The Design and Implementation of Automata-based Testing Environment for
Java Multi-thread Programs *

Heui-Seok Seof, In Sang Chungt, Byeong Man Kim*, and Yong Rae Kwon'

tDepartment of Computer Science
Korea Advanced Institute of Science and Technology, Korea
{hsseo, kwon} @salmosa.kaist.ac.kr

¥School of Information and Computer Engineering, Hansung University, Korea
insang @ hansung.ac.kr

*School of Computer & Software Engineering
Kumoh National University of Technology, Korea
bmkim@ cespcl.kumoh.ac.kr

Abstract

Deterministic execution testing has been considered a
promising way for concurrent program testing because of
its reproducibility. Since, however, deterministic execution
requires that a synchronization sequence to be replayed is
feasible and valid, it is not directly applicable to a situa-
tion in which synchronization sequences, being valid but in-
feasible, are taken into account. To resolve this problem,
we had proposed automata-based testing in our previous
works, where a concurrent program is executed according
to one of sequences accepted by the automaton recognizing
all sequences semantically equivalent to a given sequence.
In this paper, we present the automata-based testing en-
vironment for Java multi-thread programs, and we design
and implement key components - Automata Generator, Pro-
gram Transformer and Replay Controller. Algorithms for
generating the equivalence automaton of a given sequence
are presented and a program transformation method is sug-
gested in order to guide a program to be executed according
to the sequence accepted by the automaton. The replay con-
troller is also redesigned and implemented to adopt the au-
tomaton. By illustrating automata-based testing procedures
with the gas station example, we show how the proposed ap-
proach does works in Java multi-threaded programs.

*This work is supported in part by the Ministry of Information & Com-
munication of Korea (Support Project of University Foundation Research
<’2000> supervised by IITA)

0-7695-1083-3/01 $17.00 © 2001 IEEE 221

1. Introduction

With multi-threading of Java programs, execution of pro-
grams can be accelerated and the throughput can be en-
hanced. However, repeated runs of a Java multi-thread pro-
gram with an identical input may yield different results due
to its nondeterministic natures. This poses a problem for
testing and debugging because it becomes difficult to de-
tect and isolate program errors. Moreover, the reliability
of a program cannot be established even when a correct
result is obtained from an execution, because other execu-
tion with the identical input may produce an incorrect result
[S, 10, 14]. To cope with such problems, a deterministic
testing techniques that controls the execution of concurrent
programs has been developed [4, 5, 11, 13, 12].

Specification languages for concurrent programs usually
feature partial order semantics, which describe the sequenc-
ing constraints among synchronization events. Most previ-
ous works on deterministic testing have assumed that spec-
ifications and programs are equivalent [2, 6, 9]. All syn-
chronization sequences derived from partially ordered sets
in specifications can be observed in a deterministic testing.
When either concurrent program accepts invalid synchro-
nization sequences or it rejects valid synchronization se-
quences, it may be concluded that the program contains syn-
chronization errors. One major limitation of classical deter-
ministic testing is that not all synchronization sequences in
specifications can be implemented according to the design
decision. For example, the order between receiving a free

tone of a caller and receiving a ringing tone of a callee is
nondeterministic in a phone conversation. Two sequences
are possible: a caller hears a free tone before a callee hears
aringing tone and a vice versa. The program should be cor-
rect with an implementation of either sequence. In this case,
the program still meets its specification despite that all valid
sequences are not feasible. However, classical deterministic
testing based on equivalence relations would conclude that
the program contains synchronization errors. To deal with
such problems, we have defined the following three types
of conformance relations between specifications and con-
current programs based on subsumption relations between
valid event sequences and feasible event sequences in [8, 9].

e Synchronization Equivalence: A program P is the
synchronization equivalence of a specification S if and
only if valid(S) = feasible(P)

Synchronization Extension: A program P is the syn-
chronization extension of a specification S if and only
if valid(S) C feasible(P)

Synchronization Reduction: A program P is the syn-
chronization reduction of a specification S if and only
if valid(S) D feasible(P)

Here, “valid(S)” denotes a set of all valid event se-
quences in a specification S and “feasible(P)” denotes a
set of all feasible event sequences in a program P,

To test concurrent programs with the synchronization
reduction, we had proposed a new deterministic execu-
tion method, called automata-based deterministic testing or
automata-based testing, in previous works [7, 8]. The ba-
sic idea of automata-based testing is to focus on the equiv-
alence relations found among synchronization sequences.
The synchronization sequences are grouped into equiva-
lence classes so that a synchronization sequence in the same
equivalence class with the given test sequence can be exe-
cuted if it is feasible. When any sequence in the equiva-
lence class is executed and produces correct results, it may
be concluded that a tested program is reliable for the given
sequence. Note that other sequences are not explored in the
classical deterministic testing.

In this paper, we propose a testing environment where we
can apply the automata-based testing method to Java multi-
thread programs. We have designed and implemented three
components of the environment - Automata Generator, Re-
play Controller, and Program Transformer. Automata Gen-
erator produces an equivalence automaton from a given se-
quence and a dependency table for synchronization events.
An equivalence automaton is constructed to accept all se-
quences that show a semantically equivalent behavior with
the given sequence. Replay Controller controls the program
execution paths and Program Transformer transforms orig-
inal Java multi-thread programs to slightly modified ones

222

so that Replay Controller can accept alternative feasible se-
quences of the given sequence.

The rest of this paper is organized as follows. In Section
2, we briefly introduce classical deterministic testing. Sec-
tion 3 describes the automata-based testing environment for
Java multi-thread programs. In section 4, the algorithms
for automaton generation, the implementation of the replay
controller, and the transformation method for Java multi-
thread programs are described. The gas station example is
employed to show how the proposed approach works. In
Section 5, we conclude our works and present the directions
for future works.

2. Classical Deterministic Testing of Concur-
rent Programs

Classical deterministic testing approaches consist of two
major steps: the selection of synchronization sequences and
the forced execution of a program according to those se-
lected sequences. Synchronization sequences can be col-
lected by observing the order of event occurrences from the
previous execution [11, 13]. It is also possible to obtain se-
quences by analyzing specifications and/or program struc-
tures [6, 9, 12, 14].

Once sequences are collected, we need to guide a pro-
gram to follow the execution paths that are consistent
with the selected sequences. Two typical methods of re-
producing executions are available: the implementation-
based approach and the language-based approach. In the
implementation-based approach [1, 3], by modifying the
language’s implementation testers directly control execu-
tions by scheduler-controlled operations such as break-
points, selecting the next running process, rearranging pro-
cesses in various queues, and so on. This approach is effi-
cient because only few codes are added. However, it is not
portable because it is dependent on a particular compiler, a
runtime system, or an operating system. In the language-
based approach [4, 5, 10, 12, 13], a replay controller for
controlling a program execution is added to a concurrent
program. This controller is supposed to designate a proces-
sor to be executed on a particular execution path and deliv-
ers a program control to it blocking the execution of other
processors. The controller also retrieves a program control
from the processor and awakes blocked processors. The
above operations are added to the front and rear of each op-
eration in the processors. Thus, a concurrent program turns
into a slightly different program because of a replay con-
troller. Though efficiency may be affected by a replay con-
troller and the added codes, it is highly portable and easy to
develop and automate because the same mechanism can be
applied to all programs implemented in the same language.
We choose to follow the language-based approach.

Now, we explain the language-based approach for

RC
Permiti0) {
(I = nexliD) wait(); zn"“"”"
)
by | |
read(noxiiD); o
Producer Consumer) notifyali(); Consumer
e . —
ler.put(X) lor. B poe
V' [AC Perminioy; RC.Parmittio);
1 I Bufler.pul(X); R =Butfor.got);
Butfer RC.Co RC.C
Synchonized pul(X);
Synchonized gel() Bufter
Synchonized put(X);
Synchonized get()

(A) Origina! Program (B} Modified Program

Figure 1. (a) the structure of the original pro-
ducer/consumer program and (b) the structure of the mod-
ified program to apply a language-based deterministic test-
ing technique

Java multi-thread programs in more details with the pro-
duce/consumer program (see Figure 1). In the original pro-
gram in Figure 1(a), Producer and Consumer are concur-
rent threads. Producer deposits an item in buffer (puit(X))
and Consumer takes out an item from buffer (ge?(X)). The
program is modified to the one in Figure 1(b) to prepare for
classical deterministic testing. In order to control execution
of the program, RC is added to the program and reqPer-
mit(ID)/done(ID) methods in RC are added to the front and
rear of each method in threads. Replay Controller(RC) per-
mits only one thread to proceed and blocks other threads un-
til they get permission from RC. The method reqPermit(ID)
checks whether a thread request may be granted according
to a given sequence. If the thread ID matches with a current
element of a given sequence, the thread obtains the program
control. Otherwise the thread is blocked until its turn. Af-
ter the requested action has been completed, the done(ID)
method retrieves the program control from the thread and
awakes the blocked from RC.

For example Producer in Figure 1(b) is the first current
thread ID. Thus, Producer can gain the program control
but Consumer is blocked. After the action of Producer is
completed, the program control is released from Producer
and the current thread ID becomes Consumer. If no thread
gains a program control during the interval time defined
by testers, they conclude that a given sequence is infea-
sible. In the classical deterministic testing, a program is
guided to follow an execution path according to a given se-
quence. Thus, the given sequence is determined to be infea-
sible when the execution fails. However, this strategy won’t
work when the program is the synchronization reduction of
its specification, i.e. some valid sequences cannot be real-
ized in the corresponding implementation according to the
design decision. This is one of the reasons why we adopt
the automata-based deterministic testing approach [7, 8] for

223

Java Multi-Thread
Program

Given Specification
Sequence (Statecharts)
Y T

Transc;rmoa
Program

Figure 2. The automata-based testing environment for a
Java multi-thread program

Java multi-threaded program testing.

3. Automata-based Testing Environment

Given a test sequence to be replayed and the specification
of the original Java multi-threaded program, a Java program
is slightly modified and then executed in the automata-based
testing environment. Figure 2 represents the automata-
based testing environment consisting of Dependency Ex-
tractor, Automata Generator, Replay Controller, and Pro-
gram Transformer. Dependency Extractor generates a
dependency table of synchronization events by analyzing
specifications. Automata Generator generates an automa-
ton which represents an equivalence class with a given se-
quence from a given sequence and a dependency table of
events. Replay Controller controls the execution of the
transformed program according to one of sequences ac-
cepted by the equivalence automaton. Program Trans-
former generates a transformed Java multi-thread program
using an equivalence automaton. In this paper, only Au-
tomata Generator, Replay Controller, and Program Trans-
former are presented.

Figure 3 illustrates the process of generating an equiv-
alence automaton with Automata Generator. This process
consists of two steps: (1) the dependence graph generation
and (2) the equivalence automata generation. The depen-
dence graph represents the partial order to be satisfied in a
given sequence. The equivalence automaton accepts all se-
quences that are equivalent to a given sequence. With this
automaton, Replay Controller guides the program to follow
one of sequences accepted by the automaton. To this end,
the program is slightly modified with additional codes for
communicating with Replay Controller as shown in Figure
4. The major difference between our approach and the clas-

Synchonization Sequence

Precedence Graph
Dependency Tabl
SRR @
a b c d e
a1 10 11 () a
¢ 0 1 0 1 0
d 1 0 1 0 1 ‘
e 1 0 0 1 1

Figure 3. The example for generating the equivalence au-
tomaton: the precedence graph is generated from the syn-
chronization sequence and the dependency table, and the
equivalence automaton is generated from the precedence

graph

Controller
synchronized reqPermit(req) {

syncronized done{req) {

}

Transformed Program

n() {
Controller.reqPermit(req);
oprator.prepay();
Controljer.done(req);

}

Figure 4. The structure of the modified Java multi-thread
program for automata-based testing

sical deterministic testing is that the equivalence automaton
of a given sequence is used instead of the sequence itself.

4. Automata-based Testing Process

In this section, we present algorithms for generating an
equivalence automaton from a given sequence and a de-
pendency table of events. Each model in automata-based
testing is formally defined in [7, 8]. We also explain how
to implement Replay Controller and how to transform Java
multi-thread programs. We are going to demonstrate how
the automata-based testing scheme does works in our envi-
ronment with a gas station example.

4.1. Gas Station Problem

The gas station problem is often used as a typical ex-
ample in concurrent programming [6]. Figure 5 shows a

224

Customer Operator
un() { synchronized prepay() {
oprator.prepay(); pump.activate();
pump.start_pump();

pump.finish_pump();
oprator.ask_change();

} }

.

synchronized ask_change() {
pump.request_change();

\ /
Pump
avtivate() { }
start_pump() { }
finish_pump() { }
get_change() { 1}

Figure 5. The structure of the gas station example: Cus-
tomer is a thread class

structure of the gas station problem. In this example, a cus-
tomer must prepay the operator for a selected pump (pre-
pay()). The operator activates a selected pump if it is not be-
ing used, otherwise a customer waits for his/her turn (acti-
vate()). After a selected pump is activated, a customer starts
pumping (start_pump()), finishes pumping (finish_pump()),
and then receives changes from the operator (ask_change()).
The operator knows the amount of the changes from the
pump (request_change()). In this example, customers are
concurrent processors and the both operator and pumps
are shared resources. Hence customers are implemented
as threads and methods of the class operator are imple-
mented as the synchronized methods to prevent concurrent
accesses from customers.

Synchronization events are the events used in concurrent
threads and their execution orders are naturally nondeter-
ministic. In the gas station problem a synchronization event
is defined as E;;x, which means that the customer ¢ requests
the event k for the pump j. The requested event k is one
of four events: prepay (k = 1), start_pump (k = 2), fin-
ish_pump (k = 3), ask_change (¥ = 4). The dependency
between synchronization events is defined when their or-
der is deterministic. There exists the dependency among
synchronization events requested by the same customer and
among synchronization events using the same pump. Be-
cause only one Operator exists events relative to Operator
also have the dependency, i.¢., for dependency relation D,

(Eijk7qur) « (i=p)or
(j=q)or
((k=1or4)and (r=1 or4))

For simplicity of discussion, we assume that the gas
station consists of one operator, three customers, and
two pumps. We also assume that customerl and cus-
tomer3 use pumpl, and customer2 uses pump2. In this
case, 12 events are defined: 4 events of customerl using
pumpl (E11, E112, E113, F114), 4 events of customer2 us-
ing pump2 (Ea21, E229, Fao3, E294), and 4 events of cus-
tomer3 using pump!l (Esy1, Es12,Es13, E314). Table 1

Events | £ By Bi3 By

By
Ens
Eis
Eyy
B2y
By
L:53%)
B2
Esp
E3,

B Bopp Exos Boos Byt B3ip Bz Bspa

-
-
[
=1
o
-

Esps
B3

e - T - TN
- OO D O =
[N = - I - B
o e e e D O e e e e
[= S S)
OO QO =m0 OO
OO C O =D DO
O O e e e OO e
—_ e e e DO e e e e
_ e e O D OO = = e
e R R R
- e e O O =

Table 1. The dependency table in the simplified gas sta-
tion example

shows their dependencies, where 1 indicates that there
is dependency; between two events, and 0" indicates that
there is not.

4.2, Equivalent Automata Generation

The process of generating equivalence automata consists
of twossteps: 1) generating a precedence graph of a given
sequence with a dependency table and 2) generating an
equivalence automaton from a precedence graph. The
precedence graph represents the partial orders among
events “which a synchronization sequence must satisfy.
Algorithm 1 shows how to generate the precedence graph
for a given sequence using a dependency table.

Algorithm 1 (Precedence Graph Generation)

Global Variables
int eve_count; // The number of events (=12)

int seq_count; /1 The length of a given sequence

String Events[eve_count]; /1 A set of synchronization events

int Dependency{eve_count}{eve_count}; /7 A dependency table

String Sequence[seq-event]; /I A given sequence

7: private void get_Graph ()

8: PrecedenceGraph = new int{seq_count](seq_count};

9: for(inti=0;i<seqcount; i++)

1:
2:
3:
4:
S:
6:

10: for(int j=0 ; j<seqcount ; j++)
11 PrecedenceGraphl[i}[j] = 0;
12: end for;

// Two events: we identify the dependency between them
int pre_event=0, post_event=0;

14: for{ int i=seqcount-2 ; i>=0i~)

15: for(int k=0 ; k<eve_count ; k++)

16: if(Sequenceli).equals(Events[k]))

17: pre:event = k;

18: end for;

19: for(int j=i+l ; j<seq_count; j++)

20: for(int k=0 ; k<eve_count ; k++)

21: if(Sequencelj].equals(Events[k]))

22: post.event = k;

23: end for;

24: if(Dependency(pre_event]{postevent] == 1 && PrecedenceGraph(i}{j} ==0)
25: PrecedenceGraph(i]{j] = 1;

26: for(int 1=j+1 ; 1<seq.count ; 14++)

27: if(PrecedenceGraph[j](l] = 0)

28: PrecedenceGraph([i){l] = PrecedenceGraph[j][1]+1;
29: end all;

225

The algorithm initializes a precedence graph (8-12). In
the precedence graph, ”0” indicates that there is no depen-
dency between two events, which means that two events are
concurrent. The positive value indicates that dependency
exists between two events. After initialization, the last event
in a given sequence is assigned to the pre_event (14-18) and
the next of the pre_event is assigned to the post_event (19-
23). If dependency existing between the pre_event and the
post_event is not represented in the precedence graph (24),
the algorithm includes it in the graph as well as all other de-
pendency caused by it (24-28). The dependency table gen-
erated by Algorithm 1 represents all partial orders in a given
sequence [7, 8]. In the gas station example, assume that the
sequence [E11y, Foo1, Faoe, Eo23, E119, En13, E114, Eaps,
Es12, Eoos, Es13, E314] is given. Then, we can obtain the
dependency table shown in Table 2 by applying Algorithm
1. Figure 6 is a graphical representation of dependencies in
Table 2, where nodes and edges of the graph denote events
and dependencies, respectively.

Events

B
Eom

Eur B0 802 B2y Eyp Epns Bye Bz

4

E315E224 B313 E 314
6

o
-
o
-
(%%
(XY
W
£=

Ez;
E23
By
By
£y
Ezy
E;
E320
LEH
Esiq

[V =

coc oo oo CoOOOo
000 000 0O OO0
OO0 OO O O C O O
0000000 OO m, KW
coo o000 0O oG
= R R R - - -]
OOOOO‘O'—‘NOQV‘
O C OO0 MNWOOW
OO0 O W E O D WL
OO0 O NW LW
= R C R O VA CR R SN

C 0O =N WA

Table 2. The dependency table obtained by applying Al-
gorithm 1 to the sequence [Ei11, Ea21, Eo22, Eas3,
Evy2, B3, Ei14, E3115 E312, E2245 E313, E314]

Figure 6. The dependency graph which represents depen-
dencies in Table 2

Algorithm 2 shows how to generate an equivalence
automaton from a precedence graph. In an equivalence
automaton, a state is defined as a set of executed events and
a transition is defined as the 3-tuple = (a current state, an
executing event, a target state).

Algorithm 2 (Equivalence Automata Generation)

1: Global Variables
2: inttr_count, st_count
3: inteve_count;

/fThe number of transition and states
// The number of events (=12)

4: intseq.count; // The length of a given sequence

5: String Events[eve_count]; // Events

6: int PrecedenceGraph[eve_count][eve _count];
7: public void get_Automata()
8: int sum_col; // The number of preceding events
9: intcurrent=0, next; // a source state and a target state

/1 Precedence Graph

10: int[] temp_state = new int[seq_count];

L1: int max_state = power(2, seq.count);

12: States = new int[max.state]][seq_count]; /1 States of an automaton
13: Automata = new int[seg-count * max_state][3]); // An equivalence automaton
14: for(inti=0;i < seqcount; i++)

1S: States{0][i} = 0;

16: stcount = 1;

17: while(current < st_count)

18: for (inti=0;i < seq.count; i++)

19: sumcol = 0; ’

20: 1/ check the existence of a executable event

21 if (States{current](i] == 0)

22: for(int j =0 j < seqcount ; j++) // Checks preceding events
23: if (States[current][j] == 0)

24: sum_col = sum.col + PrecedenceGraph(j][i];

25: end for;

26: if (sum_col == 0) // There is no preceding event

27: copy-array(States{current], temp_state, seq-count);
28: temp state[i] = 1;

29: next=-1;

30: /f check the existence of a target state

31: for(intk =0 k < stcount ; k++)

32: if (equals_array(temp.state, States[k], seq_count))
33: next =k;

34: end for;

35: if (next ==-1)

36: next = st_count;

37: copy -array(temp _state, States{st.count], seq-count);
38: st_count++;

39: end if

40: // Add a transition to an automaton

41: Automata[tr_count][0] = current;

42: Automata[tr_count}[1] =1;

43: Automata[tr_count}f2] = next;

44: trcounts+;

45: end if; end if; end for;

46: current++;

47: end all;

First, Algorithm 2 initializes a state, which indicates
no event has been executed (14-16). Then, it finds ex-
ecutable events in the initial or current state, which is
States[current]. An executable event is an event yet t0 be
executed (18-21); it has no preceding events to be executed
first and eventually becomes executable in the current state
(22-26). For each executable event, the target state is con-
structed and made executable. Such a target state is inserted
as a new state if it does not exist (35-39). Finally, the al-
gorithm adds a transition to an automaton (40-44). The
process from line 17 to line 46 is repeated for every new
state. Figure 7 represents an equivalence automaton ob-
tained from the precedence graph of Table 2. It accepts all
sequences in a class which is equivalent to a given synchro-
nization sequence.

4.3. Modification of Java Multi-thread Programs
with Replay Controller

Controller(Replay Controller) permits or blocks the pro-

226

Figure 7. The equivalence automaton generated from a
precedence graph in Figure 6

synchronized reqPermit(req) {

syncronized done(req) {

)
|

QOperator
synchronized prepay{) {
pump.activate();

}

un
Controller.reqPermit(req),

oprator.prepay();
Controller.done(req);

avtivate() { }
+| stat_pump() { }

finish_pump() { }
get_change() { }

= synchronized ask_change() {
pump.request_change();

_~

}

Pump

Figure 8. The skeleton structure of the modified gas sta-
tion example for applying automata-based testing

gram’s threads using an equivalence automaton. The trans-
formed threads obtain and release the program control by
communicating with Controller. Figure 8 shows the struc-
ture of the modified gas station program. For clarity, we ex-
plain Controller and the program transform method in more
details.

Controller guides a program to follow a desirable execu-
tion path. The Controller in our approach is almost the same
as the one used in a classical deterministic testing except
that it chooses a desirable execution path by using an equiv-
alence automaton instead of a given sequence. As shown
in Figure 9, Controller includes three important methods:
reqPermit(req), done(req), and equals(req). The method
reqPermit(req) permits a thread if the event req required
by the thread is acceptable by the automaton, otherwise it
blocks the thread using the Java method wair(). Generally,
it is undecidable to determine whether any program can ex-
ecute a specific sequence because it cannot determine when
the program terminates. Therefore, we conclude that the
sequences equivalent to the given sequence are infeasible if
a specific thread is continuously blocked for a fixed num-
ber of times (20 times in Figure 9). The method done(req)
identifies a new current state in an automaton and activates

public class Controller {
biivale static Controller ctrl = new Controller();

pnvale Controller(}y {...}
public synchronized static Controller getController() {
return ctrl;

public syn.ghronized void regPermit{Request req) throws InterruptedException {
cnt=0;
boolean tired =
int inautomata = 0;
while {count != next || {!ired && (inautomata = equals{req)) =
wait(500);
if(cnt 209
cnt+4;
else
tired = true;

false;

=) {

) .
public synchronized void done(Request req) throws InterruptedException {
count++;
notityAll();
private int equals(Request req) {
int result = 0; / O:error, 1:in automata, 2:notin automata
|f((resull at feasible(curState, curEvent)) i= 0) {
curState = at.get_nextState{curState, curEvent);
next++;

return result;

Figure 9. Controller(Replay Controller) in the modified
program: Controller forces a program to follow the desirable
execution path

all blocked threads using the Java method norifyAll(). The
method equals(req) determines whether an automaton ac-
cepts the event reg in a current state. To maintain only one
Controller in a program, the constructor of Controller class
is declared as private one.

To control the execution of the program by communicat-
ing with Controller, each Customer thread in the gas sta-
tion program is transformed as in Figure 10, where “//*”
denotes the codes added by Program Transformer. The
thread calls the method reqPermit(req) in order to acquire
permission from Controller before executing the event reg,
and the method done(req) in order to inform Controller that
the event req is executed after executing the event regq.

4.4, An Example of Automata-based Testing

To show how the proposed approach works in the case
of synchronization reduction, we assume that pumping in
pump? can start as soon as pumpl begins pumping, when
both pumps are activated. Figure 11 shows the class Cus-
tomer reflecting the above assumption.

The gas station example under this assumption can-
not execute the sequence [E111, Eas1, Eaga. Faas, Eiro,
Ens, Eng, Ean. Esig, Eaaq, Ez13, E314), because the
event Eqgq precedes the event Ejq2. In this situation, clas-
sical deterministic testing would conclude that the given
sequence is infeasible without further exploring other se-
quences. However, in the automata-based testing, it is obvi-
ous that the program implements the sequence because an
alternative sequence showing the same behavior with the

227

public class Customer extends Thread {
public void run() {
try {
Request req; "

Controller ctrl = Controller.getController();
opr = Operator.get_operator();

while(lopr.is_available(pumpNumber));

re 3— new Hequest(threadlD pump.getiD(), PRE PAYI),
ri.reqPermit{req);

opr. prepay(myNumber myMoney, pumpNumber, pum{p),
ctri.donefreq); I

req = new Request(threadID, pump.get!D(), START. WUMPING)
ctrl.reqPermit(req); "
pump.start_pumping();
ctri.done(req);

= new Request(threadID, pump.getiD(), FINISH PIUMPING),
. reqPermit(req);
pump inish_pumping();
ctri.donefreq);

"

"
g = new Hequest(threadlD pump.getiD(), ASK OHANGE).
reqPermit{req);
mt change = opr. ask ._change(myNumber, pumpNumber pump);
ctrl.donefreq);

) catch (InterruptedException e) {};

Figure 10. The Transformed Customer in order to control
the program execution with Controller

public class Customer extends Thread {
public void runf) {

'&JName = Controtier. PRE_PAY;
opr.prepay(myNumber, myMoney, pumpNumber, pump);

// added code for assumption

while (fpump.getiD() == 1) &&
pump.act_state() && otherPump.act_statef) &&
Ipump.pump_state() && lotherPump. pump_state()) .

;&:Name = Controlier. START_PUMPING;
pump.start_pumpingt);

Figure 11. Customer in the gas station program imple-
mented with synchronization reduction

given sequence, i.e., the sequence in Table 3 is allowed.
Note that, in automata-based testing, a sequence is not nec-
essarily implemented although it is allowed, However, it
is guaranteed that some equivalent sequences are imple-
mented.

In Table 3, "Required Events” indicates nondetermin-
istic events in the thread Customer which are required to
obtain permission from Controller. "Re-required Events”
indicate the events in blocked threads are required to ob-
tain the permission. In Table 3, the first required event Fy g
is accepted by the automaton and obtains permission. But
the event Eq99 which is not accepted by the automaton is
blocked until its turn. Consequently, the gas station pro-
gram executes the sequence [Elll . Egz[, E112, Ezgg. Ellg,
E223, E114, E311, E224, E312, E313, E314]. This sequence

Required | Re-required Acceptance Blocked Executed
Event Event in Automaton Event Event
Em hd Yes e By
Em s - Emy

By - Na Em -
Eng) s : Eyy
- Esn ¥es Eup
Eys - Yes - Euy
Ew Na Emy -
Eqny s Esn Eu
- Eny No Esm -
Em - No Ex, B B
B - s - B
- Esn Yes Eam Em
Eny Yes -]:435
Esy - Zes B
By s Esy
Eus Yos Eyy

Table 3. The executed sequence by applying automata-
based testing to the gas station program implemented with
synchronization reduction

which is different from the given sequence is an equivalent
sequence showing the same behavior. Therefore, we can
conclude that the gas station program is implemented prop-
erly for the given sequence.

5. Conclusion and Future Works

In this paper, we proposed the automata-based testing
environment for Java multi-thread programs and we had
designed and implemented three component of the envi-
ronment - Automata Generator, Replay Controller, and
Program Transformer. Automata Generator generates an
equivalence automaton from a given sequence and a de-
pendency table, Replay Controller guides Java multi-thread
programs to follow one of sequences equivalent to the given
sequence based on the equivalence automaton, and Program

‘ransformer transforms programs into modified ones for
executing them according to the sequence allowed by Re-
play Controller.

While classical deterministic testing checks that a given
sequence is just feasible, automata-based testing checks that
one of sequences equivalent to a given sequence is feasi-
ble. Therefore, the automata-based testing is proper to test
concurrent programs that implement their specification par-
tially. We showed how the automata-based testing worked
in the proposed environment through the gas station exam-
ple.

Our future work is to design the Dependency Extractor.
In this paper, it is assumed that a test sequence and a de-
pendency table are given. So we need the method for ex-
tracting such information from specifications. It has three
issues: What dependencies exist in specifications, how ex-
tracts such dependencies, and what a test criterion is used
to generate test sequences. Finally, we will implement the

228

automata-based testing environment consisting of four com-
ponents: Dependency Extractor, Automata Generator, Re-
play Controller, and Program Transformer.

References

[1] A. Bechini, J. Cutajar, C. A. P. V. Bochmann, and A. Pe-
trenko. A tool for testing of parallel and distributed pro-
grams in message-passing environments. In Proceedings
of the 9th Mediterranean Electrotechnical Conference 1998
(MELECONE98), volume 2, pages 1308-1312, 1998.

G. V. Bochmann and A. Petrenko. Protocol testing: Review
of methods and relevance for software testing. In Proceed-
ings of the International Symphosium on Software Testing
and Analysis, pages 109-124, 1994.

A. F. Brindle, R. N. Taylor, and D. F. Martin. A debugger
for ada tasking. /EEE Transaction on Software Engineering,
15(3):293-304, March 1989.

X. Cai and J. Chen. Control of nondeterminism in testing
distributed multithreaded programs. In Proceedings of the
Ist Asia-Pacific Conference on Quality Software, pages 29—
38, 2000.

R. H. Carver and K. C. Tai. Replay and testing for concur-
rent programs. [EEE Software, 8(2):66-74, March 1991.

R. H. Carver and K. C. Tai. Use of sequencing constraints
for specification-based testing of concurrent programs.
IEEE Transaction on Software Engineering, 24(6):471-490,
June 1998.

L. S. Chung and B. M. Kim. Yet another approach to deter-
ministic execution testing for distributed programs. In Pro-
ceedings of the IASTED International Conference on Soft-
ware Enginerring and Applications, pages 55-60, 2000.

I. S. Chung, B. M. Kim, and H. S. Kim. A new approach to
deterministic execution testing for concurrent programs. In
Proceedings of the International Workshop on Distributed
System Validation and Verification, pages E59-E66, 2000.
I. S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and B. S.
Lee. Testing of concurrent programs based on message se-
quence charts. In Proceedings of the International Sympho-
sium on Software Engineering for Parallel and DisTributed
Systems (PDSE99), pages 72-82, 1999.

P. A. Emrath, S. Ghosh, and D. A. Padua. Detecting nonde-
terminacy in parallel programs. /EEE Software, 9(1):69-77,
January 1992. .

T. J. LeBlanc and J. M. Mellor-Crummey. Debugging paral-
lel programs with instant replay. IEEE Transaction on Com-
puters, C-36(4):471-482, 1987.

H. W. Sohn, D. C. Kung, and P. Hsia. State-based repro-
ducible testing for corba applications. In Proceedings of
the International Symphosium on Software Engineering for
Parallel and Distributed Systems (PDSE00), pages 29-38,
2000.

K. C. Tai, R. H. Carver, and E. E. Obaid. Debugging concur-
rent ada programs by deterministic execution. [EEE Trans-
action on Software Engineering, 17(1):45-63, January 1991.
R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural test-
ing of concurrent programs. [EEE Transaction on Software
Engineering, 18(3):206-215, March 1992.

(2]

[3

—

[4

—

(5]
(61

{7

—_—

(8

{9

[10]

(1]

[12]

[13]

[14)

