
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

The Design and Evaluation of a Virtual Distributed Computing The Design and Evaluation of a Virtual Distributed Computing

Environment Environment

Haluk Topcuoglu
Syracuse University

Salim Hariri
Syracuse University

Dongmin Kim
Syracuse University

Yoonhee Kim
Syracuse University

Xue Bing
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Topcuoglu, Haluk; Hariri, Salim; Kim, Dongmin; Kim, Yoonhee; and Bing, Xue, "The Design and Evaluation
of a Virtual Distributed Computing Environment" (1998). Electrical Engineering and Computer Science.
109.
https://surface.syr.edu/eecs/109

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/109?utm_source=surface.syr.edu%2Feecs%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Baltzer JournalsThe Design and Evaluation of a Virtual DistributedComputing Environment�Haluk Topcuoglu1 Salim Hariri1 Dongmin Kim1 Yoonhee Kim1 Xue Bing1Baoqing Ye1 Ilkyeun Ra1 Jon Valente21Department of Electrical Engineering and Computer ScienceHPDC LaboratorySyracuse UniversitySyracuse, NY 13244-4100E-mail: {haluk, hariri}@cat.syr.edu2Rome Laboratory, Rome, NY 13441Current advances in high-speed networks such as ATM and �ber-optics, and soft-ware technologies such as the JAVA programming language and WWW tools, havemade network-based computing a cost-e�ective, high-performance distributedcomputing environment. Metacomputing, a special subset of network-basedcomputing, is a well-integrated execution environment derived by combiningdiverse and distributed resources such as MPPs, workstations, mass storage,and databases that show a heterogeneous nature in terms of hardware, software,and organization. In this paper we present the Virtual Distributed ComputingEnvironment (VDCE), a metacomputing environment currently being developedat Syracuse University. VDCE provides an e�cient web-based approach for de-veloping, evaluating and visualizing large-scale distributed applications that arebased on prede�ned task libraries on diverse platforms. The VDCE task librariesrelieve end-users of tedious task implementations and also support reusability.The VDCE software architecture is described in terms of three modules: a)the Application Editor, a user-friendly application development environmentthat generates the Application Flow Graph (AFG) of an application; b) theApplication Scheduler, which provides an e�cient task-to-resource mapping ofAFG; and c) the VDCE Runtime System, which is responsible for running andmanaging application execution and for monitoring the VDCE resources. Wepresent experimental results of an application execution on the VDCE prototypefor evaluating the performance of di�erent machine and network con�gurations.We also show how VDCE can be used as a problem-solving environment onwhich large-scale, network-centric applications can be developed by a noviceprogrammer rather than by an expert in low-level details of parallel programminglanguages.Keywords: network computing; programming tools and environments; taskscheduling.�This research is supported by Rome Laboratory contract number F30602-95-C-0104.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 21 IntroductionGrand challenge problems have computational and storage resource requirements thatare beyond the capacities of a single computing environment. Additionally, emerging net-work technologies such as �ber-optic transmission facilities and the Asynchronous TransferMode (ATM) enable data to be transferred at the rate of a gigabit per second (Gbps).Since high-speed networks have become more common and provide low latency commu-nication services that are close to those o�ered by massively parallel processors (MPPs),there is a growing interest in combining the computational and storage resources thatare available over the wide area networks to build a new execution environment calledmetacomputing [14]. New software tools and techniques are required to utilize the meta-computing resources, which are not fully supported by existing parallel or distributedsoftware. The heterogeneous and dynamic nature of a metacomputing environment lim-its the use of existing parallel computing tools; similarly, the existing distributed systemsmay not provide the high performance that is a key target in a metacomputing environ-ment.In this paper we present the design of the Virtual Distributed Computing Environ-ment (VDCE) currently being developed at Syracuse University. VDCE [2, 3] providesan e�cient mechanism to execute large-scale applications on distributed and diverse plat-forms. The main goal of the VDCE project is to develop an easy-to-use, integratedsoftware development environment that provides software tools and middleware softwareto handle all the issues related to developing parallel and distributed applications, schedul-ing tasks onto the best available resources, and managing the Quality of Service (QoS)requirements.VDCE is a three-tiered software architecture that consists of an Application Edi-tor to assist in application development and speci�cation, an Application Scheduler toperform transparent application scheduling and resource con�guration, and a VDCE Run-time System to run and manage the application execution. The Application Editor is aweb-based graphical user interface that helps users to develop parallel and distributedapplications. In VDCE the application development process is based on a dataow pro-gramming paradigm. The Application Editor generates its output in terms of an Applica-tion Flow Graph (AFG) in which the nodes represent task computations and links denotecommunication and/or synchronization among the nodes (tasks). The Application Editorprovides menu-driven, functional building blocks of task libraries. A node of an AFG isa well-de�ned function or task selected from a given task library. VDCE provides a largeset of task libraries grouped in terms of their functionality, such as matrix operations,Fourier analysis, C3I (command, control, communication, and information) applications,etc. VDCE provides a distributed runtime scheduler, the Application Scheduler, whichprovides e�cient task-to-resource mapping of application ow graphs. The ApplicationScheduler uses performance prediction of individual tasks to achieve e�cient resource allo-cations. The schedule decision is based on the task speci�cations (i.e., hardware/softwarerequirements) in the application ow graph, locations and con�gurations of resources, andup-to-date resource loads. The VDCE Runtime System consists of two parts: the Control

H. Topcuoglu et al. / Virtual Distributed Computing Environment 3Virtual Machine (CVM), and the Data Virtual Machine (DVM). The CVM is responsiblefor monitoring the VDCE resources, setting up the execution environment for a givenapplication, monitoring the execution of the application tasks on the assigned computers,and maintaining the performance, fault tolerance, and quality of service (QoS) require-ments. The DVM is responsible for providing low latency and high-speed communicationand synchronization services for inter-task communications.The rest of the paper is organized as follows. Section 2 is a summary of the relatedwork. In Section 3 we present the design and implementation issues of the VDCE softwarearchitecture. Section 4 presents experimental results and evaluation of the current VDCEprototype. Concluding remarks and future work are given in Section 5.2 Related WorkIn this section we provide a review of related work on the software development process,followed by related work on metacomputing. The software development process of par-allel and distributed applications can broadly be described in terms of three phases: a)application design and speci�cation, b) application scheduling and resource con�guration,and c) application execution and runtime.In a well-integrated execution environment it is important to provide: a) an easy-to-use interactive user-interface to design and specify parallel distributed applications and,b) well-developed graphical utilities for visualization of results and program behavior.Generally, writing parallel/distributed programs overwhelms users due to the di�cultyof explicitly expressing communication and synchronization among the computations [1].A graph-based programming environment, in which a program is de�ned as a directedgraph where nodes denote computations and links denote communication and synchro-nization between nodes, may be used to decrease the work of programmers. Currently,there are a few visual parallel programming languages and environments, such as Compu-tationally Oriented Display Environment (Code) [4], Heterogeneous Network ComputingEnvironment (HeNCE) [5], and Zoom [6]. To develop a Code or HeNCE application, aprogrammer �rst expresses the sequential computations in a standard language and thenspeci�es how they are to be composed into a parallel program. Zoom is a hierarchicalrepresentation abstraction for describing heterogeneous applications. Zoom representa-tion of an application can be translated into a HeNCE program for execution [5]. Onthe other hand, application development tools and environments are being modi�ed tosupport web-based user interfaces, since the World Wide Web is becoming a low-cost,standard interface mechanism with which to access the computational resources that aredistributed all over the world [22].After a parallel/distributed application is developed, the tasks of the application areassigned to the available resources. In the literature, although the task scheduling (orresource allocation) problem has been investigated extensively, most of the algorithmsand systems are valid only for speci�c architectures and/or applications. One of the fewresearch groups targeted on a general scheduling framework is the APPLeS [7] group. AP-

H. Topcuoglu et al. / Virtual Distributed Computing Environment 4PLeS proposes application-level scheduling in which everything about the system is eval-uated in terms of its impact on the application. APPLeS develops a customized schedulefor each application by including user-speci�c, application-speci�c, system-speci�c, anddynamic information in its scheduling decision. The Network Weather Service compo-nent provides dynamic information. The Heterogeneous Application Template providesspeci�c information about the structure of the application. User-supplied information isentered into the system with a user-speci�cation �le. There are resource managementsystems to provide load sharing and resource allocation, one of which, developed at theUniversity of Wisconsin, is the Condor [24] project, a distributed batch system for sharingthe workload of compute-intensive jobs in a pool of UNIX workstations connected by anetwork.The application execution and runtime phase executes the developed and con�guredapplication and produces the required output. This stage integrates the assigned re-sources that will be involved in execution and supports inter-module communications,which are based on either a message-passing tool such as PVM [16], P4 [18], MPI [17],and NCS [19] or on a distributed shared memory (DSM) model. During the execution ofthe application this stage accepts data from di�erent computing elements and combinesthem for proper visualization. It intercepts the error messages generated and providesproper interpretation. Some of these message-passing tools may be used in a metacom-puting environment, although they were initially developed for parallel and distributedapplications. In the �rst I-WAY metacomputing testbed, Nexus and MPI communica-tion libraries were used within the prototype implementations of Globus communications.In addition, there are a few projects targeted toward providing a metacomputing envi-ronment on diverse resources. The earliest metacomputer, the NCSA Metacomputer [20],was an integration of several MPPs, mass storage units, visualization and I/O devices.Globus [14] and Legion [21] are among the most recent projects targeted toward solv-ing metacomputing problems. A low-level toolkit in the Globus environment providesmechanisms such as communication, authentication, and network information. Thesemechanisms can be used to construct higher-level metacomputing services such as paral-lel programming tools, schedulers, etc. On the other hand, Legion is a distributed-objectmetacomputing environment that is targeted to support a wide set of tools, languages,and programming models. The major objectives of the Legion project are site autonomy,an easy-to-use seamless computational environment, high performance via parallelism,security for users and resource owners, management and exploitation of resource hetero-geneity, multiple language support and interoperability and fault tolerance. Additionally,there are several web-based metacomputing projects [22], that either use the JAVA pro-gramming language as the main computation language or provide a coordination mediumbased on WWW technologies or the JAVA language. There may be some drawbacks tothese methods. First, they may not support the programs written in other languages suchas C and Fortran. Second, they may support communication only between a server anda client, which restricts the execution of the candidate applications.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 53 Overview of VDCE Software ArchitectureThe main design philosophy of VDCE is to provide a general software development en-vironment to build and execute large-scale applications on a network of heterogeneousresources. VDCE is composed of geographically distributed computation sites (domains),as shown in Figure 1, each of which has one or more VDCE Servers. The words \site"and \domain" are used interchangeably in this paper. Each domain consists of severalclusters, each of which includes heterogeneous resources in terms of type, speed, or thecon�guration. At each site the VDCE Server runs the server software, called site manager,which handles inter-site communications and bridges VDCE modules to the web-basedsite repository. The site manager is part of the Control Virtual Machine that was ex-plained in Section 3.3.
Figure 1: Virtual Distributed Computing Environment (VDCE)The site repository consists of four di�erent database tables. The user-accounts ta-ble is used to handle user authentication. In the user-accounts table, each VDCE useraccount is represented by a 5-tuple: user name, password, user ID, priority, and accessdomain type. The resource-performance table provides the resource (machine and net-work) performance attributes/parameters. These attributes are grouped into two parts:a) static performance attributes stored in the database once during the initial con�gu-ration of VDCE: host name, IP address, architecture type, operating system type, andtotal memory size, the computing weight (which will be described later in the ApplicationScheduler section) of each processor with respect to a base processor; and b) dynamic per-formance attributes that are updated periodically: CPU load, network latency, networkbandwidth, and available memory size, number of processes, etc. The task-performancetable provides performance characteristics for each task in the system and is used topredict the performance of the task on a given resource. Each task implementation isspeci�ed by some parameters: computation size, communication size, and required mem-ory size. For each task in VDCE, the task-performance table includes an entry for themeasured execution time of benchmarking the task per machine type as well as the CPUloads when the measurements are taken. In order to �nd the location of a task's exe-

H. Topcuoglu et al. / Virtual Distributed Computing Environment 6cutable, VDCE stores location information of each task (i.e., the absolute path of thetask executable) as well as other restrictions that might be related to the task executionfor each host in the task-constraints table. Due to speci�c library requirements or otherlicense restrictions, some task executables may reside only on a subset of the VDCE hosts.
 Task ID Option 1 Option 2

 Editor
Application

Application
Scheduler

Site Repository

S
ite

 M

an
ag

er

Runtime System
VDCE

Ressource Allocation Information

Application Flow Graph (AFG)

Constraints

Task
Performance

Performance
Resource

Accounts
User

TaskFigure 2: Interactions Among the VDCE ModulesThe software development cycle for network applications can be viewed in terms ofthree phases: application development and speci�cation phase, application schedulingand con�guration phase, and execution and runtime phase. The functionality of thesethree phases is handled by the Application Editor, Application Scheduler, and VDCERuntime System, respectively. Figure 2 shows the interaction of the VDCE moduleswithin a site. In the following subsections we describe in detail the design and prototypeimplementation issues of the three main software modules.3.1 Application EditorThe Application Editor is a web-based graphical user interface for developing paralleland distributed applications. The end-user establishes a URL connection to the VDCEServer software within the site (the Site Manager), which runs on a VDCE Server (seeFigure 3). The Site Manager implementation is based on JAVA Web server technology,which uses servlets (i.e., server site JAVA applets) that relive the startup overheads andrun on any platform. After user authentication (as shown in Figure 3), the ApplicationEditor, which was implemented in JAVA, will be loaded into the user's local web browserso that the user can develop his/her application.The Application Editor provides menu-driven task libraries that are grouped in termsof their functionality, such as the matrix algebra library, C3I (command and control appli-cations) library, etc. A selected task is represented as a clickable and draggable graphicalicon in the active editor area. Each such icon includes the task name and a set of markersfor logical ports. Color coding used in this visual representation helps to distinguish inputports from output ports. Operationally, the Application Editor can be in task mode, linkmode, or run mode. In task mode, the user can select/add new tasks, and/or click/dragicons to position them conveniently in the active editor area. In link mode, the user canspecify connections between tasks. In run mode, Editor submits the graph for executionand visualizes the performance and runtime characteristics of an ongoing computation.The process of building a VDCE application with the Application Editor can be di-

H. Topcuoglu et al. / Virtual Distributed Computing Environment 7
Figure 3: VDCE Authentication Windowvided into two steps: building the application ow graph (AFG), and specifying the taskproperties of the application. The application ow graph is a directed acyclic graph,G = (T; L), where T is the set of tasks in the application and L is a set of directedlinks among tasks. A directed link (i; j) between two tasks, Ti and Tj , of the applicationindicates that Ti must complete its execution before Tj begins to run. Figure 4 showsthe application ow graph of a Linear Equation Solver (based on LU Decomposition)developed using the Application Editor. In this application, the problem is to �nd thesolution vector x in an equation Ax = b, where A is a known N � N matrix and b is aknown vector. With LU Decomposition, any matrix can be decomposed into the productof a lower triangular matrix L and upper triangular matrix U . Once LU Decompositionis solved, the solution vector, x, is derived with x = U�1(L�1b). To construct the owgraph of this application, the user creates nodes by selecting LU Decomposition, Ma-trix Inverse(2), and Matrix Multiply(2) tasks from the Matrix Operations menu.After the application ow graph is generated, the next step in the application devel-opment process is to specify the properties of each task. A double click on any task icongenerates a popup panel that allows the user to specify optional preferences such as com-putational mode (sequential or parallel); domain type (Syracuse University or Rome Lab);cluster type (HPDC cluster, CAT cluster, TOP cluster; Rome Lab Cluster); communi-cation type (P4, socket, MPI, DSM, NCS, PVM); thread type (none, pthread, qthread,cthread), communication protocol type (TCP/IP, ATM); machine type (SUN SPARC,RS6000, Pentium PC, HP) and the number of processors to be used in a parallel imple-mentation of a given task (see the right part of Figure 4). In this �gure, for the MULTtask of the Linear Equation Solver the user has selected the parallel execution mode using

H. Topcuoglu et al. / Virtual Distributed Computing Environment 8
Figure 4: Building the Linear Equation Solver Application with the Application Editortwo nodes of Sun SPARC machines interconnected by an ATM network. When the taskproperties are speci�ed the user may either submit the application for execution in theVDCE or store the application ow graph for future use.3.2 Application SchedulerThe main function of the Application Scheduler module in VDCE is to interpret the appli-cation ow graph and to assign the current best available resources for running applicationtasks in order to minimize the total execution time in a transparent manner. This moduleis based on application-based scheduling framework [7, 8] that is currently being imple-mented. VDCE provides distributed scheduling in a wide-area system in which each siteconsists of its own Application Scheduler running on the VDCE server. The ApplicationScheduler has two scheduling algorithms explained at the following pages: site scheduleralgorithm and host selection algorithm. The schedule of an AFG is determined by theVDCE server at the local site, which runs the site scheduler algorithm, and a set of se-lected remote sites that execute the Host Selection Algorithm. Table 1 gives the meaningsof the symbols used in the algorithms.The site scheduler algorithm and host selection algorithm are based on the list schedul-ing [9, 10, 11] heuristic. In list scheduling each node (task) of the graph is assigned apriority and stored in an ordered list. In this paper node and task terms are used inter-changeably. Whenever a processor is available for execution the highest priority task inthe list is assigned to this processor. This process is repeated until all nodes of the graphare covered. The di�erence among the list scheduling heuristics is the way in which theyassign priorities to nodes. The di�erent priority assignment methods lead to di�erentselection orders that result in di�erent schedules.We use the level of each node to determine its priority [10]. The level of a node is

H. Topcuoglu et al. / Virtual Distributed Computing Environment 9Table 1Symbols and their meaningsSymbol MeaningAFG Application Flow Graph.Site List The list of sites that will be part of the scheduling process.Slocal The site that has received the application execution request.Sremote The set of selected k neighbor sites of Slocal.BW (Si; Sj) The network bandwidth between sites Si and Sj .LT (Si ; Sj) The network latency between sites Si and Sj .Pred Time(taski; Sj) The best predicted execution time of taski at Sj .pred time(taski; Pj) The predicted execution time of taski on Pj.EST (taski ; Sj) The earliest start time of taski at site Sj.EFT (taski; Sj) The earliest �nish time of taski at site Sj .Predecessor(taski) The set of nodes that are immediate predecessor of taski.Exec time(taski; Ptest) The measured execution time of taski on Ptest for the trial run.C Load(Pj) The recent CPU load of Pj.M Load(Ptest) The CPU load of Ptest at the time of the trial run.Weight(Pj) The computing weight of Pj with respect to a base processor.de�ned by the length of the longest path from the node to a terminal (or exit) node.The length of a path in the task graph is measured by the summation of all node weightsand edge weights along the path. The node weight is the predicted execution time ofthe task, and edge weight is the predicted intertask communication time. Some of theprevious works do not consider the edge weight when calculating the level of a node. For anode weight, we use the execution time of the task (node) on a prede�ned base-processorwithin the site. The weight of an edge between task i and task j is measured by divid-ing the data size to be sent from task i to task j, D(i; j), to a base communication-linkbandwidth, BWbase. We assume that each AFG has only one root node and one exit node.Site Scheduler AlgorithmIn this algorithm, the next step after initializing the Task List with level values of AFGnodes is to select a set of remote sites that will be part of the scheduling process andthat may possibly be part of the execution process. If the update request ag is true, itindicates that one or more sites in the Sremote have high network tra�c (or down). Inthis case, the remote sites are selected according to the network bandwidth between theremote site and the local site (shown in steps 4{8). Otherwise, the previously stored setis used. Then, AFG and Task List are multicast to the involved sites for bidding, afterwhich the Host Selection Algorithm is executed at each site (step 12).The Site Scheduler Algorithm receives the bidding from each site for each task inAFG (step 12), i.e., the best available processor, and the predicted execution time onthe best available processor. Step 14 assigns the root task to the site that minimizes thepredicted execution time. Step 19 calculates the earliest start time (EST) of the currenttask (taski) at each site (Sj). To obtain the EST value of taski, the summation of the

H. Topcuoglu et al. / Virtual Distributed Computing Environment 10earliest �nish time (EFT) and the communication cost is calculated for each immediatepredecessor task of taski in the graph. The EFT of a task at a site is calculated by thesummation of its EST value and the predicted execution time of the task at the currentsite (step 20). As shown in step 22, the best site of a node is the one that minimizes theEFT value. The best available site for the current task is determined at each iterationof the while-loop from step 16 to step 25. For an application ow graph AFG(v; e) withv nodes and e edges the while-loop takes O(v) to compute the EST value of a node ona site (steps 15 and 16). We assume AFG to be a dense graph in which the number ofedges are proportional to O(v2). Since there are v nodes in AFG and k sites involved inthe scheduling process, the while-loop takes O(kv2) time; hence the time complexity ofthe site scheduler algorithm is O(kv2), since the while-loop is the dominant part. Thevalue of k will be much smaller than v; thus the worst case complexity of the algorithmis O(v2).Site Scheduler Algorithm(AFG)Step 1 Compute the level for all nodes in AFG.Step 2 Initialize Task List according to a non-increasing order of node level.Step 3 Read Sremote list and the update request ag from resource performance table.Step 4 If update request ag is true thenStep 5 Select k nearest neighbor sites of Slocal that maximize the networkbandwidth and store them in a set, Sremote.Step 6 update request false.Step 7 Update Sremote, and update request in the resource performance table.Step 8 endifStep 9 Site List Slocal SSremoteStep 10 For each site Sj 2 Site List doStep 11 Send AFG and Task List for bidding.Step 12 �Pred T ime(taski; Sj); Best Resource(taski; Sj)	 Host Selection Algorithm(Task List) 8 taski 2 Task List.Step 13 endforStep 14 Resource Alloc Table(task1) Sm , such that:Pred T ime(task1; Sm) minfPred T ime(task1; Si)g, 8 Si 2 Site List.Step 15 Remove task1 from the Task List.Step 16 while Task List is not empty doStep 17 taski the �rst task in Task List.Step 18 For each site, Sj , in the Site List doStep 19 EST (taski; Sj) max �EFT (taskk; Sm)+(LT (Sm ; Sj)+ D(k;i)BW (Sm ;Sj))	8 taskk 2 Predecessor(taski), such that:Sm Resource Alloc Table(taskk).Step 20 EFT (taski; Sj) EST (taski; Sj) + Pred T ime(taski; Sj).Step 21 endfor

H. Topcuoglu et al. / Virtual Distributed Computing Environment 11Step 22 Select Best Site, such that:EFT (taski; Best Site) minfEFT (taski; Sj)g, 8Sj 2 Site List.Step 23 Resource Alloc Table(taski) Best Resource(taski; Best Site)Step 24 Remove taski from the Task List.Step 25 endwhileStep 26 Multicast the Resource Alloc Table to the relevant sites.Host Selection AlgorithmThe Host Selection Algorithm determines the task assignments of AFG tasks on the avail-able processors within each site. The calculation of the EST is similar to the previousalgorithm. In this algorithm, base communication-link bandwidth, BWbase, is consideredfor all connections within a site (step 4). Additionally, the latency within a site is negligi-ble if it is compared with the latency between the di�erent sites. The communication costbetween a task and its immediate predecessor is zero if they are scheduled to the sameprocessor. The core of the Host Selection Algorithm is the performance prediction phase.The execution time prediction of a task on a a given resource is based on the current loadof the processor, load of the test processor at the time of trial run, measured executiontime for the trial run, and computing weights (step 5).The measured execution time and the load value for the trial runs are retrieved fromthe task-performance table, as explained in the Site Repository section of this paper.Weight(Pj) is the computing weight [12, 13] of processor Pj with respect to the base-processor at the site. To calculate the weight of each processor, trial runs of a set of taskimplementations are executed on each processor. The ratio of average execution time ofthe trial runs on a processor Pi to the average execution time on the base-processor givesthe computing power weight of Pi. In step 6, the EFT value is the summation of the ESTand the predicted execution time. For each task, the processor that minimizes the EFTvalue is selected as the best resource in this site. An iteration of the while loop takesO(pv) times, where v is the number of nodes in AFG and p is the number of processor inthe Processor List. Thus the time complexity of the Site Scheduler Algorithm is O(pv2).Host Selection Algorithm(Task List)Step 1 while Task List is not empty doStep 2 taski the �rst task in Task List.Step 3 For each available processor, Pj, in the Processor List doStep 4 EST (taski; Pj) max �EFT (taskk; Pm)+Comm Cost(taskk; taski)	8 taskk 2 Predecessor(taski) such that:Pm Best Resource(taskk) andComm Cost(taskk; taski) � D(k;i)BWbase Pm 6= Pj0 otherwiseStep 5 Pred T ime(taski; Pj) C Load(Pj)M Load(Ptest) �Exec T ime(taski; Ptest) � Weight(Ptest)Weight(Pj)

H. Topcuoglu et al. / Virtual Distributed Computing Environment 12Step 6 EFT (taski; Pj) EST (taski; Pj) + Pred T ime(taski; Pj)Step 7 endforStep 8 Best Resource(taski) Pk, such that:EFT (taski; Pk) minfEFT (taski; Pj)g, 8Pj 2 Processor List.Step 9 endwhileStep 10 Return Pred T ime(taski; Best Resource) and Best Resource(taski) to Slocalfor each task.3.3 VDCE Runtime SystemThe VDCE Runtime System sets up the execution environment for a given applicationand manages the execution to meet the hardware/software requirements of the applica-tion. The VDCE Runtime System separates control and data functions by allocating themto the Control Virtual Machine (CVM) and Data Virtual Machine (DVM), respectively.CVM measures the loads on the resources (hosts and networks) periodically and monitorsthe resources for possible failures. CVM daemons control the execution of the applicationtasks on the assigned resources based on the performance and quality of service require-ments. Application visualization (real-time or post-mortem) services are provided byCVM. DVM provides an execution environment for a given VDCE application by bindingtasks so that they can interact and communicate e�ciently. DVM supports socket-basedpoint-to-point connections for inter-task communications.Control Virtual Machine (CVM)The functionality of CVM is provided by the following four processes: Site CVM, Lo-cal CVM, Monitor, and Cluster Manager (see Figure 5). Each VDCE machine runs aLocal CVM process and a Monitor daemon. Additionally, one of the machines withineach cluster executes the Cluster Manager process. Each site (domain) has a Site CVMprocess located at the VDCE Server machine. The main functions of the stated CVMprocesses are given below:� Retrieving Resource Performance Parameters. VDCE resources are periodicallymonitored to collect up-to-date values of processor and network parameters thatwere given in the Site Repository subsection of this paper. The Monitor daemonof each machine periodically measures the up-to-date parameters every 30 secondsand updates its �elds at the Cluster leader machine shown in Figure 5. The ClusterManager daemon gathers the parameters of machines within the cluster in a tableand periodically forwards the table to the Site CVM every 60 seconds. In the futureimplementation the Cluster Manager will be modi�ed to send only the workloadsof the resources that have changed considerably from the previous measurement.The workload of a resource is signi�cantly changed if the up-to-date measurementis higher or lower than the summation of the previous measurement and the widthof the con�dence interval [15].� Updating the Site Repository. The Site CVM periodically updates the resource-performance table at the site repository with the parameters that are collected fromCluster Managers. The execution time and load measurement of benchmarking runs

H. Topcuoglu et al. / Virtual Distributed Computing Environment 13
Monitor

Monitor Monitor

5

1.

4.

5.

NODE A NODE B

1 & 3

3.
2.

1 & 31 & 3

4 4

4

Machine

4

2

2

1 & 3

Updating the Site Repository
Monitoring the VDCE Resources
Sending the Related Portion of

Resource Allocation Table

Inter-site Coordination

Cluster Manager

Site_CVM

Site Repository

Site Repository

Site_CVM

Application
Scheduler

Scheduler
Application

Local_CVM

Local_CVM Local_CVM

Cluster Manager

(ROME LABORATORY DOMAIN)
VDCE SERVER MACHINE

(SYRACUSE UNIVERSITY DOMAIN)
VDCE SERVER MACHINE

Retreieving the Resource Performance ParametersFigure 5: Interactions Among the Control Virtual Machine Componentsof tasks are stored at the task-performance table.� Monitoring the VDCE Resources. When a Monitor daemon of a processor stores itsparameters, it reads the random number that was generated by the Cluster Man-ager and updates its alive check �eld with this value. Every 60 seconds the ClusterManager compares its alive check �eld with each cluster machine's alive check �eld.The machines with a di�erent value are marked as down; others are marked alive.After the comparison, the Cluster Manager assigns a new random number for itsalive check �eld. The monitor information is forwarded to the Site CVM with theresource parameters to be stored at the site repository. The machines that aremarked as down at the resource-performance table are not selected by the Applica-tion Scheduler.� Sending the Related Portion of the Resource Allocation Table. After the resourceallocation table is generated by the Application Scheduler, the Site CVM multicastsit to the Cluster Managers that will be involved in the execution. If a machine ina cluster is assigned for a task execution, the Cluster Manager sends an executionrequest message and related parts of the resource allocation table to the Local CVMof the machine.� Inter-site Coordination. As explained in Section 3.2, the Application Scheduler atthe local site selects a subset of remote sites and multicasts the application owgraph to these sites. The remote sites run the Host Selection Algorithm locally andtransfer the mapping decisions to the sender site. The inter-site coordination andmessage transfer are handled by Site CVMs.� Initialize the Application Execution Environment. After the Local CVM receives anexecution request message from the Cluster Manager, it activates the DVM. TheDVMs on the assigned machines set up the application execution environment by

H. Topcuoglu et al. / Virtual Distributed Computing Environment 14
1 3

1 3 4

1.
2

Socket-based Intertask Communcations
3

4

3

4

5

5

Activation of the Communication Proxy and

Task Execution Startup Signal

4

4

Acknowledgement of the Communication Channel Setup

Requesting the Communication Channel Setup

Activation of the DVM proces

NODE 2 (running the Matrix Inversion Task)

NODE 1 (running the LU Decomposition Task)

NODE 3 (running the Matrix Inversion Task)

4
5

3

LU

Proxy

Proxy

Local_CVM

Local_CVM

Local_CVM

DVM

DVM

DVM

 Communication

Decomposition

 Communication

Inversion
Matrix

Inversion
Matrix

Proxy
 Communication

4

2

3

2

2 31Figure 6: Setting Up the Application Execution Environmentstarting the task executions and creating point-to-point communication channels forinter-task data transfer. Figure 6 shows the part of the execution environment of theLinear Equation Solver application discussed in Section 3.1. Machine 1 will executethe LU Decomposition task, which is followed by the execution of Matrix Inversiontasks on Machine 2 and Machine 3. When all the required acknowledgments arereceived, an execution startup signal is sent to start the application execution.� Managing the application execution. The Local CVM monitors the application ex-ecution on the assigned machines and maintains the performance, fault tolerance,and QoS requirements of the application tasks. If the current load on any of thesemachines is more than a prede�ned threshold value, the Local CVM terminatesthe task execution on the machine and sends a task rescheduling request to theSite CVM through the Cluster Manager.Data Virtual Machine (DVM)DVM is a socket-based, point-to-point communication system for inter-task communica-tions. Therefore, any machine that supports socket programming can be part of VDCE.As shown in Figure 6, the DVM activates the communication proxy and sends the resourceallocation information, including the socket number, IP address for target machine, etc.,that will be used for the communication channel setup. After the setup is completedsuccessfully, the communication proxy sends an acknowledgment to the Local CVM. Theexecution startup signal is sent to start the task executions.On the other hand, for a thread-based programming environment, the Data Managerconsists of three threads that are initiated by the communication proxy: send thread,receive thread, and compute thread. After the communication channel is established, thesend and receive threads are activated for data transfer and the compute thread performsthe task execution. The control transfer between the Local CVM and the DVM (or anyother control transfer on the same machine) are based on an inter-process communica-tion mechanism (i.e., pipes or shared-memory paradigm). The data transfer among thecommunication proxies (or between send and receive threads for multithreaded systems)uses a socket-based, message-passing mechanism.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 15Since user tasks can be programmed in various message-passing tools, the VDCERuntime System supports multiplemessage-passing libraries such as P4, PVM,MPI, NCS.Additionally, the VDCE Runtime System provides data conversions that might be neededwhen an application execution environment includes heterogeneous machines. The VDCERuntime System provides several user-requested services such as I/O service, consoleservice, and visualization service. A user can request these services while developinghis/her application with the Application Editor. I/O Service provides either �le I/O orURL I/O for the inputs of the application tasks. The user can suspend and restart theapplication execution with the console service. The VDCE visualization service providesboth real-time and post-mortem visualizations. There are three types of visualizationsprovided in VDCE:� Application Performance Visualization: The execution time of tasks in an applica-tion is visualized.� Workload Visualization: Up-to-date workload information on VDCE resources isvisualized.� Comparative Visualization: VDCE makes it possible for an end user to experimentand evaluate his/her application for di�erent combinations of hardware and softwaremedium by providing the comparative performance visualization.4 VDCE Testbed: Experimental Results and DiscussionThe current VDCE prototype consists of two sites, one at Syracuse University and theother at Rome Laboratory, that are connected by the NYNET ATMWide Area Network,as shown in Figure 7. Each site or domain has a VDCE server, a Site Repository andseveral computing clusters. At the Syracuse University site there are three computingclusters: HPDC, CAT, and TOP. The HPDC cluster consists of several ATM switchesand ATM concentrators that connect high-performance workstations and PCs at a rateof 155 and 25 Mbps, respectively (URL:http//www.atm.syr.edu). The TOP and CATclusters have SUN SPARCs, SUN IPXs and IBM RS6000s that are connected to the ATMcluster through the Ethernet. The Rome Lab site consists of three clusters that includeSUN, Digital, and HP workstations.In this section we discuss and evaluate the performance of the current VDCE proto-type in implementing two important tasks: 1) The use of VDCE as an evaluation toolfor the parallel implementations of the VDCE library tasks using di�erent numbers ofworkstations, and di�erent networks to connect them (e.g, ATM or Ethernet); and 2)The use of VDCE as a problem-solving environment for large-scale VDCE applications.4.1 Experiment 1: Using VDCE as a Parallel Evaluation ToolIn this experiment we used the matrix multiplication (MULT) task as a running exam-ple to show the use of the VDCE for experimentation and to evaluate the performance

H. Topcuoglu et al. / Virtual Distributed Computing Environment 16
Figure 7: The con�guration of the VDCE Testbedof di�erent con�gurations when the number of computers, network types, and problemsizes are changed. We compared the time and e�ort required to perform such tasks withand without using the VDCE. We benchmarked the sequential and parallel algorithmsof Matrix multiplication(MULT) based on various machine and network con�gurationsand problem sizes. The parallel implementation of MULT (A �B = C) task is based onthe host-node programming model. The master process distributes the rows of matrix Aevenly among the processes (where each process runs on one workstation) while all theslave processes receive the entire B matrix. Each slave process computes its part of resultmatrix C and sends it back to the host process.The VDCE provides a web-based, user-friendly interface that allows a novice pro-grammer to experiment with and evaluate di�erent parallel con�gurations of each VDCEtask in minutes. We argue that performing similar evaluation tasks is almost impossiblefor novice programmers and requires hours and even days to be performed by an expertprogrammer using parallel processing and message passing and visualization tools. WithVDCE, once a task library is registered to the VDCE site repository, any VDCE user canuse that task or any existing VDCE task by just clicking on the task name in the Appli-cation Editor. Once the task is selected, the user can click on one button to determinethe problem size, the number of computers to be involved in the computation, and thenetwork to be used to connect them. Selecting the VDCE task and specifying how it willbe implemented can be done in a few minutes. Once that is done, the task con�gurationcan be run and its execution time visualized immediately without any e�ort other thanclicking on the execute and visualize buttons.Figure 8 shows the execution times of the VDCE-based, matrix multiplication algo-rithm for 512�512 and 1024�1024. The result for p4-based implementation of the samemultiplication algorithm is given in Figure 9. The experiments were done for one, two

H. Topcuoglu et al. / Virtual Distributed Computing Environment 17and four Sun SPARCs that are connected by an IP/ATM network. We also evaluatedthe performance of MULT task on a heterogeneous cluster of four SUN SPARCs and fourIBM RS6000 workstations. The objective of such an evaluation is to provide users witha better understanding of the performance of parallel processing algorithms when thereis a change in problem size, number of nodes, or network type. As an example, for thep4-based, matrix multiplication algorithm, we can determine from Figure 9 that eightnodes provide the best performance among the test cases.
Figure 8: Execution Time of Matrix Multiplication Task Using VDCE
Figure 9: Execution Time of Matrix Multiplication Task Using p4Table 2 compares the times required to develop, compile, execute, and visualize aMatrix Multiplication task using p4 and VDCE for a 1024� 1024 problem size with four

H. Topcuoglu et al. / Virtual Distributed Computing Environment 18Table 2The performance comparison of matrix multiplication task for each software phasePhase p4 VDCEDesign and development 862 min. 2.10 min.(431 lines)Compilation 7.01 sec. 0 sec.Runtime setup 0.980 sec. 0.015 sec.Task execution 0.194 sec. 0.136 sec.Visualization and evaluation 1890sec. 0.095 sec.nodes. In the design and implementation phase, it takes around 862 minutes for a par-allel programming expert to develop a p4-based multiplication program from scratch ifwe assume that programming speed is two minutes per line. If the programmer has noexperience with p4, he/she will spend more time to learn about it and to develop anapplication. For VDCE, even if the user does not have any knowledge about parallelprogramming, but wants to run the application in parallel, the only thing he/she needsto do is to choose the parallel option in the application design window of the ApplicationEditor. Additionally, he/she can easily de�ne the I/O for a task using the ApplicationEditor. The total time for developing a VDCE MULT application is 2.10 minutes.There is no compilation time in VDCE after the VDCE MULT application is designed.The location of the executable for MULT task on the selected resource is provided in theresource allocation information, which is retrieved from the task constraints table. Theexecutable is then linked to the I/O module. In the p4 version the MULT program takes7.01 seconds for compilation. The runtime setup time in VDCE is for the CVM to transferthe activation and resource allocation information to DVM and to wait for the acknowl-edgment, which takes 15 milliseconds for the MULT task on the selected resource. Fora p4 application, the user creates a con�guration �le, i.e., procgroup �le, and manuallylinks it to the p4 application which takes 980 milliseconds. VDCE runs the applicationautomatically with the \Execute Application" button and generates the results in theselected output �le. The execution time of MULT task is 136 milliseconds when it isexecuted on four nodes over the ATM. The execution time is 194 milliseconds using a p4program with the same con�guration.VDCE provides dynamic and post-mortem visualization of the application. A VDCEuser monitors the load of all machines dynamically in the domain and he/she can considerthe load information to select an appropriate machine and/or a cluster. In addition, theexecution time of each module within an application is visualized in VDCE. It takes95 milliseconds to invoke the VDCE visualization window for the MULT task. If a p4user wants to visualize the execution time to compare its performance with others, it isnecessary to use another graphic tool. The visualization and evaluation time depends onwhich tool is used; as an example, \gnuplot" takes 1890 seconds.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 19Table 3Performance comparison of linear equation solver application for each software phase 1p4 VDCEPhase LU INV MULT LU INV MULTDesign and development 838 min. 1314 min. 862 min. 2.10 min. 1.57 min. 2.30 min.(419 lines) (657 lines) (431 lines)Compilation 6.45 sec. 8.10 sec. 7.01 sec. 0 sec. 0 sec. 0 sec.Runtime setup 1.200 sec. 1.580 sec. 0.980 sec. 0.043 sec 2Task execution 0.386 sec. 0.556 sec. 0.194 sec. 0.801 sec. 1.360 sec. 0.140 secApplication execution 1.691 sec. 1.451 sec.Application visualization 3200 sec. 0.140 sec.4.2 Experiment 2: Using VDCE as a Problem Solving EnvironmentIn this experiment we demonstrated how the VDCE can enable a novice programmer todevelop large-scale parallel and distributed applications running on geographically dis-tributed heterogeneous resources. Implementing such applications is currently a challeng-ing programming problem and time consuming for experts on parallel and distributedprogramming tools. A distributed application can be viewed as an Application FlowGraph (AFG), where its nodes denote computational tasks and its links denote the com-munications and synchronization between these nodes. Without an application develop-ment tool, a developer or development team must apply much e�ort and time to developa distributed application from scratch. The VDCE provides a web-based interface toenable users to develop, con�gure, execute, and visualize such a distributed applicationin a few minutes. However, to perform the same tasks in a non-VDCE case, the useror team developers need to develop techniques to interact and communicate the modulesrunning on di�erent computers, and they need to develop or integrate techniques to runand manage the execution of the distributed application, as well as collect and visualizethe required performance results.To solve these di�culties, VDCE provides an integrated problem solving environ-ment to enable novice users to develop large-scale, complex, distributed applications us-ing VDCE tasks. The Linear Equation Solver (LES) application has been selected as arunning example. Figure 4 shows the AFG of Linear Equation Solver, which consists ofan LU Decomposition (LU) task, two Matrix Inversion (INV) tasks and Matrix Multi-plication (MULT) tasks. The problem size for this experiment is 1024� 1024 using fournodes, which are SUN SPARCs and IBM RS6000 machines that are connected by anATM network.Table 3 compares the timing of several software phases for a Linear Equation Solverapplication using p4 and VDCE. When a user has enough knowledge about parallel pro-gramming and the p4, he/she will spend 838 minutes for an LU task, 1314 minutes for1The last two rows of the table are for the total time of the application.2It is the total setup time for a VDCE-based linear equation solver application.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 20an INV task, and 862 minutes for MULT task. The total time to develop the applicationfor a non-VDCE version is approximately 3014 minutes, (i.e., around 50 hours). UsingVDCE, a novice user spends around six minutes to develop such an application. There isno compile time for VDCE, but a p4 application needs 21 seconds for compilation. TheVDCE setup time for a Linear Equation Solver application is 43 milliseconds. The p4user should create all procgroup �les and launch them in order, which takes around eightseconds.Since the VDCE is based on the data ow model and executes tasks automatically,there may be overlap among task executions that causes the total execution time of theVDCE application, including the setup time, to be less than the summation of all individ-ual task execution times. In our experiment with the Linear Equation Solver application,the total execution time of p4 parallel execution using four nodes is 1691 milliseconds.A VDCE-based execution with the same con�guration takes 1451 milliseconds, whichoutperforms the p4 by 16%.5 ConclusionWe have presented the design and evaluation of the Virtual Distributed Computing En-vironment (VDCE) being developed at Syracuse University. The VDCE consists of threemain modules: Application Editor, Application Scheduler, and VDCE Runtime System.The Application Editor provides users with all the software tools and library functionsrequired to develop a VDCE application. The main function of the Application Sched-uler is the initial task-to-resource mapping and any necessary dynamic rescheduling. TheVDCE Runtime System is based on the Control Virtual Machine (CVM) and the DataVirtual Machine (DVM). CVM provides a seamless interconnection of the resources andmonitors the resources. DVM enables a high-performance communicationmedium amongthe application tasks.We have successfully implemented a proof-of-concept prototype that supports allmajor components of the VDCE architecture. We are currently working on extending thecurrent prototype in several ways: a) develop and implement an application programminginterface (API) that enables users to add VDCE library tasks; b) add more sites to increasethe computing services o�ered by VDCE; and c) develop and integrate mobile computingtechnology into VDCE so that users can access VDCE resources using mobile hosts andmobile interconnection networks.AcknowledgmentsWe would like to thank Elaine Weinman for proofreading this manuscript.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 21References[1] J. C. Browne, S. Hyder, J. Dongarra, K. Moore, P. Newton, Visual programming anddebugging for parallel computing, IEEE Parallel and Distributed Technology, 3(1) (1995)75{83.[2] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y. Kim, X. Bing, B. Ye,The software architecture of a virtual distributed computing environment, in Proceedings ofSixth IEEE International Symposium on High Performance Distributed Computing, 1997,pp. 40{49.[3] H. Topcuoglu and S. Hariri, A global computing environment for networked resources, inProceedings of International Conference on Parallel Processing, 1997, pp. 493{496.[4] P. Newton, J. C. Browne, The CODE 2.0 graphical parallel programming language, inProceedings of ACM International Conference on Supercomputing, 1992.[5] R. Wolski, C. Anglano, J. Schopf, F. Berman, Developing heterogeneous applications UsingZoom and HeNCE, in Proceedings of the Forth Heterogeneous Computing Workshop, 1995.[6] C. Angalano, J. Schopf, R. Wolski, F. Berman, Zoom: a hierarchical representation forheterogeneous applications, technical report cs95-451, Computer Science Department, Uni-versity of California at San Diego, 1995.[7] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-level scheduling ondistributed heterogeneous networks, in Proceedings of Supercomputing 96, 1996.[8] J. Weissman, A. Grimshaw, A federated model for scheduling in wide-area-systems, inProceedings of the Fifth IEEE International Symposium on High Performance DistributedComputing, 1996, pp. 542{550.[9] T.L. Adam, K. Chandy, and J. Dickson, A comparison of list scheduling for parallel pro-cessing systems, Communication of ACM, 17 (1974) 685{690.[10] H. El-Rewini, H. Ali, T. Lewis, Task scheduling in multiprocessing systems, IEEE Computer,28(12) (1995) 27{37.[11] Y. Kwok, I. Ahmad, Dynamic critical-path scheduling: an e�ective technique for allocatingtask graphs to multiprocessors, IEEE Transactions on Parallel and Distributed Systems, 7(1996) 506{521.[12] Y. Yan and X. Zhang, An e�ective and practical performance prediction model for paral-lel computing on nondedicated heterogeneous NOW, Journal of Parallel and DistributedComputing, 38 (1996) 63{80.[13] M. Zaki, W. Li and M. Cierniak, Performance impact of processor and memory heterogeneityin a network of machines, in Proceedings of the Forth Heterogeneous Computing Workshop,1995.[14] I. Foster and C. Kesselman, Globus: a metacomputing infrastructure toolkit, in Proceedingsof the Workshop on Environment and Tools for Parallel Scienti�c Computing, 1996.[15] H. Casanova and J. Dongarra, Netsolve: a network server for solving computational scienceproblems, in Proceedings of Supercomputing 96, 1996.[16] A. Beguelin, J. Dongara, A. Geist, R. Manchek, and V. Sunderam, User Guide to PVM,Oak Ridge National Laboratory and Department of Mathematics and Computer Science,Emory University, 1993.[17] Message Passing Interface Forum, MPI: A message-passing interface standard, version 1.0May 1994.[18] R. Butler and E. Lusk, User's guide to the p4 programming system, Mathematics andComputer Science Division, Argonne National Laboratory.[19] S. Park, S. Hariri, Y. Kim, J.S. Harris, and R. Yadav, NYNET communication system(NCS): a multithreaded message passing tool over ATM network, Proceedings of the FifthIEEE International Symposium on High Performance Distributed Computing, 1996, pp.460{469.

H. Topcuoglu et al. / Virtual Distributed Computing Environment 22[20] L. Smarr and C. Catlett, Metacomputing, Communications of the ACM, 35, 6, (June 1992)44{52.[21] A. Grimshaw and W. Wulf, Legion - A View from 50,000 Feet, Proceedings of Fifth IEEEInternational Symposium on High Performance Distributed Computing, 1996, pp. 89{99.[22] K. Dincer, World-Wide Virtual Machine: A Metacomputing Environment IntegratingWorld-Wide Web and High Performance Computing and Communication Technologies,Ph.D. Thesis, Syracuse University, 1997.[23] J. Gehring and A. Reinefeld, MARS - A framework for minimizing the job execution timein a metacomputing environment, Future Generation Computing Systems, (1996).[24] Mike Litzkow, Miron Livny Experience with the condor distributed batch system, in IEEEWorkshop on Experimental Distributed Systems, 1990.Haluk Topcuoglu is a Ph.D. candidate in Electrical Engineering and Computer ScienceDepartment at Syracuse University. He received B.S. and M.S. degree in 1991 and 1993respectively in computer engineering from Bogazici University, Istanbul, Turkey. His re-search interests include task scheduling techniques in heterogeneous environments, meta-computing issues, and high-performance parallel and distributed systems. Mr. Topcuogluhas authored or coauthored 6 technical papers in the area of parallel and distributed com-puting. He is a member of ACM, IEEE, IEEE Computer Society, and Phi Beta Delta.Dongmin Kim is a Ph.D. candidate in Electrical Engineering and Computer ScienceDepartment at Syracuse University, New York. He received an M.S. degree in computerscience from Syracuse University, and a B.S. degree in mathematics from Hanyang Uni-versity, Seoul, Korea in 1991.Yoonhee Kim received an M.S. degree in computer science from Syracuse University,New York in 1996. She is currently a Ph.D. candidate in Electrical Engineering and Com-puter Science Department at Syracuse University in 1996. Her research interest includesdistributed and heterogeneous computing systems, mobile computing and software archi-tecture.Baoqing Ye is a Ph.D candidate in Electrical Engineering and Computer Science Depart-ment at Syracuse University. She received an M.S. degree in Engineering from TsingHuaUniversity, China in 1994, and B.S. in Computer Science from GuiLin Elec. IndustryUniversity, China in 1991. She worked in a software engineer position at Beijing GomaTech Co. (Tandem Computer's Branch) in China between 1994 and 1995.Xue Bing is a Ph.D. candidate in Electrical Engineering and Computer Science De-partment at Syracuse University. She was department director at Jiangsu Institute ofComputing Technology in China for the 1992-1996 period. She received an M.S. in Com-puter Science and Engineering department at University of Nanjing Technology in 1984and B.S. in Computer Science at East China Institute of Technology in 1982.Ilkyeun Ra received B.S. degree in computer science from the Sogang University, Koreain 1985, and M.S. degree in computer science from the University of Colorado at Boulderin 1994. Mr. Ra is a Ph.D. student in Electrical Engineering and Computer ScienceDepartment at Syracuse University. His research interests include distributed sharedmemory, high performance parallel and distributed systems, metacomputing and high-

H. Topcuoglu et al. / Virtual Distributed Computing Environment 23speed communication protocols.

	The Design and Evaluation of a Virtual Distributed Computing Environment
	Recommended Citation

	tmp.1286291883.pdf.XmEwD

