
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

The DESI spectrograph system and
production

Jerry  Edelstein, Patrick  Jelinsky, Michael  Levi, Gregory
Tarle, David  Brooks

Jerry  Edelstein, Patrick  Jelinsky, Michael  Levi, Gregory   Tarle, David
Brooks, "The DESI spectrograph system and production," Proc. SPIE 10702,
Ground-based and Airborne Instrumentation for Astronomy VII, 107027G (9
July 2018); doi: 10.1117/12.2311821

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/31/2018  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

The DESI Spectrograph System and Production 
 

Jerry Edelstein*a
, Patrick Jelinsky

a
, Michael Levi

b
, Gregory Tarle

c
 and David Brooks

 d
, for 

the DESI Collaboration 
a
Spaces Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA, USA 

94720; 
b
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA 

94720; 
c
Physics Department, University of Michigan, Ann Arbor, MI, USA 48109; 

d
Department of Physics & Astronomy, University College London, Gower Street, London, 

UK WC1E 6BT; 

ABSTRACT  

The Dark Energy Spectroscopic Instrument (DESI) is a project in construction to measure the expansion history of the 

Universe using the Baryon Acoustic Oscillation technique.  The spectra of 35 million galaxies and quasars over 14,000 

square degrees will be measured during the life of the experiment.  A new prime focus corrector for the KPNO Mayall 

telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs covering 

a 360 - 980 nm passband with a spectral resolution (λ/Δλ) between 1500 and 4000. The spectrograph uses two dichroic 

beam splitters to separate the flux among three spectral cameras, each with a volume phase holographic grating and lens 

system that focuses onto a charge coupled device detector.  We describe the spectrograph, its system requirements, 

design and construction. 
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1. INTRODUCTION  

The DESI instrument1 is being developed for the KPNO Mayall telescope to measure the spectra of 35 million galaxies 

and quasars. A prime focus telescope corrector will deliver light to 5000 fiber optic positioners. The fibers will be 

distributed among ten broad-band spectrographs that cover a 360 - 980 nm passband with a spectral resolution (λ/Δλ) 
between 1500 and 4000. The first spectrograph has been delivered to the telescope and all ten of them are planned to be 

installed by May 2019. 

The spectrograph requirements are shown in Table 1. Primary requirements include the bandpass, spectral resolution, 

throughput, point spread function (PSF) stability, and noise variance. The fiber size was chosen to optimize the signal-to-

noise ratio in emission-line galaxies as seen on the sky.  

More detailed spectrograph specifications are shown in Table 2. The 5,000 fibers are placed on slits of 10 spectrographs. 

The detectors chosen were 4k x 4k, 15 μm pixel charge coupled device (CCD) detectors. 
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Table 1: Spectrograph Requirements. 

 

Table 2: Spectrograph Baseline Design Specifications. 

 

The schematic and rendering of the spectrograph system is shown in Figure 1. The light from the fiber slit is collimated 

by a spherical mirror. The light is then split into three spectral band passes using two dichroics. Each of the three 

channels disperses the light with a volume phase holographic (VPH) grating. The light is then focused onto the detector 

using five lenses in three groups. The collimator accepts the f/3.57 light output from the fibers, allowing for focal ratio 

degradation (FRD) after the f/3.85 light input. The design chosen has the maximum magnification possible that meets the 

resolution requirements. This results in the slowest possible camera (f/1.7), which is easier to manufacture. The bands 

chosen that meet the requirements are: 360–593 nm, 566–772 nm, and 747–980 nm for the blue, red and near infrared 

(NIR) channels respectively. 
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Figure 1. A schematic (left) and rendering (right) of the DESI spectrograph optical and mechanical systems. The 

spectrograph is 1.8 m wide × 1.4 m deep × 0.6 m high. 

2. THE SPECTROGRAPH COMPONENTS 

The spectrograph components are described in order of the optical path.  

 

2.1 Optical Components 

The slit, which is the input to the spectrograph, consists of 500 fiber end-faces arranged into a fiber slit2. The fibers are 

arranged in a radius of 468 mm, near the collimator focus. The 107 µm diameter fibers are mounted with 230 µm 

separation in groups of 25 in v-groove blocks. Adjacent v-groove blocks are spaced by 556 µm, providing an image gap 

to measure the PSF wings in the spectral extraction process. The total fiber slit is 120.9 mm length of the arc including 

the first and last fibers. The slit is inserted into a slot milled into the first dichroic so that the tip of the center fiber is 

coincident with the dichroic reflective surface. 

The fiber’s output illuminates the collimator. We chose a reflective versus a refractive collimator given its fewer optical 

surfaces (only one) and improved throughput. The spherical collimator mirror, made by Winlight Optics, operates at 

f/3.57 and produces a 126 mm pupil. A dielectric enhanced silver coating by Infinite Optics was chosen for its higher 

reflectance in the DESI bandpass, shown Figure 2. Winlight has polished all 10 collimators and 10 have been coated by 

Infinite Optics.  

 

Figure 2: The reflectance of the enhanced DESI silver coating for the collimator. The blue curve is a DESI measurement 

from the first collimator.  

The total bandpass is divided into three channels using two dichroic beam splitters. The dichroics are located after the 

collimator in the parallel beam. The first dichroic transmits the NIR band and then second dichroic transmits the red 
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band. The filters are fused silica with the dichroic coatings on one side and combined anti-reflection and stress 

compensation layers on the other. The dichroic filters specifications are listed in Table 3. All 20 dichroics were made by 

Materion Barr. The throughput measurements are shown in Figure 3. 

 

Table 3: Dichroics Budgeted Requirements. 

 

 

 

Figure 3: The measured throughput for the first set of DESI dichroics. 

 

The camera band passes and grating parameters are given in Table 4. Volume phase holographic (VPH) gratings have 

been chosen as the spectral dispersers because this type of grating delivers high throughput over the relatively broad 

band passes of the three channels. Fringes are holographically recorded in the gelatin. In Table 4, ∆β is the diffracted 

angular range, α is the incident angle, 1/σ is the line density, and φ is the tilt angle of the fringes. The fringes of the 

gratings are tilted to remove the Littrow ghost3. Our studies showed that high efficiency is maintained at the band pass 

edges when the grating diffracted angular range (∆β) was kept to less than 16°. The clear aperture of the gratings is kept 

below 145 mm so that production holographic recording tables can be used to reduce the cost. 

 

Table 4: Spectrograph Grating Budgeted Requirements. 

 

All thirty gratings were made by Kaiser Optical Systems (KOSI) and tested for efficiency and wave front error by 

Lawrence Berkeley National Laboratory (LBNL). Figure 4 shows a photo of the three gratings in a test mount. Figure 5 

shows measurements of the wave front error, taken with a Zygo interferometer. The peak to valley wave front error for 
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Figure 8: The maximum RMS radius versus wavelength for the optical design is plotted. The blue, red and black curves are 

for the blue, red and NIR channels of the spectrograph respectively. All wavelengths meet the 10 µm RMS requirement for 

the optical design. 

An optical thermal analysis of the cameras was done for the operation range 18–22
○
C. The red and the NIR cameras did 

not require passive athermalization. The blue camera incorporates passive athermalization by using a plastic with a 

compensating thermal expansion coefficient to locate the fourth lens cell. 

The red and NIR triplets are bonded with UV curing glue. An FEA analysis of the triplet was done to determine that the 

stress and strain on the glass and the glue would not cause the triplet to fail.  The first red triplet was validated for three 

thermal cycles for the DESI survival temperature range of -20 to +40 ○C. A test bonded blue triplet failed survival 

temperature tests so it was redesigned to use an oil coupling scheme following the design used by the KOSMOS 

spectrograph5. Cargille 1074 laser liquid was chosen for the fluid. The transmission did not change when the oil was 

used with silicone o-rings and diaphragm materials for a 30-month life test. The oil cell was also validated with thermal 

cycle testing.  

The mechanical design of the blue camera is shown in Figure 9. All the camera elements (see Figure 10) and assemblies 

have been fabricated, aligned and tested by Winlight Systems, including a full set which has been integrated into the first 

DESI spectrograph system.  

 

 

Figure 9: Section of the mechanical design of the blue camera. The VPH grating mount is shown in dark blue on the right. 

The triplet oil cell is shown next in gray and purple. The lateral adjustable cell for the fourth lens is shown next in pink and 

purple. Finally, the field lens cell is shown in light green with an orange base. All of the lens cells are thermally 

compensated axially and radially. The L4 cell is athermalized using a PTFE compensation piece in white. 
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Figure 10: Cameras components under development (left to right): The demonstration test oil cell for the blue camera. The 

cemented 200 mm diameter triplet for the red camera. The red camera field lens assembly mounted in its cryostat interface is 

shown with a focal plane microscope behind it. A camera barrel mechanical assembly. 

2.3 Camera CCD Cryostats 

The ten DESI spectrographs each require three CCDs for the blue, red, and NIR channels. Each CCD is housed in its 

own cryostat that has its own refrigerator and CCD control electronics. The cryostat, developed by the CEA Saclay, 

France, provides the mechanical connection to the spectrograph camera, supports the thermal and vacuum conditions, 

and interfaces with the control system and the CCD electronics. The cryostat is rendered in cross section in Figure 11 

and a working cryostat system is shown in Figure 12. 

The system cools the CCDs to 140 K (red and NIR channels) or 163 K (blue channel) with a precision of 1 K and 

regulate their temperature to ±0.1 K. The cryostats are identical except for the entrance vacuum window which also 

serves as the last camera optical element. The reference and mounting plane between the spectrograph and the CCD is 

the front face of the cryostat flange. The CCD’s must be aligned in transverse and tilt axes relative to the spectrograph 

optical axis. The CCD plane is positioned with shims and is fixed to the cold plate with bolts that can align the CCD 

plane within 100–200 µm along the optical Z axis, and within 50 µm in transverse XY plane. The CCD columns are 

aligned within 3 arcminutes relative to the dispersion direction. The final CCD focusing precision, ±15 µm along Z, is 

achieved by moving the camera relative to the cryostat by adjusting screws.  

Cooling power is supplied to the CCD on its Invar package via an Invar cold plate connected with flexible copper braids 

to a copper cold base screwed to the cold tip of the cryocooler. Thermal sensing resistors fixed on the CCD package, the 

cold plate, the cold tip and on the front flange close to the field lens assembly to ensure thermal control and monitoring. 

Thermal shielding using polished Al plates is provided for the vessel sides, the rear flange and one for the front lens.  

Figure 11: A model of the cryostat and camera interface. A cryostat weighs 30 kg, is 310 mm in diameter and 480 mm long.  
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Each cryostat uses a closed cycle pulse tube cooler (Thales LPT9310 Cryocooler with a thermal power of 4.5 to 5.6 W at 

80 K). Manufactured cryostats demonstrated good performance. The measured thermal losses were 2.8 W to 3.2 W. The 

CCD temperature precision was <1 °K and the temperature stability was ±0.1 °K. The cooler worked at 25–40% of its 

maximal power, while being cooled with Glycol at 10 
◦
C.  The cool down temperature rate was 1.5 °K/min and 

temperature stability was achieved within 4.5 to 6 hours for all the tested cryostats. 

 

  

 

Figure 12: An operational cryostat assembly is shown on the left with a view showing a flat test field lens assembly. The 

cryostat structure including the cryocooler, its controller, and the CCD front electronics box is shown on the right.  

The cooler compressor pistons are driven by integral linear electric motors and are gas-coupled to the pulse tube cold 

finger. Isolation and damping of the compressor has been tuned as has the frequency of each cooler so that the vibrations 

of the 30 coolers do not add in phase. Vibration amplitude was less than 3 µm at the detector. A remaining tiny 

amplitude vibration modulation (1μm over 6.5 hours) was detected on test images. That was generated by a difference of 

40 μHz between the 47 Hz of the 3 coolers. The coolers difference frequencies were set at 1Hz to smear out the 

modulation for exposures longer than 1 second. 

A cryostat control system made by CEA Saclay, France, has been built to independently drive and maintain all 30 

channels, and communicates with the DESI Instrument Control System6. The cryostats’ vacuum will be maintained by an 

ion pump. Supervision software controls the cryocoolers and the vacuum system and allows the set-up to be remotely 

controlled. The total electrical consumption for the cryostat system is 11 kW during cool-down of the 30 units and 

reduced to 3 to 4 kW in nominal operation condition.  
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2.4 Sensors and Electronics 

The spectrograph cameras each use a 4k×4k CCD with 15 µm pixels. A subset of performance specifications is given in 

Table 6. For the blue channel we baseline 10 of the ITL STA4150A CCDs provided by University of Arizona Imaging 

Technologies Lab. For the red and NIR channels we baseline 20 of the LBNL 4k×4k, 250 µm thick CCDs to optimize 

quantum efficiency (QE). The sensors are shown in Figure 13. Currently 21 LBNL and 8 ITL detectors are fabricated 

and meet the requirements. The blue curve in Figure 14 shows the QE of the ITL CCD. The red curve in Figure 14 

shows measured QE for an LBNL CCD with a broadband antireflection coating. The high-side cutoff is determined by 

the CCD thickness. 

Table 6: CCD performance specifications 

 

 

Figure 13: The packaging scheme for LBNL and ITL CCDs that are compatible with the DESI cryostats are shown. CCDs 

are 4k x 4k with 15 µm pixels. Left: ITL package for STA 4150A CCD. Right: LBNL 4k x 4k CCD package. 
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Figure 14: Quantum e�ciency for DESI: ITL STA5140A and 250 µm thick LBNL CCDs. Data are lab measurements. The 

purple line is the CCD specification. The vertical orange dashed lines are the locations of the band transitions for the three 

spectrograph channels. The ITL sensor, in the Blue band, and LBNL sensor, for the Red and NIR bands, meets their 

specifications. 

 

Figure 15: Left: Blowup of CCD package for the DESI 4k x 4k LBNL CCDs. Right: CCD packaging fixture showing four 

digital cameras to control the process. Two are used to measure the gap between the CCD and the substrate, which can be 

adjusted with micrometers (not shown in the image). The other two cameras are used to monitor the flow of epoxy during 

the gluing process. The fixture holding the substrate is not shown in this image. 

 

ITL will provide packaged and tested CCDs. LBNL will produce and cold probe unpackaged CCD die that will in turn 

be packaged and characterized at FNAL. An exploded view of the package for the 4k x 4k DESI sensors is shown in left 

of Figure 15. The detector is attached to a Si substrate with Epotek adhesive. The Si substrate is attached to the custom 

readout flex circuit, which brings the signals to a 65-pin connector. The flex circuit is wire-bonded to the CCD. Finally, 

an Invar pedestal foot is attached to the substrate to provide mechanical support for the detector. The 80 µm gap and 

flatness between the sensor and the substrate is controlled with a measuring microscope system shown on the right of 

Figure 15, right. Detectors have been assembled and room temperature and cryogenic flatness measurements have been 

performed. An example is shown in Figure 16 where the maximum deviation from a flat surface is 6 µm. 
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analysis of the spectrograph was performed with the assistance of Photon Engineering (Tucson AZ). This study was used 

to define baffles, surfaces and the surface roughness and particulate requirements for the optical surfaces. 

 

Figure 22: Left: The average (blue) and maximum (red) diameters of the 50% encircled energy versus wavelength for the 

simulated spectrograph. The requirement is < 50µm. Right: The maximum diameter of the 95% encircled energy versus 

wavelength for the simulated spectrograph. The requirement is < 110µm. 

 

 

 Figure 23: The estimated throughput of the spectrograph. The blue, red and black curves are for the blue, red and NIR 

channels respectively. The green curve is the sum of the channel throughputs and the dashed blue curve is the requirement. 

3.2 Spectrograph Integration and Testing 

The first spectrograph has been successfully fabricated, integrated and tested by the Aix Marseille Universities at 

Winlight Systems, as described in these Proceedings7. The spectrograph production consists of testing and integration of 

major assemblies, the camera plus VPH mount, the collimator and Hartmann unit, the dichroic, the cryostat, the shutters, 

and the baffles and covers.  

The cameras are first joined with their VPH gratings at an angle to maximize throughput. The camera assembly is then 

aligned by measuring the focal surface point spread function (PSF) with reference to the cryostat interface. A special 

camera test stand uses a collimator in the same configuration as the spectrograph to feed narrow-line spectral fields to the 

camera unit aperture. The camera output focal plane is then examined with a translating microscope.  

The NIR dichroic and collimator are then integrated on a sub-bench that is aligned with a tooling slit that is collocated 

with the nominal location of the fiber-slit. The camera units are mounted and aligned to the bench, and the camera field 

is confirmed, as shown in Figure 24.   

Cryostats are then attached to the cameras and aligned to each focal plane. The final elements integrated are the shutters, 

baffles and light covers, as shown in Figure 25. Final acceptance tests include verification of the spectral field, PSF, 

efficiency, and scattering. 
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Figure 24: The DESI spectrograph in integrated alignment using a tooling slit source. The cryostats are not attached to the 

cameras and their focal planes can be measured with a microscope. The dichroic filters are visible (blue and red) and the 

furthest, NIR channel camera VPH is visible (green). The nearest camera is the red channel. The shutters and baffles are 

integrated at a later time. 

 

 

Figure 25: The first completed DESI spectrograph, including the baffles and covers. The cryostat assemblies are foreground. 

Following operational, performance, and environmental testing, the spectrographs will then be disassembled in-part and 

shipped to Kitt Peak. The first spectrograph has arrived at Kitt Peak and the remainder are expected arrive by the early 

2019. The spectrographs will be unpacked and reassembled and functionality verified. Test fiber-slit assemblies will be 

joined to the spectrograph for testing calibration. Then the ~500 kg spectrographs will be mounted in five stacks of two 

each in a temperature-controlled enclosure. The science fiber slit and a flat-field illuminator are attached for calibration 

and test. Sky and dome illumination are used for the science slit sources. The flat-field illuminator produces a nearly 

uniform continuum source to measure the CCD detectors’ spectral flat field.  
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4. CONCLUSIONS 

The first DESI spectrograph meets all of its specifications and has been delivered to Kitt Peak for installation and testing. 

The production of the remaining nine spectrographs is well underway. They should all be installed at the Mayall 

telescope by May 2019. 
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