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Abstract
We present the design, implementation, and evalua-

tion of the Acoustic Embedded Networked Sensing Box
(ENSBox), a platform for prototyping rapid-deployable dis-
tributed acoustic sensing systems, particularly distributed
source localization. Each ENSBox integrates an ARM pro-
cessor running Linux and supports key facilities required for
source localization: a sensor array, wireless network ser-
vices, time synchronization, and precise self-calibration of
array position and orientation. The ENSBox’s integrated,
high precision self-calibration facility sets it apart from other
platforms. This self-calibration is precise enough to sup-
port acoustic source localization applications in complex, re-
alistic environments: e.g., 5 cm average 2D position error
and 1.5 degree average orientation error over a partially ob-
structed 80x50 m outdoor area. Further, our integration of
array orientation into the position estimation algorithm is a
novel extension of traditional multilateration techniques. We
present the result of several different test deployments, mea-
suring the performance of the system in urban settings, as
well as forested, hilly environments with obstructing foliage
and 20–30 m distances between neighboring nodes.
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1 Introduction

Distributed acoustic sensing has many applications in
scientific, military, and commercial applications, includ-
ing population measurement projects tracking the calls of
birds [37] and wolves, military systems tracking vehicle [39]
and personnel [2] movements, and commercial systems in
support of smart spaces. Acoustic source localization can
also provide an inexpensive and easily integrated solution to
the more general sensor node localization problem, by using
a source-localizing infrastructure to detect and locate small,
inexpensive nodes that emit a characteristic calibration sig-
nal. However, despite the overall interest in these prob-
lems, and despite significant progress in related areas such
as source localization theory and sensor network systems,
progress toward developing and deploying these applications
has been greatly slowed by the absence of an integrated
platform suitable for prototype acoustic source localization
systems. While prior acoustic sensing projects have devel-
oped systems to support specific applications, those systems
have either been too heavily optimized and too application-
specific to support rapid prototyping, or else have lacked a
feature set appropriate to acoustic source localization.

Figure 1 shows a typical distributed acoustic source local-
ization application. Several sensor array nodes are located
at points surrounding an event of interest. When an event
of interest occurs, the system should output an estimate of
the most likely location of the event, while other sources of
acoustic energy should be filtered out as noise.

In a typical implementation, each node runs a lightweight
streaming detection algorithm on a single acoustic channel
to search for events that match a certain signature. When an
event matches, full array data is retrieved and more sophisti-
cated processing is scheduled to compute a bearing estimate
and to enhance the signal. These estimates and other data
are then correlated among the reporting sensors to estimate
a probability distribution of the most likely locations of the
target source [37].

In this paper we present the Acoustic Embedded Net-
worked Sensing Box (ENSBox), a platform for prototyping
rapidly-deployable distributed acoustic sensing systems, par-
ticularly distributed source localization. Each ENSBox in-
tegrates a developer-friendly ARM/Linux environment with
key facilities required for source localization: a sensor array,
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Figure 1. Diagram of a typical source detection and local-
ization application. The left shows typical processing at
the sensor, while the right shows cross-beam localization.
Note that the node orientation must be known in order to
interpret bearing estimates relative to the array.

network services, time synchronization, and self-calibration
of array position and orientation. Self-calibration is espe-
cially important to source localization applications, because
error in the assumed orientation of a node directly offsets the
bearing estimates, resulting in a localization error that scales
with the range to the target. Similarly, error in the position
of a node can result in a direct translation in the localiza-
tion result. The ENSBox’s integrated, high precision self-
calibration facility eliminates manual survey of array posi-
tions and orientations, capturing the imagination of a number
of scientists interested in bio-acoustics who would otherwise
need to develop their own platform. Further, our integration
of array orientation into the position estimation algorithm is
a novel extension of traditional multilateration techniques.

To ensure our system’s viability for typical source local-
ization applications, we performed outdoor test deployments
in a variety of environments. In these tests we achieved
very high accuracy estimates of array position and orienta-
tion, results an order of magnitude better than prior acoustic
work [20]: 5 cm average 2D position error and 1.5 degree
orientation error over a partially obstructed 80x50 m area.
Our results are comparable to recent RF results [23], but
since our application itself involves acoustic sensing, using
acoustic signals to calibrate the arrays is more direct.

We attribute much of this success to our system architec-
ture, which enabled us to build a simpler, less optimized sys-
tem that in turn could support more sophisticated and effec-
tive signal processing algorithms. As a final indicator of the
success of our platform, several other groups have already
begun using it in source localization research.

In the following sections, we present the design, imple-
mentation, and evaluation of the Acoustic ENSBox system.
§2 discusses related work in sensing platforms and self-
localizing systems. §3 describes the Acoustic ENSBox plat-
form. §4 describes our high-accuracy self-calibration sys-
tem. §5 defines performance metrics and presents a thorough
evaluation of our self-calibration system in several realistic
outdoor environments. Finally, §6 discusses these results in
the context of related work.

2 Related Work
The related work for this project falls into two categories:

platforms designed to support acoustic sensing, and self-
localization systems. In this section we discuss the related
work in both of these areas.

2.1 Acoustic Sensing Platforms
Support for acoustic sensing can be found in a variety

of off-the-shelf solutions and research projects in the sen-
sor network field. These solutions vary greatly in terms of
the facilities they provide as well as how amenable they are
to prototyping.

The most off-the-shelf solutions are PC hardware or lap-
tops with multi-channel sound cards, or even appliances such
as wireless networked web-cams. While they are readily
available and easiest for an end-user to pick up and use,
they tend to be more difficult to use in a distributed context.
Solutions that stream all of the data to a central point typi-
cally don’t scale, and implementing tight time synchroniza-
tion across nodes is quite difficult because off-the-shelf audio
products are rarely designed to provide sample-accurate time
stamps.

A number of research projects in the sensor network field
have developed platforms in the course of their work. One of
the earliest general-purpose sensing platforms was the WINS
NG platform developed by Sensoria Corp. for the DARPA
SensIT program [26]. This platform supported multi-channel
sensing, multihop wireless networking and a Linux OS with
few resource constraints. However, it did not support tight
time synchronization; most of the results using this platform
were synchronized off-line using a starting pistol as a marker.
Time synchronization features were added in a follow-on
project developed for the DARPA SHM program [25], but
this version was a closed system, and was not made avail-
able to a larger community.

A number of projects have developed acoustic systems
based on the Berkeley Mote [16] and the MoteIV Telos prod-
uct.1 The Line in the Sand [1] and Extreme Scaling [2]
demos of the DARPA NEST program demonstrated acous-
tic sensing platforms based on the XSM platform. These
projects successfully used microphones, magnetometers, and
IR to track soldiers walking through a large sensor field, but
limited memory, CPU and communications capacity ruled
out complex signal processing algorithms.

The Countersniper system developed at ISIS [22] is an ex-
ample of a platform that provides tight time synchronization
and high-speed sampling. However, because both hardware
and software are heavily optimized for the countersniper ap-
plication, it is difficult to use as a prototyping platform.

The VanGo [15] project uses a Telos as a platform for
processing audio, with the property that processing elements
can be dynamically shuffled between the Telos and the PC.
However, it does not provide time synchronization and the
processing limitations of the Telos make sophisticated im-
plementations difficult to achieve without early optimization.

2.2 Self-Localization Systems
Self-localization systems have been an active area of re-

search for many years [38] [28] [33]. Due to space con-
straints we will mainly discuss other work designed for out-
door use. The most similar projects are three audible acous-
tic ranging systems described by Sallai [31], Kwon [20], and
Kushwaha [18]. These systems vary in performance, but
also vary greatly in their available RAM and computational

1See http://www.moteiv.com.



power. The systems described by Sallai and Kwon are both
implemented using a standard Mica2, and in the case of Sal-
lai, a standard sensor board. The system reported by Kush-
waha is based on a Mica2 with an attached custom 50 MHz
DSP processor and an external speaker. While these systems
have the advantage of running on much simpler, much lower-
power hardware, we will see in §6 that the Acoustic ENS-
Box leverages its greater computational resources to achieve
higher accuracy and longer ranges in more complex environ-
ments.

Recent work in radio-interferometric localization [23] has
been implemented using the Mica2 platform, and shows
much promise. In open-space testing with minimum multi-
path interference, this work demonstrates comparable rang-
ing and localization accuracy to our acoustic system. How-
ever, this technique may be susceptible to errors from mul-
tipath interference, and no results from more complex, clut-
tered environments have been published.

The Cricket compass [29] is an ultrasound-based bear-
ing estimator intended for pervasive computing applications.
The bearing estimation aspect of our system is similar, al-
though our techniques yield higher accuracy. We will make
a more detailed comparison in §6.

3 Platform Overview
The Acoustic ENSBox system provides a platform for

developing deployable prototypes of distributed acoustic
source localization and sensing applications. We achieve
this by providing the necessary hardware and software fa-
cilities in a platform that has sufficient resources to deploy
systems without extensive optimization. These facilities in-
clude a Linux operating environment, a sensor array on each
node with a data sampling service, sub-sample time syn-
chronization across nodes, communication services, and a
self-calibration service that automatically determines the po-
sitions and orientations of the deployed arrays. This platform
is described in more detail in [10], and previous versions are
described in [36] [11].

3.1 Hardware
The Acoustic ENSBox is based on the Sensoria Slauson

board, a single board computer based on the 400 MHz Intel
PXA255, with 64MB RAM, an on-board 32MB flash, and no
FPU. The CPU board includes an SD-card slot for additional
storage, and a dual slot PCMCIA interface, which hosts
an 802.11 wireless interface and a Digigram VXPocket440
four-channel sampling card. The node runs the Linux 2.6.10
kernel, with minor modifications to the kernel and to the
Digigram firmware required to support accurate timestamp-
ing of sensor data. Application and other user-space software
is written within the Emstar [12] software environment.

Each node hosts a 4-channel microphone array, geomet-
rically arranged as shown in Figure 2. The microphones
are condenser modules (RTI 1207A) coupled with a custom
preamplifier board. They are mounted securely in a plastic
and aluminum chassis that is readily mounted atop a tripod
or stake.

The node can be powered from an internal Li+ battery
or from an external source such as an adapter, an external
battery, or a solar panel. The system will run continuously
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Figure 2. Photograph of an acoustic array, and a diagram
of the local coordinate system defined relative to the ar-
ray geometry. The microphones are laid out in an 8 cm
square, with one raised 14 cm above the plane. The ori-
gin is at the center of the plane. The azimuth angle θ de-
fines the positive X-axis as 0 degrees, increasing counter-
clockwise in the plane, and the zenith angle φ defines the
ray parallel to the plane as 0 degrees.

for 24 hours on a single 12V 7.2 AH (86WH) gel cell. This
compares favorably with laptop run times, which typically
run for 3 hours on a 50WH battery. Significantly longer life-
times should be possible with duty cycling, but we leave this
to future work.

3.2 Software Services
While hardware integration is an unavoidable part of

building a platform, the key advantages of the Acoustic ENS-
Box platform lie in the software and API stack that we have
designed to support our target applications. These include a
time synchronized sampling API, networking primitives to
support in-network collaboration, and a location and orien-
tation estimation service.

3.2.1 Data Sampling
Many sensing applications run an on-line detection pro-

cess that triggers more sophisticated post-facto processing
on the portions of the stream most likely to contain events.
This technique is used locally to reduce false positive rates,
and to trigger remote nodes to perform collaborative process-
ing. Post-facto processing yields an intuitive solution to this
data-flow structure, because the designer can abstract away
non-deterministic system delays, e.g. network latency.

To support this model, the data sampling interface defines
a persistent and continuous sample “clock” for the sensor in-
puts, and preserves recent historical data in a ring buffer. The
interface enables access to historical data by index range as
well as streaming access to incoming data. It also integrates
with a time synchronization system that maintains clock con-
version parameters among a set of local sensor and remote
node clocks. This implementation follows from earlier ver-
sions described in [36] [11], and is described in more detail
in §3.2.2.

For example, consider the detection system shown in Fig-
ure 1. In this case, the initial detection algorithm processes
one channel of acoustic data, and identifies features of in-
terest. Upon detection, it passes the index range to another
module that retrieves the corresponding data from all four
channels, computes a bearing estimate, and enhances the sig-
nal using beamforming. The internal buffer enables post-



facto retrieval of the four channel dataset, after the initial
detection has triggered.

This model is even more compelling in the case of trig-
gering across nodes, where network latencies are involved.
After detection and enhancement at node 1, the time and
bearing of the detection are sent to node 2. Using the time
conversion API, node 2 can convert the time in the message
to a range of data from its own sensor clock, and retrieve that
data for further analysis.

3.2.2 Multihop Time Conversion
Collaboration across nodes in a distributed system re-

quires facilities for reconciling the timing of events recorded
at different nodes. The precision required varies for different
applications: those involving measurement of time of flight
or time difference of arrivals often require precisions on the
order of microseconds [32], while for long-term recording
of event times and for many system mechanisms, millisec-
ond or second resolution is sufficient. However, despite these
variations, some form of time synchronization is one of the
most common and critical requirements in embedded sens-
ing. Acoustic ENSBox supports time synchronization with
precision on the order of 10 microseconds over multiple RF
hops, satisfying the requirements of the self-calibration ser-
vice.

The Acoustic ENSBox supports an integrated suite of
time conversion facilities, briefly introduced in §3.2.1. This
conversion approach, first proposed in [9] and later for-
malized in [19], differs subtly from traditional approaches
to time synchronization. Whereas synchronization methods
discipline the clocks to control their rate relative to a stan-
dard, conversion methods allow the clocks to run indepen-
dently and instead produce or maintain conversion param-
eters that can convert a point in one timebase to another
on demand. This approach is advantageous from a systems
and integration perspective, because disciplining an oscilla-
tor without introducing artifacts generally requires special-
ized hardware support.

The time conversion API serves as a broker between ser-
vices and clients: services that manage a resource containing
a clock publish time relations, and clients request conver-
sions. The Acoustic ENSBox platform presents applications
with three pre-defined clocks: the node’s local CPU clock
(i.e. the output of gettimeofday()), the local sensor clock, and
global time. In addition, the system maintains conversion
metrics to the CPU clocks of one-hop neighbors over 802.11,
using Reference Broadcast Synchronization (RBS) [8]. RBS
is unique in that it can yield synchronization on the order
of microseconds using standard 802.11 hardware; solutions
such as NTP [27] typically yield 100 microsecond preci-
sion over 802.11 [8]. Attempts to synchronize based on
microsecond-granularity timestamps from the 802.11 MAC
layer have also failed, because the MAC clocks do not main-
tain linearity for more than 10s of seconds [10].

Acoustic ENSBox supports two methods of multihop
time conversion. The first method is to place the timestamp
of interest in a network packet, and convert that timestamp to
“local time” on every hop through the network. This method
is supported by the flood routing service, for certain known
packet types. The advantage of this approach is that it does

not require any coordination to determine a global timebase,
since it simply converts from the timebase of the source to
that of the destination, along the path between the two nodes.
The disadvantage is that while it provides accurate conver-
sions it does not provide a good way of storing timestamps
for future interpretation, because over long periods of time
the clocks will not behave linearly.

The second method is to use the global time service. The
global time service uses the first method to push out a mes-
sage containing a fixed timestamp from “global time”, along
with the corresponding timestamp in local time. As this mes-
sage propagates, the local timestamp is converted after each
hop into the timebase of the receiver, thus providing each
node with an observation of “global time” in terms of its lo-
cal clock. Once several of these observations are known, a
linear conversion relation can be derived using least squares.
Thus, if some subset of the nodes have access to time from
a GPS unit, they can “broadcast” global time into the net-
work. Applications can then simplify their protocols and
leverage the superior frequency stability of GPS by report-
ing and recording events in terms of global time.

The support for multihop time synchronization provided
by the Acoustic ENSBox fits into the API framework pro-
posed in Elapsed Time on Arrival [19]. The ENSBox sam-
pling service provides what ETA terms a Data Series Time-
stamping API. The ENSBox hop-by-hop conversion mecha-
nism provides an Event Timestamping API, and is mechan-
ically similar to the “RITS” algorithm. The ENSBox global
time service provides a Virtual Global Time API, and is me-
chanically similar to the “RATS” algorithm. However, in
the low-level implementation, RBS is used as the synchro-
nization primitive, rather than ETA. Unlike RBS, an ETA
implementation over 802.11 radios would require firmware
modifications that exposed precise timing of message arrival
and transmission, as well as the ability to add timing data
to a packet directly before transmission. While ETA should
in principle always outperform RBS, ETA’s message tim-
ing requirements are impossible to implement for systems
in which ETA is not explicitly supported and the implemen-
tation of the radio is closed.

3.2.3 Communication

Distributed sensing applications inevitably rely on net-
work facilities. While solutions such as Roofnet [5] can
provide end-to-end IP routing, many applications can benefit
from other network level abstractions. The Acoustic ENS-
Box platform includes support for two primitives developed
to support system diagnostics and self-calibration.

The first primitive is a unreliable hop-scoped flooding ser-
vice with integrated hop-by-hop timestamp conversion. This
mechanism provides a simple way for an application to prop-
agate an event notification with a precise timestamp. While
the flood is not guaranteed reliable, flooding generally yields
high reliability with low latency.

The second primitive is a reliable publish-subscribe
mechanism for typed key-value data [14]. Using this layer,
applications publish tables of data that are subsequently re-
ceived reliably at all nodes within a defined hop radius. Be-
cause the implementation is based on publishing a sequenced



log of updates, it can publish small updates to the previous
state efficiently.

The introduction of a reliable publication layer simplifies
the implementation of many aspects of the platform. Com-
ponents on each node use this layer to report hardware faults
and to publish range and bearing estimates to other nodes.
Similarly, the centralized position estimation algorithm uses
it to publish the results of position estimation. By design-
ing the system based on scoped broadcast semantics, we
avoid the added complexity involved with explicit coordi-
nation points.

3.2.4 Self-Calibration
Support for source localization is one of the primary goals

of the Acoustic ENSBox platform. In these types of appli-
cations, bearing estimates to the source and signal arrival
times are measured at several locations; these estimates are
then combined to yield an estimate for the location of the
source. However, meaningful interpretation and combina-
tion of these observations requires precise knowledge of the
positions and orientations of the nodes measuring bearing
and arrival time.

To address this, the Acoustic ENSBox includes software
that implements a self-calibration service that can determine
the 3D location and orientation of the sensor arrays in the
system. As shown in Table 1, this service achieves very high
precision in outdoor tests, with average 2D position error of
5 cm in an outdoor 80x50 m daytime urban environment, and
with average error in orientation estimates of 1.5 degrees.
We will discuss the design and implementation of this ser-
vice in detail in §4, and present the results of performance
testing in §5. The design of this service is particularly rele-
vant because it exercises the same properties of the platform
as are required for many of our target applications. In fact,
the data sampling, time synchronization, and network facil-
ities described in the preceding sections were designed to
support this localization service.

Trial 2D (cm) 3D (cm) Orientation
Avg. Med. Avg. Med. Avg. Med.

CY1 1 6.0 6.6 57.3 62.1 1.0 0.9
2 5.1 5.1 38.1 35.4 0.8 0.7

CY2 1 4.2 3.7 36.4 22.0 1.6 1.3
2 4.4 4.4 49.6 44.4 1.9 1.5

JR 1 9.1 10.0 41.9 36.3 2.7 1.7
2 7.2 6.5 32.5 32.5 3.2 2.4
3 8.2 7.7 36.2 20.5 3.8 2.4
4 9.7 11.3 26.0 24.3 1.8 1.7
5 11.1 12.2 30.6 29.8 1.9 1.5

Table 1. Summary results from tests of the location and
orientation self-calibration service, compared against
ground truth measured using 1 cm precision surveying
equipment. Each test was performed outdoors, cover-
ing approximately 80x50 m area, in two different envi-
ronments. The CY1 and CY2 tests were deployed in an
urban courtyard, while the JR tests were deployed in a
forested environment at the James Reserve. Orientation
errors are in degrees.

4 Self-calibration Service
While the Acoustic ENSBox self-calibration service is a

crucial part of supporting deployable source localization ap-
plications, it also serves to exercise and test many of the fa-
cilities built into the platform. In this section we describe
the design and implementation of the self-calibration service,
while showing how it makes use of lower level platform fea-
tures.

4.1 System Overview
The Acoustic ENSBox self-calibration service enables

the implementation of outdoor source localization applica-
tions by estimating the 3D locations and orientations of each
node in a system of acoustic arrays. Typical source local-
ization algorithms work by computing bearing estimates at
multiple points and combining them to estimate a probable
location.

However, as we can see from Figure 1, in order to prop-
erly interpret and combine bearing estimates, the relative po-
sitions and orientations of the sensors must first be known.
Furthermore, error in these position and orientation estimates
effectively increases the error in the bearing estimates, and
thus directly affects the quality of the source localization al-
gorithm. From these requirements of our target applications,
we can define the calibration problem, and derive some sys-
tem performance targets.

4.1.1 Definition of the Self-calibration Problem
The acoustic array self-calibration problem seeks to deter-

mine a set of parameters that define the locations and orienta-
tions of a collection of arrays. The parameters are referenced
to the coordinate system specified in the array geometry di-
agram shown in Figure 2. These parameters are defined in
a global coordinate system that can be referenced either to a
single origin array, or to a coordinate system defined by one
or more arrays placed at surveyed locations.

• Let (Xi,Yi,Zi) be the location of array i, relative to the
global coordinate system.

• Let Θi be the “yaw” orientation of array i, relative to the
positive X-axis of the global coordinate system.

• We assume that all arrays are leveled, so that the re-
maining two degrees of freedom are 0 relative to the
global coordinate system.

• If two or more arrays are placed at known coordinates,
we add a global scaling variable V that allows the sys-
tem to scale to fit that coordinate system. This scale fac-
tor accounts for various environmental parameters that
affect the speed of sound.

We propose a solution that first estimates range and bear-
ing information through acoustic ranging and then uses that
information to estimate these parameters. In the next section,
we derive a performance goal to support our intended source
localization applications.

4.1.2 System Performance Targets
Acoustic source localization applications (Figure 1) rely

on translating local bearing estimates into a global coordi-
nate system. Errors in the estimates of array position and ori-
entation introduce error in that translation, likely increasing
the error in the source localization result. Error in a node’s



orientation estimate directly offsets the bearing to the source.
Error in a node’s position estimate can also offset the bearing
to a source: for example, a 10 cm error in position amounts
to a 0.2 degree error in bearing, for a source perpendicular to
that error, at 30 m range.

By considering these errors in the context of the accuracy
of source localization bearing estimates, we can derive a per-
formance target. Using similar acoustic arrays, source bear-
ing estimates have been reported accurate to ±2.5deg [37].
To reduce the significance of our localization error relative
to that figure, we set a performance target of ±1deg orienta-
tion error and 10 cm 2D position error, representing at worst
about 50% of the error in source bearing estimates.

4.1.3 Introduction to the Self-calibration System
The Acoustic ENSBox self-calibration system is initiated

by a user during deployment, and is controlled through an
embedded web interface. The user deploys the system so
that the nodes have consistent radio connectivity and can
form a connected multihop network, and such that the nodes
will determine a well-constrained set of range relationships.
Using the web interface, the user can enter the locations of
any nodes that have known locations (measured through out-
of-band methods). Then, the user initiates the localization
process and observes the results. If the system does not con-
verge well, the user can “refine” the result by triggering ad-
ditional ranging, or by adding new nodes to better constrain
the system. As a rule, in order to achieve good results, each
node should have ranges to other nodes that constrain it in
orthogonal directions, and three ranging trials are sufficient
to acquire all available ranges.

Behind this interface are two subcomponents: an acoustic
range and bearing estimation module, and a position esti-
mation module. The range and bearing estimation module
measures the range and bearing to other nodes in the sys-
tem based on the reception of coded acoustic signals called
“chirps”. The position estimation module triggers each node
in the system to “chirp” in turn, and collects the resulting
measurements. It then implements a multilateration algo-
rithm to estimate the calibration parameters (Xi,Yi,Zi,Θi) as
a purely relative coordinate system. Finally, if the locations
of some of the nodes are known, the relative system is fit to
match those known locations, allowing rotation and uniform
scaling.

4.2 Range and Bearing Estimation
The acoustic ranging component of the self-calibration

system is an active, cooperative ranging system [32]. Rang-
ing throughout the system is composed of a series of trials in
which one node emits a 1/3 second audible ranging “chirp”
and other nodes in the system detect that “chirp”.

During a trial, the emitter plays the chirp from its speak-
ers and concurrently listens to detect the exact time at which
the chirp started. The detected chirp time is enclosed in a
chirp notification packet and sent through the flooding ser-
vice to arrive at the other nodes. Because the flooding ser-
vice performs time conversion as the message passes through
the network, receiving nodes will receive a packet contain-
ing a local timestamp. Using the data sampling service, they
extract a historical segment of audio data beginning at the
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Figure 3. Block diagram of the filtering, correlation, and
detection algorithm.

start of the chirp, and queue it for processing. The process-
ing detects the signal, estimates bearing, enhances the signal
using beamforming, and performs a final peak detection to
compute a time-of-flight estimate.

The sampling, synchronization, and network facilities of
the Acoustic ENSBox yields a substantial simplification of
the implementation of the ranging system. The ability to re-
trieve sensor data post-facto with precise timing enables the
sender to send a single notification message, after the exact
phase of the emitted chirp has been detected locally.2 Simi-
larly, the flooding service and the time conversion service en-
able the acoustic ranging code to focus on signal processing
problems, with assurance that the samples extracted at the
receiver are tightly synchronized with the time of the chirp
emission.

In the next few sections, we discuss the processing stages
in more detail.

4.2.1 Wideband Audible Acoustic Ranging
The ranging system uses wideband, audible “chirp” sig-

nals that have excellent interference rejection properties and
phase detection accuracy [13]. The chirp signals are gener-
ated from a family of chaotic pseudonoise (PN) codes gen-
erated by repeated evaluation of the logistic equation,

xn+1 = Rxn(1− xn), (1)

where R = 3.98, 0 < x0 < 1 is the seed for the code, and bit
n of the code is 1 if xn > 0.5, and 0 otherwise.

These types of chaotic codes have been used success-
fully in other communications systems, including underwa-
ter acoustic communications systems such as [3]. By testing
different seed values, we selected the best 128 codes from
this family, selecting for low off-peak autocorrelation and
low cross-correlation with other codes in the family. In tests
we found that the codes were resilient to collisions: detec-
tion succeeded even in cases where three different senders
chirped concurrently.

The ranging signal is composed of a 2048-chip code,
modulated using binary phase shift keying (BPSK) on a
12 KHz carrier. This modulation results in a signal that is
spread with the primary lobe covering 6–18 KHz (see [10]
for more detailed information, including spectrum plots).

2Local detection is required because the sound hardware does
not have a facility for causing the sound to start precisely at a pre-
determined time.
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Figure 4. Block diagram of the bearing estimation algo-
rithm.

4.2.2 Detecting the Ranging Signal
Figure 3 shows a block diagram of the filtering and detec-

tion process. The ranging signal is detected using a “matched
filter” implemented by correlation with a reference signal.
The reference signal is a copy of the signal originally emitted
that is constructed locally based on the code index provided
in the notification message.

To detect, the input data is passed through an FFT and
pre-filtered to remove low frequency components caused by
wind. Next, it is correlated with the reference signal, and the
correlation function is then returned to the time domain and
analyzed to determine the earliest “spike” in any of the four
channels.

A “spike” is detected by first computing running mean
and variance estimates using an exponentially weighted
moving average (EWMA). The EWMA is initialized based
on the 100 samples prior to the chirp emission time, which
presumably represent ambient noise. Based on the running
mean and variance, the algorithm selects as a spike the first
point at least 6 standard deviations above the mean. If no
point qualifies as a spike, the detection is considered to have
failed on that channel. If at least one channel detected the
signal, the earliest detection is used and the process contin-
ues on to bearing estimation stage.

4.2.3 Bearing Estimation
Figure 4 shows the bearing estimation stage, based on

Time Difference of Arrivals (TDOA). This algorithm works
by exploiting the fact that the signal will arrive at the differ-
ent points in the array at different times, depending on the
direction of arrival of the ranging signal. Thus, by cross-
correlating pairs of channel inputs, we can estimate phase
lags and fit those lags to the known geometry of the array.

It is important to note that at the sample rate of 48 KHz,
each sample corresponds to 0.71 cm of distance. This means
that the quantization error due to sampling is a significant
fraction of the size of the array (8 cm square). This would
result in bearing errors of up to 5 degrees for angles nearly
perpendicular to the chord between a pair of microphones.

To address this, the final stages of Figure 3 interpolate the
region of the correlation function that surrounds the earliest
detection. We interpolate by computing the Fourier coeffi-
cients for that region and evaluating them at 8x temporal res-
olution. This feeds into the start of Figure 4, where we cross-
correlate the interpolated segments in the time domain to find
the lag at which the correlation between each pair of chan-
nels is maximized. Because of the interpolation, these lags
can be fractions of a sample. This technique is equivalent to
prior work that performed an exhaustive angular search us-
ing fractional phase shifts in the frequency domain [4], but
our method is much more computationally efficient for our
application.

Once the lags are computed, we use least squares mini-
mization to fit them to the array geometry, solving for the
azimuth and zenith angles θ and φ (see Figure 2). The con-
straint equations in this system are nonlinear functions that
compare the lags between each pair of microphones with
a projection of the bearing vector onto the array geometry.
We use gradient descent to solve the system and produce the
most likely estimate of θ and φ.

The technique of first finding lags and then fitting them to
the geometry has the advantage that it is resilient to minor de-
viations in the geometry of the array caused by slightly mis-
placed microphones [10]. One disadvantage of this method
is that only the location of the maximum correlate is used in
the fit. This means that this technique won’t work well when
there are multiple sources of similar energy level, because
some pairs may choose one source as the max while other
pairs choose another source. However, for our system this
is almost never a problem since after the matched filter our
signals are located within a tight temporal bound and other
interfering sources are strongly attenuated.

4.2.4 Signal Enhancement via Beamforming
Once a bearing estimate is computed, we can use this es-

timate to enhance the ranging signal using a technique called
beamforming. This technique phase-shifts the input channels
to be consistent with the bearing estimate and sums them to
compute a single, enhanced channel.

In our implementation, we take into account the actual
observed lags in addition to the theoretical phase offset de-
rived from the bearing estimate and the nominal array ge-
ometry. If the actual lags differ slightly from those com-
puted based on the nominal geometry, the actual lag is used
in place of the computed lag. This improves the signal en-
hancement by accommodating slight deviations in actual mi-
crophone placement relative to the nominal geometry.

The enhanced signal is then used to compute the final
range estimate by a similar estimator as was used in §4.2.2.

4.3 Position Estimation
The position estimation module drives the self-calibration

process by triggering ranging tests, collecting the range and
bearing estimates, and implementing a multilateration algo-
rithm to resolve those range and bearing estimates into po-
sition and orientation estimates. In this implementation, the
multilateration algorithm is centralized, although the “mas-
ter” node is chosen dynamically and the computation of
the ranging and bearing estimation algorithms is distributed.
Prior work [6] [34] [20] [21] on distributed multilateration
algorithms might be applied, although we have not consid-
ered that in this paper.

4.3.1 Driving the System and Triggering Ranging
Since our system is intended in part as a deployment tool,

our implementation is user-driven. Although this solution
is less “automated”, in practice this enables the user to help
the system by observing and correcting problems that would
otherwise be difficult or impossible to correct autonomously.

Once activated by the user, the system triggers ranging
by sending a special flooded trigger message that schedules
the nodes to emit ranging signals sequentially. The result-
ing range and bearing estimates are published by each node



individually via the reliable publish-subscribe primitive, and
the “master” node subscribes to receive these updates. After
30 seconds with no updates, the “master” begins the position
estimation algorithm on the new data, and presents it to the
user when that algorithm completes.

4.3.2 Non-linear Least Squares
To compute the position estimates we use a non-linear

least squares solution based on gradient descent. Our solu-
tion is similar to other least-squares solutions such as [6],
and to multi-dimensional scaling approaches such as [35]
[6] [20] [17] [30]. Our solution differs from pure multi-
dimensional scaling in that we use the bearing estimates as
well as range to estimate position. Bearing estimates are also
used in [6] in their “r−θ” formulation. However, we found
that solution performed poorly because the impact of bearing
error scales with inter-node spacing, whereas the impact of
error from range-based constraints is constant [10]. In addi-
tion, our position estimation algorithm has the novel feature
of estimating array orientation as well as position.

In our solution, we first check the input data to remove in-
consistencies, then iterate: construct a system of constraints
and an initial “guess”, solve the system, and if any outliers
are present, remove them and re-solve. We now detail each
of these steps:

4.3.2.1 Consistency Check
In the first step, forward and reverse paths are checked for

consistency, and inconsistent data is discarded. While it is
often the case that the forward and reverse ranges might dif-
fer by a few cm, large differences are a sign of a detection
error. For example, these differences can arise in instances
where the line of sight (LOS) path is partially obstructed and
attenuated relative to a reflected path. Although the forward
and reverse path attenuation is symmetrical, a source of inter-
ference near one receiver can cause an asymmetric measure-
ment if the attenuated LOS signal is below the noise thresh-
old of one, but not both receivers.

To address these cases, we use the heuristic to accept
the shorter range and drop all information about the longer
range; since if the long range is caused by a reflection, the
bearing estimate is likely to also be incorrect.

4.3.2.2 Initial Guess
The gradient descent algorithm requires an approximate

starting point, from which it will refine. To compute this ini-
tial guess, we consider one node as the origin and use the
range and bearing estimates to derive positions and relative
orientations for its neighbors. Initial orientation estimates
are determined by “looking back” from a newly positioned
node towards its source. The forward and reverse bearing es-
timates should differ by 180 deg, so the difference from that
is accounted as a difference in relative orientation. As the
coordinate system grows, node position and orientation esti-
mates can be computed from multiple nodes and averaged.

4.3.2.3 Constructing a System of Constraints
Between each pair of nodes, we can formulate three inde-

pendent constraints: range, azimuth and zenith constraints.
In these constraints, we consider the orientation Θi of each
node to be a constant value that is estimated separately.

The range constraints are a formulation of multi-
dimensional scaling, stipulating that the distance between
two nodes i and j must equal the smaller of the two mea-
sured ranges Ri, j:

Ri, j =
√

(Xi −X j)2 +(Yi −Yj)2 +(Zi −Z j)2. (2)

The azimuth constraints use the arctangent function to re-
late the azimuth estimate θi, j to the node coordinates:

arctan
Yj −Yi

X j −Xi

+Θi = θi, j. (3)

The zenith constraints relate the Z dimension to the ob-
served zenith angles φi, j:

arctan
Z j −Zi

√

(Xi −X j)2 +(Yi −Yj)2
= φi, j. (4)

4.3.2.4 Solving the System
In order to solve these constraints using gradient descent,

they must be “linearized”, or differentiated in terms of the
variables (Xi,Yi,Zi) to form a Jacobian matrix.3 Once lin-
earized, the system can be solved using iterative gradient de-
scent: the variables are initialized with our initial guess, and
the linearized system is solved to compute a correction to the
positions, iterating until the corrections drop below a defined
tolerance.

4.3.2.5 Estimating Orientation
In our formulation of the azimuth constraints, we did not

include the node orientation Θi as a variable, because in-
cluding it prevented the system from converging. Since the
node orientations Θi are not variables in the azimuth con-
straints, we must refine our orientation estimates separately.
To do this, we recompute the orientation estimates after each
update of the position estimates, by computing the average
residual value for the azimuth constraints for each node i, us-
ing a vector sum. If we assume that there are no outliers, this
average residual angle represents a correction to Θi that will
zero the average residual computed this way.

Solving the orientation and positions separately has the
disadvantage that a change in one set of variables can coun-
teract a change in the other, resulting in a failure to converge.
To address this, we stop updating the orientation values after
10 iterations, and allow the positions to adjust until conver-
gence.

4.3.2.6 Outlier Rejection Heuristics
Our self-calibration system tends to result in systems that

are sufficiently over-constrained to support detection and re-
jection of inconsistent data. We apply several heuristics to
identify and reject inconsistent data that would otherwise just
add to the estimation error. Our heuristics are based on the
observation that one of the most likely sources of significant
error is the detection of a reflected path when the line-of-
sight (LOS) path is severely attenuated.

These errors tend to have two properties. First, whereas
typical range errors in LOS conditions are under 10 cm,

3Due to space limitations we omit these equations, but they can
be found in [10].



in non-LOS conditions reflections can introduce arbitrarily
large range errors, often meters or tens of meters. Second, re-
flections generally produce errors in bearing estimates, since
the reflected path often arrives from a different direction than
would a LOS path. We use two methods to identify and re-
ject inconsistent data.

First, during the node orientation estimation described in
§4.3.2.5, a severe angular inconsistency will appear as an
outlier in the distribution of azimuth residuals. After allow-
ing the system to partially converge, we drop constraints that
are marked by an inconsistent angle, and continue to iterate
to convergence.

Second, after the system has fully converged, we use the
method of studentized residuals to weight the residual er-
rors by a measure of how much they impact the system.
This technique has been used in a similar way in the Active
Bat system [38]. If any weighted residual exceeds a fixed
threshold, the constraint with the largest weighted residual is
dropped and the system is recomputed.

4.3.2.7 Costs and Convergence Properties
The position estimation algorithm runs centrally on one of

the nodes. Although the cost of running the algorithm can be
high, this is not of inordinate concern because this algorithm
typically runs only once per deployment.

The Jacobian matrix that must be solved is a 3(N −1) by
3R matrix, where N is the number of nodes and R is the num-
ber of pairs of nodes with valid ranging data. The iterative
least squares algorithm runs for a minimum of 10 iterations
to allow the orientation estimates to settle, and will then con-
tinue until the convergence condition is met. Typically only
a few more iterations are required; if 100 iterations are run
convergence is considered to have failed. Outlier rejection
causes additional costs because the entire algorithm is re-run
after each constraint is dropped.

In the courtyard experiments described in §5.3.1, N was
10 and R was approximately 70. In these tests, each pass
through the solver took an average of 96 seconds on the
ARM processor. On average one outlier was dropped, yield-
ing an average run-time of 216 seconds.

As the number of nodes scales up the cost of solving the
Jacobian matrix will grow as O(N3). Since we currently have
only 10 nodes, we have not attempted to address this issue.
However, in prior experience with similar algorithms [24],
we have been able to scale to larger networks by solving the
system incrementally, adding a few nodes at a time.

At the present time, we have not analyzed the conver-
gence properties of this system. In general, convergence de-
pends on the degree of range connectivity, the geometry of
the network, and the presence of outliers. In practice we have
found that the system has always converged when more than
4 nodes are present and each node has at least four ranging
neighbors.

4.3.3 Association to Survey Points
The output of the position estimation algorithm will be

a self-consistent relative position and orientation map, with
a scale relative to the speed of sound. The speed of sound
in air is not a constant, but rather a function of environmen-
tal parameters, primarily temperature and humidity. While
relative coordinates may be sufficient for some applications,

many applications will need to relate this map to real-world
coordinates such as GPS.

Most localization schemes address this by specifying cer-
tain nodes to be “anchors” with exact known locations, and
building the coordinate system around them. While this
approach has natural application in distributed localization
schemes, it introduces warping if the range data is not prop-
erly compensated to correct the speed of sound. Tempera-
ture compensation is subject to measurement error, both be-
cause air temperature sensors typically have accuracy limited
to about 0.5 degree C, and because of the difficulty of prop-
erly shielding the sensor to get a clean reading. Since scaling
from temperature can be as much as 0.2% per degree C, at
80 m range the error from a 0.5 degree offset would be 7 cm,
doubling our typical detection error of 3 cm.

Instead, we solve the coordinate system matching and
scaling problems at once by fitting the purely relative posi-
tion estimates to a few known node positions. To implement
this post-facto fit we apply techniques modeled on Procrustes
shape matching [7]. We apply a four step process to fit the
estimated map to the surveyed map:

• Filter Scale. Over all pairs of survey locations, we sep-
arately sum the estimated and the actual distances, and
derive a scale factor by computing the ratio of the two
sums. We then scale the estimated map by that factor.

• Filter Translation. We translate the maps so that the
node closest to the centroid is the origin in both maps.

• Filter Rotation. We compute the 3D rotation about the
central point that results in the closest match.

• Final Translation. Finally, we apply these transforms
to the entire estimated map, and then apply a final trans-
lation to match the survey coordinate system.

Not only does this approach enable applications to prop-
erly interpret the output of the position estimator, it also
serves as a good way to compare our results to ground truth
in our performance metric.

5 Experiments and Results
To evaluate the performance of our self-calibration sys-

tem we performed a number of experiments. We performed
two types of experiments: component tests, in which we
tested ranging and bearing performance using a controlled
test environment, and system tests, in which we performed
end-to-end tests of the whole system, measuring the accu-
racy of our position and orientation estimation in several dif-
ferent target environments. In all of these tests we placed
great importance on presenting the system with a realistic
environment. For our platform to succeed it must success-
fully self-calibrate in a variety of environments determined
by the applications.

The environment can present a number of challenges to
an acoustic ranging system, including noise, obstructions
and reflections from clutter, and weather and environmen-
tal conditions. Indoor environments tend to be fairly quiet,
but pose challenges from reverberations and reflections. The
outdoor acoustic environment is often quite noisy, suffer-
ing from wind noise and different types of background noise
in different environments. Interesting outdoor environments
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Figure 5. (a) and (b) show the accuracy of the bearing estimator as a function of azimuth and zenith. (c) and (d) show
the overall distribution of errors in azimuth and zenith bearing estimates. In (d) we show separate distributions for the
“midrange” and “overhead” zenith angles.

typically contain clutter near the ground, which can block
or attenuate signals and introduce reflections. Environmen-
tal factors such as wind, temperature, and humidity have an
impact on acoustic time-of-flight systems, as we discussed
in §4.3.3. For our tests, we performed controlled compo-
nent tests in enclosed environments, while performing sys-
tem tests in outdoor environments, both urban and forested.

In the next sections we describe each of our experiments
in detail, beginning with bearing and range component test-
ing, and then discussing each of the system tests.
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Figure 6. Experimental setup for the bearing estima-
tion component test. To measure angular ground truth, a
laser aligned with the receiver in the center is pointed at
a measured location along the edge of the square.

5.1 Bearing Estimation Component Testing
To test bearing estimation, we set up the experiment

shown in Figure 6 to record bearing estimates with carefully
measured ground truth. The test was performed in an park-
ing structure with significant reverberation and 65–70 dB of
background noise. The emitters were calibrated to chirp at
100dB sound pressure level (SPL) at 1 meter. We performed
two tests: an azimuth test in which we rotated the receiver
through 360 degrees, and a zenith test in which we turned
the receiver on its side and rotated it 360 degrees to emulate
signals coming from a variety of elevations.

Figure 5 shows the results of the bearing component test.
Figures 5(a) and 5(b) show the precision and accuracy of the
bearing estimator as a function of azimuth, with zenith 0.
While azimuth performance is overall quite good, the results
show a dependence on bearing angle. We do not have a def-
inite explanation for this, although we hypothesize that it is
caused by slight deviations in the placement of the micro-
phones in the array, and by cases in which the array itself
obstructs the signal.

Figures 5(c) and 5(d) show the precision and accuracy of
the bearing estimator as a function of zenith angle, with az-
imuth 90. Note that for zenith angles less than -30 degrees,
the signal is highly obstructed, because it must pass through
or around the base of the array. These obstructed cases are
highly inaccurate, but they are also fairly rare in typical de-
ployment scenarios. For zenith angles above -30 degrees,
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Figure 7. (a) Shows range estimation error relative to ground truth, for our sequence of range experiments. The
bottom axis shows the ground truth distance for an experiment, while the left axis shows the average estimate, with 95%
confidence intervals. The right axis details for each experiment, the deviation of the mean estimate from ground truth.
(b) Shows the distribution of errors. The dotted curve shows the fit to a normal distribution if the 17 values with error
larger than 10 cm are dropped.

the results are quite accurate, especially in the “midrange”
region from -30 to +45 degrees, where the typical results are
within 1 degree of the correct bearing.

5.2 Range Estimation Component Testing
The next experiment performs a controlled test of the per-

formance of the ranging component. This test was performed
in the same parking structure used for the bearing test, and
approximately the same environmental conditions, and the
emitters were calibrated to chirp at 100dB SPL at 1 meter.
For this test, the receiver was fixed and the emitter was care-
fully moved along the ground, using a laser range-finder and
measuring tape to establish ground truth.

Figure 7 shows the results of this experiment. To get a
clearer picture of both accuracy and precision, we performed
range tests at a variety of distances and scales, performing
clusters of tests at 1 m, 5 m, 10 m, and 50 m. In Figure 7(a)
we highlight the deviation from ground truth as dashed im-
pulses. We observe that with the exception of a few mea-
surements at 50 m, the magnitude of the error is consistently
less than 5 cm.4

Beyond 75 m, the error increased substantially, largely
because the ranging signal began passing out of the detec-
tion window. The system uses a recording window of 16K
samples and a ranging signal of 8K samples, meaning that
after 58 m the ranging signal will begin to extend beyond the
recording window. In other tests, we have extended the sys-
tem range to about 120 m by doubling the recording window,
while incurring a higher computation cost for detection.

5.3 System Tests
To evaluate the performance of the entire system, we per-

formed tests in two environments: outdoor urban and out-
door forested. In these tests, we measured ground truth posi-
tion as accurately as we could, using professional surveying

4These errors at 50 m resulted from a loss of sync due to a tem-
porary connectivity failure.

equipment with a 3D accuracy of under 1 cm. For the out-
door urban test we also used a laser to align each array to
point at some other array, in order to get both accurate bear-
ing measurements and a diverse set of bearings. For other
tests we used a compass to align the arrays to point approxi-
mately north. In each outdoor test, we deployed 10 nodes in
an area approximately 50x80 m, and calibrated the emitters
to chirp at 100dB SPL.

In order to characterize the performance of our system we
must define a performance metric and a method for assess-
ing it. Since we are interested in position error relative to
ground truth, we use the algorithm described in §4.3.3 to fit
the output of our estimation algorithm to our surveyed po-
sition data. We then base our performance metrics on the
distances between points in our map and the corresponding
ground truth points.

In Table 1, we report several metrics for each test: aver-
age and median 2D position error, average and median 3D
position error, and average and median orientation error. We
report 2D and 3D separately because our deployments tend
to be flat, yielding poor constraints in the Z axis and thus
much higher error. In addition, our target source localization
applications can localize a target in 2D independently of Z
position estimates. We also report the distributions of esti-
mation errors to give a better perspective on the repeatability
of the estimation system.

5.3.1 Outdoor Urban Test

Two outdoor urban deployments were performed in an
outdoor courtyard, shown in Figure 8(a-c). The perspective
view in Figure 8(a) shows that the courtyard is a flat, mostly
open space containing planters and tall hedges which some-
times obstruct LOS. It is surrounded by brick buildings that
are good reflectors. The environment has significant levels of
background noise from ventilation fans and nearby roads and
construction projects, with sound pressure levels typically in
the range of 65–70 dB.



Figure 8. (a) shows a perspective view of the urban courtyard, with reflecting walls and tall, obstructing hedges and
planters. (b), (c) and (d) show the experimental setup for our three test deployments: Courtyard 1, Courtyard 2, and
the James Reserve in Idyllwild. Ground truth node locations are indicated by the X’s. The ‘+’ and arrow indicates
a position and orientation estimate from our system, and the 2D position error in m is shown in parentheses. Photo
credits: (a) Virtual Earth; (b) and (c) Google Earth; (d) the James Reserve.

We ran four experiments in this environment: two tests
in each of the two deployment configurations shown in Fig-
ure 8(b) and (c). A map of node positions is overlaid on each
photo, where ‘X’ represents ground truth and ‘+’ represents
the estimated position, with the actual error reported in me-
ters. Table 1 summarizes these results as CY1 and CY2.

To show the error in more detail, Figure 9(a) shows
an expanded view of the deviation in 2D position for all
nodes, from all four courtyard experiments. This graph also
shows the error reduction resulting from our outlier rejection
heuristics; in some cases the error is reduced by 50%. Note
also that because of the flat topology, the performance of the
system along the Z axis is much lower than for X and Y.

Figure 9(c) shows a histogram of orientation errors rela-
tive to ground truth, with and without outlier rejection. With
outlier rejection, the distribution is considerably tighter.

5.3.2 Outdoor Forested Test
Figure 8(d) shows our outdoor forested test at the James

Reserve in Idyllwild, CA. We planted 10 stakes in a 50x70 m
region, using a compass to align the arrays facing west.

The forest environment is much more complex than the
urban environment. The terrain is hilly, varying 5 meters
from lowest to highest point, with significant foliage and
clutter near the ground. Grass, bushes, and trees obstructed
LOS between many pairs of nodes.

However, as we can see from Table 1 and Figure 9, this
more complex environment causes only limited degradation
of the localization performance. From courtyard to forest,
the 2D performance degraded from an average error of 5 cm
to 9 cm. Likewise, the accuracy of the orientation estimates
degraded from an average of 1.3 degrees error to 2.7 de-
grees.5 However, because of greater height diversity in the

5The apparent degradation of orientation accuracy at JR may
partly be due to errors in ground truth. The arrays were aligned “by
eye” with a small hand-held compass.

forest terrain, the system was better constrained and the 3D
performance improved from 45 cm to 33 cm.

5.3.3 Effect of Obstructions and Reflections

While our tests did include cases of partial obstruction,
the line of sight (LOS) path was rarely completely ob-
structed. Figure 10 shows results measuring the impact of
adding simulated obstructions and reflections to the CY1 ur-
ban courtyard data set shown in Figure 8(b). The graphs
are cumulative distribution functions (CDF)s over all pos-
sible node pairs, showing the maximum position error ob-
served when a single selected node pair is subject to a sim-
ulated reflection, with varying parameters. The data show
that: (1) our rejection heuristics are more likely to work in
better-constrained systems, (2) obstructions that block LOS
yield less constrained systems and higher error, and (3) re-
flections accomanied by large angular deviations are rejected
more readily, even with fewer constraints. We now detail the
setup for each of the three simulations.

CY1 has data for 32 node pairs. For each pair in turn, we
compute the mean position error induced if only that pair
registers a reflection. The middle curve shows a CDF of
mean position error, in which one selected path is extended
by 10 m; the bad range is rejected in 75% of the cases.

For the other two curves, we additionally simulate a
10x10 m obstruction in the center of the field, completely
blocking 11 of the 32 pairs. The lower curve shows the CDF
when a single range (possibly one of the 11 blocked ranges)
is extended by 10 m. With the simulated obstruction the sys-
tem is less constrained; it can correctly reject the bad range
only 50% of the time. The top curve shows the CDF for the
obstructed case when the bad range also includes a 45 degree
angular error. Because in these cases the angular inconsis-
tency heuristic applies, the bad range is correctly rejected in
all but one case.
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Figure 9. Shows the distribution of deviations from ground truth for our two test environments. The upper set of graphs
shows our system performance in the urban courtyard tests, while the lower set shows our performance in the James
Reserve. (a) and (d) show the deviation of our 2D position estimates from ground truth, for all 10 nodes in the four
courtyard experiments. If all positions were estimated perfectly, all points would be at (0,0). The three types of point
show the improvement resulting from our outlier rejection heuristics. (b) and (e) show the deviation of Z estimates, vs.
the same Y axis. (c) and (f) show histograms of the deviation of our orientation estimates relative to ground truth, with
and without angular outlier rejection. In graph (d), one additional outlier (65,21) was left out of the plot.

In general, resilience to reflections is a function of the
degree of constraint, which is in turn a function of geometry
and range connectivity. While these simulations show that
our rejection heuristics are promising, more experiments are
needed to gain a better understanding of the true impact of
reflections and obstructions and to characterize the typical
error in angle of arrival due to reflection.

6 Discussion
In the preceding section we presented some detailed re-

sults from our component and system testing in several out-
door deployments. We now compare those results to some
of the related work that we described previously.

Our ranging precision after temperature compensation is
generally 5x better than the other audible acoustic systems
from Sallai [31], Kwon [20], and Kushwaha [18]. Sallai
and Kwon do not cite variance estimates, but their graphs
show standard deviations of at least 15–25 cm, depending
on whether or not outliers are rejected, compared with 1.7–
3.8 cm for our system. However, this is not a fair compar-

ison, as these systems are based on much more resource-
constrained Mica2 hardware.

A more fair comparison can be made to Kushwaha [18],
who presents a system based on the Vanderbilt counter-
sniper platform [22]. The Kushwaha system uses a similar
approach to ours, substituting a linear frequency sweep in
place of our PN code. It employs a matched filter and re-
peated, position-modulated chirps to enhance SNR in the
detector. For ranges in excess of 10 m, Kushwaha cites
standard deviations after outlier rejection of about 25 cm,
compared with 1.7 cm for our system. This difference may
be due to the higher process gain and lower autocorrelation
noise exhibited by our PN codes; on the other hand, our
matched filter is likely more expensive.

In addition to improved precision, our ranging system
has a longer detection range for equivalent power output.
In a test calibrated to match those of Kwon and Kushwaha
(105 dB SPL at 10 cm),6 our system achieved 60 m range,

6Our other tests achieve higher range, but output 100 dB at 1 m.
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2x better than the 20–30 m cited in Kwon and Kushwaha.
We believe this difference in range is primarily a function
of the coding in our ranging signal and the process gain in
our detector. In addition, longer detection range results in a
better constrained system and thus lower positioning error at
any given deployment density.

The results of outdoor system tests also showed improve-
ment over prior work. In an outdoor urban test, our average
2D position error is 50x lower than Kwon’s reported 2.46 m
error (10x lower when additional simulated ranges are added
to result in 0.48 m). In the more challenging forested en-
vironment our average error doubles, although it is unclear
how the other systems might perform under similar condi-
tions. This improvement is achieved in spite of estimating
the additional variables of vertical height and orientation.
Our results also compare favorably to the simulation results
from Kushwaha, who reported a mean 3D position error of
89 cm; compared with 33 cm from our forest experiment.

This work represents a significant improvement in the ac-
curacy of self-localization relative to other work, at a cor-
responding higher computational cost. However, the key
advantage of the Acoustic ENSBox is that it also serves
as a general-purpose acoustic sensing platform: the en-
hanced computational resources that enable more accurate
self-localization also enable easy prototyping of a wide vari-
ety of localization and classification applications.
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