
 Open access Proceedings Article DOI:10.1109/EURMIC.1996.546483

The design and implementation of a multimedia storage server to support video-on-
demand applications — Source link

A. Molano, A. Garcia-Martinez, A. Vina

Institutions: Autonomous University of Madrid

Published on: 02 Sep 1996

Topics: Server-side, Software architecture, Disk controller, Client-side and Degree of parallelism

Related papers:

 Multimedia servers-design and performance

 Scalable interactive multimedia server system for providing on demand data

 Apparatus and method for data storage and retrieval using bandwidth allocation

 Quality of service management for source routing multimedia packet networks

System having client sending edit commands to server during transmission of continuous media from one clip in
play list for editing the play list

Share this paper:

View more about this paper here: https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-
nff99ba3o0

https://typeset.io/
https://www.doi.org/10.1109/EURMIC.1996.546483
https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-nff99ba3o0
https://typeset.io/authors/a-molano-vw443spxex
https://typeset.io/authors/a-garcia-martinez-44nji7tqoj
https://typeset.io/authors/a-vina-4toetr2jl3
https://typeset.io/institutions/autonomous-university-of-madrid-2p62roku
https://typeset.io/topics/server-side-1lnc1olq
https://typeset.io/topics/software-architecture-3l1mcs2f
https://typeset.io/topics/disk-controller-oa4m50js
https://typeset.io/topics/client-side-9g5k67zr
https://typeset.io/topics/degree-of-parallelism-3aqkzc6m
https://typeset.io/papers/multimedia-servers-design-and-performance-54zc7s6ycd
https://typeset.io/papers/scalable-interactive-multimedia-server-system-for-providing-4hcjgy1lw6
https://typeset.io/papers/apparatus-and-method-for-data-storage-and-retrieval-using-1h42a4lpui
https://typeset.io/papers/quality-of-service-management-for-source-routing-multimedia-ae18eihwhi
https://typeset.io/papers/system-having-client-sending-edit-commands-to-server-during-2wn8cruimo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-nff99ba3o0
https://twitter.com/intent/tweet?text=The%20design%20and%20implementation%20of%20a%20multimedia%20storage%20server%20to%20support%20video-on-demand%20applications&url=https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-nff99ba3o0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-nff99ba3o0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-nff99ba3o0
https://typeset.io/papers/the-design-and-implementation-of-a-multimedia-storage-server-nff99ba3o0

The Design and Implementation of a Multimedia Storage Server to Support

Video-On-Demand Applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Anastasio Molano' Albert0 Garcia-Martinez and Angel Viiia

Universidad Aut6noma de Madrid
Madrid (Spain)

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this paper we present the design and implementation

of a clienthewer based multimedia architecture for
supporting video-on-demand applications. We describe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin
detail the software architecture of the implementation
along with the adopted buffering mechanism. The proposed
multithreaded architecture obtains, on one hand, a high
degree of parallelism at the server side, allowing both the
disk controller and the network card controller work in
parallel, On the other hand, at the client side, it achieves
the synchronized playback of the video stream at its precise
rate, decoupling this process from the reception of data
through the network. Additionally, we have derived, under
an engineering perspective, some services that a real-time
operating system should offer to satisfy the requirements
found in video-on-demand applications.

1. Introduction

Recent developments in workstation technology,
compression technology, high bandwidth storage devices
and high speed networks, will make feasible the support of
distributed video-on-demand applications.

A multimedia storage server for video-on-demand
applications should provide simultaneous service to
multiple clients that request the playback of video clips
with some demanded QoS. System resources like disk
bandwidth, processor capacity and network bandwidth
should be checked before accepting a new session [14].

Intensive research has been undertaken in order to
develop successful video-on-demand services. This

1. This research has been supported by the Regional Research Plan of the
Autonomous Comunity of Madrid under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan F.P.I. research grant.

1089-6503/96 $5.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1996 IEEE
Proceedings of EUROMICRO-22

Universidad de La Coruiia
La Coruiia (Spain)

research focus mainly on three different directions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* The design of the storage server itself, that implies
makmg some decisions concerning the playback policy,
the buffering mechanism and the stream admission test
[4, 6, 8, 11, 131.

* The system support for multimedia applications: the
operating system services needed to satisfy multimedia
applications requirements [3, 5, 121.

The communication media, that should provide a high
bandwidth and appropriate reservation mechanisms to
guarantee the requested QoS [1,2].

Our research focus in particular on the design of
multimedia storage servers, and the support of the operating
system for their implementation.

In this paper, we present the design and implementation
of a clientkerver based multimedia architecture for
supporting video-on-demand applications. An application
has been developed where the clients, connected through an
ATM based link to the multimedia storage server, request
the playback of video clips with some QoS parameters. The
server runs a stream admission test to check whether there
are enough resources to satisfy the requested QoS.

In case of lack of resources, a renegotiation with lower
quality parameters is carried out, until the client whether
accepts or rejects the connection. Our prototype
implementation is based on the MPEG-I decoder, handling
constant bit rate (CBR) streams.

The experience gained through the design and
implementation of the multimedia architecture has allowed
us to identify, from an engineering perspective, the specific
real-time operating system services needed for video-on-
demand applications. We have reviewed the following
aspects: process management, task scheduling, memory
management and support for data intensive U 0
applications.

5 64

The remainder of this paper is organized as follows.
Section 2 describes in detail the adopted design approach:
it explains the computational model of video streams that
will be followed thereafter, the buffering mechanism
applied and the stream admission test. An in-deep
description of the software architecture of the
implementation, both at the server and at the client side, is
presented in section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. The QoS negotiation protocol
carried out between the server and the clients is also
described in this section. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 highlights the derived
real-time operating system services. In section 5 we
describe the multimedia experimental infrastructure
installed in our laboratory. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 presents conclusions
and, finally, section 7 highlights future work.

2. The design of a clientherver based

multimedia architecture

Designing a multimedia storage server implies malung
some decisions concerning several parameters, for
instance, the buffering mechanism, the playback process,
the disk scheduling algorithm and the subsequent stream
admission test. In this section we explain the specific
parameters adopted in our implementation.

2.1. The computational model of video streams

MPEG video streams are characterized by the
parameters indicated in table 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7], that are included in the
MPEG sequence header at the beginning of the file
containing the videoclip. The MPEG sequence header is
preceded by the sequence start code that is parsed
previously to check the correctness and validity of the
MPEG video stream.

TABLE 1. MPEG Video Sequence Parameters

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- MPEG Sequence Header

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPicture Width (horizontal size of image space) I
1 Picture Height (vertical size of image space) I
I Aspect Ratio Code I
I Frame Rate (frames per second) I
I Bit Rate (bytes per second) I

amount of information to be played back every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi time

units, can be computed as the ratio between the bit rate and
the frame rate:

T,(sec) = 1 /frame rate tEQ 1)

bit rate L,(bytes/frame) = -
frame rate

These parameters represent the requested QoS,
QoS = (frame rate, bit rate) . We will assume a minimum

QoS, ()OS,,, = (frame rateMIN, bit rate,,,) , for each video

stream, that it will be used in the negotiation of QoS
parameters as it will be explained below.

In order to be able to satisfy the requested QoS, the
multimedia storage server should retrieve from disk L,

bytes of information for the stream i every Ti time units.

However, the logical unit, L, , is usually very small and

retrieving from disk the information in small chunks of Li

bytes each, would produce a high overhead due to the high
rate of U 0 system calls performed. In common practice, it
is better, in order to improve throughput, to fetch the
information from disk in larger chunks of m i - L i bytes

each, ohat will be read consequently every mi. Ti time

units, storing the data previously in some buffer before
being played back. The multiplier mi can be computed by

taking into account the amount of available memory,
considering a target buffer size, such as 64 KBytes, that
represents a tradeoff between large disk accesses that
improvle throughput and the available memory in the
computer [8].

In oiur design the information is retrieved from disk in
this w ~ y (see figure l), so mi I Li bytes (DL, for short) are

fetched from disk every mi. Ti time units (DTi for short). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DTi=m*T i DTi=m'Ti

ic- y I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA...G= mi Li bytes

Dli =: mi 'Ti t.u.
DLi = mi * Li bytes

I I I I I l l I I I I I I I I I 1 ...

I Buffer size (minimum buffer size) I
Figure 1. Fetching of video streams from disk.

Among these parameters, the frame rate and the bit rate
can be used to infer the timing properties of the playback
process. For instance, the playback period, Ti , can be

obtained as the inverse of the frame rate, and the logical
unit size (following the terminology of [SI), L, , i.e. the

2.2. ~ , ~ f f ~ ~ i ~ ~ mechanism

The stringent real-time requirements of the isochronous
media playback process can be relaxed by buffering a set of
frames before outputting them to the destination device.

565

With a buffering mechanism, the operating system does not
need to retrieve from disk the information at exactly the
same rate as is needed in the playback process.

Generally, a double buffering scheme is adopted (see
figure 2), consisting of two equally sized buffers that store,
one of them, the frames currently being fetched from disk,
while the other, the frames currently being delivered to the
destination device (whether to the presentation device or to
the network). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BufferA BufferB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATsl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I Treadplaybackstream 1

... ...
Buffer A Buffer B ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

-I
T read/playback stream k

Figure 2. Video server buffering mechanism.

In the double buffering scheme a global reading1
playback period is defined, under which the storage server
fetches data from disk and stores it in the first buffer (the
producer buffer), while consuming the data stored in the
second buffer (the consumer buffer). Once the first buffer
is full and the second is empty, a buffer switch is performed
so the role of each buffer is interchanged.

The playback process must be continuous over time and
the multimedia storage server should avoid undesired
interruptions that could happen if the producer buffer
overflows or the consumer buffer gets empty. In order to
guarantee that the buffers never overflow or get empty, the
storage server should be able to fill up the producer buffer
before the information stored in the consumer buffer had
been played back. If this condition holds, the playback
process will not be interrupted and it will be continuous
over time. That should stand for all the streams being
simultaneously played back.

We have made use of a simple double buffering
mechanism, both at the server and at the client side. In the
former case, the information is fetched from disk and sent
to the network, in the later, the information is received from
the network and displayed on the screen.

In our design, the playback of each stream is carried out
in an independent fashion, so each of them is readlplayed
back at its own global readinglplayback period. For the
stream zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi the global readingfplayback period is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADT; time

units long. We read zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADLi bytes of information for each

stream every DTj time units. Consequently we need to

allocate for each stream a double buffer of 2 . DLj bytes.

Our scheme differs from other approaches that define a

common global reading/playback period of equal length for
all the streams being serviced [4,6, 81. For each stream the
storage server retrieves from disk the exact amount of data
needed for its playback during the common global period,
that it will depend on its bit rate, the larger the rate the larger
the amount of data to be read. Consequently the buffer
allocated will be different for each stream, and equal to its
data consumed during the common global period. A round
robin policy is generally used for choosing the next stream
to be read within the cycle. This approach suffers mainly
from read postponement due to data accumulation [SI, and
also from a lack of flexibility when new sessions need to be
accommodated, because of the need to recompute the
common global period each time a client requests a new
session.

2.3. The stream admission test

The multimedia storage server must be able to determine
if a new stream can be accepted. In order to do SO, it
computes a stream admission test to check the existence of
enough resources to satisfy the requested QoS.

Depending on the particular disk scheduling policy
applied, the stream admission test will differ. In our design
we have made use of the EDF scheduling policy [9],
assigning a dynamic priority to each disk request depending
on the current deadline. The assigned priority will be the
highest if the deadline of its current request is the nearest.

The EDF scheduling algorithm can achieve utilization
factors of 100 percent, and, in this sense, it is an optimal
algorithm. Other scheduling algorithms like the fixed-
priority based Rate Monotonic algorithm cannot guarantee
a 100 percent utilization factor (Rate Monotonic is limited
up to 69% in the worst-case. when the periods of the
requests are mutually prime).

Assuming EDF priority assignment, the stream
admission test will be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] :

t r eadmi . Li) + 2 . SeekMAx
I 1 (EQ 3) D Ti

i = l

Disk seek times, coming from disk head movements and
rotational delays, have been included in the test, taking into
account that worst-case seek costs are incurred in each
activation.

3. Implementation of the multimedia
architecture

The software architecture has been developed in a

SPARC 20 machine under SunOs 5.5, using Solaris
Threads Library.

566

3.1. The server software architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In order to carry out the playback of multiple video

streams, several activities should be performed
concurrently. For instance, for each stream being servicedl,
new data blocks are read from disk at the same time that
previously stored data is consumed by the destination
device (the destination device is just the network at the
server side).

To allow such a high number of concurrent activities, we
have made use of a multithreaded architecture, where each
thread performs a different task (see figure 3). For each
stream, the multimedia server process creates two threads,
a reader thread and a consumer thread. The reader thread is
activated for the stream zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADTi time units, and request

DLi bytes from disk in each activation, storing the

information in one of the buffers. The consumer thread is
activated at the same rate, and sends DLi bytes from the

second buffer to the network on each activation. Once they
have finished their activities they sleep until the next
activation period, DTi time units later.

Hence, the multithreaded architecture is comprised of a
total of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . k threads (k reader threads and k consumer

threads) being k the number of video streams serviced.
There is a bank of buffers organized following the double
buffering scheme, and each stream has a double-buffer
associated with it, 2 . DLi bytes sized, that is accessed iin a

private way (see figure 3).

We must carefully consider the correct synchronization
between the threads execution. On one hand, for the stream
i, both reader and consumer threads should be activated

every ,DTi time units, and there should be no jitter between

their activations, or the buffer switch could not be correctly
performed. On the other hand, the activities carried out by
the reader and consumer threads have different durations,
and must be synchronized to accomplish the buffer switch
in consistent way. The earlier thread in completing its
activity must wait for the other before updating the status of
the buffers and the pointers to them.

Activating both the reader and the consumer threads in
an independent fashion every DTi time units, would lead

to an unavoidable jitter because of the impossibility to
synchronize both timers. In order to avoid this jitter, only
the reader thread is activated periodically every DTi time

units, and it synchronizes its execution with the consumer
thread by means of a counting semaphore initialized to
zero. 'The consumer thread blocks waiting on the
semaphore, and the reader thread increases its value at the
beginning of its activation, once the timer expires, allowing
the execution of the consumer thread. Doing this way, both
reader and consumer threads initiate their executions at the
same time with zero jitter (the only jitter is the time to await
the consumer thread).

Performing the buffer switch requires more complex
synchronization primitives. For instance, the buffer switch
can only be done once the buffer of the reader thread has
been filled up, and the buffer of the consumer thread
emptied. This condition has been implemented using a
condition variable guarded by a mutex. When the reader/
consumer thread finishes its work, it acquires the mutex and
checks whether the other thread has completed its work,
reading the state of the other buffer (FULL or EMPTY). If
the other thread has not finished yet, it sleeps waiting on the
condition variable. Otherwise, in case that the other thread zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IC Consumer Threads zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk Reader Threads

Disk Network

k Buffers A
k Buffers B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw

Figure 3. Video server software architecture (k streams).

567

has finished, the currently executing thread performs the
buffer switch, updating the status of the buffers and the
pointers to them, and finally it awakes the other thread by
signalling the condition variable. The reader thread will
sleep on the timer again, waiting for the next activation
period. The consumer thread will sleep on the semaphore
until the reader thread awakes and releases it.

The use of the multithreaded architecture has allowed us
to increase the degree of parallelism at the server side
without affecting the performance. Threads can be created
dynamically with low overhead, because the operating
system maintains a minimum amount of private context for
each thread, that can be allocated on creation time at low
cost. The high number of concurrent activities that must be
carried out in a multimedia storage server, makes the
chosen software architecture the most appropriate for our
application. Additionally, when both the reader and
consumer threads send their requests to the disk drive and
to the network drive respectively, they are put to sleep, and
their respective requests are serviced simultaneously, since
the disk controller and the network card controller can work
in parallel (through DMA requests), improving
performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2. The client software architecture

The clients request the playback of at most one video
clip each time, therefore, the concurrency is more limited
than in the previous case. Only two threads, a producer and
a consumer thread are needed in the multimedia client
process (see figure 4). This does not preclude the execution
of several clients in the same machine, under the user
control. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProducer Thread Consumer Thread I

Network
Buffer B Buffer A

Figure 4. Client software architecture.

A simple double buffering scheme is employed, being
the size of the buffers the same as the peer buffers for the
stream zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi at the server size, for instance 2 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADLi bytes both.

The producer thread fetches data from the network and
stores it in the buffer assigned for it. Ideally, it receives
D L j bytes from the network every DTi time units. The

consumer thread reads data from the consumer buffer,
initiates the decoding process, and displays the frames on

the screen after decoding a complete logical unit. The
playback process is performed at a fixed rate of ' / T i

frames per second, the natural playback rake of the stream.
This rate should be preserved in order to achieve a
successful presentation to the user.

Despite the limited number of threads within the
multimedia client process, the software architecture is
similar to the server case, because there are the same
synchronization problems. Both, the producer and the
reader threads must be activated every DTi time units, with

zero jitter, and the buffer switch must be performed in a
consistent fashion, once both of them have finished their
work. The synchronization mechanisms used to solve these
problems are similar to those employed for the server case.

At the client side there is an additional problem derived
from the display of frames on the screen: it should be
carried out at a rate of one frame per Ti time units, while

the activation period of the consumer thread is m i . Ti time

units. In order to tackle this problem, the consumer thread
is activated within the global period mi times, one

activation each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT j . During the inner activations the

consumer thread decodes a logical unit, and after
completing the decoding process, it displays the resulting
frame on the screen.

At the client side, the proposed multithreaded
architecture allows us to isolate the playback process from
the reception of data through the network. The playback
process is carried out at its own natural playback period, Ti,

despite of receiving the data in chunks of DLi bytes every

mi . Ti time units.

The communication protocol used in our
implementation (TCP/IP) do not guarantee a strict timely
delivery in the reception of data, and in general, there will
be time jitters in its reception. The double buffering
mechanism avoids the interruption of the playback process,
as far as the average receiving rate be sustained, no matter
whether there are reception time jitters in between.

3.3. Negotiation of QoS parameters

The multimedia storage server is connected with its
clients via TCP connections. At the initiation of the
connection, the client sends a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclientRequest packet (see
figure 5) , where the desired QoS parameters are specified
(QoS = (frame rate, bit rate)). It also includes the minimum
value of such parameters, QoSmin
(QoS,,, = (frame rateMIN, bit rateMlN)), still valid to accept

the connection.
The server computes the multiplier mi to be used in the

568

buffers allotment and in the actual retrieval of data from
disk. Then it runs the stream admission test, using the disk
accessing period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADTi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, and the amount of data retrieved

being zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk the number of video streams.
New clients can request the playback of video clips at

any time, and in order to cope with that, new threads must
be dynamically created to service them. Therefore, taking
into account the high number of threads and the dynamic
management of their associated resources, the overhead

each period DLi , derived from the basic QoS parameters

(see EQ1 and EQ2).

should be maintained as low as possible to achieve high

In order to guarantee a low overhead, the private context
of the threads should be very small to require a subsequent
small tlhread creation time. Additionally, the thread context
switch time should be as short as possible to reduce the
perfomnance penalty incurred because of context switches
between threads. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Sewer performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Client zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClientReuuest (WS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWsmin)

aenrerReDly(QoSaccepted.Buffe~-size) Stream admission test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w

QoS Ok? coPnectioMccept

Initiation of playback

connection

- - - - - -
connectionmjsct - 3 Releaseof the TCP 4.2. Processor scheduling

Figure 5. Negotiation of QoS parameters.

If the stream admission test do not hold using the basic
QoS parameters, the server computes the test again, but this
time using a frame rate one unit smaller than the previous
one. This procedure is successively repeated in an iterative
fashion until whether the test holds, or the frame rateMIN is

reached. If that value is reached and the test does not hold,
the connection will be rejected. The server sends to the
client a serverReply packet, where it indicates if the
connection has been accepted or not, and the granted QoS.

The user can accept or reject the negotiated quality
parameters. In case of acceptance, the client sends a
connectionAccept packet to the server and the playback
process begins thereafter. Otherwise it sends a
connectio-eject packet to the server and it releases
the TCP connection.

Video-on-demand applications have to satisfy stringent
real-time constraints derived from the real-time nature of
the video playback process. We have shown that multiple
threads must execute concurrently to serve the client
requests. These threads of execution must be correctly
schedu:led to guarantee that media streams are properly
processed and meet their deadlines.

Current commercial RTOS offer simple support for task
schedulling. The Posix 1003.lb Standard specifies two
different scheduling models, the system threud scheduling
model ,and the process scheduling model. In the former,
each thread competes for execution resources against any
other thread in the system, that can belong to the same or to
a different process. In the later, threads are scheduled only
against all other threads within the same process.

Only the system thread scheduling model guarantees
that no other lower priority thread belonging to a different
process can interfere the execution of the current higher
priority thread, therefore it is the right model to apply in
multimedia applications.

Several policies are considered within the Posix 1003. l b
standard (SCHED-FIFO, SCHED-RR, SCHED-OTHER).

4. Real-time operating system services for

video-on-demand applications

The experience gained through the design and
implementation of the multimedia architecture has allowed
us to identify, from an engineering perspective, the specific
real-time operating system (RTOS) services needed for
video-on-demand applications. In this section we review
the main features that an operating system should have to
suit multimedia applications requirements.

4.1. Process/Threads management

Each thread has its own policy and priority, and the
prioritks are assigned in a fixed basis. Fixed priority based
scheduling policies as the Rate Monotonic policy [9] can be
directly supported using the standard interface.

However, more suitable dynamic scheduling policies
such as the EDF policy that achieves 100 percent of the
utilization factor [9] , are not directly supported, so the
programmer must resort to “ad hoc” techniques to
implement this scheduling policy.

The programmer can execute all the threads at the
highest priority and then, once they have been chosen for

A multimedia storage must perfom a high
it has been shown in

execution, adjust their actual priority at the beginning of
their execution according to their deadlines. A second
method is establishing the actual thread priority in the
context of “hook functions” that are linked to the thread,

number of concurrent activities.
real implementation, the number of threads within
multimedia server process can be as large as 2 k threads,

569

and executed before its code (some RTOS like VxWorks
incorporate “hook functions”).

RTOS should offer better support for EDF dynamic
priority assignment, and the kernel-level scheduler should
assign priorities to the threads dynamically according to
their deadlines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.3. Memory management

In a multimedia storage server, memory is dynamically
allocated to threads in order to serve new requests (e.g.
allocation of thread management resources and buffers for
the playback process). Such dynamic allocation of memory
can lead to unavoidable unbounded delays. It only happens
at the beginning of the stream playback process, and it
appears as a delay in the playback starting time.

However, once the session has been initiated, new
delays may occur because of page faults of parts of the
program that have been swapped to disk. These delays
appear as an interruption in the playback process and the
multimedia storage server should prevent from the
occurrence of these undesired interruptions. To avoid the
potential latencies caused by page faults, current RTOS
offer memory loclung, which is a facility to bind
application programs into memory. Memory locking
guarantees the residence of portions of the address space in
memory.

In our multimedia server, pages are locked into memory
at the beginning of the execution of the threads once the
memory has been allocated. The stream admission test
must check the memory availability when accepting a new
session.

4.4. Operating system support for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU0 data inten-

sive applications

Multimedia storage servers represent a good example of
U0 data intensive applications. The information must be
retrieved from disk and sent to the network with a strict
timely pattern. In order to obtain a high throughput the
operating system should minimize the amount of data
copies performed between address spaces, incorporating
techniques like memory mapped streams zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] , and in-kernel
data paths [3].

Another related issue is the problem of scheduling disk
U 0 requests. In order to effectively apply disk scheduling
techniques like EDF or Rate Monotonic, disk U 0 requests
should be prioritized and preemptable.

Assigning a priority, either static or dynamic, to the
reader threads does not overcome the disk scheduling
problem, because, the threads sleep while the disk I/O
operations are being carried out, and their priorities are not
taken into account meanwhde.

Disk U 0 operations should be prioritized, in order to
perform a higher disk YO operation before a lower priority
one. To implement Rate-Monotonic assignment we should
guarantee that the thread priority is preserved along the disk
U 0 operation, and thus each disk U 0 operation is
performed at the same priority level as the one of the thread
that invoked the I/O system call.

In case of dynamic priority EDF assignment, each
individual disk I/O operation should be performed at a
different priority in each activation, accordingly to the
current deadline. Rate Monotonic and EDF scheduling,
assume that tasks are preemptable, so by extension, disk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY
0 operations should be preemptable as well.

Current real-time operating systems do not offer support
for preemptive prioritized disk YO operations. At most,
they allow the prioritized queueing of disk I/O requests
within the disk driver, but in no way they take care of the
preemption of such disk YO requests.

Intensive research has been undertaken in our
Laboratory in that direction. We have developed a
prototype implementation that allows the invocation of
preemptive priority-based disk U 0 operations and we have
applied it to our case study. Either static or dynamic priority
assignment can be carried out. A more detailed description
of that work is beyond of the scope of this paper and can be
found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[101.

5. The CESATlab Multimedia Testbed

In this section we present the infrastructure installed in
our laboratory (see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6) , consisting of conventional
workstations connected via an ATM based link. The
multimedia storage server runs on a SPARC 20 machine
and the multimedia clients on a SPARC 4, connected both
workstations through a LattisCell 101 14 ATM switch from
Synoptics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ATM LINK II
File Sewer ETHERNET ~

SERIALLINE - I

Figure 6. Multimedia experimental infrastructure.

We have not integrated multimedia specific hardware,
such as video compressioddecompression cards, so the
decoding process is carried out entirely by software, using
a MPEG-I decoder.

570

6. Conclusions 8. Bilbliography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have presented, in a comprehensive fashion, the

design and implementation of a clienthemer based
multimedia architecture for supporting video-on-demand
applications.

We have described in detail the software architecture of
the implementation along with the adopted buffering
mechanism.

The use of a multithreaded architecture has allowed us
to increase the degree of parallelism without affecting the
performance. Threads can be created dynamically with low
overhead, because the operating system maintains a

minimum amount of private context for each thread, that
can be allocated on creation time at low cost. The high
number of concurrent activities that must be carried out in
a multimedia storage server, makes the chosen software
architecture the most appropriate for our application.

At the server side, the reader and consumer threads send
their requests to the disk drive and to the network drive
respectively, they are put to sleep, and their respective
requests are serviced simultaneously, since the disk
controller and the network card controller can work in
parallel (through DMA requests), improving performance.

At the client side, the proposed multithreaded
architecture allows us to isolate the playback process from
the reception of data through the network. The playback
process is carried out at the stream natural playback period
despite of receiving the data with a different period.

We have also derived, following an engineering
perspective, the services that a real-time operating system
should offer to satisfy video-on-demand application
requirements.

Among these requirements we have shown that a RTOS
should offer the following features: efficient processhhread
management capability, dynamic deadline-oriented priority
assignment, memory locking, and finally, appropriate
support for preemptive prioritized disk YO operations.

7. Future work

We are now working out on new disk scheduling
techniques derived from basic EDF scheduling policy, that
be able to reduce the performance penalty incurred because
of disk seeks. We would like to push our implementation to
their limits in high workload conditions. In order to do that
we need to develop metric tools to evaluate its behaviour in
such conditions. We also want to integrate in our
implementation an MPEG-2 decoder, so VBR streams
could be serviced as well.

Campbell A., Coulson G., Garcia F., Hutchison D., Leopold
H., "Integrated Quality of Service for Multimedia
Communications". Proceeding of the IEEE Infocom' 93,
Hotel Nikko, San Francisco, CA, March 1993.

Deloddere D., Verbiest W., Verhille H., "Interactive Video On
Demand". IEEE Communications Magazine, pp. 82-88, May
1994.

Fall K., Pasquale J., "Improving Continuous-Media Playback
Performance with In-Kemel Data Paths". Proceedings of the
Int. Conf. on Multimedia Computing and Systems, pp. 100-
109. Boston, May 1994.

Genimell D. J., Han J., Christodoulakis S., "Delay-Sensitive
Multimedia on Disks". IEEE Multimedia Magazine, pp.56-
67,]Fall 1994.

Govindan R., Anderson D.P., "Scheduling and IPC
Mechanisms for Continuous Media". Proceeding of the 13th
ACM Symposium on Operating Systems Principles, pp. 68-
80, Pacific Grove, Califomia, Oct 1991.

Kenchammana-Hosekote D.R., Srivastava J., "Scheduling
Continuous Media in a Video-On-Demand Server".
Proceedings of the Int. Conf. on Multimedia Computing and
Systems, pp. 19-28, Boston, May 1994.

Le Gall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG., "MPEG: A Video Compression Standard for
Multimedia Applications". Communications of the ACM, vol.

Lougher P., Shepherd D., "The Design of a Storage Server for
Continuous Media". The Computer Joumal (special issue on
mullimedia), pp. 32-42,36(1), February 1993.

Lui C.L., Layland J.W., "Scheduling Algorithms for
Multiprogramming in a Hard Real Time Emvironment".
Journal of the ACM 20, 1, pp.47-61, 1973.

34, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 4, pp. 46-58, April 1991.

10 Molano A., "A Preemptive Priority-based disk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU0 Subsystem
for the management of Hard Real-Time Disk Traffic".
CESATlab Technical Report CESAT-TR-96-09,1996.

11 Reddy A.L.N., and Wyllie J., "Disk Scheduling in a
Multimedia YO System". Proc. ACM Multimedia
ConFerence, ACM Press, New York, 1992, pp. 225-233.

12 Steinmetz R., "Analyzing the Multimedia Operating System".
IEEB Multimedia Magazine, pp. 68-84, Spring 1995.

13 Tindell K., Bums A., "Scheduling Hard Real-Time Multi-
Media Disk Traffic". Technical Report YCS 204, Department
of Computer Science, University of York, 1993.

14 Viiia. A., L6pez J., Molano A., and del Val D, "Real-Time
Multimedia Systems". Proceedings of the 13th IEEE
Symposium on Mass Storage Systems, Annecy (France), pp.
77-83, June 1994. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

57 I

