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Abstract

The design and implementation of a relatively portable Prolog compiler .achieving 12!( LIPS on

the standard benchmark is described. The compiler is incremental and uses decompilation to im­

plement retract, clause, and listing, as well as support the needs of its four-port debugger. The

system supports modules, garbage collection, database pointers, and a full range of built-ins.

1. Introduction

In the course of exploring implementation techniques for metalevel extensions of
Prolog (cr. Bowen and Kowalski [1982], Bowen and Weinberg [1985], Bowen

[1985]), it became apparent that a fast flexible Prolog compiler would be a useful

tool to serve as a starting point for developing experimental implementations of

the extended systems. Consequently, in late 1984 we began exploring just such a

project. We planned to base the system on the designs of Warren [1983], imple­

menting a byte-code interpreter for the abstract machine in C, while implement­

ing the compiler itself in Prolog. \Ve worked initially in C-Prolog on the Data

General MV/8000 which \\ras the machine available to us at that time. V\Te were

fortunate to join forces ,\\7ith the group working at Argonne ,National Laboratory

(Tim Lindholm, Rusty Lusk, and Ross Overbeek) who were interested in the im­

plementation of Prolog on multiprocessor machines. They had already imple­

mented a byte-code interpreter for a system which would support multiple ver­

sions of Warren's abstract Prolog machine (WM1), different machines running on

different processors, but using shared physical memory and implementing ap­

propriate logical memory spaces. The system was parameterized as to the

This work supported in part by US Air Force grant AFOSR-82-0292 and by US Air Force contract F30602-81­

C.0169. The authors are very grateful to the following people for numerous valuable conversations on the to-­

pics of this paper: Hamid Bacha, Aida BatarekhJ Jim Kajiya, Keyin Larue, Jacob LevYJ Tim Lindholm, Rusty

Lusk, Jon Mills, Hidey Nakashima, Ross Overbeek, Karl Puder, and Toby Weinberg.
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number of physical processors, so that we could run a version with that parame­

ter set to one, yielding a sequential byte-code interpreter for the abstract

machine. Thus, in principle, we could focus our efforts on the construction of

the compiler. Naturally, life being what it is was not quite that simple. The Ar­

gonne group had implemented their byte-code interpreter in C on a VAX 780.

While they had striven for portability, one serious hardware assumption had

crept into the code, namely that the underlying machine was byte-addressable.

Since the :MY/8000 is not a byte-addressable machine, we found that we had to

devote considerable energy to porting the Argonne WAM to the :MY/8000. How­

ever, the changes necessary to achieve this port were propagated back into the

original Argonne code, so that the present Argonne WAM is in all liklihood an

extremely portable system. The Argonne system includes a "WAM assembler"

which will assemble and load "WAM assembly code". (This was revised by

Cicekli to remove limitations on the sizes of programs which could be assembled

and loaded.) Thus we were able to hand-compile and run test examples. We were

disappointed in the resulting performance, the naive reverse benchmark (nrev)

performing at only about 4K LIPs. We concluded that the relatively slow speed

was due to a combination of the portability requirements and the data structures

necessary for multi-processor implementation (even though we were making no

use of those facilities)! Performance improved somewhat when we moved to a

newly acquired VAX 780 running Berkeley UNIX 4.2, but was still disappointing.

This disappointment, coupled with an interest in implementing a Prolog system

on 6800o-based machines, led Turk to begin exploring a new implementation of a.

byte-code interpreter written in C, vlhile as a group we continued work on the

compiler.

The need to devote resources to the port to the :MY/8000 had slowed our

development of the compiler, so it was ~ o t until late February of 1985 that we

had a first version of the compiler itself constructed and operational in C-Prolog.

While writing the compiler in Prolog was of course a joy, we found ourselves

somewhat hampered by C-Prolog's restricted memory size and apparent lack of

significant tail recursion optimization and garbage collection. Consequently, ,\\Te

were forced to somewhat unnaturally segment parts of the compiler, store inter­

mediate results in files, etc. The compiler itself had grown fairly large, reflecting

our explorations of various optimization techniques. When we began to attempt

to boot the compiler on itself, we were frustrated to discover that we immediately

overran the maximum allowable local and global stack spaces. While we found

that by a combination of breaking the compiler into many small files and using

Prolog assert/retract hacks to reclaim stack space we could begin jamming it

through, we were quite upset by the butchery this was performing on what we

originally regarded as relatively clean code. At this time, Buettner had been de­

voting some time to exploring the implementation of a Prolog compiler on 16-bit

machines, in particular the design of a byte-code interpreter for that environ­

ment. In a burst of enthusiasm, he roughed out a ne'\v byte-code interpreter for

the abstract machine coupled with an implementation of a moderately sophisti­

cated compiler, all written in C, in the space of a month. We now found our­

selves in the (perhaps enviable) position of possessing three distinct implementa-
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tions of the abstract machine (all written in C) and two compilers, one ,vritten in

C and the other in Prolog.

While there were some differences in structure between the compilers, they both

operated on basically the same principles. On the other hand, our two home­

grown implementations of the abstract machine appeared to use significantly

different techniques, and of course differed markedly from the Argonne implemen­

tation. Since both of our local \\TAMs executed nrev at better than 6K LIPS and

both authors asserted that not all opportunities for optimization had been ex­

ploited, we decided to pursue development of both machines and compilers in

parallel. In the course of the summer of lQS5, we saw both machines evolve to­

wards a more common structure, and begin achieving speeds in nearing 10K LIPS
on nrev. We also had the interesting experience of booting the Prolog-based ver­

sion of the compiler using the C-based Prolog compiler. We were able to do this

without introducing any of the ugly adjustments we had found necessary when

using C-Prolog. Since the two abstract machines seemed to be evolving to\\'ards

a common structure, we decided in July (at a breakfast meeting at the Logic Pro­

gramming Symposium) to coalesce the two efforts, making a final incorporation of

the remaining clever techniques of Turk's machine into Buettner's. From that

point on, we focused most of our efforts on developing the C-based Prolog com­

piler and abstract machine. \\Te did complete the Prolog-based version of the

compiler and delivered a copy to the A r g ~ n n e group in late August. It is expect­

ed that this version will be made publicly available along with the Argonne

WAM sometime in the near future. The rest of this paper will be devoted to

describing the design, structure, and facilities of the C-based system.

2. Organization of the System

We will assume familiarity with Byrd, Pereira and Warren [1980], Pereira,

Pereira, and Warren [1978], and Warren [1983]. To the user, our system presents

the appearance of a standard Edinburgh-style interactive interpreter. However,

it is really an incremental compiler. Thus we have no need to support a separate

interpreter with all the difficulties of consistency between compiler and inter­

preter which are normally entailed. Briefly, the major services provided by the

system are as follows:

• The compiler is resident in the system, incrementally compiling original and

added program clauses (including those added by assert) as well as goals.

• Programs may be organized into n10dules which are relatively independent of

file structure in that multiple modules may be included in a single file (a sin­

gle module can also be spread over several files); visibility of procedures is

controlled by use of import/export declarations; clauses not appearing within

a module declaration are stored in a default global module; constants and

functors are globally visible; modules may appear as submodules within oth-
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er modules;

• Garbage compaction of the global stack (heap) and trail is provided using a

pointer-reversal algorithm of Morris[1978]; no garbage collection is provided

for the code space;

• Run-time use of retract, clause, and listing is accomplished via a general

decompilation technology (described in detail in Buettner [1985]); this tech­

nology is also used to support the debugging subsystem;

• A full four-port debugging model (cf. Byrd[19S0]) is provided; it relies on the

decompilation technology mentioned above and accomplishes its task by con­

structing linked lists representing local stack frame entry and exit on the glo­

bal stack (heap); it is largely complete, though some standard commands

remain to be implemented;

• Database pointers are supported; these exist as Prolog terms which can occur

in other terms and predicates;

The system supports the full range of built-ins standard in Edinburgh-style Pro­

log systems. Some are implemented in C, with the rest being written in Prolog

and compiled by the system.

The system occupies approximately 135I( bytes of virtual memory (and 76I(

bytes of physical memory) when loaded. Performance of the system on the naive

reverse benchmark is shown in Table 2.1 (measured in LIPS) for lists of length

100 and 1000. The slower figures for lists of length 1000 of course reflects the

need to perform garbage collection.

Unoptimized
100 Q.6I(
1000 8.5I(

Optimized
12.0I(
lO.5I(

Table 2.1. Benchmark performance.

The "unoptimized" column represents the performance of the system running

with the output of the UNIX 4.2 C compiler unchanged. The"optimized"

column represents the performance of the system with the output of the C com­

piler slightly hand optimized. The only optimization specific to a Prolog system

is a tightening of the dereference loop. All of the rest of the optimizations are of

a generic sort that could be performed by a highly optimizing C compiler, such as

shortening branches to branches (to branches... ). Another such optimization

involves reclaiming poorly used machine registers. In the compiler output, the

10\\1 numbered machine registers are only used for scratch values and are not

saved on procedure entry /exit. The usage of these registers Vlas reorganized and
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code added before calls and exits to render tllem safe. Most of these optimiza­

tions were performed on the code simulating abstract machine instructions. A

native code compiler could get it right from the beginning, while of course per­

forming many other optimizations. It vlould not surprise us to see a speed

increase factor of 3-4 resulting from native code compilation.

3. Compiler Organization

While the principles on which the two compilers operate are quite similar, their

internal or.ganization is somewhat different.

3.2 Clause Compilation

The overall action of the Prolog-based compiler is divided into three major

passes:

(1) compilation of individual clauses to intermediate code,

(2) organization of groups of intermediate clause code into procedures, and

(3) generation of instructions for the abstract machine.

During the first pass, the compiler treats each clause for a procedure separately,

producing intermediate code representing the action of that clause. This pass is

organized into three phases: lexical analysis, parsing, and intermediate clause

code generation. The lexical anal)rsis phase outputs a list of annotated tokens.

The parsing phase processes this list, more or less in a definite clause grammar

style, to produce a complex Prolog term representing the clause; a considerable

amount of variable a n a l ~ y " s i s is also performed during this phase. The third phase

processes this term, producing another Prolog term representing the required

sequence of abstract machine instructions. Considerable use of difference lists

and uninstantiated logical variables representing machine addresses is made dur­

ing these phases. During the second pass, the intermediate code for the individual

clauses constituting a procedure is connected using the indexing instructions.

OUf method of indexing, which differs from Vlarren [1983], will be described later.

The output of the second pass is a complex Prolog term representing the pro­

cedure. Consequently, assem b l ~ y amounts to a traversal of this term, calculating

symbolic addresses as necessary, and linearizing the entire structure; loading is

then straight-for\vard.

The C-based version of the compiler utilizes a standard Prolog reader to read the

clauses as terms. It makes one pass through the term, performing its variable

analysis and building appropriate tables. On a second pass through the term,

this compiler generates and loads tile instructions for the clause, linking them

into the naive try-me-else indexing chain for the procedure (see Section 3.2). Full

indexing for the procedure is generated when the nl0dule containing the pro­

cedure is sealed.
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Examination of the examples supplied in \Varren [1983] shows that the required

get- and put- instructions occur in the order corresponding to the left-to-right

ordering of the corresponding terms in the source clause. In an effort to minimize

the number of instructions generated and to optimize A-register usage, our com­

pilers reorder these instructions. They also make a very serious attempt to set

up the arguments to the first call in the body Vi' hile carrying out the head match­

ing. They also perform the now-standard \\Tarren-style optimization of per­

manent variable allocation by trimming environments. (The permanent variables

used in implementing cut are also included in this optimization -- cf. Section 4.)

3.2. Indexing

Access to the block of clauses constituting a procedure is handled in the usual

way with hash tables, though provision for modules and hiding of local pro­

cedures complicates this a bit. Within the list of clauses constituting a pro­

cedure, it is desirable to minimize the number of clauses attempted but failed

due to failure to match the head of the selected clause against the incoming goal.

Such failure can occur only when the incoming goal contains instantiated vari­

ables; if all variables of the incoming goal are uninstantiated, the goal will match

the head of each clause of the given procedure. Consequently, the indexing pro­

cess has two major tasks to accomplish:

(a) When the incoming goal contains uninstantiated variables in designated

indexing argument places, it must provide a means of trying each clause of the

procedure in order.

(b ) When the incon1ing goal contains instantiated terms in the argument places

designated for indexing, it must provide a means of selecting only those clauses

w hose heads satisfy the following: for each argument position designated for

indexing, the term occuring in the clause head must match the term occuring in

the corresponding position of the incoming goal.

As with all other current Prolog systems known to us, ours only supports (or

designates) indexing on the first argument of procedures. (Ho,vever, our plans for

the future include relaxing tllis restriction.) 'ATe have not modified the indexing

instructions of Warren [1983], but we do employ them in a different manner.

Focusing on the first argument of procedures, a block of clauses is a maximal sub­

set of the clauses for a procedure, contiguous in the given clause ordering, all of

whose first head arguments are of the same type, wllere the allowable types are:

constant, compound term (other than list), variable, and list.

Roughly, one uses indexing instructions at the lowest level to control access to

each block, coupling these with second-level indexing instructions to control

transfers between blocks. A sequence of instructions of the form

try - retr~T - •.. - retry - trust -
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specifies a group of clauses to be tried ill sequence, as does a sequence of tIle fornl

In the second case, the branch instructiollS must be physically interleaved \vith

the code of the individual clauses, while in the first, the collection of branch

instructions can be physically quite removed fron1 the code of the clauses con­

trolled. We refer to these as try chain,s and try_me_else chains, respectivety.

Note that in a try_me_else chain, the label of each instruction is the address of

the succeeding retry_me_else or trust instruction. Consequently, this succeeding

instruction and its following clause code need not physically follow the code of

the preceding clause. Consequently, we can regard a trY_fie_else chain as a

linked list of clauses. In the case of try chains, while the actual try-retry-trust

instructions must physically follow one another (they constitute a vector of

instructions), the actual code blocks of the clauses they control can be distributed

in memory in any manner whatsoever. These code blocks need bear no physical

relationship to one another nor to the controlling try chain, other than the fact

that the try chain instructions reference the addresses of the clause code blocks.

We exploit both of these observations in the implementation of assert and

retract. Our method of indexing runs as follows. To cater to requirement (a)

above, we create one master try_me_else chain linking all of the clauses of the

procedure. In catering to requirement (b), we avoid using the ..._me_else instruc­

tions, restricting ourselves to tlJr-retry-trust to control sequential access to both

clauses and blocks. Constant and con1pound term blocks are of course accessed

USillg switch instructions, and overall access to tIle upper-level indexing is ini­

tiated ,vith the switch_on_term instruction. Sequential ordering of groups of

clauses as well as groups of blocks of clauses is indicated with try chains; no use

of try_me_else chains is made in the upper-level illdexing meeting requirement

(b). Consequently, the indexing meeting requirement (a) is totally separated from

the indexing meeting requirement (b). We feel this provides great flexibility for

insertion and deletion of clauses (by assert/retract or by a run-time editor) while

minimizing the number of choice points \vllich must be created. Figures 3.1 and

3.2 schematically indicate the structure of this scheme.

4. Abstract Machine Organization and Cut

The layout of the various machine regions is sllown in Figure 4.1.
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Code Area

~

Heap (or Copy Stack)

'"Local Stack

t
Trail

A Registers Higll Memory

Figure 4.1. Abstract Machine Organization.

A bit table for garbage collection is also permanently allocated. For the most

part, we have implemented the instruction set of \Varren [1983] with only minor

modifications. The most significant extension to date is the addition of a ne'v

machine register (called cutpt) and ne\v instructions to allo\v us to compile cut.

Tllese instructions and their effects are listed bela,,?:

Instruction

set_B_from_cutpt

set_B_from Yn

save_cutpt_in ,rn

save_B_in Yn'

Action

B := cutpt

B:=Yn

Yn := cutpt

Yn:=B

Figure 4.2. Instructions Necessary for Cut.

The last instruction is only necessar)r for compiling the so-called "soft

cut" .

The difficulty in dealing with cut is that at compile time, it is impossible

to know how many clloice points ,viII be created for a procedure before a

clause of that procedure is entered. Consider the following trivial progran1.

f(a).
f(b ).

f/1: S\Vitch_oll_term Cla,Ll,fail,fail
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Ll: s,vitch_on_constant 2,[a:Cl, b:C2]

CIa: try_me_else C2a % f(

Cl: get_constant a,...A.O % a)

proceed %

C2a: trust me_else fail % f(
C2: get_constant b,i\O % b)

proceed %

When the first clause Cl is executed, there can be one or zero cll0ice

points for the procedure f/1, but this cannot be detected at compile time

because it depends on the incoming value in the first argument register

AD. If the incoming value in AD is the constant a, there will be no choice

point created for the procedure f/l, but if a. is an unbound variable, there

will be one choice point created for the procedure f/l.

The new register cutpt is treated in the abstract machine as follows. The

value of the last choice point register B is automatically stored in the

cutpt register by a call or an execute instruction to record the address of

the last choice point before the procedure is invoked. The current value of

the cutpt register is saved in a choice point when the latter is created. The

cutpt register is reset from the value stored in the last choice point Vv'hen

backtracking occurs.

The following examples illustrate how the compiler uses these instructions

to compile cuts.

Example 1.

p :- ql, !, q2.

Code for the clause:

allocate

save_cutpt_in

call

set_B_from

deallocate

execute

Example 2.

p :- !.

1

YO
ql/O,l

YO

q2/0
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Code for the clause:

set_B_frOID_cutpt

proceed

Notice that the clause doesn't have an environment and that the cutpt

register contains a pointer to the last choice point before the procedure p

is invoked.

Exarrtple 3.

p :- qI, q2, !.

Code for the clause:

allocate

save_cutpt_in

call

call

set_B_from

deallocate

proceed

1

YO
ql ,1

q2 ,1

YO

This approach can be optimized.

5. Conclusions

The abstract machine design of Warren [1983] together with the compila­

tion techniques suggested by his examples are a sound piece of softv.rare

engineering. We have filled in some gaps such as the implementation of

cut which were omitted in his discussion, and have introduced

modifications in the pursuit of refining and optimizing performance. The

present system provides an excellent basis for our primary goal, the pur­

suit of implementations of meta-level Prolog systems. Our approach will

be to introduce modifications to the abstract machine providing the

required functionality, the primary one being a change in the treatment of

the code space. This will be coupled with appropriate changes in the com­

pilers. We expect t11is to lead to efficient implementations of the experi­

mental systems.
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sWi~ch_on_term T' VS, FS, LS

vs

constant block

list block

variable block

functor block

constant block

try ---

retry < - f - - - - - - ~ I

retry

trust ~ - - - - - ~

r e t r y - + - - - - - - . . , ~

trust -+------...,...

t r y - t - - - - - - - ~

r e t r y - 1 " " - - - - - - ~

\
\

\
\.

\
\

LS:rry !
rust

try - - + - - - - - - - - ~ CB1: s\vitch_on_constant
retry

trust

FS: try-+----..--......

Figure 3.1. Overall indexillg structure.
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a

c

b

CBl: switch_on_constant VS: try_me_else P2

. - - - - - r - : : : J _ - - - - - - - - - - : - ~ ~ p(a,u).
P2: retry_me_else P3

~ __..........p(b,v).

P3: retry_me_else P4
_________..,.. p(b ,W).

P4: retry_me_else P5

n - - - - - - - - ~ p(b,x).
P5: retry_roe_else P6

' - - - - - - - - - - - - - - - p \ ~ ) ~ . ) ~

FB: s\\1itch_on_functor P6: retry_me_else P7

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ P ~ 7 : ~ . ~ ~ . p ( h U ~ q }

I
I

Figure 3.2. Detail of indexing structure.
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