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Abstract
The most widely available high performance platforms today are
multi-level clusters of multi-cores. The Glasgow Haskell Compiler
(GHC) provides several parallel Haskell implementations targeting
different architectures. In particular, GHC-SMP supports shared
memory, and GHC-GUM supports distributed memory. Both im-
plementations use different but related runtime-environment (RTE)
mechanisms. Good performance results can be achieved on shared
memory architectures and on networks individually, but a combi-
nation of both, for networks of multi-cores, is lacking.

We present the design and implementation of a new parallel
Haskell RTE implementation, GUMSMP to better exploit such
hierarchical platforms. It is designed to efficiently combine dis-
tributed memory parallelism, using a virtual shared heap over
a cluster, with low-overhead shared memory parallelism on the
multi-cores. Key design objectives in realising this system are
asymmetric load balance, effective latency hiding, and mostly pas-
sive load distribution. We present initial performance results for
this implementation, indicating that the new RTE outperforms the
distributed memory implementation in certain scenarios.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Run-time environments; D.3.2 [Programming languages]:
Applicative (functional) languages; C.1.4 [Processor architec-
tures]: Distributed architectures

Keywords Parallel Haskell, Virtual Shared Memory, Distributed
Architectures

1. Introduction
Multi and many core architectures have become the dominant gen-
eral purpose hardware architectures. Moreover, the current trend in
parallel architectures has shifted towards networks of multicores, in
which several multicore CPUs with nodes physically sharing mem-
ory are connected via a network. In high-performance computing
a hybrid parallel programming model is often used to best exploit
this architecture. Such a hybrid model uses multiple coordination
abstractions, e.g. MPI + OpenMP, where OpenMP (directive-based
parallelism) is applied within a multicore node and MPI (message
passing interface) is applied across the cluster of multicores. Thus,
this achieves a multilevel parallelism, combining the ease of pro-
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gramming of a shared memory model and the scalability of a dis-
tributed memory model. However, managing two abstractions is
a burden for the programmer and increases the cost of porting to
a new platform. In contrast, our new runtime environment (RTE)
for parallel Haskell, GUMSMP, provides a uniform, semi-explicit
high-level parallel programming model, with adaptive, automatic
policies on both levels of the hierarchy. Therefore, this model re-
lieves the programmer from the burden of explicitly controlling co-
ordination on a multi-level hierarchy, delegating such control com-
pletely to the RTE.

Glasgow Parallel Haskell (GpH) [22] is a widely-used parallel
extension of Haskell, a lazy functional language. GPH is devel-
oped to facilitate parallel programming by limiting the program-
mer’s work to a few key aspects of high-level coordination primi-
tives supported internally by the language implementation. In GPH
parallelism is expressed by two primitives added to the Haskell pro-
gram, par and pseq. Evaluation strategies [16, 23] are polymorphic
and higher order functions abstract over these primitives to provide
a high level control of parallelism.

There are two different implementations of this semi-explicit
programming model, namely GHC-SMP [15], a low-overhead
physical shared-memory implementation integrated in GHC, GHC-
SMP, and a virtual shared memory implementation on clusters
built on top of explicit message passing, GUM [21]. A major differ-
ence between them lies in the work distribution model supported.
While both implementations support a work-stealing approach,
GUM distributes work in the form of sparks that are communi-
cated by message passing and prefer coarse grain computations to
be sent away. In contrast, spark pools are shared in GHC-SMP and
therefore idle processors steal sparks from the spark pools of the
busy ones.

In this paper we present the design of GUMSMP, a multilevel
parallel Haskell implementation which integrates the advantages
of these two implementations, thus providing a platform for scal-
able parallelism that is not bounded by the limitations of a phys-
ical shared memory. GUMSMP is motivated by the work distri-
bution of the GHC-SMP as the shared memory model within a
single multicore and by the work distribution of the GUM as the
distributed memory model across a hierarchy of multicores.

The main benefits of this multi-level design of GUMSMP over
the existing implementations (GUM, GHC-SMP) are:

• GUMSMP provides a scalable model, which works on large
distributed memory architectures.
• GUMSMP efficiently exploits the specifics of distributed and

shared memory on different levels of the hierarchy.
• GUMSMP provides a single programming model, which

makes programming easier and achieves performance porta-
bility.
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The main contributions of this paper are as follows:

• We provide a detailed description of parallel Haskell languages
and implementations in Section 2.
• We present the design of GUMSMP, focusing on the im-

proved, hierarchy-aware scheduling and placement of light-
weight threads in Section 4.
• We present preliminary performance results for GUMSMP in

Section 5.

2. Related Work
There is a diversity of languages and implementations of parallel
Haskell. At the language level, the diversity is based on the differ-
ent abstractions supported which vary in how explicitly they con-
trol parallelism, e.g. implicit, semi-explicit, and fully explicit ap-
proaches. At the implementation level, the diversity is based on
different classes of architectures with different characteristics, e.g.
clusters, multicores, etc. In this section we briefly outline different
parallel Haskell languages and implementations.

2.1 Parallel Haskell Languages
Some important parallel Haskell languages are classified according
to the abstraction level supported as follows:

Explicit parallelism:

The Par Monad [17] is a new parallel Haskell programming
model for pure deterministic parallel computations providing
monadic control of concurrency.

CloudHaskell [6] is a domain-specific language for developing
programs for distributed memory systems. It emulates Erlang
style message passing communication yet still benefits from
Haskell features such as purity, types, and monads. Cloud
Haskell has been re-implemented recently to support multiple
transport implementations in order to provide high performance
and scalability. The new implementation provides more precise
semantics in terms of message communications as well as node
connection.

Semi-explicit parallelism:

Eden [13] is a semi-explicit approach to functional parallel pro-
gramming which extends Haskell with constructs to support
parallelism. Processes are defined explicitly in Eden, but the
communications are implicit, thus achieving a high level of ab-
straction. Eden supports distributed memory parallelism with
message passing as a communication model. The programmer
has some control over the load balancing as well as the granu-
larity in order to specify expressions that have to be evaluated
as parallel processes. Eden provides high level parallelism ab-
stractions (libraries of skeletons) and therefore simplifies the
task of parallelizing a program substantially.

HdpH [14] a High-level Distributed-Memory Parallel Haskell is
heavily influenced by the design and implementation of Cloud
Haskell, targeting distributed memory architectures with multi-
core nodes. It supports high-level semi-explicit parallelism, dy-
namic load management, polymorphism, powerful coordination
abstractions, and has the potential for fault-tolerance.

2.2 Parallel Haskell Implementations
Parallel Haskell implementations can be classified as distributed
memory or shared memory implementations as follows:

Distributed Memory Implementation:

GUM [21] is the distributed memory implementation for GPH
which is discussed in further detail in Section 3.1.

Dream/EDI [13] is the distributed memory Eden implementation,
which extends GHC functionality by defining primitives for
explicit remote task creation and channel based communication
mechanisms and supports the eager work distribution model.

CloudHaskell [6] is implemented entirely in Haskell as processes
with explicit message passing and function closures serialisa-
tion. The overhead associated from using Haskell as a system
language is acceptable as demonstrated by the initial perfor-
mance results.

HdpH [14] is implemented entirely in Concurrent Haskell. HdpH
implementation is layered and moduler coded in Vanilla GHC
Concurrent Haskell with independent modules for different co-
ordination aspects, e.g. thread management, communication,
scheduling, etc., thus it preserves maintainability and facilitates
development.

Shared Memory Implementations:

GHC-SMP [15] is the shared memory GpH implementations
which is discussed in more detail in Section 3.2.

Par Monad [17] provides implementation of the system-level
functionality (work-stealing scheduler) as a Haskell library.
The Par-Monad associated overhead is still low, as indicated by
the performance results.

Meta-Par [8] built on the Par Monad, takes Haskell-level pro-
grammability and abstractions of runtime-system functionality
further, especially for scheduling on heterogeneous architec-
tures (with a focus on CPU/GPU interaction). A work-stealing
scheduler is described which reifies core data-structures like the
thread pool in Haskell.

Many of the parallel Haskell language implementations depend
on the sophisticated runtime systems implemented in low-level
language to automatically manage parallelism, i.e. synchronization,
communications, work scheduling, etc. Examples include GUM,
GHC-SMP, and Dream/EDI. The implementation of GUMSMP
follows this approach.

Having a runtime system implemented in low level language
resulted in a high application performance. However, the imple-
mentation maintenance is challenging and needs to be continuously
updated.

One current trend for parallel Haskell implementations is to
use Concurrent Haskell to implement all functionality instead of
modifying the GHC runtime system, thereby trading performance
with maintainability and ease of development. Examples include
CloudHaskell, Par Monad, HdpH and the light-weight concurrency
substrate of GHC [20].

Table 1 has been reproduced from [14] which compares the key
features of different parallel Haskells. Shared memory implemen-
tations have limited scalability as they only work on a multicore.
On the other hand, distributed memory implementations work on
shared memory architectures as well as on distributed memory ar-
chitectures. They can still give good performance on multicores
as long as the tasks to be communicated are large and the com-
munication rate is low [1, 2]. GUMSMP is also scalable, but it
provides improvements for two aspects of the parallel implemen-
tations, namely implicit task placement and automatic load bal-
ancing. This resulted from integrating GHC-SMP which is tuned
for multicore architectures and GUM which is tuned for clusters.
Thus, GUMSMP is designed to provide an architecture-aware sys-
tem tuned for a cluster of multicore architectures. As a result, if
the computation is small it will remain in the multicore, but if it is
large, it can be sent to different nodes in the clusters, thus reducing
the communication overheads associated with GUM.
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Table 1: Parallel Haskell Comparison

Distributed Memory Shared Memory
Property / Language GUMSMP GUM Eden CloudHaskell HdpH GHC-SMP Par Monad

Scalable (distributed memory) + + + - - + +
Fault Tolerance (isolated heaps) - - (+) + +

Polymorphic Closures + + + - + + +
Pure, i.e. Non-Monadic API + + + - - + -

Determinism (+) (+) - - - (+) +
Implicit Task Placement ++ + + - + + +

Automatic Load Balancing ++ + + - + + +

All previously presented languages are dialects of Haskell.
There are many other parallel functional languages. An exam-
ple is Manticore [7], which is a heterogeneous, statically typed,
strict language with support of multiple levels of parallelism. It
combines three components: the sequential functional language is
drawn from SML, explicit mechanisms for concurrency are drawn
from CML [19] and implicit mechanisms for parallelism are drawn
from NESL [4] and Nepal [5].

3. GPH Implementations
This section gives an overview of the design of GUM and GHC-
SMP with special emphasis on thread management and load bal-
ancing.

3.1 The distributed memory GUM implementation
GUM (Graph Reduction for a Unified Machine Model) [3, 21]
is the portable, message basing virtual machine for the parallel
Haskell Functional Language which has been released as an ex-
tension to the GHC (Glasgow Haskell Compiler) [10]. It is based
on the parallel reduction of the graph representing the program,
and the parallelism being exploited by the reduction of indepen-
dent sub-graphs being carried out in parallel [18].

The key concepts in GUM’s design are to support a virtual
shared heap where the graph representing the program to be evalu-
ated in parallel is stored and which is implemented on top of a dis-
tributed memory model as well as dynamically managing resources
for work and data.

Based on its design, several components of GUM can be iden-
tified:

1. Initialization and Termination: responsible for controlling
start up and termination.

2. Thread Management: responsible for deciding when to gen-
erate a new thread and how to schedule the threads.

3. Load balancing: responsible for distributing the load in the
parallel system so that the processing elements’ idle time is
minimized.

4. Memory Management: responsible for controlling access to
remote data and in GUM, implementing a virtual shared heap.

5. Communication: responsible for transferring data and work
between PEs.

Shared closures (nodes in the graph structure) can be either
normal-form closures, representing data, or thunks, representing
work (unevaluated data). Access to shared closures is implicitly
synchronised to avoid two Haskell threads from evaluating the
same thunk simultaneously.

Load Balancing: The load balancing model is designed specif-
ically to achieve an efficient and effective distribution of the avail-

able sparks without generating an excessive number of messages.
Spark generation in GUM is cheap. It is simply the adding of a
pointer to a thunk which is then added to the spark pool. This is
essential to reduce the parallelism creation overhead, as well as
to reduce the communication cost of sending sparks between PE.
However, the cost of managing the thread pool is not as low as that
for spark pool management. The reason for this is that additional
information is needed for a thread such as a live thread priority,
which is essential if more flexible scheduling is to be achieved.

Figure 1 presents the work distribution in GUM which is ex-
plained as follows:

Searching for Local Work: In the current version of GUM, if
there are no more threads to run in the thread pool, the scheduler
searches for a spark in its spark pool. If a spark is found, it is
activated by turning it into a thread and generates a TSO to hold
essential information about the thread and starts evaluating it. If
the running thread is blocked for unevaluated values, it will be put
in a queue and when the required data arrives the blocked thread
will be awakened and transferred back to the runnable pool. The
data becomes available when it is either reduced by a local thread
in the same PE or its value is sent after being evaluated by another
PE.

Searching for Remote Work: If there is no spark in the PE’s spark
pool, the scheduler requests work by sending a FISH message. The
FISH message swims randomly from one PE to another searching
for work. It includes the originating PE’s id and age number rep-
resenting the maximum number of PEs to visit. If the recipient PE
has no spark in its spark pool, it forwards the message to another
PE chosen at random after increasing its age. If the recipient has a
spark, it sends it to the requesting PE as a SCHEDULE message. If
no spark is found and the message limit is reached, the unsuccessful
FISH is then returned to the originating PE, which then waits be-
fore sending another FISH message in order to avoid swamping the
machine with FISH messages when there are only a few busy PEs.
For the same reason, each PE only ever has a limited number of
outstanding FISH messages (the default number is 1). This mecha-
nism is called ”work stealing”, or passive work distribution, since
the work is requested by the idle PE. Algorithm ScheduleFindWork
presents the load balancing mechanism implemented in GUM.

3.2 The shared memory GHC-SMP implementation
GHC-SMP is an optimized shared memory implementation for
functional parallel Haskell integrated in GHC [9, 15]. It assumes a
physical shared memory and uses mutexes for synchronization be-
tween local threads. GHC-SMP excels at the efficient handling of
lightweight threads. Millions of lightweight threads are supported
by the GHC runtime system. To achieve this the threads are multi-
plexed onto a handful of operating system threads, approximately
one for each physical CPU. A (TSO) thread state object is a heap
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Figure 1: Work Distribution in GUM

1 Void ScheduleFindWork(Capability *cap , Task
*task)

2 if emptyRunQueue(cap) then
3 //Call ScheduleActivateSpark(cap)to get

local work
4 if anySpark(cap) then
5 spark = tryStealSpark(cap);
6 if spark != NULL then
7 tso = createSparkThread(cap,spark);
8 pushOnRunQueue(cap,tso);
9 end

10 else
11 //Call Function ScheduleGetRemoteWork(cap)to get

remote work
12 pe = choosePE();
13 sendFISH(cap,pe);
14 end
15 end

Function ScheduleFindWork(Capability *cap, Task *task)in
GUM

allocated structure used to keep the Haskell thread’s state together
with its stack where it runs (same TSO structure as in GUM).

A set of operating system threads (worker threads, one worker
thread per CPU) execute the Haskell threads. One Haskell Execu-
tion Context (HEC) is maintained for each CPU owing to the fact
that the worker thread may frequently vary.

The HEC is the data structure where the data required by an
OS worker thread in order to execute Haskell threads is contained.
Each HEC has a spark, threads, and global black hole queues that
are the same as those for GUM.

The state required by a HEC to perform ordinary execution of
Haskell threads is local to the HEC. This means that a HEC requires
no synchronisation, locks, or atomic instructions. Synchronisation
is only needed for some situations such as load balancing, garbage
collection, etc.

Load Balancing HEC’s spark pool is implemented as a bounded
work-stealing queue in order to make spark distribution cheaper
and more asynchronous. A work-stealing queue is a lock-free data
structure where the owner can push and pop from one end of the

queue without synchronization. Other threads can steal from the
other end of the queue, meaning that only one atomic instruction
is needed. In order to avoid a race between popping and stealing
threads from the queue when it is almost empty, popping incurs an
atomic instruction. On the other hand, when the queue is full, the
new spark to be pushed is discarded, meaning potential parallelism
may be lost.

Figure 2: Work Distribution in GHC-SMP

As shown in Figure 2, when an HEC has no assigned work, it
searches for a spark, either in its spark pool or in any other HEC’s
spark pool. If a spark is found, then the HEC creates a ’spark thread’
in order to reduce the thread overhead, which in turn steals the spark
and starts evaluating it. Once this process has finished, it will steal
another spark. Thus, the spark thread will evaluate sparks to WHNF
sequentially until no more sparks are found, at which point it exits,
allowing the TSO to be recovered by the GC.

It is necessary to create a spark thread in order to avoid creating
a new thread and a fresh TSO for every spark and to discard it after
completing the evaluation for recovery by the garbage collector. In
this way there will only be one thread executing multiple sparks.
This also fixes the problem of latency between creating the parallel
tasks and being able to execute them in another CPU. The algo-
rithm ScheduleFindWork presents the load balancing mechanism
implemented in GHC-SMP.
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1 Void ScheduleFindWork(Capability *cap , Task
*task)

2 if emptyRunQueue(cap) then
3 //Call ScheduleActivateSpark(cap) to get

local work;
4 if anySpark(cap) then
5 for i← 0 to num capabilities do
6 if emptySparkPool(cap[i]) then
7 continue;
8 end
9 spark = tryStealSpark(cap[i]);

10 if spark != NULL then
11 break;
12 end
13 end
14 if spark != NULL then
15 tso = createSparkThread(cap,spark);
16 pushOnRunQueue(cap,tso shell);
17 end
18 end
19 end

Function ScheduleFindWork(Capability *cap, Task *task)in
GHC-SMP

3.3 Main Scheduling Loop
For both implementations, the core of each PE’s execution is the
scheduling loop presented in Algorithm 1 which is executed by
each PE. The main difference between GUM and GHC-SMP is
in the load balancing mechanism presented in the function Sched-
uleFindWork for both.

4. GUMSMP Design
GUMSMP is designed to be multi-level, using different, tailored
technologies on the small-scale, physical shared-memory level
(multi-cores) and on the large-scale, distributed memory level
(clusters). We build on the successful technologies that exist for
both levels already, in particular we employ a mechanism of work-
stealing for passive load distribution, combined with an adaptive,
dynamic mechanism for automatically distributing work and data
on a cluster. Technically we achieve this design by integrating the
functionalities of the existing GHC-SMP and GUM implementa-
tions of the RTE for GHC.

The main design objectives for GUMSMP can be summarized
as follows:

• Asymmetric load balancing: While striving for even load bal-
ance, we employ different concepts for the different levels, thus
realising an asymmetric design of load balancing. On the large
scale, where communication is expensive, we accept significant
imbalance, whereas within a multicore node, where communi-
cation is cheap, we aim to optimise for an even load balance.
• Mostly passive load distribution: It is essential to maintain a

passive work distribution between multicore nodes, so work
is only sent remotely when requested (work-stealing). On the
other hand, within a multicore, it is preferred to maintain active
work distribution as the communication is carried out locally
within the same multicore.
• Gateway routing and distribution: In our design, one processor

at the lower level acts as a gateway to the rest of the cluster. It is
in charge of communication and collects information about the

1 while True do
2 switch sched state do
3 case SCHED RUNNING
4 continue;
5 case SCHED INTERRUPTING
6 performGC ;
7 shut down;
8 case SCHED SHUTTING DOWN
9 Exit;

10 endsw
11 ScheduleCheckBlackHole(cap);
12 ScheduleSendPendingMessages(); //Send any

messages
13 ScheduleFindWork(cap);
14 processMessages(cap);
15 ScheduleYield(cap);
16 if emptyRunQueue(cap) then
17 continue;
18 end
19 tso = popRunQueue(cap);
20 result = stgRun(tso);
21 switch result do
22 case out of heap
23 pushOnRunQueue(cap,tso); performGC;
24 case out of stack
25 enlargeStack(tso); pushOnRunQueue(cap,tso);
26 case time expired
27 pushOnRunQueue(cap,tso);
28 case finished
29 if bound then
30 return
31 else
32 continue;
33 end
34 endsw
35 end

Algorithm 1: Main Scheduling Loop for GUM and
GHC SMP

load of remote processors. The advantage of this design is that
only one processor has to pay the extra cost for maintaining a
(partial) picture of the load across the network. The downside
in this design is that this processor may become a bottleneck for
higher core numbers.
• Effective latency hiding: the system must be designed in such

a way that communication costs are not on the critical path
of cooperative computations. Conceptually this is achieved by
implementing the access to some data that resides on another
processor as a split-phase operation with implicit synchronisa-
tion. While the data is being fetched, another thread can be ex-
ecuted. To be effective, this mechanism relies on a large pool of
runnable threads, to overlap communication and computation.

In the remainder of this section we present the GUMSMP
design, focusing on the work distribution algorithm.

4.1 Work Distribution Mechanism
The main objective of the work distribution mechanism is to bal-
ance the load between the multicores, and of course we are inter-
ested in an even load balance to make best use of all the computing
resources. However, with a combination of multi-cores at the lower
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level, where several local CPUs can execute tasks that may in turn
generate new parallelism, and a high-latency between nodes at the
higher level, which makes the transfer of work and data expensive,
we need to use different policies in order to balance overhead with
load distribution. At the cluster level, we use explicit FISH mes-
sages (as in GUM), with a tunable delay between them, in order to
acquire sparks from remote processors. Choosing a suitable delay is
important to avoid flooding the system with FISH messages, while
being able to react sufficiently quickly to becoming idle. Within a
multicore the exchange of work is much cheaper and can therefore
be done much more aggressively: an idle HEC will directly access
the spark pools of other HECs within the same physical shared
memory machine, and pick-up the work from there, if it has no
sparks of its own. This behaviour is summarised in Figure 3.

An alternative to this work-stealing-based load balancing policy
would be to more aggressively send away work, which in turn
would increase the total amount of communication and, even more
severely, increase the heap fragmentation in the virtual shared heap,
resulting in a considerable increase in runtime overhead. In general
this is undesirable. However, in high-latency clusters, the delay
between sending a FISH and receiving work, using a pure work-
stealing model, might be considerable. We therefore provide a
refinement to this pure model in the form of a low-watermark.

Most notably, the GUMSMP design for load distribution is
hierarchy-aware. In looking for work, each HEC prefers local
sparks, from its own spark-pool, directly steals sparks from the
pools of other HECs running on the same PE, and only if no local
spark is available it will send a FISH message to another pro-
cessor in the system. The concrete work balancing algorithm for
GUMSMP is presented in the Function ScheduleFindWork.

1 Void ScheduleFindWork(Capability *cap , Task
*task)

2 if emptyRunQueue(cap) then
3 //Call ScheduleActivateSpark(cap)to get

local work
4 if anySpark(cap) then
5 for i← 0 to num capabilities do
6 if emptySparkPool(cap[i]) then
7 continue;
8 end
9 spark = tryStealSpark(cap[i]);

10 if spark != NULL then
11 break;
12 end
13 end
14 if spark != NULL then
15 tso = createSparkThread(cap,spark);
16 pushOnRunQueue(cap,spark);
17 end
18 else
19 //Call Function

ScheduleGetRemoteWork(cap)remote work ;
20 pe = choosePE();
21 sendFISH(cap,pe);
22 end
23 end

Function ScheduleFindWork(Capability *cap, Task *task) in
GUMSMP

Obtaining a spark: In the current implementation of GUMSMP,
when a FISH arrives from another PE, the HEC will first search the
spark pool of the main HEC in order to serve the work-requesting

Markers: Load Balancing Policy:

active with off−loading

passive without fishing

passive with fishing

Low Watermark

High Watermark

Spark Pool

Figure 4: Low- and High-watermark mechanisms for spark distri-
bution.

message. This reflects our design of using one dedicated gateway to
other processors in charge of communication but also of identifying
work to export. The advantage is that this gateway has the most
accurate picture of the current system information, including the
load on different machines. Furthermore, as such a gateway to other
nodes, it can prefer to accumulate those sparks in its spark pool
that would be the most profitable to export, thus creating a finer
distinction between the available sparks.

In the current implementation, however, we don’t make such a
finer distinction between sparks and therefore don’t profit from the
advantages of this design. An analysis of our initial performance
results in Section 5 will guide us in deciding whether the potential
benefits of the current design of gateway HEC outweigh its over-
head.

Another option would be to select a spark from the HEC with
the largest spark pool and send it as a response to the message.
However, this would require traversing all HECs in order to find out
the one with the largest spark pool and therefore impose additional
overhead.

Watermarks: One simple but flexible mechanism that gives bet-
ter control of spark distribution is to use low- and high-watermarks
for each spark pool. Using this approach, work offloading deci-
sions are based on the sizes of each spark pool, as shown in Fig-
ure 4. The low-watermark specifies a minimum number of sparks
that should be held in the local spark pool. If the number of sparks
falls below this watermark, no sparks will ever be exported, and the
instance will try to obtain additional sparks from other instances.
This mechanism is designed for high latency systems, aiming to
pre-emptively acquire work and thus support effective latency hid-
ing, one of our main design principles. The high-watermark indi-
cates the maximum number of sparks that should be held in a spark
pool. If the number of sparks exceeds this limit, the instance will
attempt to actively off-load sparks to other instances without be-
ing asked for work, using SCHEDULE messages. In other words,
the instance will temporarily and locally switch from lazy load dis-
tribution to eager load distribution, until the spark pool size drops
below the high-watermark again. Where all instances have large
numbers of sparks, a back-off mechanism is used to introduce a
delay between each SCHEDULE message, as described above for
FISH messages. This high-watermark mechanism is currently not
used in GUMSMP, but we plan to use it on programs that have ag-
gressive generator threads that create a lot of sparks in a short time
period.

Spark placement: Once a stolen spark arrives at a node, the
system has to decide in which spark pool to put it. The choice
currently taken in GUMSMP is to assign it to the spark pool
of the main HEC. Since HECs can cheaply exchange work in
their spark pools, this indirection of retrieving work should not
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Figure 3: Work Distribution in GUMSMP

incur any significant delay. However, one general problem with
work distribution in a virtual shared heap model is the danger of
heap fragmentation. This occurs when data, logically belonging
together, is spread over several nodes, mainly due to the work-
stealing or due to a fetch request. One RTE parameter that is
indicative of high heap fragmentation is the size of the GIT table.

One possibility to tackle heap fragmentation would be to use
a separate spark pool, dedicated to imported sparks, from which
other processors will steal work. This keeps related pieces of work
together in one pool, but requires additional stealing steps in or-
der to acquire external work. Such an additional spark pool would
also be useful in situations where none of the processors are idle
at the time of the arrival of a new spark (the processor originally
requesting work, might have found new work locally in the mean-
time). Putting the imported spark into a dedicated spark pool would
defer the placement decision to a later point, when idle processors
are available. Committing too early would not make best use of the
dynamic information of the system.

In the prototype GUMSMP implementation, we use the main
HEC of each PE as a gateway, mediating communication and dis-
tribution of work. The gateway can potentially use system infor-
mation, such as load, to make decisions on work distribution. One
pragmatic reason for this initial design is its simplicity, since basic
communication operations don’t have to be thread-safe. The fol-
lowing section will analyse the performance implications of this
design. To improve load balance we primarily use a low watermark
mechanism as discussed in this section and analysed in the follow-
ing section.

5. Preliminary Performance Results and
Implementation Issues

5.1 Experimental Setup
To test the basic functionality and performance of the GUMSMP
prototype, we use the several micro-becnhmarks that exhibit differ-
ent parallel patterns:

• parfib is a divide-and-conquer program, which computes the
Fibonacci number;
• coins is a divide-and-conquer program, which computes the

number of ways to pay a given value from a given set of coins;
• sumEuler is a data parallel program, which computes the sum

of the Euler totient function on each list interval.
• parmap-of-parfib is a data parallel program with nested

divide-and-conquer parallelism, combining both patterns.

Our measurements are made on a Beowulf cluster of multi-
cores, where each node is an 8-core CPU (2 quad-core Xeon E5506
2.13GHz, with 256kB L2 and 4MB shared L3 cache), and all 32
nodes are connected through a non-specialised Gigabit ethernet
connection. All machines are running Linux CentOS 6.4. The im-
plementation of the GHC-SMP RTE is based on GHC 6.12.2, us-
ing GCC 4.4.7, and PVM 3.4.5 for message passing.

5.2 Preliminary Performance Results
Table 2 summarises our results in terms of runtimes for the four
micro-benchmarks, using GUM and GUMSMP respectively.
These preliminary results do not represent systematic performance
results and we therefore refrain from giving concrete speedup fig-
ures (for one thing, these represent results from individual rather
than several runs). The numbers reported in the first column is the
sum of cores used across nodes by GUMSMP. A current imple-
mentation limitation is that we cannot use the single bound task
of a non-main PE, which results in this unusual sequence of core
numbers. In the full version of the paper we plan to expand on these
measurements, and additionally produce speedup results based on
several runs.

These preliminary results are mainly a sanity check of the exist-
ing GUMSMP implementation, and thus one main result is that in
most of the cases GUMSMP is competitive with the GUM RTE.
We do observe some additional overhead of GUMSMP over GUM
in the 1 PE cases especially for parfib and coins with slow-downs
of 5% and 8%, respectively. We expect this overhead to be due to
the additional management of HECs in the RTE, whereas in the flat
design of GUM no such runtime mechanism is used.

In terms of runtimes for the large configurations, we observe
that GUMSMP outperforms GUM for parfib and for parmap
of parfib, the former being a pure divide-and-conquer program
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Table 2: Runtimes for parfib, coins, sumEuler, and parmap of parfib on GUM and GUMSMP

parfib coins sumEuler without LWM sumEuler with LWM parmap of parfib

No. Cores GUM GUMSMP GUM GUMSMP GUM GUMSMP GUM GUMSMP GUM GUMSMP
1 1304.1 1372.19 1118.5 1213.7 1043.2 1119.2 1043.2 1119.2 477.0 479.0
4 331.0 361.7 257.6 341.7 266.7 278.1 242.1 279.1 133.1 125.40
7 188.5 169.2 148.1 196.3 144.5 188.3 140.3 134.4 70.86 59.0
10 122.1 111.7 108.9 179.2 105.2 191.4 103.1 90.6 48.9 41.2
13 94.7 84.1 82.2 131.3 86.6 167.4 79.8 67.3 38.6 30.85
16 78.4 70.5 77.2 165.1 81.6 151.0 71.1 56.8 31.2 25.31
19 65.5 59.1 65.8 119.4 65.9 156.8 61.0 48.1 26.5 20.59
22 60.6 50.9 60.1 147.8 61.8 131.4 57.1 41.0 22.7 18.21
25 55.4 45.2 51.6 170.0 54.8 113.5 54.3 37.3 20.8 16.1

generating massive amounts of parallelism, the latter being a com-
bination of data-parallelism with (nested) divide-and-conquer. For
the largest configurations of these two programs the performance
improvements are 18% and 23%, respectively. Moreover, for both
of these programs this performance gain increases with larger
configurations, which suggests benefits in terms of scalability for
GUMSMP, which is one of our main design goals.

However, the picture is significantly more negative for the
coins and sumEuler examples, where GUMSMP is significantly
slower than GUM by a factor of 3.3 and 2.1, respectively. This
indicates a serious bottleneck in the current implementation and
requires further investigation below.

5.3 The Impact of the Load Distribution Mechansims
The impact of the low-watermark mechanism: To identify the
problem in sumEuler, Table 3 shows the average utilisation on
each of the 3 PEs involved in a sample execution, using 4 HECs
on each PE. The second column shows the utilisations without
a low-watermark, the third column shows utilisations with low-
watermarks. From this comparison it is clear that for sumEuler the
low water mark mechanism plays a significant role in load balanc-
ing. In the first case, we use a pure work-stealing load distribution
policy, where a PE asks for remote work only if all local work has
been exhausted. In sumEuler most of the parallelism is generated
at the start, and therefore this policy might lead to a delay that is
too high for picking up sufficient work to keep all 4 HECs on each
PE busy. Thus, the average utilisation of PEs 2 and 3 is only about
58% of the 400% possible in this execution on 4 HECs.

In contrast, when a low-watermark policy is used, all PEs will
aim to fill up their spark pools to the low-watermark from the
start. This results in a more speedy distribution of the available
parallelism, and in turn to a higher average utilisation on the other
PEs, shown in the third column of Table 3.

Table 3: Average utilisation on each PE for sumEuler

PE sumEuler without LWM sumEuler with LWM
1 257.95% 254.68%
2 58.88% 292.19%
3 58.87% 276.99%

To visualise this behaviour, Figure 5 and Figure 6 show the per-
PE profiles of the activities when running the sumEuler program
with and without low-watermarks. A per-PE profile shows PEs
on the y- and time on the x-axis. In this configuration we see 3
bars, representing the 3 PEs used in the run. The darkness of the
green value at each point in time shows the activity, i.e. the number
of running HECs, as an average over a fixed time window. The
statistics in Table 3 give these averages across the entire runtime of
the program. Thus, per-PE profiles give an indication of the load-
balance across PEs over time.

In the concrete per-PE activity profile in Figure 5 we observe
that PE1 has more work (dark green) and a long active time com-
pared to other PEs, which only have enough work to keep one HEC
busy (light green), which is confirmed by the average utilisation in
Table 3. The main reason for this behaviour is that sumEuler is data
parallel, where the main HEC of PE1 is the only one generating
sparks at the beginning of the execution. Other PEs will send FISH
messages asking for work from PE1. In Figure 5, since there is no
low-watermark applied, it will only receive one spark each time it
sends a work requesting message. Therefore, the imported spark is
executed by the main HEC, but the other HECs will remain idle all
the time. In contrast, Figure 6 shows the behaviour when enabling
low-watermarks, where the other PEs will keep sending messages
requesting work until the number of sparks in all local spark pools
reaches the low watermark. As a result, the utilisation on the other
PEs is significantly higher, shown as darker green, and matches the
utilisation statistics in Table 3.

The impact of the fish delay setting: The delay between receiv-
ing an own, unsuccessful FISH message and sending another FISH
message is an important, tunable parameter for cluster-level exe-
cution. The setting needs to strike a balance between getting work
as quickly as possible, and avoiding swamping the machine with
FISH messages, which endangers the scalability of the system as
such.

In all of the presented results we used small values for fish
delay, to optimise quick work distribution. In GUMSMP the role
of the fish delay value, which is inherited from GUM, is even more
aggravated, because of the role of the gateway HEC in mediating
any communication to other PEs. Thus, if the gateway HEC is in a
delay period, it will not immediately send a FISH even though the
request is coming from a different HEC. This is reflected by longer
idle times with moderate fish delay values, compared to the GUM
executions. One immediate improvement would be to make the fish
delay value dependent on the number of HECs in the PE. This
however will again risk swamping the cluster with FISH messages.
We therefore prefer a more aggressive use of watermarks over such
an ad-hoc change to the fish delay.

5.4 Performance Bottlenecks
In analysing these performance results for the GUMSMP proto-
type, we identified several performance bottlenecks that we need to
address in order to realise a truly scalable system.

The role of the gateway HEC: Our initial performance results
reveal some bottlenecks in the current GUMSMP implementation,
especially with higher numbers of cores. The main restriction at
the moment is that the main HEC on each PE acts as a gateway for
communication, which leads to a heavy system load and therefore
a longer delay in requesting either data or work from remote PEs.
On the other hand, we currently do not record load or other system

8 2013/8/22



GUMSMP   

1

2

3

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k

Average Utilisation: PE  1: 257.950% PE  2: 58.881% PE  3: 58.874%

Figure 5: sumEuler load distribution without low-watermark
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Figure 6: sumEuler load distribution with low-watermark

information in the gateway HEC and therefore cannot profit from
the potential advantage of this design. In any case, to ensure rapid
processing of pending messages by the main HEC, it would be
advisable to throttle the actual computation being performed on
it. This would reduce the communication and response bottleneck,
however, we would potentially lose compute power for the parallel
execution.

An alternative design would be to enable every HEC to send
or receive messages and in this way distribute the communication
over all cores. This might well be the most scalable solution in the
GUMSMP design, but it might also lead to swamping the cluster
with messages, especially FISH messages, despite only very little
work being available. Therefore, a combination of distributing the
communication across cores, together with active monitoring of
the current system load seems to be the most promising direction,
which we want to explore in the future.

The role of spark placement: At the moment an imported spark
is added to the gateway HEC’s spark pool. Since the distribution
of work between HECs on one multi-core is fairly cheap, this does
not seem to be problematic from a load balancing point of view.
However, mixing local and imported sparks in the same pool might
be problematic in terms of heap fragmentation, leading to more
inter-processor pointers, and thus more communication. We have
not yet been able to quantify this aspect of the parallel execution
based on these results. Based on such an assessment we will revisit
the policy for the placement of imported sparks.

To tackle potential heap fragmentation, we are considering
adding an additional “import” spark pool to control the placement
of sparks. Sparks in this pool might be further annotated by their
PE of origin or other information that is useful for the scheduler.
In most cases, the scheduler would prefer local sparks, but makes
use of the import spark pool when no local ones are available.
Once imported sparks have been turned into threads, the scheduler
might prefer other imported sparks that have some affinity with the
previous one, e.g. coming from the same PE.

6. Conclusion
We have presented the design and preliminary results of the new
multi-level parallel Haskell implementation GUMSMP, designed
for scalable, high-performance computation on networks of multi-
cores. Our design focuses on flexible work distribution policies in
hierarchical architectures. In particular, we aim for even but asym-
metric load balancing, using different load distribution policies for
the different levels in the hierarchy, accepting that on a large scale
clusters will exhibit significant differences in the relative loads on

multicores, but assuring that work can be cheaply stolen between
processors on one multi-core. Our system mostly uses passive load
distribution, employing work stealing to obtain either local or re-
mote work. However, we refine this pure work-stealing policy with
the concept of a low-watermark, which allows the system to pre-
fetch work. This proves to be crucial for the performance of some
of the test programs.

Our initial performance results on a set of micro-benchmarks
are in the first instance a sanity check and functionality test of
our implementation. Comparing the performance of the current
GUMSMP implementation with the distributed memory GUM
implementation shows a mixed picture. In some cases the hierar-
chical GUMSMP RTE outperforms the flat GUM RTE by up to
23%. However, we also observe significant bottlenecks in the cur-
rent implementation, with a slow-down of up to 8% in the 1 PE
configuration. A comparison of the load distribution between these
executions reveals that the main HEC on the main PE becomes the
bottleneck, having to mediate all the communication of the main
PE, which in this case holds all the available parallelism of this flat,
data-parallel example. Using a low-watermark, to pre-emptively
acquire work, is crucial in order to avoid a massive slow-down in
this case.

The implementation of GUMSMP is still under development.
Our next goals are to extend the performance measurements to a
broader class of applications and to focus on the scalability of some
concrete applications that we have previously examined [12]. We
are currently extending the monitoring support of GUMSMP, to
integrate per-thread statistics as well and plan to use this informa-
tion to develop a classification of parallel applications based on
their dynamic behaviour. On a system level, we plan to explore
some of the alternative design issues mentioned in Section 4. Based
on previous work on the performance of the virtual shared memory
abstraction [11], we expect that an import spark pool should reduce
heap fragmentation and thus improve performance on large clus-
ters. In the longer term we plan to modularise these key RTE poli-
cies in such a way that they can be easily modified and combined
to deliver a customised RTE, without having to change the actual
C implementation underneath. Such modularisation continues our
previous efforts on a micro-kernel structured runtime-system, and
has more recently been described in [3].
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