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Abstract. This paper describes the design and implementation of Mini-
mal RDFS semantics based on a backward chaining approach and imple-
mented on a clustered RDF triple store. The system presented, called 4sr,
uses 4store as base infrastructure. In order to achieve a highly scalable
system we implemented the reasoning at the lowest level of the quad
store, the bind operation. The bind operation runs concurrently in all
the data slices allowing the reasoning to be processed in parallel among
the cluster. Throughout this paper we provide detailed descriptions of
the architecture, reasoning algorithms, and a scalability evaluation with
the LUBM benchmark. 4sr is a stable tool available under a GNU GPL3
license and can be freely used and extended by the community1.
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1 Introduction

RDF stores - or triple stores - implement some features that make them very
attractive for certain type of applications. Data is not bound to a schema and it
can be asserted directly from RDF sources (e.g. RDF/XML or Turtle files) due to
their native support of Semantic Web data standards. But the most attractive
characteristic is the possibility of implementing an entailment regime. Having
entailment regimes in a triple store allows us to infer new facts, exploiting the
semantics of properties and the information asserted in the knowledge base. To
agree on common semantics, some standards have arisen for providing different
levels of complexity encoded in a set of inference rules, from RDF and RDFS to
OWL and RIF, each of them applicable to different scenarios.

Traditionally, reasoning can be implemented via forward chaining (FC hence-
forth), backward chaining (or BC), or hybrid algorithms (a mixture of the two).

� Minimal RDFS refers to the RDFS fragment published in [8].
1 Preliminary results were presented at the Web-KR3 Workshop [10] and demoed at

ISWC 2010 [9].
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FC algorithms tend to apply a set of inference rules to expand the data set be-
fore or during the data assertion phase; with this approach, the database will
contain all the facts that are needed when a query is issued. On the other hand,
BC algorithms are goal directed and thus the system fires rules and/or axioms
at runtime to find the solutions. Hybrid algorithms use a combinations of for-
ward and backward chaining. The pros and cons of these approaches are well
known to the AI and database community. FC approaches force the system to
retract entailments when there is an update or insert, making data transactions
very expensive. Complete materialisation of a knowledge base could lead to an
explosion of data not manageable by current triple store technology. Backward
chaining performs better for data transactions and the size of the KB is smaller,
but queries tend to have worse performance.

Reasoners are also classified by their level of completeness. A reasoner can
claim to be complete over an entailment regime R if and only if : (a) it is able
to detect all entailments between any two expressions; and (b) it is able to draw
all valid inferences; according to R semantics. For some types of applications a
complete reasoner might be required but one should assume that higher com-
pleteness tends to degrade query response time. There is, therefore, a clear com-
promise: performance versus completeness and the old AI debate about speed
and scalability versus expressiveness. In our specific case, 4sr excludes a subset of
RDFS semantics rarely used by Semantic Web applications and implements the
semantics from the Minimal RDFS fragment [8]. 4sr entailment is complete con-
sidering Minimal RDFS semantics but incomplete for the full normative RDFS
semantics [5]. In that sense, our main contribution is a system that proves that
Minimal RDFS semantics can scale if implemented in a clustered triple store. In
comparison to our previous research, this paper formalizes 4sr against Minimal
RDFS, and also describes the components to be synchronized among the cluster
and benchmarks the bind operation to test its scalability.

The remainder of the paper is as follows: Section 2 describes the related re-
search in the area and introduces basic 4store concepts and Minimal RDFS.
Section 3 introduces and formalizes 4sr ’s distributed model. Section 4 explains
the design and implementation of 4sr explaining the modifications undertaken
in 4store. Section 5 studies the scalability of the new bind operation by bench-
marking it under different conditions, and finally Section 6 analyses the results
achieved by this work.

2 Related Work

4sr is a distributed backward chained reasoner for Minimal RDF/RDFS, and to
our knowledge is the first system with such characteristics. However a number
of related pieces of research informed our work.

Some current tools implement monolithic solutions using FC, BC or hybrid
approaches. They use different types of back-ends as triple storage such as
RDBMS, in memory, XML or native storage. Examples of these tools are Jena [2],
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Pellet [11] and Sesame [1]. These tools can perform RDFS reasoning with datasets
containing up to few million triples. But, even though they have played a key
role in helping Semantic Web technologies to get adopted, their scalability and
performance is still a major issue.

BigOWLIM2 is one of the few enterprise tools that claims to perform OWL
reasoning over billions of triples. It can run FC reasoning against the LUBM
(90K,0) [3] , which comprises around 12 billion triples. They materialize the
KBs after asserting the data which means that BigOWLIM has to retract the
materialization if the data is updated. There is no information on how this tool
behaves in this scenario, even though they claim their inferencing system is
retractable.

In the context of distributed techniques, [15] performs FC parallel reasoning
to expand the RDFS closure over hundreds of millions of triples, and it uses a
C/MPI platform tested on 128 core infrastructure with the LUBM 10k dataset.
[13] pursues a similar goal and using MapReduce computes the RDFS closure
over 865M triples in less than two hours. A continuation of this work has been
presented in [12] providing a parallel solution to compute the OWL Horst regime.
This solution, built on top of Hadoop, is deployed on a cluster of 64 machine
and has been tested against a synthetic data set containing 100 billion triples
and a 1.5 billion triples of real data from the LDSR and UniProt datasets.

[7] presented a novel method based on the fact that Semantic Web data present
very skewed distributions among terms. Based on this evidence, the authors
present a FC algorithm that works on top of data flows in a p2p infrastructure.
This approach reported a materialization of RDFS for 200 million triples in 7.2
minutes on a cluster of 64 nodes.

Obviously, in the last 2-3 years there has been a significant advance on mate-
rialization of closures for both RDFS and OWL languages. However very little
work has been presented on how to query such vast amounts of data and how to
connect those solutions with SPARQL engines. Furthermore, these types of solu-
tions are suitable for static datasets where updates and/or deletes are sparse or
non-existent. Applying this mechanism to dynamic datasets with more frequent
updates and deletes whose axioms need to be recomputed will lead to processing
bottlenecks.

To avoid these bottlenecks, progress on backward chained reasoning is re-
quired. To date, there has been little progress on distributed backward chained
reasoning for triple stores. [6] presented an implementation on top of DHTs us-
ing p2p techniques. So far, such solutions have not provided the community with
tools, and recent investigations have concluded that due to load balancing issues
they cannot scale [7].

With the SPARQL/Update specification to be ratified soon, we expect more
triple/quad stores to implement and support transactions, which makes BC rea-
soning necessary at this juncture.

2 http://www.ontotext.com/owlim/big/index.html accessed 21/06/2010
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2.1 Minimal RDFS Reasoning

RDFS extends RDF with a schema vocabulary, a regime that contains seman-
tics to describe light-weight ontologies. RDFS focusses mostly on expressing
class, property and data type relationships and its interpretations can potentially
generate inconsistencies. For instance, by using rdfs:Literal as rdfs:domain
for a predicate P, any statement (S,P,O) with P as predicate would entail (S
a rdfs:Literal) which is clearly inconsistent since RDF doesn’t allow lit-
erals to be subjects (see section 4.3 [5]). Another issue with RDFS interpre-
taions is decidability. There is a specific case when using container memberships
(rdfs:ContainerMembershipProperty) that can cause an RDFS closure to be
infinite [14]. Other similar cases like these appear when constructing ontologies
with different combinations of the RDF reification vocabulary, rdf:XMLLiteral,
disjoint XSD datatypes, etc. A complete RDFS reasoner must examine the ex-
istence of such paradoxes and generate errors when models hold inconsistencies.
Consistency checking is computationally very expensive to deal with, and re-
duces query answering performance, and one should question the applicability
of the semantics that generate inconsistencies for most type of applications.

Another known issue with RDFS is that there is no differentiation between
language constructors and ontology vocabulary, and therefore constructors can
be applied to themselves. (P rdfs:subPropertyOf rdfs:subPropertyOf), for
example, it is not clear how an RDFS reasoner should behave with such con-
struction. Thankfully this type of construction is rarely used on Semantic Web
applications and Linked Data.

[8] summarizes all the above problems among many others motivating the
use of an RDFS fragment, called Minimal RDFS. This fragment preserves the
normative semantics of the core functionalities avoiding the complexity described
in [5]. Because Minimal RDFS also avoids RDFS constructors to be applied to
themselves, it has been proven that algorithms to implement reasoning can be
bound within tight complexity limits (see section 4.2 in [8]).

Minimal RDFS is built upon the ρdf fragment which includes the following
RDFS constructors: rdfs:subPropertyOf, rdfs:subClassOf, rdfs:domain,
rdfs:range and rdf:type3. It is worth mentioning that this fragment is relevant
because it is non-trivial and associates pieces of data external to the vocabulary
of the language. Contrarily, predicates left out from the ρdf fragment essentially
characterize inner semantics in the ontological design of RDFS concepts.

2.2 4store

4store [4] is an RDF storage and SPARQL query system that became open
source under the GNU license in July 2009. Since then, a growing number of
users have been using it as a highly scalable quad store. 4store provides a sta-
ble infrastructure to implement decentralized backward chained reasoning: first

3 For the sake of clarity we use the same shortcuts as in [8] ([sp], [sc] [dom] and [type]
respectively).



The Design and Implementation of Min RDFS BC Reasoning in 4store 143

because it is implemented as a distributed RDF database and second because
it is a stable triple store that has been proven to scale up to datasets with 15G
triples in both enterprise and research projects.

4store distributes the data in non-overlapping segments. These segments are
identified by an integer and the allocation strategy is a simple mod operation
over the subject of a quad. In the rest of the paper we will represent a quad
as a 4-tuple where the first element is the model URI and the remainder is the
typical RDF triple structure (subject, predicate, object), and the quad members
will be accessed as qm, qs, qp and qo respectively.

The distributed nature of 4store is depicted in [4], and can be simplified as fol-
lows. The data segments are allocated in Storage Nodes and the query engine in
a Processing Node. The Processing Node accesses the Storage Nodes via sending
TCP/IP messages. It also decomposes a SPARQL query into a query plan made
of quad patterns. For each quad pattern, it requests a bind operation against
all segments in each Storage Node. The bind operations are run in parallel over
each segment and receive as input four lists {BM , BS , BP , BO} that represent
the quad patterns to be matched.

3 Minimal RDFS and 4sr ’s Distributed Model

This section takes Minimal RDFS algorithms from [8] and reformulates them to
be implemented as goal directed query answering system (backward chain) over
a distributed infraestructure.

We define a knowledge base (KB) as set of n graphs:
KB = {G1, G2, G3, ...Gn}

where a graph Gi is a set of quads of the form (m, s, p, o). We also define the
set of segments in a distributed RDF store as:

S = {S0, S1, S2, ...Sm−1}
Quads can be distributed among segments based on different strategies. In

our case, 4store’s distribution mechanism applies a mod operation over a hash4

of every quad’s subject. Therefore, a quad (m, s, p, o)5 from graph Gi will be
allocated in segment Sj if j = hash(s) mod m.

According to our subject based distribution policy, a quad gets allocated to a
segment regardless of the graph Gi they belong to, and a graph Gi will be split
among m′ number of segments where 0 < m′ ≤ m. It is worth mentioning that
this type of data distribution disseminates the data evenly among S making no
assumptions about the structure or content of the resources.

We now define the vocabulary of RDFS terms supported:
ρdf = {sc, sp, dom, range, type}

A quad (m, s, p, o) is an mrdf -quad iff p ∈ ρdf - {type}, and Gmrdf is a graph
with all the mrdf -quads from every graph in KB. It is important to mention that
the mrdf -quads are the statements we need to have in all the data segments in
4 Although 4store is parameterizable, most deployments use UMAC as hash function.
5 For the sake of simplicity we will not develop a whole RDF graph model here, we

assume that quads are just four-element entities.



144 M. Salvadores et al.

order to apply the deductive rules from [8], this process to replicate Gmrdf in all
segments is described throughout the rest of this section. The following rules,
extracted from [8], implement the Minimal RDFS semantics:

(sp0)

( , A, sp, B)( , B, sp, C)

(Ge, A, sp, C) (sp1)

( , A, sp, B)( , X, A, Y )

(Ge, X, B, Y )

(sc0)

( , A, sc, B)( , B, sc, C)

(Ge, A, sc, C) (sc1)

( , A, sc, B)( , X, type, A)

(Ge, X, type, B)

(dom0)

( , A, dom, B)( , X, A, Y )

(Ge, X, type, B) (ran0)

( , A, range, B)( , X, A, Y )

(Ge, Y, type, B)

(dom1)

( , A, dom, B)( , C, sp, A)( , X, C, Y )

(Ge, X, type, B) (ran1)

( , A, range, B)( , C, sp, A)( , X, C, Y )

(Ge, X, type, B)

These rules have been reformulated taking into account that we are dealing
with a quad system and not just with triples. The m element of the quads is
irrelevant for the rule condition; in the consequence the m element takes the value
of Ge which we consider the graph of entailments contained in KB. The model
element in the quad (m) does not play any role unless that the SPARQL query
being processed projects named graphs into the query resultset - see section 6.1
Future Work on named graph semantics.

At this point we have the definition of KB, S, and a set of deductive rules
for ρdf . Every segment in S contains a non-overlapping set of quads from KB.
One important aspect of 4store’s scalability is that the bind operation runs
concurrently on every segment of KB. Therefore, we need to look at data inter-
dependency in order to investigate rule chaining locks that can occur between
segments.

The chain of rules dependencies for Minimal RDFS is shown in Figure 1.
In the figure, mrdf -quads are marked with a ’*’, and quads in bold are initial
quads not triggered by any rule. The rest of the quads are entailed by triggering
one or more rules. There is an interesting characteristic in the chain of rules
that can be triggered in Minimal RDFS: in any possible chain of rules, only

(_,P0, sp , P1)* (_,P1, sp , P2)*(_,X, P0 , Y)

(Ge,X, P1 , Y) (Ge,P1, sp , P2)

(Ge,X, P2 , Y)

(_,C0, sc , C1)* (_,C1, sc , C2)*

(Ge,A, type , C1)

(Ge,A, type , C0)

(Ge,C1, sc , C2)

(Ge,A, type , C2)

(_,P1, dom , C0)* (_,A , P1, B) (_,P1, range , C0)* (_,B , P1, A)

(Ge,Y, type , C0)

(Ge,X, type , C0)

dom0
ran0

sc1
sc0

sc1

dom1

ran1

sp1

sp0sp0

rule sc1 is omitted 
here for simplicity 

Fig. 1. Rule Chain Tree
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one non-mrdf -quad that is not in Ge is used. This argument is backed up by
the fact that the conditions in the set of deductive rules contain zero or one
non-mrdf -quads. Therefore to implement distributed reasoning, the only data
we need to replicate in every segment of S is Gmrdf , so that Gmrdf is accessible
to the parallel execution of bind. This finding drives 4sr ’s design and it is a novel
and unique approach to implement RDFS backward chained reasoning.

4 4sr Design and Implementation

The RDFS inferencing in 4sr is based on two new components that have been
incorporated into 4store’s architecture:

Storage Node 0

Processing Node

QE

bind'(M,S,P,O)

RDFS sync 

Storage Node 1

bind'(M,S,P,O)

SPARQL

Applications

Data Segment

Gmrdf Replicated 
Segment

Gmrdf

mrdf-quads

Gmrdf

Fig. 2. 4sr Architecture

– RDFS Sync: A new processing node to replicate Gmrdf called RDFS sync.
This node gathers all the quads that satisfy the condition to be held in
Gmrdf from all the segments and replicates them to every Storage Node
keeping them synchronized. After every import, update, or delete, this pro-
cess extracts the new set of quads from Gmrdf in the KB and sends it to
the Storage Nodes. Even for large KBs this synchronization is fast because
Gmrdf tends to be a very small portion of the dataset.

– bind’: The new bind function matches the quads, not just taking into ac-
count the explicit knowledge, but also the extensions from the RDFS se-
mantics. This modified bind’ accesses Gmrdf to implement backward chain
reasoning. bind’ is depicted in detail in Section 4.1.

Figure 2 shows in the architecture how bind’ and RDFS Sync interact for
a hypothetical two storage-node deployment. The dashed arrows refer to the
messages exchanged between the RDFS Sync process and the Storage Nodes in
order to synchronize Gmrdf ; the arrows between the Processing Node and the
Storage Nodes refer to the bind operation requested from the Query Engine
(QE).
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4.1 bind’ and Minimal RDFS Semantics

In [10] we presented the logical model for bind’, a preliminary work that did not
take into account the Minimal RDFS fragment and was built upon a subset of
semantics from [5].

In this paper, we present a remodelled bind’ that has been reimplemented ac-
cording to the Minimal RDFS semantics and the distributed model described in
Section 3. To implement the model, we first consider the following modification
of rules dom1 and ran1. dom′

1 and ran′
1 - shown below - can replace the original

dom1 and ran1 keeping Minimal RDFS original semantics the same.

(dom′
1)

( , A, dom, B)( , C, sp, A)

(Ge, C, dom, B) (ran′
1)

( , A, range, B)( , C, sp, A)

(Ge, C, range, B)

The rationale for such a replacement is based on the fact chaining dom0 and
dom′

1 generate equivalent entailments to just dom1. And, similarly, chaining
range0 and range′1 is the same as range1.

PP1

PP2

PP3

sp

rangedom
CC5 CC3

sp

CC1CC2 CC1

CC5CC2CC1 CC3 CC1
rangedom

sp

CC2

CC1

CC3

CC5
CC4

PP1

PP2

PP3

sp

dom
CC5 CC3

sp

range

sp

sc

sc

sc

Gmrdf*

Gmrdf
,

sp closuresc closure sc closure, sc closure, dom/ran propagation

Fig. 3. Construction of G′
mrdf and G∗

mrdf from Gmrdf

Our design relies on the definition of two entailed graphs G′
mrdf and G∗

mrdf ; to
deduce these graphs we will entail dom′

1 and range′1 over Gmrdf . That process is
depicted in Figure 3, and the generated graphs hold the following characteristics:

– G′
mrdf is a graph that includes Gmrdf and the closure of sp and sc by

applying rules sp0 and sc0.
– G∗

mrdf is a graph that includes G′
mrdf plus the deductions from dom′

1 and
range′1.

We also define the following operations over G′
mrdf and G∗

mrdf , where X is
considered an arbitrary resource in KB:

– G′
mrdf |sc(X) as the subclass closure of X in G′

mrdf .
– G′

mrdf |sp(X) as the subproperty closure of X in G′
mrdf .

– G∗
mrdf |dom(X) as the set of properties in G∗

mrdf with X as domain.
– G∗

mrdf |range(X) as the set of properties in G∗
mrdf with X as range.

– G∗
mrdf |list() the set of every inferable domain or range in G∗

mrdf .
– G∗

mrdf |bind(s, p, o) the list of statements that is retrieved from a normal bind
operation for a triple pattern (s, p, o).



The Design and Implementation of Min RDFS BC Reasoning in 4store 147

With these functions we define the access to the graphs G′
mrdf and Gmrdf∗, which

we should emphasize are accessible to every segment in S. These operations,
therefore, will be used for the definition of bind ’.

A bind operation in 4store is requested by the query processor as we explained
in section 2.2. The bind receives 4 multisets with the resources to be matched or
NULL in case some part of the quad pattern is unbound, so a bind to be executed
receives as input (BM , BS , BP , BO). We omit in this paper the description of
how the query processor works in 4store, , but for the sake of understanding the
system we depict a very simple example:

SELECT ?name ?page WHERE { ?x foaf:name ?name .

?x foaf:homePage ?page . ?x foaf:basedNear dbpedia:London }

A potential query plan in 4store would issue two bind operations, first the
most restrictive query pattern:

B0 ⇐ bind(NULL, NULL, {basedNear}, {London})
B1 ⇐ bind(NULL, B0s, {name, homePage},NULL})

The only point to clarify is that the second bind receives B0s as BS (B0s refers
to the subject element of B0). The original bind operation in 4store is made of
four nested loops that traverse the indexes in an optimized manner. The ranges
of the loops are the input lists (BM , BS , BP , BO) which are used to build up the
combination of patterns to be matched. For simplicity, we draw the following
bind function:

Simplified Algorithm of the original bind in 4store:
Input: BM , BS , BP , BO,segment Output: r - a list of quads

Let B∗ be the list of pattern combinations of BM , BS , BP , BO

For every pattern in B∗

Let T be the radix tree in segment with optimized iterator for pattern

For every quad in T

If (patternm = ∅ OR patternm = quadm) AND

(patterns = ∅ OR patterns = quads) AND

(patternp = ∅ OR patternp = quadp) AND

(patterno = ∅ OR patterno = quado)

append quad into r

4store’s real implementation uses radix tries as indexes, and the index selec-
tion is optimized based on the pattern to match. This simplified algorithm plays
the role of explaining our transformation from original bind to the new bind’
that implements Minimal RDFS semantics.

Bind’ Algorithm in 4sr:
Input: BM , BS , BP , BO,segment Output: r - a list of quads

Let B∗ be the list of pattern combinations of BM , BS , BP , BO

For every pattern in B∗
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(a) If |G′
mrdf |sp(patternp)| > 1

append to r bind(patternm,patterns,G
′
mrdf |sp(patternp),patterno)

(b) Else If patternp = ∅
For every pred in segment

append to r bind’(patternm,patterns,pred,patterno)

(c) Else If patternp = type
(c0) If patterno �= ∅

For s in bind(∅,∅,G∗
mrdf |dom(patterno),∅)

append to r (Ge,sols,type,patterno)

For s in bind(∅,∅,G∗
mrdf |ran(patterno),∅)

append to r (Ge,solo,type,patterno)

append to r bind(patternm,patternm,type,G′
mrdf |sc(patterno))

(c1) Else

For object in G∗
mrdf |list()

append to r bind’(patternm,patterns,type,object)
(d) Else If patternp ∈ (sc, sp, range, dom)

append to r G∗
mrdf |bind(patterns, patternp, patterno)

(e) Else

append to r bind(patternm,patterns,patternp,patterno)

This algorithm can be seen as a wrapper of the original bind operation; it
basically rewrites every combination of quad pattern to be matched according
to the Minimal RDFS deductive rules. Each of the if conditions in the algorithm
takes care of one case of backward chain inference. These are described below:

(a) The if condition tests whether the closure has more than one element. In
such cases we operate sp inference by calling the bind with an extended
Bp made by the closure of patternp. Such a closure is obtained through
G′

mrdf |sp(patternp).
(b) If the predicate pattern is unbound then we recursively call again bind’ for

every predicate in the segment, keeping intact the rest of the elements in the
pattern.

(c) This branch is dedicated to the inference with higher complexity, when
patternp matches RDF type. It is divided in two sub-cases:

(c0) In this case, the pattern matches a specific object (patterno �= ∅). The
first loop binds all the properties for which patterno can be inferred as
a domain (G∗

mrdf |dom(patterno)). Each solution appends (Ge,sols,type,
patterno) where sols is the subject from the object element from a single
solution.
The second loop is analogous but for ranges. It is worth noticing that
this second loop appends as subject solo. The reason for this is that in
rule rano mentions the object that gets the class membership.
The last append runs the original bind extending patterno to the closures
of subclasses G′

mrdf |sc(patterno).
(c1) This is the opposite case; the object to be matched is null. For such cases

we recursively call bind’ for every inferable class in G∗
mrdf |list(). The calls

generated in this case will be processed in c0 in subsequent steps.
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(d) For patterns where the predicate is any of (sc, sp, range, dom), the pattern
match comes down to a simple bind operation over the replicated graph -
G∗

mrdf |bind(s, p, o).
(e) No reasoning needs to be triggered and a normal bind is processed. The

rationale for no reasoning being triggered comes from the fact that in the
set of deductive rules, reasoning is processed for patterns where p is one
of (type, sc, sp, range, dom) or p is part of a sp closure with more than one
element. These two conditions are satisfied in (a) and (c). (b) covers the case
of patternp = ∅ for which a recursive call for every predicate is requested.

5 LUBM Scalability Evaluation

This evaluation studies 4sr ’s distributed model and its behaviour with different
configurations in terms of number of distributed processes - segments - and size
of datasets. This analysis is based upon the LUBM synthetic benchmark [3]; we
have used 6 different datasets LUBM(100), LUBM(200), LUBM(400), ... , LUBM
(1000,0). These datasets progressively grow from 13M triples - LUBM(100,0) -
triples to 138M triples LUBM(1000,0). In [10] we presented a preliminary bench-
mark that demonstrates that 4sr can handle SPARQL queries with up to 500M
triple datasets; this benchmark shows the overall performance of the whole sys-
tem. The type of benchmark we analyse in this paper, instead of studying perfor-
mance for big datasets, studies how the bind operation behaves when trying to
find solutions that require Minimal RDFS reasoning under different conditions,
i.e. to see how the bind operations behaves when adding more processors or
when the data size is increased. Studying just the bind operation also leaves out
components of 4store that are not affected by the implementation of reasoning,
like the query engine.

Our deployment infrastructures are made of two different configurations:

1. Server set-up: One Dell PowerEdge R410 with 2 dual quad processors (8
cores - 16 threads) at 2.40GHz, 48G memory and 15k rpm SATA disks.

2. Cluster set-up: An infrastructure made of 5 Dell PowerEdge R410s, each
of them with 4 dual core processors at 2.27GHz, 48G memory and 15k rpm
SATA disks. The network connectivity is standard gigabit ethernet and all
the servers are connected to the same network switch.

4sr does not materialize any entailments in the assertion phase, therefore the
import throughput we obtained when importing the LUBM datasets is similar to
the figures reported by 4store developers, around 100kT/s for the cluster set-up
and 114kT/s for the server set-up6.

The LUBM benchmark evaluates OWL inference, and therefore there are
constructors not supported by 4sr. We have selected a set of 5 individual triple
patterns that cover all the reasoning implemented by 4sr :

6 Throughput obtained asserting the data in ntriples, the LUBM datasets had been
converted from RDF/XML into ntriples using the rapper tool.
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1. Faculty {?s type Faculty}, Faculty is an intermediate class under the
hierarchy rooted by Person. To backward entail this query 4sr will expand
Faculty’s subclass closure. Moreover, Faculty is the teacherOf’s predicate
domain, therefore, every subject of a triple {?s teacherOf ?s} will be part
of the solution.

2. Person {?s type Person}. Similar to the query above, but the closure of
Person is higher. It contains 16 subclasses, and also Person - or subclasses
of it - act as domain and/or range in a number of predicates (advisor,
affiliateOf, degreeFrom, hasAlumnus, ...). Moreover, these predicates are
part of subproperty constructors which makes this query fire all the deductive
rules in 4sr.

3. Organisation {?s type Organisation}. Binding all the resources type of
Organisation will also fire all the deductive rules in 4sr, but in this case the
level predicates that contain Organisation as domain and/or range is lower
and also the subclass closure of Person contains fewer elements - just 7.

4. degreeFrom {?s degreeFrom ?o} such predicates are not instantiated as
ground triples and can only be reached by inferring the subproperty clo-
sure of it that contains another three predicates - doctoralDegreeFrom.
mastersDegreeFrom and undergraduateDegreeFrom.

5. worksFor {?s worksFor ?o} similar backward chain to be triggered - just
subproperty closure.

For the server infrastructure we have measured configurations of 1, 2, 4, 8,
16, and 32 segments. For the cluster infrastructure we measured 4, 8, 16 and 32
- it makes no sense to measure fewer than 4 segments in a cluster made up of
four physical nodes.

The queries used in this benchmark have a low selectivity and thus generate
large number of solutions; this scenario is suitable for analysing scalability by
measuring the number of solutions entailed per second in all the segments for
different number of processes (segments) and different size of datasets. The 5
query triple patterns were processed 50 times each, the worst 4 and best 4
measurements were removed from the samples and the time of the worst segment
in each measurement was considered, since the binds are processed in parallel
and the query processor waits for all to be finished.

Figures 4 and 5 show the results of the benchmark - the Y axis shows the
number of solutions and the X axis the number of segments where the data
was tested. The benchmark for the server configuration - Figure 4 - shows
that the system scales well up to 16 segments, some configurations only up to 8
segments, there is clear degradation for deployments of 32 segments. When the
configuration has more segments than CPUs then it is clear that system degrades
providing less throughput. In general, the bind operations that require domain
and range inference are more expensive than the others - they generate fewer
solutions per second. The worst performance was measured for the Person bind;
this case basically needs to traverse every predicate because the class Person
happens to be domain and/or range of almost every predicate in the LUBM
ontology. The highest throughputs were for worksFor and degreeFrom binds.
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Fig. 4. Server Configuration: Solutions per second per segment

Fig. 5. Cluster Configuration: Solutions per second per segment

For the biggest datasets - LUBM800 and LUBM1000 - the system degraded
drastically. For these datasets and 1,2 and 4 segment deployment the system did
not respond properly.

The cluster benchmark - Figure - shows better performance. The time needed
for transmitting messages over the network gets balanced by the fact that there
is a lot better I/O disk throughput. The server configuration has 2 mirrored
15K RPM disks, the same as each of the nodes in the cluster but every node
in the cluster can use those disks independently from the other nodes and, the
segments collide less on I/O operations.
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The performance of the cluster for the biggest datasets - LUBM800 and
LUBM1000 - show optimal performance reaching all the binds throughputs be-
tween 150K solutions per second and 300K solutions per second. Domain and
range inference for Faculty, Organisation and Person show linear scalability
and no degradation - unlike in the server configuration. The throughput perfor-
mance tends to get higher the bigger the dataset is because it generates more
solutions without yet reaching the performance limits of the cluster.

In overall, the server configuration sets the scalability limit on the LUBM
400 for the 16-node configuration. For bigger datasets than LUBM400 the server
configuration behaves worse. The cluster configuration seems to perform better
due to its more distributed nature. It is fair also to mention that, of course, the
cluster infrastructure cost is higher than the server and for some applications
the performance shown by the server configuration could be good enough.

6 Conclusions and Future Work

In this paper we have presented the design and implementation of Mininal RDFS
fragment with two novel characteristics decentralisation and backward chaining.
We have also disclosed 4sr ’s distributed model and how subProperty, subClass,
domain, range and type semantics can be parallelized by synchronizing a small
subset of the triples, namely the ones held in Gmrdf . The scalability benchmark
showed that the distributed model makes efficient usage of the cluster infras-
tructure with datasets up to 138M triples. The scalability analysis showed that
4sr utilises efficiently the cluster infrastructure providing better throughput for
bigger datasets.

Since no materialization is processed at the data assertion phase, 4sr offers a
good balance between import throughput and query performance. In that sense,
4sr will support the development of Semantic Web applications where data can
change regularly and RDFS inference is required.

6.1 Future Work

Our plans for future work include the implementation of stronger semantics
for named graphs. At the point of writing this paper the research community
is discussing how named graphs with attached semantics should behave in a
quad store. Our current implementation simply makes Gmrdf , G′

mrdf and G∗
mrdf

available to every graph and we delegate the semantics of named graphs to the
query engine that will treat entailed solutions as part of Ge.
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