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Abstract

In this article, we survey recent research on column-oriented database
systems, or column-stores, where each attribute of a table is stored in
a separate file or region on storage. Such databases have seen a resur-
gence in recent years with a rise in interest in analytic queries that
perform scans and aggregates over large portions of a few columns of a
table. The main advantage of a column-store is that it can access just
the columns needed to answer such queries. We specifically focus on
three influential research prototypes, MonetDB [46], VectorWise [18],
and C-Store [88]. These systems have formed the basis for several well-
known commercial column-store implementations. We describe their
similarities and differences and discuss their specific architectural fea-
tures for compression, late materialization, join processing, vectoriza-
tion and adaptive indexing (database cracking).
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Introduction

Database system performance is directly related to the efficiency of the
system at storing data on primary storage (e.g., disk) and moving it
into CPU registers for processing. For this reason, there is a long his-
tory in the database community of research exploring physical storage
alternatives, including sophisticated indexing, materialized views, and
vertical and horizontal partitioning.

Column-stores. In recent years, there has been renewed interest in
so-called column-oriented systems, sometimes also called column-stores.
Early influential efforts include the academic systems MonetDB [46],
VectorWise [18]1 and C-Store [88] as well as the commercial system
SybaseIQ [66]. VectorWise and C-Store evolved into the commercial
systems Ingres VectorWise [99] and Vertica [60], respectively, while
by late 2013 all major vendors have followed this trend and shipped
column-store implementations in their database system offerings, high-
lighting the significance of this new technology, e.g., IBM [11], Microsoft
[63], SAP [26] and Oracle.

Column-store systems completely vertically partition a database
into a collection of individual columns that are stored separately. By

1Initially named MonetDB/X100.
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Figure 1.1: Physical layout of column-oriented vs row-oriented databases.

storing each column separately on disk, these column-based systems
enable queries to read just the attributes they need, rather than hav-
ing to read entire rows from disk and discard unneeded attributes once
they are in memory. A similar benefit is true while transferring data
from main memory to CPU registers, improving the overall utiliza-
tion of the available I/O and memory bandwidth. Overall, taking the
column-oriented approach to the extreme allows for numerous innova-
tions in terms of database architectures. In this paper, we discuss mod-
ern column-stores, their architecture and evolution as well the benefits
they can bring in data analytics.

Data Layout and Access Patterns. Figure 1.1 illustrates the
basic differences in the physical layout of column-stores compared to
traditional row-oriented databases (also referred to as row-stores): it
depicts three alternative ways to store a sales table which contains sev-
eral attributes. In the two column-oriented approaches (Figure 1.1(a)
and Figure 1.1(b)), each column is stored independently as a separate
data object. Since data is typically read from storage and written in
storage in blocks, a column-oriented approach means that each block
which holds data for the sales table holds data for one of the columns
only. In this case, a query that computes, for example, the number
of sales of a particular product in July would only need to access the
prodid and date columns, and only the data blocks corresponding to
these columns would need to be read from storage (we will explain
the differences between Figure 1.1(a) and Figure 1.1(b) in a moment).
On the hand, in the row-oriented approach (Figure 1.1(c)), there is
just a single data object containing all of the data, i.e., each block

Full text available at: http://dx.doi.org/10.1561/1900000024



4 Introduction

in storage, which holds data for the sales table, contains data from
all columns of the table. In this way, there is no way to read just
the particular attributes needed for a particular query without also
transferring the surrounding attributes. Therefore, for this query, the
row-oriented approach will be forced to read in significantly more data,
as both the needed attributes and the surrounding attributes stored in
the same blocks need to be read. Since data transfer costs from storage
(or through a storage hierarchy) are often the major performance bot-
tlenecks in database systems, while at the same time database schemas
are becoming more and more complex with fat tables with hundreds
of attributes being common, a column-store is likely to be much more
efficient at executing queries, as the one in our example, that touch
only a subset of a table’s attributes.

Tradeoffs. There are several interesting tradeoffs depending on the
access patters in the workload that dictate whether a column-oriented
or a row-oriented physical layout is a better fit. If data is stored on
magnetic disk, then if a query needs to access only a single record (i.e.,
all or some of the attributes of a single row of a table), a column-store
will have to seek several times (to all columns/files of the table refer-
enced in the query) to read just this single record. However, if a query
needs to access many records, then large swaths of entire columns can
be read, amortizing the seeks to the different columns. In a conven-
tional row-store, in contrast, if a query needs to access a single record,
only one seek is needed as the whole record is stored contiguously, and
the overhead of reading all the attributes of the record (rather than
just the relevant attributes requested by the current query) will be
negligible relative to the seek time. However, as more and more records
are accessed, the transfer time begins to dominate the seek time, and a
column-oriented approach begins to perform better than a row-oriented
approach. For this reason, column-stores are typically used in analytic
applications, with queries that scan a large fraction of individual tables
and compute aggregates or other statistics over them.

Column-store Architectures. Although recent column-store
systems employ concepts that are at a high level similar to those in
early research proposals for vertical partitioning [12, 22, 55, 65], they

Full text available at: http://dx.doi.org/10.1561/1900000024
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include many architectural features beyond those in early work on
vertical partitioning, and are designed to maximize the performance
on analytic workloads on modern architectures. The goal of this article
is to survey these recent research results, architectural trends, and
optimizations. Specific ideas we focus on include:

• Virtual IDs [46]. The simplest way to represent a column in
a column-store involves associating a tuple identifier (e.g., a nu-
meric primary key) with every column. Explicitly representing
this key bloats the size of data on disk, and reduces I/O effi-
ciency. Instead, modern column-stores avoid storing this ID col-
umn by using the position (offset) of the tuple in the column as
a virtual identifier (see Figure 1.1(a) vs Figure 1.1(b)). In some
column-stores, each attribute is stored as a fixed-width dense ar-
ray and each record is stored in the same (array) position across
all columns of a table. In addition, relying on fixed-width columns
greatly simplifies locating a record based on its offset; for ex-
ample accessing the i-th value in column A simply requires to
access the value at the location startOf(A) + i ∗ width(A). No
further bookkeeping or indirections are needed. However, as we
will discuss later on and in detail in Section 4, a major advan-
tage of column-stores relative to row-stores is improved compres-
sion ratio, and many compression algorithms compress data in a
non-fixed-length way, such that data cannot simply be stored in
an array. Some column-stores are willing to give up a little on
compression ratio in order to get fixed-width values, while other
column-stores exploit non-fixed width compression algorithms.

• Block-oriented and vectorized processing [18, 2]. By pass-
ing cache-line sized blocks of tuples between operators, and op-
erating on multiple values at a time, rather than using a con-
ventional tuple-at-a-time iterator, column-stores can achieve sub-
stantially better cache utilization and CPU efficiency. The use of
vectorized CPU instructions for selections, expressions, and other
types of arithmetic on these blocks of values can further improve

Full text available at: http://dx.doi.org/10.1561/1900000024



6 Introduction

throughput.

• Late materialization [3, 50]. Late materialization or late tu-
ple reconstruction refers to delaying the joining of columns into
wider tuples. In fact, for some queries, column-stores can com-
pletely avoid joining columns together into tuples. In this way,
late materialization means that column-stores not only store data
one column-at-a-time, they also process data in a columnar for-
mat. For example, a select operator scans a single column at a
time with a tight for-loop, resulting in cache and CPU friendly
patterns (as opposed to first constructing tuples containing all
attributes that will be needed by the current query and feeding
them to a traditional row-store select operator which needs to ac-
cess only one of these attributes). In this way, late materialization
dramatically improves memory bandwidth efficiency.

• Column-specific compression [100, 2]. By compressing each
column using a compression method that is most effective for
it, substantial reductions in the total size of data on disk can
be achieved. By storing data from the same attribute (column)
together, column-stores can obtain good compression ratios using
simple compression schemes.

• Direct operation on compressed data [3]. Many modern
column-stores delay decompressing data until it is absolutely nec-
essary, ideally until results need to be presented to the user. Work-
ing over compressed data heavily improves utilization of memory
bandwidth which is one of the major bottlenecks. Late material-
ization allows columns to be kept in a compressed representation
in memory, whereas creating wider tuples generally requires de-
compressing them first.

• Efficient join implementations [67, 2]. Because columns are
stored separately, join strategies similar to classic semi-joins [13]
are possible. For specific types of joins, these can be much more
efficient than traditional hash or merge joins used in OLAP set-
tings.

Full text available at: http://dx.doi.org/10.1561/1900000024
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• Redundant representation of individual columns in dif-

ferent sort orders [88]. Columns that are sorted according to
a particular attribute can be filtered much more quickly on that
attribute. By storing several copies of each column sorted by at-
tributes heavily used in an application’s query workload, substan-
tial performance gains can be achieved. C-Store calls groups of
columns sorted on a particular attribute projections. Virtual IDs
are on a per-projection basis. Additionally, low-cardinality data
that is stored in sorted order can be aggressively compressed.

• Database cracking and adaptive indexing [44]. Database
cracking avoids sorting columns up-front. Instead, a column-
store with cracking can adaptively and incrementally sort (in-
dex) columns as a side-effect of query processing. No workload
knowledge or idle time to invest in indexing is required. Each
query partially reorganizes the columns it touches to allow fu-
ture queries to access data faster. Fixed-width columns allow for
efficient physical reorganization, while vector processing means
that we can reorganize whole blocks of columns efficiently in one
go, making adaptive indexing a realistic architecture feature in
modern column-stores.

• Efficient loading architectures [41, 88]. Finally, one con-
cern with column-stores is that they may be slower to load and
update than row-stores, because each column must be written
separately, and because data is kept compressed. Since load per-
formance can be a significant concern in data warehouse systems,
optimized loaders are important. For example, in the C-Store sys-
tem, data is first written into an uncompressed, write-optimized
buffer (the “WOS”), and then flushed periodically in large, com-
pressed batches. This avoids doing one disk seek per-attribute,
per-row and having to insert new data into a compressed col-
umn; instead writing and compressing many records at a time.

Are These Column-store Specific Features? Some of the fea-
tures and concepts described above can be applied with some variations
to row-store systems as well. In fact, most of these design features have

Full text available at: http://dx.doi.org/10.1561/1900000024



8 Introduction

been inspired by earlier research in row-store systems and over the years
several notable efforts both in academia and industry tried to achieve
similar effects for individual features with add-on designs in traditional
row-stores, i.e., designs that would not disturb the fundamental row-
store architecture significantly.

For example, the EVI feature in IBM DB2 already in 1997 allowed
part of the data to be stored in a column-major format [14], provid-
ing some of the I/O benefits modern column-stores provide. Similarly,
past research on fractured mirrors [78] proposed that systems store two
copies of the data, one in row-store format and one in column-store
format or even research on hybrid formats, such as PAX [5], proposed
that each relational tuple is stored in a single page as in a normal row-
store but now each page is internally organized in columns; this does
not help with disk I/O but allows for less data to be transferred from
main-memory to the CPU. In addition, research on index only plans
with techniques such as indexing anding, e.g., [69, 25], can provide
some of the benefits that late materialization provides, i.e., it allowed
processors to work on only the relevant part of the data for some of
the relational operators, better utilizing the memory hierarchy. In fact,
modern index advisor tools, e.g., [21], always try to propose a set of
“covering” indexes, i.e., a set of indexes where ideally every query can
be fully answered by one or more indexes avoiding access to the base
(row-oriented) data. Early systems such Model 204 [72] relied heav-
ily on bitmap indexes [71] to minimize I/O and processing costs. In
addition, ideas similar to vectorization first appeared several years ago
[74, 85] in the context of row-stores. Futhrermore, compression has been
applied to row-stores, e.g., [30, 82] and several design principles such
as decompressing data as late as possible [30] as well as compressing
both data and indexes [31, 47] have been studied.

What the column-stores described in this monograph contribute
(other than proposing new data storage and access techniques) is an
architecture designed from scratch for the types of analytical applica-
tions described above; by starting with a blank sheet, they were free
to push all these ideas to extremes without worrying about being com-
patible with legacy designs. In the past, some variations of these ideas

Full text available at: http://dx.doi.org/10.1561/1900000024
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Figure 1.2: Performance of C-Store versus a commercial database system on the
SSBM benchmark, with different column-oriented optimizations enabled.

have been tried out in isolation, mainly in research prototypes over tra-
ditional row-store designs. In contrast, starting from data storage and
going up the stack to include the query execution engine and query
optimizer, these column-stores were designed substantially differently
from traditional row-stores, and were therefore able to maximize the
benefits of all these ideas while innovating on all fronts of database
design. We will revisit our discussion in defining modern column-stores
vs. traditional row-stores in Section 4.9.

Performance Example. To illustrate the benefit that column-
orientation and these optimizations have, we briefly summarize a result
from a recent paper [1]. In this paper, we compared the performance of
the academic C-Store prototype to a commercial row-oriented (“row-
store”) system. We studied the effect of various column-oriented opti-
mizations on overall query performance on SSBM [73] (a simplified ver-
sion of the TPC-H data warehousing benchmark). The average runtime
of all queries in the benchmark on a scale 10 database (60 million tu-
ples) is shown in Figure 1.2. The bar on the left shows the performance
of C-Store as various optimizations are removed; the “baseline” sys-
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10 Introduction

tem with all optimizations takes about 4 seconds to answer all queries,
while the completely unoptimized system takes about 40 seconds. The
bar on the right shows the performance of the commercial row-store
system. From these results it is apparent that the optimized column-
store is about a factor of 5 faster than the commercial row-store, but
that the unoptimized system is somewhat slower than the commercial
system. One reason that the unoptimized column-store does not do
particularly well is that the SSBM benchmark uses relatively narrow
tables. Thus, the baseline I/O reduction from column-orientation is re-
duced. In most real-world data-warehouses, the ratio of columns-read
to table-width would be much smaller, so these advantages would be
more pronounced.

Though comparing absolute performance numbers between a full-
fledged commercial system and an academic prototype is tricky, these
numbers show that unoptimized column-stores with queries that se-
lect a large fraction of columns provide comparable performance to
row-oriented systems, but that the optimizations proposed in modern
systems can provide order-of-magnitude reductions in query times.

Monograph Structure. In the rest of this monograph, we show
how the architecture innovations listed above contribute to these kinds
of dramatic performance gains. In particular, we discuss the architec-
ture of C-Store, MonetDB and VectorWise, describe how they are sim-
ilar and different, and summarize the key innovations that make them
perform well.

In the next chapter, we trace the evolution of vertically partitioned
and column-oriented systems in the database literature, and discuss
technology trends that have caused column-oriented architectures to
become more favorable for analytic workloads. Then, in Chapters 3
and 4, we describe the high level architecture and detailed internals
primarily of C-Store, MonetDB and VectorWise but also those of sub-
sequent commercial implementations. Finally, in Chapter 5, we discuss
future trends and conclude.

Full text available at: http://dx.doi.org/10.1561/1900000024
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