
The Design and

Implementation of Modern

Column-Oriented

Database Systems

Daniel Abadi

Yale University

dna@cs.yale.edu

Peter Boncz

CWI

P.Boncz@cwi.nl

Stavros Harizopoulos

Amiato, Inc.

stavros@amiato.com

Stratos Idreos

Harvard University

stratos@seas.harvard.edu

Samuel Madden

MIT CSAIL

madden@csail.mit.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1900000024

Foundations and Trends R© in Databases

Published, sold and distributed by:

now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:

now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos and S. Madden. The Design and

Implementation of Modern Column-Oriented Database Systems. Foundations and
Trends R© in Databases, vol. 5, no. 3, pp. 197–280, 2012.

This Foundations and Trends R© issue was typeset in LATEX using a class file designed

by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-755-6

c© 2013 D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos and S. Madden

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000024

Foundations and Trends R© in Databases

Volume 5, Issue 3, 2012

Editorial Board

Editor-in-Chief

Joseph M. Hellerstein

University of California, Berkeley
United States

Editors

Anastasia Ailamaki
EPFL

Michael Carey
UC Irvine

Surajit Chaudhuri
Microsoft Research

Ronald Fagin
IBM Research

Minos Garofalakis
Yahoo! Research

Johannes Gehrke
Cornell University

Alon Halevy
Google

Jeffrey Naughton
University of Wisconsin

Christopher Olston
Yahoo! Research

Jignesh Patel
University of Michigan

Raghu Ramakrishnan
Yahoo! Research

Gerhard Weikum
Max Planck Institute Saarbrücken

Full text available at: http://dx.doi.org/10.1561/1900000024

Editorial Scope

Topics

Foundations and Trends R© in Databases covers a breadth of topics re-

lating to the management of large volumes of data. The journal targets

the full scope of issues in data management, from theoretical founda-

tions, to languages and modeling, to algorithms, system architecture,

and applications. The list of topics below illustrates some of the in-

tended coverage, though it is by no means exhaustive:

• Data models and query languages

• Query processing and
optimization

• Storage, access methods, and
indexing

• Transaction management,
concurrency control, and
recovery

• Deductive databases

• Parallel and distributed database
systems

• Database design and tuning

• Metadata management

• Object management

• Trigger processing and active
databases

• Data mining and OLAP

• Approximate and interactive
query processing

• Data warehousing

• Adaptive query processing

• Data stream management

• Search and query integration

• XML and semi-structured data

• Web services and middleware

• Data integration and exchange

• Private and secure data
management

• Peer-to-peer, sensornet, and
mobile data management

• Scientific and spatial data
management

• Data brokering and
publish/subscribe

• Data cleaning and information
extraction

• Probabilistic data management

Information for Librarians

Foundations and Trends R© in Databases, 2012, Volume 5, 4 issues. ISSN pa-

per version 1931-7883. ISSN online version 1931-7891. Also available as a

combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000024

Foundations and Trends R© in Databases
Vol. 5, No. 3 (2012) 197–280
c© 2013 D. Abadi, P. Boncz, S. Harizopoulos,

S. Idreos and S. Madden
DOI: 10.1561/1900000024

The Design and Implementation of Modern

Column-Oriented Database Systems

Daniel Abadi
Yale University
dna@cs.yale.edu

Peter Boncz
CWI

P.Boncz@cwi.nl

Stavros Harizopoulos
Amiato, Inc.

stavros@amiato.com

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

Full text available at: http://dx.doi.org/10.1561/1900000024

Contents

1 Introduction 2

2 History, trends, and performance tradeoffs 11

2.1 History . 11
2.2 Technology and Application Trends 13
2.3 Fundamental Performance Tradeoffs 17

3 Column-store Architectures 20

3.1 C-Store . 20
3.2 MonetDB and VectorWise 23
3.3 Other Implementations 27

4 Column-store internals and advanced techniques 31

4.1 Vectorized Processing . 31
4.2 Compression . 36
4.3 Operating Directly on Compressed Data 42
4.4 Late Materialization . 44
4.5 Joins . 52
4.6 Group-by, Aggregation and Arithmetic Operations 58
4.7 Inserts/updates/deletes 59
4.8 Indexing, Adaptive Indexing and Database Cracking 61
4.9 Summary and Design Principles Taxonomy 67

ii

Full text available at: http://dx.doi.org/10.1561/1900000024

iii

5 Discussion, Conclusions, and Future Directions 70

5.1 Comparing MonetDB/VectorWise/C-Store 70
5.2 Simulating Column/Row Stores 71
5.3 Conclusions . 73

References 75

Full text available at: http://dx.doi.org/10.1561/1900000024

Abstract

In this article, we survey recent research on column-oriented database
systems, or column-stores, where each attribute of a table is stored in
a separate file or region on storage. Such databases have seen a resur-
gence in recent years with a rise in interest in analytic queries that
perform scans and aggregates over large portions of a few columns of a
table. The main advantage of a column-store is that it can access just
the columns needed to answer such queries. We specifically focus on
three influential research prototypes, MonetDB [46], VectorWise [18],
and C-Store [88]. These systems have formed the basis for several well-
known commercial column-store implementations. We describe their
similarities and differences and discuss their specific architectural fea-
tures for compression, late materialization, join processing, vectoriza-
tion and adaptive indexing (database cracking).

D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos and S. Madden. The Design and

Implementation of Modern Column-Oriented Database Systems. Foundations and
Trends R© in Databases, vol. 5, no. 3, pp. 197–280, 2012.

DOI: 10.1561/1900000024.

Full text available at: http://dx.doi.org/10.1561/1900000024

1

Introduction

Database system performance is directly related to the efficiency of the
system at storing data on primary storage (e.g., disk) and moving it
into CPU registers for processing. For this reason, there is a long his-
tory in the database community of research exploring physical storage
alternatives, including sophisticated indexing, materialized views, and
vertical and horizontal partitioning.

Column-stores. In recent years, there has been renewed interest in
so-called column-oriented systems, sometimes also called column-stores.
Early influential efforts include the academic systems MonetDB [46],
VectorWise [18]1 and C-Store [88] as well as the commercial system
SybaseIQ [66]. VectorWise and C-Store evolved into the commercial
systems Ingres VectorWise [99] and Vertica [60], respectively, while
by late 2013 all major vendors have followed this trend and shipped
column-store implementations in their database system offerings, high-
lighting the significance of this new technology, e.g., IBM [11], Microsoft
[63], SAP [26] and Oracle.

Column-store systems completely vertically partition a database
into a collection of individual columns that are stored separately. By

1Initially named MonetDB/X100.

2

Full text available at: http://dx.doi.org/10.1561/1900000024

3

1

2

3

4

5

6

7

8

9

10

saleid prodid date region

...

Sales

1

2

3

4

5

6

7

8

9

10

saleid prodid date region

...

Sales

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

saleid prodid date region

...

Sales

(a) Column Store with Virtual Ids (b) Column Store with Explicit Ids (c) Row Store

Figure 1.1: Physical layout of column-oriented vs row-oriented databases.

storing each column separately on disk, these column-based systems
enable queries to read just the attributes they need, rather than hav-
ing to read entire rows from disk and discard unneeded attributes once
they are in memory. A similar benefit is true while transferring data
from main memory to CPU registers, improving the overall utiliza-
tion of the available I/O and memory bandwidth. Overall, taking the
column-oriented approach to the extreme allows for numerous innova-
tions in terms of database architectures. In this paper, we discuss mod-
ern column-stores, their architecture and evolution as well the benefits
they can bring in data analytics.

Data Layout and Access Patterns. Figure 1.1 illustrates the
basic differences in the physical layout of column-stores compared to
traditional row-oriented databases (also referred to as row-stores): it
depicts three alternative ways to store a sales table which contains sev-
eral attributes. In the two column-oriented approaches (Figure 1.1(a)
and Figure 1.1(b)), each column is stored independently as a separate
data object. Since data is typically read from storage and written in
storage in blocks, a column-oriented approach means that each block
which holds data for the sales table holds data for one of the columns
only. In this case, a query that computes, for example, the number
of sales of a particular product in July would only need to access the
prodid and date columns, and only the data blocks corresponding to
these columns would need to be read from storage (we will explain
the differences between Figure 1.1(a) and Figure 1.1(b) in a moment).
On the hand, in the row-oriented approach (Figure 1.1(c)), there is
just a single data object containing all of the data, i.e., each block

Full text available at: http://dx.doi.org/10.1561/1900000024

4 Introduction

in storage, which holds data for the sales table, contains data from
all columns of the table. In this way, there is no way to read just
the particular attributes needed for a particular query without also
transferring the surrounding attributes. Therefore, for this query, the
row-oriented approach will be forced to read in significantly more data,
as both the needed attributes and the surrounding attributes stored in
the same blocks need to be read. Since data transfer costs from storage
(or through a storage hierarchy) are often the major performance bot-
tlenecks in database systems, while at the same time database schemas
are becoming more and more complex with fat tables with hundreds
of attributes being common, a column-store is likely to be much more
efficient at executing queries, as the one in our example, that touch
only a subset of a table’s attributes.

Tradeoffs. There are several interesting tradeoffs depending on the
access patters in the workload that dictate whether a column-oriented
or a row-oriented physical layout is a better fit. If data is stored on
magnetic disk, then if a query needs to access only a single record (i.e.,
all or some of the attributes of a single row of a table), a column-store
will have to seek several times (to all columns/files of the table refer-
enced in the query) to read just this single record. However, if a query
needs to access many records, then large swaths of entire columns can
be read, amortizing the seeks to the different columns. In a conven-
tional row-store, in contrast, if a query needs to access a single record,
only one seek is needed as the whole record is stored contiguously, and
the overhead of reading all the attributes of the record (rather than
just the relevant attributes requested by the current query) will be
negligible relative to the seek time. However, as more and more records
are accessed, the transfer time begins to dominate the seek time, and a
column-oriented approach begins to perform better than a row-oriented
approach. For this reason, column-stores are typically used in analytic
applications, with queries that scan a large fraction of individual tables
and compute aggregates or other statistics over them.

Column-store Architectures. Although recent column-store
systems employ concepts that are at a high level similar to those in
early research proposals for vertical partitioning [12, 22, 55, 65], they

Full text available at: http://dx.doi.org/10.1561/1900000024

5

include many architectural features beyond those in early work on
vertical partitioning, and are designed to maximize the performance
on analytic workloads on modern architectures. The goal of this article
is to survey these recent research results, architectural trends, and
optimizations. Specific ideas we focus on include:

• Virtual IDs [46]. The simplest way to represent a column in
a column-store involves associating a tuple identifier (e.g., a nu-
meric primary key) with every column. Explicitly representing
this key bloats the size of data on disk, and reduces I/O effi-
ciency. Instead, modern column-stores avoid storing this ID col-
umn by using the position (offset) of the tuple in the column as
a virtual identifier (see Figure 1.1(a) vs Figure 1.1(b)). In some
column-stores, each attribute is stored as a fixed-width dense ar-
ray and each record is stored in the same (array) position across
all columns of a table. In addition, relying on fixed-width columns
greatly simplifies locating a record based on its offset; for ex-
ample accessing the i-th value in column A simply requires to
access the value at the location startOf(A) + i ∗ width(A). No
further bookkeeping or indirections are needed. However, as we
will discuss later on and in detail in Section 4, a major advan-
tage of column-stores relative to row-stores is improved compres-
sion ratio, and many compression algorithms compress data in a
non-fixed-length way, such that data cannot simply be stored in
an array. Some column-stores are willing to give up a little on
compression ratio in order to get fixed-width values, while other
column-stores exploit non-fixed width compression algorithms.

• Block-oriented and vectorized processing [18, 2]. By pass-
ing cache-line sized blocks of tuples between operators, and op-
erating on multiple values at a time, rather than using a con-
ventional tuple-at-a-time iterator, column-stores can achieve sub-
stantially better cache utilization and CPU efficiency. The use of
vectorized CPU instructions for selections, expressions, and other
types of arithmetic on these blocks of values can further improve

Full text available at: http://dx.doi.org/10.1561/1900000024

6 Introduction

throughput.

• Late materialization [3, 50]. Late materialization or late tu-
ple reconstruction refers to delaying the joining of columns into
wider tuples. In fact, for some queries, column-stores can com-
pletely avoid joining columns together into tuples. In this way,
late materialization means that column-stores not only store data
one column-at-a-time, they also process data in a columnar for-
mat. For example, a select operator scans a single column at a
time with a tight for-loop, resulting in cache and CPU friendly
patterns (as opposed to first constructing tuples containing all
attributes that will be needed by the current query and feeding
them to a traditional row-store select operator which needs to ac-
cess only one of these attributes). In this way, late materialization
dramatically improves memory bandwidth efficiency.

• Column-specific compression [100, 2]. By compressing each
column using a compression method that is most effective for
it, substantial reductions in the total size of data on disk can
be achieved. By storing data from the same attribute (column)
together, column-stores can obtain good compression ratios using
simple compression schemes.

• Direct operation on compressed data [3]. Many modern
column-stores delay decompressing data until it is absolutely nec-
essary, ideally until results need to be presented to the user. Work-
ing over compressed data heavily improves utilization of memory
bandwidth which is one of the major bottlenecks. Late material-
ization allows columns to be kept in a compressed representation
in memory, whereas creating wider tuples generally requires de-
compressing them first.

• Efficient join implementations [67, 2]. Because columns are
stored separately, join strategies similar to classic semi-joins [13]
are possible. For specific types of joins, these can be much more
efficient than traditional hash or merge joins used in OLAP set-
tings.

Full text available at: http://dx.doi.org/10.1561/1900000024

7

• Redundant representation of individual columns in dif-

ferent sort orders [88]. Columns that are sorted according to
a particular attribute can be filtered much more quickly on that
attribute. By storing several copies of each column sorted by at-
tributes heavily used in an application’s query workload, substan-
tial performance gains can be achieved. C-Store calls groups of
columns sorted on a particular attribute projections. Virtual IDs
are on a per-projection basis. Additionally, low-cardinality data
that is stored in sorted order can be aggressively compressed.

• Database cracking and adaptive indexing [44]. Database
cracking avoids sorting columns up-front. Instead, a column-
store with cracking can adaptively and incrementally sort (in-
dex) columns as a side-effect of query processing. No workload
knowledge or idle time to invest in indexing is required. Each
query partially reorganizes the columns it touches to allow fu-
ture queries to access data faster. Fixed-width columns allow for
efficient physical reorganization, while vector processing means
that we can reorganize whole blocks of columns efficiently in one
go, making adaptive indexing a realistic architecture feature in
modern column-stores.

• Efficient loading architectures [41, 88]. Finally, one con-
cern with column-stores is that they may be slower to load and
update than row-stores, because each column must be written
separately, and because data is kept compressed. Since load per-
formance can be a significant concern in data warehouse systems,
optimized loaders are important. For example, in the C-Store sys-
tem, data is first written into an uncompressed, write-optimized
buffer (the “WOS”), and then flushed periodically in large, com-
pressed batches. This avoids doing one disk seek per-attribute,
per-row and having to insert new data into a compressed col-
umn; instead writing and compressing many records at a time.

Are These Column-store Specific Features? Some of the fea-
tures and concepts described above can be applied with some variations
to row-store systems as well. In fact, most of these design features have

Full text available at: http://dx.doi.org/10.1561/1900000024

8 Introduction

been inspired by earlier research in row-store systems and over the years
several notable efforts both in academia and industry tried to achieve
similar effects for individual features with add-on designs in traditional
row-stores, i.e., designs that would not disturb the fundamental row-
store architecture significantly.

For example, the EVI feature in IBM DB2 already in 1997 allowed
part of the data to be stored in a column-major format [14], provid-
ing some of the I/O benefits modern column-stores provide. Similarly,
past research on fractured mirrors [78] proposed that systems store two
copies of the data, one in row-store format and one in column-store
format or even research on hybrid formats, such as PAX [5], proposed
that each relational tuple is stored in a single page as in a normal row-
store but now each page is internally organized in columns; this does
not help with disk I/O but allows for less data to be transferred from
main-memory to the CPU. In addition, research on index only plans
with techniques such as indexing anding, e.g., [69, 25], can provide
some of the benefits that late materialization provides, i.e., it allowed
processors to work on only the relevant part of the data for some of
the relational operators, better utilizing the memory hierarchy. In fact,
modern index advisor tools, e.g., [21], always try to propose a set of
“covering” indexes, i.e., a set of indexes where ideally every query can
be fully answered by one or more indexes avoiding access to the base
(row-oriented) data. Early systems such Model 204 [72] relied heav-
ily on bitmap indexes [71] to minimize I/O and processing costs. In
addition, ideas similar to vectorization first appeared several years ago
[74, 85] in the context of row-stores. Futhrermore, compression has been
applied to row-stores, e.g., [30, 82] and several design principles such
as decompressing data as late as possible [30] as well as compressing
both data and indexes [31, 47] have been studied.

What the column-stores described in this monograph contribute
(other than proposing new data storage and access techniques) is an
architecture designed from scratch for the types of analytical applica-
tions described above; by starting with a blank sheet, they were free
to push all these ideas to extremes without worrying about being com-
patible with legacy designs. In the past, some variations of these ideas

Full text available at: http://dx.doi.org/10.1561/1900000024

9

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Column	 Store	 Row	 Store	

R
u
n
$
m
e
	 (
se
c)
	

Performance	 of	 Column-‐Oriented	 Op$miza$ons	

–Late	

Materializa:on	

–Compression	

–Join	 Op:miza:on	

–Tuple-‐at-‐a-‐:me	

Baseline	

Figure 1.2: Performance of C-Store versus a commercial database system on the
SSBM benchmark, with different column-oriented optimizations enabled.

have been tried out in isolation, mainly in research prototypes over tra-
ditional row-store designs. In contrast, starting from data storage and
going up the stack to include the query execution engine and query
optimizer, these column-stores were designed substantially differently
from traditional row-stores, and were therefore able to maximize the
benefits of all these ideas while innovating on all fronts of database
design. We will revisit our discussion in defining modern column-stores
vs. traditional row-stores in Section 4.9.

Performance Example. To illustrate the benefit that column-
orientation and these optimizations have, we briefly summarize a result
from a recent paper [1]. In this paper, we compared the performance of
the academic C-Store prototype to a commercial row-oriented (“row-
store”) system. We studied the effect of various column-oriented opti-
mizations on overall query performance on SSBM [73] (a simplified ver-
sion of the TPC-H data warehousing benchmark). The average runtime
of all queries in the benchmark on a scale 10 database (60 million tu-
ples) is shown in Figure 1.2. The bar on the left shows the performance
of C-Store as various optimizations are removed; the “baseline” sys-

Full text available at: http://dx.doi.org/10.1561/1900000024

10 Introduction

tem with all optimizations takes about 4 seconds to answer all queries,
while the completely unoptimized system takes about 40 seconds. The
bar on the right shows the performance of the commercial row-store
system. From these results it is apparent that the optimized column-
store is about a factor of 5 faster than the commercial row-store, but
that the unoptimized system is somewhat slower than the commercial
system. One reason that the unoptimized column-store does not do
particularly well is that the SSBM benchmark uses relatively narrow
tables. Thus, the baseline I/O reduction from column-orientation is re-
duced. In most real-world data-warehouses, the ratio of columns-read
to table-width would be much smaller, so these advantages would be
more pronounced.

Though comparing absolute performance numbers between a full-
fledged commercial system and an academic prototype is tricky, these
numbers show that unoptimized column-stores with queries that se-
lect a large fraction of columns provide comparable performance to
row-oriented systems, but that the optimizations proposed in modern
systems can provide order-of-magnitude reductions in query times.

Monograph Structure. In the rest of this monograph, we show
how the architecture innovations listed above contribute to these kinds
of dramatic performance gains. In particular, we discuss the architec-
ture of C-Store, MonetDB and VectorWise, describe how they are sim-
ilar and different, and summarize the key innovations that make them
perform well.

In the next chapter, we trace the evolution of vertically partitioned
and column-oriented systems in the database literature, and discuss
technology trends that have caused column-oriented architectures to
become more favorable for analytic workloads. Then, in Chapters 3
and 4, we describe the high level architecture and detailed internals
primarily of C-Store, MonetDB and VectorWise but also those of sub-
sequent commercial implementations. Finally, in Chapter 5, we discuss
future trends and conclude.

Full text available at: http://dx.doi.org/10.1561/1900000024

References

[1] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-stores
vs. row-stores: how different are they really? In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 967–980, 2008.

[2] Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. Integrating
compression and execution in column-oriented database systems. In
Proceedings of the ACM SIGMOD Conference on Management of Data,
pages 671–682, 2006.

[3] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R.
Madden. Materialization strategies in a column-oriented DBMS. In Pro-
ceedings of the International Conference on Data Endineering (ICDE),
pages 466–475, 2007.

[4] R. Abdel Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX:
run-time optimization of xqueries. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 615–626. ACM, 2009.

[5] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Sk-
ounakis. Weaving relations for cache performance. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
169–180, 2001.

[6] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Mas-
sively Parallel Sort-Merge Joins in Main Memory Multi-Core Database
Systems. Proceedings of the Very Large Data Bases Endowment
(PVLDB), 5(10):1064–1075, 2012.

75

Full text available at: http://dx.doi.org/10.1561/1900000024

76 References

[7] Sihem Amer-Yahia and Theodore Johnson. Optimizing queries on com-
pressed bitmaps. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 329–338, 2000.

[8] G. Antoshenkov. Byte-aligned data compression. U.S. Patent Number
5,363,098, 1994.

[9] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. Proceedings
of the Very Large Data Bases Endowment (PVLDB), 7(1):85–96, 2013.

[10] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to the underly-
ing hardware. In Proceedings of the International Conference on Data
Endineering (ICDE), pages 362–373, 2013.

[11] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick
Ho, Namik Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil
Lee, Tianchao Tim Li, Guy M. Lohman, Konstantinos Morfonios, René
Müller, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Ra-
man, Richard Sidle, Knut Stolze, and Sandor Szabo. Business Analytics
in (a) Blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[12] Don S. Batory. On searching transposed files. ACM Transactions on
Database Systems, 4(4):531–544, 1979.

[13] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve
relational queries. J. ACM, 28(1):25–40, 1981.

[14] R. Bestgen and T. McKinley. Taming the business intelligence monster.
IBM Systems Magazine, 2007.

[15] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-
based order-preserving string compression for main memory column
stores. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 283–296, 2009.

[16] Peter Boncz. Monet: A next-generation DBMS kernel for query-
intensive applications. University of Amsterdam, PhD Thesis, 2002.

[17] Peter Boncz, Stefan Manegold, and Martin Kersten. Database architec-
ture optimized for the new bottleneck: Memory access. In Proceedings
of the International Conference on Very Large Data Bases (VLDB),
pages 54–65, 1999.

[18] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
pipelining query execution. In Proceedings of the biennial Conference
on Innovative Data Systems Research (CIDR), 2005.

Full text available at: http://dx.doi.org/10.1561/1900000024

References 77

[19] Peter A. Boncz and Martin L. Kersten. MIL primitives for querying a
fragmented world. VLDB Journal, 8(2):101–119, 1999.

[20] Nicolas Bruno. Teaching an old elephant new tricks. In Proceedings of
the biennial Conference on Innovative Data Systems Research (CIDR),
2009.

[21] Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages
146–155, 1997.

[22] George P. Copeland and Setrag N. Khoshafian. A decomposition storage
model. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 268–279, 1985.

[23] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen. The gamma database machine project. IEEE
Transactions on Knowledge and Data Engineering, 2(1):44–62, 1990.

[24] David DeWitt. From 1 to 1000 mips, November 2009. PASS Summit
2009 Keynote.

[25] Amr El-Helw, Kenneth A. Ross, Bishwaranjan Bhattacharjee, Chris-
tian A. Lang, and George A. Mihaila. Column-oriented query process-
ing for row stores. In Proceedings of the International Workshop On
Data Warehousing and OLAP, pages 67–74, 2011.

[26] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo
Müller, Hannes Rauhe, and Jonathan Dees. The SAP HANA Database
– An Architecture Overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[27] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep
Tata. Column-Oriented Storage Techniques for MapReduce. Proceed-
ings of the Very Large Data Bases Endowment (PVLDB), 4(7):419–429,
2011.

[28] Clark D. French. “One Size Fits All” Database Architectures Do Not
Work for DDS. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 449–450, 1995.

[29] Clark D. French. Teaching an OLTP Database Kernel Advanced Data
Warehousing Techniques. In Proceedings of the International Confer-
ence on Data Endineering (ICDE), pages 194–198, 1997.

[30] G.Graefe and L.Shapiro. Data compression and database performance.
In ACM/IEEE-CS Symp. On Applied Computing, pages 22 -27, April
1991.

Full text available at: http://dx.doi.org/10.1561/1900000024

78 References

[31] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing
relations and indexes. In Proceedings of the International Conference
on Data Endineering (ICDE), pages 370–379, 1998.

[32] Goetz Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[33] Goetz Graefe. Efficient columnar storage in b-trees. SIGMOD Rec.,
36(1):3–6, 2007.

[34] Goetz Graefe. Modern B-Tree Techniques. Foundations and Trends in
Databases, 3(4):203–402, 2011.

[35] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi Kuno, and Stefan
Manegold. Concurrency Control for Adaptive Indexing. Proceedings of
the Very Large Data Bases Endowment (PVLDB), 5(7):656–667, 2012.

[36] Goetz Graefe, Stratos Idreos, Harumi Kuno, and Stefan Manegold.
Benchmarking Adaptive Indexing. In Proceedings of the TPC Tech-
nology Conference on Performance Evaluation and Benchmarking
(TPCTC), pages 169–184, 2010.

[37] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap.
Stochastic Database Cracking: Towards Robust Adaptive Indexing in
Main-Memory Column-Stores. Proceedings of the Very Large Data
Bases Endowment (PVLDB), 5(6):502–513, 2012.

[38] Alan Halverson, Jennifer L. Beckmann, Jeffrey F. Naughton, and
David J. Dewitt. A Comparison of C-Store and Row-Store in a Com-
mon Framework. Technical Report TR1570, University of Wisconsin-
Madison, 2006.

[39] Richard A. Hankins and Jignesh M. Patel. Data morphing: an adaptive,
cache-conscious storage technique. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 417–428, 2003.

[40] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel R.
Madden. Performance tradeoffs in read-optimized databases. In Pro-
ceedings of the International Conference on Very Large Data Bases
(VLDB), pages 487–498, 2006.

[41] S. Héman, M. Zukowski, N.J. Nes, L. Sidirourgos, and P. Boncz. Po-
sitional update handling in column stores. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 543–554, 2010.

[42] William Hodak. Exadata hybrid colum-
nar compression. Oracle Whitepaper, 2009.
http://www.oracle.com/technetwork/database/exadata/index.html.

Full text available at: http://dx.doi.org/10.1561/1900000024

References 79

[43] Allison L. Holloway, Vijayshankar Raman, Garret Swart, and David J.
DeWitt. How to barter bits for chronons: compression and bandwidth
trade offs for database scans. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 389–400, 2007.

[44] Stratos Idreos. Database Cracking: Towards Auto-tuning Database Ker-
nels. CWI, PhD Thesis, 2010.

[45] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ail-
amaki. Here are my Data Files. Here are my Queries. Where are my
Results? In Proceedings of the biennial Conference on Innovative Data
Systems Research (CIDR), pages 57–68, 2011.

[46] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mul-
lender, and Martin L Kersten. MonetDB: Two Decades of Research
in Column-oriented Database Architectures. IEEE Data Eng. Bull.,
35(1):40–45, 2012.

[47] Stratos Idreos, Raghav Kaushik, Vivek R. Narasayya, and Ravishankar
Ramamurthy. Estimating the compression fraction of an index using
sampling. In Proceedings of the International Conference on Data Endi-
neering (ICDE), pages 441–444, 2010.

[48] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database
cracking. In Proceedings of the biennial Conference on Innovative Data
Systems Research (CIDR), pages 68–78, 2007.

[49] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a
cracked database. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 413–424, 2007.

[50] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing
tuple reconstruction in column stores. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, pages 297–308, 2009.

[51] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe.
Merging What’s Cracked, Cracking What’s Merged: Adaptive Indexing
in Main-Memory Column-Stores. Proceedings of the Very Large Data
Bases Endowment (PVLDB), 4(9):585–597, 2011.

[52] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart.
Row-wise parallel predicate evaluation. Proceedings of the Very Large
Data Bases Endowment (PVLDB), 1(1):622–634, 2008.

[53] Theodore Johnson. Performance measurements of compressed bitmap
indices. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 278–289, 1999.

Full text available at: http://dx.doi.org/10.1561/1900000024

80 References

[54] Ilkka Karasalo and Per Svensson. The design of cantor: a new system
for data analysis. In Proceedings of the 3rd international workshop on
Statistical and scientific database management, pages 224–244, 1986.

[55] Illka Karasalo and Per Svensson. An overview of cantor: a new system
for data analysis. In Proceedings of the 2nd international Workshop on
Statistical Database Management (SSDBM), pages 315–324, 1983.

[56] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots.
In Proceedings of the International Conference on Data Endineering
(ICDE), pages 195–206, 2011.

[57] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and
Henrik Mühe. HyPer: Adapting Columnar Main-Memory Data Man-
agement for Transactional AND Query Processing. IEEE Data Eng.
Bull., 35(1):46–51, 2012.

[58] Setrag Khoshafian, George Copeland, Thomas Jagodis, Haran Boral,
and Patrick Valduriez. A query processing strategy for the decomposed
storage model. In Proceedings of the International Conference on Data
Endineering (ICDE), pages 636–643, 1987.

[59] Setrag Khoshafian and Patrick Valduriez. Parallel execution strategies
for declustered databases. In Proceedings of the International Workshop
on Database Machines, pages 458–471, 1987.

[60] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandier, Lyric Doshi, and Chuck Bear. The vertica analytic database:
C-store 7 years later. Proceedings of the Very Large Data Bases Endow-
ment (PVLDB), 5(12):1790–1801, 2012.

[61] P.Å. Larson, C. Clinciu, E.N. Hanson, A. Oks, S.L. Price, S. Rangarajan,
A. Surna, and Q. Zhou. Sql server column store indexes. In Proceedings
of the ACM SIGMOD Conference on Management of Data, pages 1177–
1184, 2011.

[62] Per-Åke Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson,
Mostafa Mokhtar, Michal Nowakiewicz, Vassilis Papadimos, Susan L.
Price, Srikumar Rangarajan, Remus Rusanu, and Mayukh Saubhasik.
Enhancements to sql server column stores. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 1159–1168, 2013.

[63] Per-Åke Larson, Eric N. Hanson, and Susan L. Price. Columnar Storage
in SQL Server 2012. IEEE Data Eng. Bull., 35(1):15–20, 2012.

[64] Zhe Li and Kenneth A. Ross. Fast joins using join indices. VLDB
Journal, 8:1–24, April 1999.

Full text available at: http://dx.doi.org/10.1561/1900000024

References 81

[65] R.A. Lorie and A.J. Symonds. A relational access method for interactive
applications. In Courant Computer Science Symposia, Vol. 6: Data Base
Systems. Prentice Hall, 1971.

[66] Roger MacNicol and Blaine French. Sybase IQ multiplex - designed for
analytics. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 1227–1230, 2004.

[67] S. Manegold, P. Boncz, N. Nes, and M. Kersten. Cache-conscious radix-
decluster projections. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 684–695, 2004.

[68] A. Moffat and J. Zobel. Compression and fast indexing for multi-
gigabyte text databases. Australian Computer Journal, 26(1):1–9, 1994.

[69] C. Mohan, Donald J. Haderle, Yun Wang, and Josephine M. Cheng.
Single Table Access Using Multiple Indexes: Optimization, Execution,
and Concurrency Control Techniques. pages 29–43, 1990.

[70] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Mod-
ern Hardware. Proceedings of the Very Large Data Bases Endowment
(PVLDB), 4(9):539–550, 2011.

[71] Patrick O’Neil and Dallan Quass. Improved query performance with
variant indexes. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 38–49, 1997.

[72] Patrick E. O’Neil. Model 204 architecture and performance. In Proceed-
ing of the International Workshop on High Performance Transaction
Systems, pages 40–59, 1987.

[73] Patrick E. O’Neil, Elizabeth J. O’Neil, and Xuedong Chen. The
Star Schema Benchmark (SSB). http://www.cs.umb.edu/~poneil/

StarSchemaB.PDF.

[74] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhingran. Block
oriented processing of relational database operations in modern com-
puter architectures. In Proceedings of the International Conference on
Data Endineering (ICDE), pages 567–574, 2001.

[75] Sriram Padmanabhan, Bishwaranjan Bhattacharjee, Timothy Malke-
mus, Leslie Cranston, and Matthew Huras. Multi-Dimensional Cluster-
ing: A New Data Layout Scheme in DB2. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 637–641, 2003.

[76] M. Poess and D. Potapov. Data compression in oracle. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
937–947, 2003.

Full text available at: http://dx.doi.org/10.1561/1900000024

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

82 References

[77] Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. Micro adap-
tivity in vectorwise. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 1231–1242, 2013.

[78] Ravishankar Ramamurthy, David Dewitt, and Qi Su. A case for frac-
tured mirrors. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 89 – 101, 2002.

[79] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malke-
mus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm,
and L. Zhang. DB2 with BLU Acceleration: So much more than just
a column store. Proceedings of the Very Large Data Bases Endowment
(PVLDB), 6(11), 2013.

[80] Vijayshankar Raman, Lin Qiao, Wei Han, Inderpal Narang, Ying-Lin
Chen, Kou-Horng Yang, and Fen-Ling Ling. Lazy, adaptive rid-list in-
tersection, and its application to index anding. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages 773–784,
2007.

[81] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vi-
jay Dialani, Donald Kossmann, Inderpal Narang, and Richard Sidle.
Constant-Time Query Processing. In Proceedings of the International
Conference on Data Endineering (ICDE), pages 60–69, 2008.

[82] Mark A. Roth and Scott J. Van Horn. Database compression. SIGMOD
Rec., 22(3):31–39, 1993.

[83] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. The Un-
cracked Pieces in Database Cracking. Proceedings of the Very Large
Data Bases Endowment (PVLDB), 7(2), 2013.

[84] Minglong Shao, Jiri Schindler, Steven W. Schlosser, Anastassia Aila-
maki, and Gregory R. Ganger. Clotho: Decoupling memory page layout
from storage organization. In Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB), pages 696–707, 2004.

[85] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. Cache Con-
scious Algorithms for Relational Query Processing. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
510–521, 1994.

[86] Lefteris Sidirourgos and Martin L. Kersten. Column imprints: a sec-
ondary index structure. In Proceedings of the ACM SIGMOD Confer-
ence on Management of Data, pages 893–904, 2013.

Full text available at: http://dx.doi.org/10.1561/1900000024

References 83

[87] Michael Stonebraker. The case for partial indexes. SIGMOD Record,
18(4):4–11, 1989.

[88] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin,
Samuel R. Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alexan-
der Rasin, Nga Tran, and Stan B. Zdonik. C-Store: A Column-Oriented
DBMS. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 553–564, 2005.

[89] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L.
Wiener, and Goetz Graefe. Query processing techniques for solid state
drives. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 59–72, 2009.

[90] Stephen Weyl, James Fries, Gio Wiederhold, and Frank Germano.
A modular self-describing clinical databank system. Computers and
Biomedical Research, 8(3):279 – 293, 1975.

[91] K. Wu, E. Otoo, and A. Shoshani. Compressed bitmap indices for
efficient query processing. Technical Report LBNL-47807, 2001.

[92] K. Wu, E. Otoo, and A. Shoshani. Compressing bitmap indexes for
faster search operations. In Proceedings of the International Conference
on Scientific and Statistical Database Management (SSDBM), pages 99–
108, 2002.

[93] K. Wu, E. Otoo, A. Shoshani, and H. Nordberg. Notes on design and im-
plementation of compressed bit vectors. Technical Report LBNL/PUB-
3161, 2001.

[94] Jingren Zhou and Kenneth A. Ross. A Multi-Resolution Block Stor-
age Model for Database Design. In Proceedings of the International
Database Engineering and Applications Symposium (IDEAS), pages 22–
33, 2003.

[95] Jingren Zhou and Kenneth A. Ross. Buffering Database Operations for
Enhanced Instruction Cache Performance. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 191–202, 2004.

[96] M. Zukowski. Balancing vectorized query execution with bandwidth-
optimized storage. University of Amsterdam, PhD Thesis, 2009.

[97] M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing.
In Proceedings of the International Workshop on Data Management on
New Hardware (DAMON), 2006.

Full text available at: http://dx.doi.org/10.1561/1900000024

84 References

[98] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans:
dynamic bandwidth sharing in a DBMS. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 723–734,
2007.

[99] Marcin Zukowski and Peter A. Boncz. Vectorwise: Beyond column
stores. IEEE Data Eng. Bull., 35(1):21–27, 2012.

[100] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the Interna-
tional Conference on Data Endineering (ICDE), 2006.

[101] Marcin Zukowski, Niels Nes, and Peter Boncz. DSM vs. NSM: CPU
performance tradeoffs in block-oriented query processing. In Proceedings
of the International Workshop on Data Management on New Hardware
(DAMON), pages 47–54, 2008.

Full text available at: http://dx.doi.org/10.1561/1900000024

	Introduction
	History, trends, and performance tradeoffs
	History
	Technology and Application Trends
	Fundamental Performance Tradeoffs

	Column-store Architectures
	C-Store
	MonetDB and VectorWise
	Other Implementations

	Column-store internals and advanced techniques
	Vectorized Processing
	Compression
	Operating Directly on Compressed Data
	Late Materialization
	Joins
	Group-by, Aggregation and Arithmetic Operations
	Inserts/updates/deletes
	Indexing, Adaptive Indexing and Database Cracking
	Summary and Design Principles Taxonomy

	Discussion, Conclusions, and Future Directions
	Comparing MonetDB/VectorWise/C-Store
	Simulating Column/Row Stores
	Conclusions

	References

