that we have explicit generators for the
derived category of each. With a more detailed analysis, one can verify Ansatz 4.11
for more examples of balanced wall crossings, and we will describe this in a future
paper.

Remark 4.13. This example is similar to the generalized Mukai flops of [9]. The
difference is that we are not restricting to the hyperkähler moment fiber {ba = 0}.
We will see in the next section that categorical Kirwan surjectivity applies in this
example, but it is harder to verify Ansatz 4.11.

5. Applications to complete intersections: Matrix factorizations

and hyperkähler reductions

In the example of a projective variety, where we identified Db(Y ) with a full
subcategory of the derived category of finitely generated graded modules over the
homogeneous coordinate ring of Y , the vertex of the affine cone satisfied Property
(L+) “for free”. In more complicated examples, the cotangent positivity property
(L+) can be difficult to verify.

Here we discuss several techniques for extending categorical Kirwan surjectivity
to stacksX/G whereX is a local complete intersection. First we provide a geometric
criterion for Property (L+) to hold, which allows us to apply Theorem 2.10 to some
hyperkähler quotients. We also discuss two different approaches to categorical
Kirwan surjectivity for LCI quotients, using Morita theory and derived categories
of singularities.

5.1. A criterion for Property (L+) and nonabelian hyperkähler reduc-
tion. In this section we study a particular setting in which Property (L+) holds
for the KN stratification of a singular quotient stack. This will allow us to address
some hyperkähler reductions by nonabelian groups. Throughout this section, if V
is a representation of a group G, and X = X/G, then we will use OX(V ) ∈ QCoh(X)
to denote the pullback of the quasicoherent sheaf on ∗/G corresponding to V . Con-
cretely, OX(V ) is the sheaf OX ⊗k V with G-equivariant structure induced by the
representation V .

Let X ′ be a smooth quasiprojective variety with a linearizable action of a re-
ductive group G, and let S′ = G · Y ′ ⊂ X ′ be a closed KN stratum (Definition
2.2). Because X ′ is smooth, Y ′ is a P -equivariant bundle of affine spaces over
Z ′. Let V be a linear representation of G, and s : X ′ → V an equivariant map.
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Alternatively, we think of s as an invariant global section of the locally free sheaf
OX′(V ). Note that if we decompose V = V+⊕V0⊕V− under the weights of λ, then
Γ(S′,OS′(V−)) = 0, so s|S′ is a section of OS′(V0 ⊕ V+).

Proposition 5.1. Let X ′, S′, and s be as above. Define X = s−1(0), S = S′ ∩X,
and Z = Z ′ ∩ X, and assume that X has codimension dimV . If for all z ∈ Z,
(ds)z : TzX

′ → V is surjective in positive weights w.r.t. λ, then Property (L+)
holds for S/G →֒ X/G.

Before proving the proposition, we compute the cotangent complex of S.

Lemma 5.2. If for all z ∈ Z ⊂ Z ′, (ds)z : TzX
′ → V is surjective in positive

weights w.r.t. λ, then

(σ∗L
�

S)<0 ≃ [OZ(V
∨
+ )

(ds+)∨

−−−−→ (ΩY ′ |Z)<0]

and is thus a locally free sheaf concentrated in cohomological degree 0.

Proof. First of all note that from the inclusion σ : Z →֒ S we have

(σ∗L
�

S)<0 → (L
�

Z)<0 → (L
�

Z/S)<0 ��� .

The cotangent complex L
�

Z is supported in weight 0 because λ acts trivially on Z,
so the middle term vanishes, and we get (σ∗L

�

S)<0 ≃ (L
�

Z/S)<0[−1], so it suffices

to consider the latter.
By definition Y is the zero fiber of s : Y ′ → V0 ⊕ V+. Denote by s0 the section

of V0 induced by the projection of P -modules V+ ⊕ V0 → V0. We consider the
intermediate variety Y ⊂ Y0 := s−1

0 (0) ⊂ Y ′. Note that Y0 = π−1(Z0), where
π : Y ′ → Z ′ is the projection.

Note that Y0 → Z is a bundle of affine spaces with section σ, so in particular
Z ⊂ S0 is a regular embedding with conormal bundle (Ω1

Y ′ |Z)<0 = (Ω1
X′ |Z)<0.

Furthermore, on Y0 the section s0 vanishes by construction, so Y ⊂ Y0, which by
definition is the vanishing locus of s|Y0

, is actually the vanishing locus of the map
s+ : Y0 → V+. The surjectivity of (ds)z for z ∈ Z in positive weights implies that
s−1
+ (0) has expected codimension in every fiber over Z and thus S ⊂ S0 is a regular
embedding with conormal bundle OS(V ∨

+ ).
It now follows from the canonical triangle for Z ⊂ S ⊂ S0 that

L
�

Z/S ≃ Cone(σ∗LS/S0
→ LZ/S0

) ≃ [OZ(V
∨
+ )

ds+
−−→ (Ω1

Y ′ |Z)<0],

with terms concentrated in cohomological degree−2 and−1. The result follows. �

Proof of Proposition 5.1. We will use Lemma 5.2 to compute the restriction of the
relative cotangent complex, (σ∗L

�

S/X)<0. We consider the canonical diagram

[OY (V
∨) → Ω1

X′ |Y ] ��

a

��

[OY (V≥0)
∨ → Ω1

Y ′ |Y ]

b

��

j∗L
�

X
�� L

�

S
�� L

�

S/X
��❴❴❴

where the bottom row is an exact triangle and we have used the identification
S′ ≃ Y ′/P and S ≃ Y/P . Because X ⊂ X ′ has the expected codimension, it is
a complete intersection and the morphism a is a quasi-isomorphism. Lemma 5.2
implies that b is a quasi-isomorphism after applying the functor (σ∗(•))<0.
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Thus we have a quasi-isomorphism

(σ∗L
�

S/X)<0 ≃ Cone
(
[OZ(V

∨) → Ω1
X′ |Z ] → [OZ(V≥0)

∨ → Ω1
Y ′ |Z ]

)

<0

≃ Cone
(
(Ω1

X′ |Z)<0 → (Ω1
Y ′ |Z)<0

)
≃ 0.

The last isomorphism follows because Ω1
Y ′ |Z is the negative weight eigenspace of

Ω1
X′ |Z by construction. �

Now let (M,ω) be an algebraic symplectic manifold with a Hamiltonian G action,
i.e. there is a G-equivariant algebraic map μ : M → g∨ such that for any ξ ∈ g,
d〈ξ, μ〉 = −ω(∂ξ, •) ∈ Γ(M,Ω1

M ), where ∂ξ is the vector field corresponding to
ξ ∈ g.

For any point x ∈ M , let Gx be the stabilizer of x. We have an exact sequence

(23) 0 → LieGx → g
dμ
−→ T ∗

xM
ω
≃ TxM → (NG·xM)x → 0,

showing that X := μ−1(0) is regular at any point with finite stabilizer groups. Thus
if the set of such points is dense in X, then X ⊂ M is a complete intersection cut
out by μ.

Corollary 5.3. Let (M,ω) be a projective-over-affine algebraic symplectic manifold
with a Hamiltonian action of a reductive group G, with a choice of linearization,
and let X = μ−1(0) ⊂ M . If Xs is dense in X, then Property (L+) holds for the
GIT stratification of X.

Proof. The exact sequence (23) shows that dμ is injective at any point of X which
has a finite stabilizer, and in particular any point of Xs. Hence X has the expected
codimension. Furthermore, for any z ∈ Z, we have

Lie(Gz)
∨ = coker((dμ)z : TzM → g∨).

For any point in a KN stratum p ∈ S ⊂ M , Property (S2) implies that Lie(Gp) ⊂
Lie(Pλ), which has nonnegative weights with respect to the adjoint action of λ. It
follows that μ : M → g∨ satisfies the hypotheses of Proposition 5.1. �

Example 5.4 (Stratified Mukai flop). In Example 4.12 we considered the GIT
stratification for the action of GL(V ) on M := Hom(V,CN ) × Hom(CN , V ). This
representation is symplectic, and it has an algebraic moment map μ(a, b) = ba ∈
gl(V ). The KN stratification of X = μ−1(0) is induced by the stratification of M .
Thus Yi ⊂ X consists of

Yi =

{(
[
a1 0

]
,

[
b1
b2

])

,
with b1a1 = 0, b2a1 = 0,
and a1 ∈ MN×i full rank

}

and Zi ⊂ Yi are those points where b2 = 0. Note that over a point in Zi, the
condition b2a1 = 0 is linear in the fiber, and so Yi → Zi satisfies Property (A).

The GIT quotient Xss/GL(V ) is the cotangent bundle T ∗
G(k,N). Property (A)

holds in this example, and Property (L+) holds by Proposition 5.1, so Theorem 2.10

gives a fully faithful embedding Db(T ∗G(k,N)) ⊂ Db(X/GL(V )) for any choice of

integers wi. The derived category Db(T ∗G(k,N)) has been intensely studied by
Cautis, Kamnitzer, and Licata from the perspective of categorical sl2 actions. We
will discuss the connection between their results and categorical Kirwan surjectivity
in future work.
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5.2. Applications to derived categories of singularities and abelian hy-
perkähler reductions, via Morita theory. In this section we discuss an al-
ternative method of extending Theorem 1.1 to singular stacks which are complete
intersections in the sense that they arise as the derived fibers of maps between
smooth stacks. We use derived Morita theory as developed in [5], which applies
in our context because all of our stacks are global quotients by linearizable group
actions in characteristic 0, and hence they are perfect.

If f : X → B is a morphism between perfect stacks and b ∈ B(k) a closed point,
the fiber Xb := X×L

B {b} is a derived stack and should be understood in the context

of derived algebraic geometry. However, one can describe the categories Db(Xb) and
Perf(Xb) using less technology. If A

�

→ Ob is a resolution of Ob by a commutative
dg-OB-algebra which is locally freely generated as a graded commutative algebra,
then f∗A

�

is a sheaf of commutative dg-algebras over X. Db(Xb) is equivalent to the
derived category of sheaves of dg-modules over f∗A

�

whose cohomology sheaves are
coherent over X, and Perf(X) is the category of perfect complexes of f∗A

�

-modules.

Proposition 5.5. Let X = X/G be a smooth quotient stack, and let Xss ⊂ X be
an open substack whose complement admits a KN stratification. Let f : X → B be
a morphism to a perfect stack B, and let b ∈ B(k) be a closed k-point. Assume
that for each Zi and λi in the KN stratification of Xus and each point x ∈ Zi,
the homomorphism Gm → AutX(z) → AutB(f(z)) is trivial. Then splitting of
Theorem 1.1 induces splittings of the natural restriction functors:

Db(Xb)
i∗

�� �� Db(Xss
b ),





Perf(Xb)
i∗

�� �� Perf(Xss
b ).

��

Remark 5.6. When B = Ar and b = 0 ∈ B, and the fiber over b has codimension
r, then the derived fiber agrees with the classical fiber. Hence the conclusion of the
proposition is purely classical in this complete intersection case.

Proof. The restriction i∗ : Perf(X) → Perf(Xss) is a symmetric monoidal dg-
functor, and it is canonically a functor of module categories over the symmetric
monoidal dg-category Perf(B)⊗. The subcategory Gw ⊂ Db(X) used to construct
the splitting in Theorem 1.1 is defined through conditions on the weights of F |Zi

with respect to the λi. If the homomorphism Gm → AutB(f(z)) is trivial, then for
any E

�

∈ Perf(B), we have f∗E
�

⊗Gw ⊂ Gw. It follows that Gw is canonically
a Perf(B)⊗-module subcategory, and the splitting constructed in Theorem 1.1 is a
splitting as module categories over Perf(B)⊗.

Because the splitting is Perf(B)-linear, the restriction functor

FunPerf(B) (Perf({b}),Perf(X)) ։ FunPerf(B) (Perf({b}),Perf(X
ss))

admits a splitting as well. We claim that the source (respectively target) category

can be canonically identified with Db(Xb) (respectively Db(Xss
b )), and it thus follows

that Db(Xb) → Db(Xss
b ) admits a splitting.

For any diagram of perfect stacks X ′ → X ← Y , one has a fully faithful embed-
ding

FunPerf(X)(Perf(X
′),Perf(Y )) ⊂ FunDqc(X)(Dqc(X

′),Dqc(Y )),

where the latter denotes continuous Dqc(X)-linear functors. As a result of The-
orem 1.2 of [5], we can identify the latter functor category with Dqc(X

′ ×X Y ).
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Explicitly in our situation, FunPerf(B) (Perf({b}),Perf(X)) is equivalent to the full
dg-subcategory of D(Xb) consisting of complexes such that the corresponding inte-
gral transform Dqc({b}) → Dqc(X) preserves perfect complexes. Because Perf({b})
is generated by the structure sheaf, this is equivalent to the subcategory of Dqc(Xb)
of objects whose pushforward to X is perfect. Because X is smooth and Xb ⊂ X is
a closed substack, this is precisely Db(Xb).

We can apply a similar analysis to the tensor product. The Perf(B)-linearity of
the splitting of i∗ implies that the restriction functor

Perf({b})⊗Perf(B) Perf(X) → Perf({b})⊗Perf(B) Perf(X
ss)

admits a splitting as well. These categories are identified, by Theorem 1.2 of [5],
with Dqc(Xb)

c = Perf(Xb) and Dqc(X
ss
b )c = Perf(Xss

b ) respectively. �

Example 5.7. As a special case of Proposition 5.5, one obtains equivalences of
derived categories of singularities. Namely, if W : X → A

1 is a function, sometimes
referred to as a super potential, then the category of singularities corresponding to
W is

B(X,W ) := Db
sing(W

−1(0)) = Db(W−1(0))/Perf(W−1(0)).

Proposition 5.5 implies that the restriction functor B(X,W ) → B(Xss,W |Xss)
splits. If for GIT quotients of X corresponding to two different linearizations,
Perf(Xss(L1)) and Perf(Xss(L2)) can be identified with the same subcategory of
Perf(X) as in Proposition 4.2, then the corresponding categories of singularities are
equivalent:

B(Xss(L1),W |Xss(L1)) ≃ B(Xss(L2),W |Xss(L2)).

Note that by an equivariant generalization of [22], these results could be equivalently
formulated in terms of categories of matrix factorizations.

In addition, if we introduce an auxiliary Gm action on X with respect to which
W ∈ Γ(OX) has weight 2, then the categories B(X/G×Gm,W ) are often referred
to as graded categories of singularities [25]. Proposition 5.5 applies in this situation
as well, where W is interpreted as a morphism X/G×Gm → A1/Gm.

Proposition 5.5 also applies to the context of hyperkähler reduction. Let T
be a torus, or any group whose connected component is a torus, and consider
a Hamiltonian action of T on a hyperkähler manifold X, or more generally an
algebraic symplectic manifold, with an algebraic moment map μ : X/T → t∨. One
forms the hyperkähler quotient by choosing a linearization on X/T and defining
X///T := μ−1(0) ∩ Xss. Thus we are in the setting of Proposition 5.5.

Corollary 5.8. Let T be an extension of a finite group by a torus. Let T act on an
algebraic symplectic manifold X with an algebraic moment map μ : X → t∨. Then
the restriction functors

Db(μ−1(0)/T ) → Db(μ−1(0)ss/T ),

Perf(μ−1(0)/T ) → Perf(μ−1(0)ss/T )

both split, assuming that μ−1(0) has the expected codimension.

Proof. Because the adjoint representation of the connected component of T on t is
trivial, the condition on automorphism groups in Proposition 5.5 holds automat-
ically for moment map μ : X/T → t/T . The fact that μ−1(0) has the expected
codimension implies that the derived fiber and classical fiber agree. �
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Because μ is a moment map for the T -action, the fiber μ−1(0) will have expected
codimension wheneverXss = Xs. Then T is abelian; this will be the case for generic
linearizations. Thus we have a hyperkähler analog of Corollary 4.8.

Corollary 5.9. Let X be a projective-over-affine algebraic symplectic manifold with
a Hamiltonian action of a torus T . Then the hyperkähler quotient with respect to
any two generic linearizations are derived-equivalent.

Proof. By Corollary 4.8 all Xss(L) for generic L will be derived-equivalent. More
precisely there will be a finite sequence of wall crossings connecting any two generic
linearizations such that for each wall crossing one can identify a subcategory of
Perf(Xss(L0)) which maps isomorphically, via restriction, to both Perf(Xss(L±)).
The wall crossings in this case are truly faithful, in the sense of [10], and balanced in
the sense discussed above. Thus the loci of points of Xss(L0) which have positive-
dimensional stabilizers is the disjoint union of the Zi (which are codimension at
least 2), and their stabilizers are exactly the λi(Gm). Using this one can show that
μ−1(0) has the expected codimension in Xss(L0). Hence we can apply Corollary 5.8
to conclude that the splittings Perf(Xss(L±)) ⊂ Perf(Xss(L0)) descend to μ−1(0),
giving an equivalence Perf(Xss(L+)) ≃ Perf(Xss(L−)). �
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