
The Design and Implementation of the Berkeley Internet

Name Domain (BIND) Serverst

Songnian Zhou

Computer Science Divil'lion

Department of Electrical Engineering and Computer Sciences

University of Calilornia, Berkeley

ABSTRACT

Name servers are system processes that maintain databases of information

about objects existing in computer networks, and answer wser queries concerning

them. Naming services are becoming increasingly important as computers are

connected into networks and eventually into internetworks. This report describes

our design and implementation of the DARPA Internet name servers in the

Berkeley Unix environment. The naming service and the information it provides

are both distributed and replicated. User update queries, as well as retrieval

queries, were implemented, and zones of network information are kept up to date

by incremental zone refresh operations.

1. INTRODUCTION AND BACKGROUND

1.1. The Need for Network Naming Services

With the proliferation of computer networks and internetworb, more and more computers

are connected together through all types or communication media, ranging from eimple copper

wires to. .coaxial cables, microwave channels, and satellite stations. Thil'l trend opens up unlimited

opportunities Cor people to communicate with each other, to share computing resources, and to

develop new applications. Many organizations have connected their computer! together using

local area networks, and several long haul networks, such as the DARPA Internet, CSNET, ::1nd

Telenet, connect together numerous installations in the United States and abroad. The incre::l.Sil!g

use of personal workstations makes it possible to achieve Cast and predictable response but at the

same time imposes greater demand on network services, such as file servers, print serveJ'!I, and

network information servers and so on. The workstations have to be connected to networks in

order for them to share the network resources and to communicate with other users; the

usefulness of a stand-alone workstation il'l quite limited. It il'l not an exaggeration to say that our

era il'l the era or communications.

The first problem in communication il'l that or naming and addressing, i.e., o(how should ~he

party one wants to communicate with be named, and how its location be specified. Specifically, i.iJ

a large computer network environment, we are !aced with the problem of how to assign names to

the great number or objects in the network without causing any confusion, and how to provide

addressing information for them <{'!ickly and efficiently. An object in a network is any entity that

can be specified or invoked by its name. Hosts, printers, user mailboxes, software packages, and

processes are all examples of network: objects. The rapidly growing eize and topolo~ical

fl'hjs work wu partly !J>OD30red by the DelellSie Adnnced Reuevch Projects Agency (DoD), ARPA Order !':a.

-t031, ~mnitored by \he Na~ Eledronia System~ Command under Con\l"''rl No. N~C-0235. The views :1.:1d

conelusio11.1 conuined in \his documen~ aM! \hoee al the a.uthor t.nd should not. be interpreted u repreenting ofE~.:.l

policies, either ext~re.ed or implied, al the Delense Adva.oced Reses.rch ProjecU Agency oral the US Goveru.men~

Report Documentation Page
Form Approved

OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington

VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE

MAY 1984
2. REPORT TYPE

3. DATES COVERED

 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE

The Design and Implementation of the Berkeley Internet Name Domain

(BIND) Servers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California at Berkeley,Department of Electrical

Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Name servers are system processes that maintain databases of information about objects existing in

computer networks, and answer user queries concerning them. Naming services are becoming increasingly

important as computers are connected into networks and eventually into internetworks. This report

describes our design and implementation of the DARPA Internet name servers in the Berkeley Unix

environment. The naming service and the information it provides are both distributed and replicated. user

update queries, as well as retrieval queries, were implemented, and zones of network information are kept

up to date by incremental zone refresh operations.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

Same as

Report (SAR)

18. NUMBER

OF PAGES

25

19a. NAME OF

RESPONSIBLE PERSON
a. REPORT

unclassified

b. ABSTRACT

unclassified

c. THIS PAGE

unclassified

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18

-2-

complexity or networks makes it dear that such problems are significant enough to be stu\:!led

seriously. Their best accepted solution is the introduction or yet another kind or network service,

called naming $enJice or directory $ervice.

Naming services have been provided ever since the beginning or computer networks, often in

an Bd hoc manner. For example, in the early days or the DARPA Internet, a table or all the hosts

on the network together with their Internet addresses was maintained at a. central location and

distributed to every host. Every communication between two hosts involved searching the local

copy or this table. To avoid obsolescence, every copy or the table had to be updated periodically.

ftJ, the size or the Internet grew, it became obvious that such a table was unmanageable. What is

really needed is a systematic and distributed approach to providing naming services.

That or providing network addresses given a name is only one, albeit important, or the

services that can be provided by network name servers. For example, information about user

mailboxes, the locations and availabilities or various network resources such as printers, graphic

displays, and application software packages can all be maintained and provided by name servers.

Interprocess communication can also be assisted by name servers. A process that is ready to

communicate with other processes may indicate its willingness by registering with a name server

and another process ready to communicate with the first can find the address or the first process

by sending a query to a name server.

1.2. Network Naming Conventlona

The first problem to be solved for network naming service is that or naming convention,

that is, the set of rules that must be followed in aasigning names to network objects. In the past,

many methods have been proposed and used. The UUCP protocol, Cor example, adopted a

relative naming convention in which the name or an object is actually a concatenation of the

hosts that form a route from the source to the object being n:uned. Such a scheme is called

relative as the name or an object is not unique but rather depends on where it is used. Since

relative names are non-transferrable, that is, the name or an object ~ at one place cannot be.

used at another place without change, relative naming conventions are not convenient. Another

claas is that or ab,olute naming convention.,, in which every object is given a name that is unique

throughout the entire network environment. For instance, in the Grapevine system designed at

Xerox P ARC [Birrell et al. 82j, the name epace is a two level hierarchy and every object name is

the concatenation or two parts, a regi.5try name and a local name within that registry. While

such a echeme serves well in an environment like the Xerox internetwork, the two-level restriction

seems unreasonable for a more diversified environment with many organizations and differe:::tt

types or hosts. The DARPA Internet is such a case.

Another problem with naming conventions is that or naming authority. One way to solve

this problem is to create a central authority to which every request for a name is directed, just a.s

is done at the present time in the Arpanet. A name server at the Network Information Center

(NIC) at SRI International maintains 3 master database or the addresses of all the bOlSts on the

network, and answers queries from all sites. Such a. centralized scheme is simple and has been

widely used but has severe limitations. The central name server is a critical resource in tbe

network, and the reliability and performance aspects or this solution are unsatisfactory [Pickens et

al. 79j. It is highly desirable to distribute the naming authority to a number or regional agenta

while still maintaining the global uniqueness or names.

The hierarchical naming convention proposed by Su and Postel !Su and Postel 821 is a.

general scheme that meets both or the above two requirements. In this scheme, the name !!pace is

organized as a tree accordin& to administrative structures. Each node, called a domain, is

associated with 3 label, and the name of a domain is simply the concatenation or all the labels of

the domains from the root to this domain, listed from right to ldt and separated by dot.!. The

labels need only be unique under the eame parent, thus naming authority may p~tentially be

delegated at every domain. The whole space is partitioned into a number or areas called ;.;on~.

each etarting at a domain and extending down to the leaf' domains or to the domains where other

zones start. Zones usually represent human administrative boundaries and associated authorities.

-3-

For example, Berkeley may have a zone "ucb.a.rpa" and the computing center at Berkeley may

have a zone "cc.ucb.arpa" under "ucb.arpa", each being maintained independently by a

responsible perBOn, the zone mcmager. Such a scheme is general in that there is no limitation on

the number of levels of the domain space and the number of subdomains that a domain may have.

It is also distributed because each zone may have more than one name server that provides

naming service and maintains relevant information for the zone. From this point on, we use the

term zone to refer to an area in the domain space as described above, as well as all the

information concerning the objeet.! in that area.

1.3. · ~p A Internet Name Se!'Ven

Name servers are system processes that keep databases or information about objeets existing

in the ~etworb and answer user queries concerning them. CoUectively, name servers provide

network naming services to users. Moci.apetris at lSI has proposed a basic specification and

design for DARPA Internet name servers in two Requests for Comments, !Mock 83, lJ and [Mock

83, 2J. The Internet naming service is supported by a number or name servers that are distributed

throughout the internetwork. There exists a general mapping between the zones and the name

servers, that is, a zone may be stored at one or more name servers, and a name server may

contain zero or more zones. We call a name server containing a zone an authoritative name

!trver for that zone. It is authoritative for all the information within that zone and should

therefore constantly try to keep it up to date. For performance and reliability reasons, a zone is

usually stored in several name servers, the degree or replication depending on the frequency or its

use and its importance for network operation. The zone at the root of the domain tree, for

instance, may be highly replicated to avoid frequent remote queries and to be able to continue

operation when one or more name servers fail. The presence of multiple copies of the same zone

presents fundamental problems when updates occur. This will be discussed in the next section.

Besides authoritative zones, a name server also contains some cached information which can be

used to answer user queries but for which the name server is not authoritative. A time-out

scheme is used for such cached data. Notice that a name server may contain only cached data

but no zones. Such degenerate name servers are possibly useful on small machines like personal

workstations.

Information about network objeeta is stored as re!ource recortU (RR). Each resource record

consists or domain name, class, type and data fields. Every domain bas zero or more resource

records attached to it. Different kinds or information are distinguished by the type field. For

instance, resource records Cor host addresses have a type value "A" and those for user mailboxes

have a type value "MB". Two special types are used for domain space data management. The

"SOA", or Start Of Authority, type eignifies the origin of a zone, that is, the domain where a

zone starts; the "NS", or Name Server, type signifies the point of the delegation of authority. A

record or NS type contains, in ite data field, the domain name or the host on which resides a name

server that has the zone starting at the current domain. We will discuM the uses of these two

types or resource recorde in the next section. A complete list or all the currently defined resource

record types can be found in Appendix IV.

Beside5 name servers, the naming service has two other parts. One is the user interface

called the re!olver! which consists or a !roup or subroutine5 that can be invoked by the users.

Resolvers assemble querie5 on behalf' of the users, send them out to name servers, receive

responses from name servers and analyze them, and finally return answers to users. More

sophisticated resolvers also cache resource records and information about name server structure

for improved performance. There is usually one resolver on each host, and there may be several

versione of resolvers o(differing complexities on host.! o(different capacities. The other part or
the naming service is the set o(databases maintained by name servers. There is a separate logical

database for each zone and for the cached resource records. The relationships among the

resolvers, the name servers and the databases are depicted in Figure 1. The three parts or the

naming service deal with different aspects or it and euch a division or functionality facilitates

modular design and implementation. This paper will concentrate on the design and

implementation or the name server part. For descriptions of the design or the resolvers and the

--

- 4-

name server databases, ~ [Painter 84J and [Riggle 84J, respectively.

User Ca.lls

Resolver

Name

Server 1

Databases

UserCa.lls

Resolver

Name

Server 2

Databases

UserCa.lls

Resolver •••

•••

User Calls

Resolver

Name

Server n

Databases

Figure 1. Relationship betw~n the resolvers, the name servers, and the databases.

From the above description, it is evident that the design proposed by Mockapetris is

intended to be general purpose. A reasonable implementation or it should be able to

accommodate new applications without fundamental changes. For example, to store new types or

network information, we n~ only speeiCy new resource record types and modiCy a few sectious or

the name server programs iC special processing for such new types are required.

A version of the Internet name domain server has been implemented for the ~rkeley Unix

environment. While the basic protocol and specifications in RFC883 were followed in our design,

a number or modifications and extensions were made, mainly in the up(iate and the dom:Un data

management aspects. We discuss in detail such extensions and the design choices involved in the

next sections. In Section 2, we describe the algorithms Cor user query processing and the

management or domain space data. In Section 3, some implementation issues a.re discussed.

Future work is mentioned in Section 4, which is followed by the conclusions in Seetion 5.

J. USER QUERY PROCESSING AND DOMAIN DATA MANAGEMENT

The basic function of a name server is to provide information about network objects by

answering user queries. This will be discussed first in this section. In the specifications of RFC882

and RFC883, only retrieval queries are allowed. That is, users cannot change the contents of the

name server databases interactively. We feel that user update queries are neces~~a.ry and therefore

should be included. We will describe the basic design for domain data management first, then

discuss Berkeley extensions and design alternatives.

-

-5-

J.l. The Proeesain1 ot User Retrieval Queries

J.l.l. Basic Query Format

Both a query and a response to a query consist oC five sections. The first section is the

header, which contains a query identification number, a query type code, a response code, ~nd a

number or ftags, one of which, the authority flag, indicates, in a response, whether the name server

is authoritative for the resource record(s) requested. The second, or the quution section contains

a domain name, a class code, and a type code. The other sections are the answer, the name

server, and the additional sections, each containing a number of resource records. The uses of

these records are indicated by the header, but in most cases the answer section oC a response

contains records that provide an answer to the query; the records in the name server section

provide information about othe.r name servers that should be queried; and the additional section

contains pertinent information which is not strictly a.n uswer to the query. The header is always

present in a query or response, whereas any of the other &eetions may be absent depending on

whether they are needed or not. Figure 2 shows a schematic of the general query format. For

detailed information about query format and contents,~ [Mock 83, 2J.

Header

~ ~ Question Section ..: ~

$ ~ An.awer Section , ~

~ ~ Authority Section ~ ~

-;: ~ Additional Section ::: ~

Figure 2. General format or a query.

J.l.J. Determination of the Zone to Seareh

Since a name server may contain several zones, the first step in query processing is to decide

which zone to search. The zones of the domain space usually form a partition or the space, that

is, there is no overlapping between zones, and the whole space is covered by zones. Therefore, a

domain belongs to one and only one zone. The domain name in the question section is compared

with the origin or each zone in the server. The zone with the longest match is the only one in this

server which may possibly contain the domain being sought. For example, suppose the requested

domain is "d.c.b.a", and the name server contains zones with origins "a","e.c.b.a", and "b.a",

then the zone "b.a" is selecud. In this example, it is clear that zone "a" delegaud part of its

authority to zone "b.a" and that zone "e.c.b.a" is be!ide the domain being sought. It is possible

that no matching zone is round. In this case, this name server cannot decide whether such a

domain exists or not and its cache is searched for relevant resource records. At the very least, the

NS records or the root domain together with the 3-ddress records or the hosts on which they run

will be returned to the resolver to allow it to continue its search for an authoritative name server.

- 6-

2.1.3. Determination ot the Zone Authority

Suppose a matchin& zone is round. This does not necessarily mean that the name server is

authoritative for the domain. It is po6Sible that authority ha.s been dele&ated to another zone at

some domain a.long the path from the zone origin to the domain being sought. To cheek for this,

the server should search down this path for NS type resource reeords, which indicate the starting

point or another zone. Ir such a reeord or reeords are round, they are returned to the resolver

a.long with their address reeords. Ir no such NS reeords are found, then we are certain that this

name server is authoritative for the domain, if it exists. The zone database is searched Cor the

resource record{s) requested and they are returned if found or an error message is returned.

2.1·-'· Other Types ot Retrieval Queries

We described above the processing or the m08t common type or queries, the 8ta.ndard

queries. Depending on application requirements, other kinds of retrieva.l queries may be needed.

Two or them are described in the proposed specification. The first type is that or inver8e querie8,

which require inverse mapping from domain data to domain names. A name server is presented

with a specific data field o(a resource record and will search ita databases, probably through a

secondary index, for resource reeords with such data and return them to the resolver. The otb.er

type of query is that of completion querie8, which require the name server to expand a partial

domain name, like a local shorthand, into a full domain name according to a set of cloune88

criteria., and perform standard query processing on this name. Other type!! oC queries are aLso

po6Sible. For example, a particular application may n~ information about a.l1 the print serve~

within ali organization. This kind of "yellow page" service may make the addition of new types

of queries necessary. We decided not to include these types of queries in our implementation for

the time being, but we keep the door open Cor future expansions.

2.2. Iterative venu.. Recunlve Query Proceuins

In the a.lgorithm described above, queries are processed iteratively. That is, a name server

returns to the inquiring resolver either the requested resource records or information about other

name server(s) where the query should next be directed. It is the responsibility of the resolver to

follow the forwarding references until reachin& the name server with the information needed or

getting an error message bact. However, resolvers with limited Cunctiona.lities are sometimes

needed because of restrictions in the storage size and the computing power of the host. For

instance, a small machine such as a workstation may not be able to support a Cull-scale resolver.

In this case queries may be processed recur8ively. Ir the first name server being queried by a

resolver does not have the information, it queries other name servers trying to get the information

and eventually returns it to the resolver. Besides alleviating some or the burden or a resolver,

another advantage or recu~ive query processing is that it can facilitate cachin& or resource

reeords received (rom other name servers. Such records may be n~ed in the (uture, and multiple

queries can be avoided in that case. On the other hand, such a scheme blurs the clear functional

boundary between name servers and resolvers, since now the name servers have to be able to send

quer.ies to other name servers, just like resolvers. Recursive query processing ia optional, and is

not currently implemented in the BIND servers. We will study recursive query processing

together with caching problems in more detail in Seetion 4, where future wort will be discussed.

2.3. Domain Space Data Management

2.3.1. The Design PropoH<i ln RFC882 and RFC883

2.3.1.1. Domain Data Update.

In the proposed design, users o(the n:1me servers cannot update resource reeords directly.

They can only retrieve information via queries. For every zone, there exists a text file c:illed the

zone ma8ter file, which lista a.l1 the reeords in the :one in a well defined format. When a name

server is booted, it reads in the specific master files and initializes ita zone databases. .All chan&es

-7-

to a zone are made to its master file, usin& a text editor. This can be executed only by the zone

manager. Therefore, any user who wanta to make a change· to the zone data must submit a

request to the zone manager, who determines whether such an update is permitted, and edits the

master file on the user's beha.II. To keep the zone database up to date, the name server must

periodically check if its master file has been edited recently. It so, it reads in the muter file to

create a new zone database. When this is done, a lock is set to prevent user queries, and the new

database is switched into use, the space of the old database bein& reclaimed.

Clearly, the above scheme is simple and reliable. Since the legitimacy or updates is checked

by a human manager, the authentication and access control mechanisms required Cor the name

serve~ ·ean be greatly simplified. But such a simplification is achieved by imposing severe

restrictions on the maintenance of domain space data. The update operations are performed

manually and therefore may take quite a long time, especially so if the manager is temporarily

unavailable. Moreover, since the loading or a zone database which contains a large number of

resource records may be expensive, the operation cannot be performed very frequently, and this is

the cause or yet another delay in the realization or an update.

%.3.1.%. Support for Replicated Zones

As mentioned in Section 1, most zones are stored in a number or name servers. This means

that several name servers may be authoritative for the same zone. The purpose of replication is

obtaining better performance and greater availability. Such improvements are not achieved

without costs, however. Beeause or the existence or multiple copies or the same zone, efforts must

be made to keep every copy up to date and consistent with the others. Two problems are

involved here:

1} How does each name server which is authoritative for a zone get ita resource recordsT

2) How are updates ·to the master file propagated to each or its database images!

One way or solving these problems is to distribute the master file to each name server host and let

the name server there read in the copy of the muter file. This can be done manually by the zone

manager periodically or after a certain number or updates to the master file. Yet a better

solution would be to let the name servers themselves perform the data propagation. In the

proposed design, one or the authoritative name servera is distinguished from the others in that this

server loads its database directly from the master file, while the others contact this server to get

the resource records from its database. We call the name server having access to the master file

the primary name urver for the zone, and the others the &econd4'11 name &erver&. When each or

the secondary servers is booted, it sets up a connection with the primary server and sends over to

it a maintenance query identifying the zone it desires. It the primary server has loaded such a

zone and the query is (rom a legitimate server, it sends the nodes in the zone one by one. The

secondary name server receives these records, creates a new zone database and then performs a

switch just as described before in the previous subsection. Independently of whether or not such

an initial zone transfer is successful, the secondary servers will thereafter perform the same zone

transfer periodically. Note that the initial zone transfer of a secondary server may be

unsuccessful either because the primary server is not alive or because it dies in the middle or the

transfer. Some savings can be achieved by not transferrin~ a zone to the secondary servers if the

primary name server has not loaded a new version or the master file since the last transfer.

~:milarly, the primary server need not load the master file if this file has not been edited since the

last loading. For brevity, we refer to the copy or a zone residing in its primary server as the

primary zone, and to those in the secondary servers as the &econdary zonu.

The above description is not very detailed, but we can already ~ a number of problems.

First or all, a whole zone bas to be transferred to each secondary name server to keep it up to

date. Note that a zone may contain a large number or resource records. For example, the

Berkeley zone may contain several dozens or hosts and servers, hundreds of workstations, and

hundreds of user mailboxes a.nd user aliases, adding up to several thousands of resource records.

In this case, whole zone transfers may impose a heavy load on the network and the hosts

involved. Measurements and experiences with distributed information systems have shown that

-

-8-

updates are much le58 rrequent than retrievals [Terry 84J. This is reasonable in our environment

since lnOSt or the objects, like boat addresses, user mailboxes, and service ports, are relatively

stable, and do not change over long periods or time. A whole zone that is tran.5Cerred may differ

(rom the copy that already exist& on a secondary server only by a few resource records, while the

rest or the records are simply copied over. ~ an example, suppose the Berkeley zone is stored in

a secondary server, and during the refresh interval only ten or the one thousand records are

changed. In this case, 99% or the information transferred over the network is not needed by the

secondary serven1.

A second problem with the proposed design is that, in every :r.one transfer, resource records

are transmitted node by node using reliable communication protocol, such as TCP fPoetel 81J.

Since the overhead or processing a message Cor transmission is essentially independent or the

message size [Almes and Lazowska 79J , heavy load may be placed on the communication

protocols.

Because or the deficiencies in the update and replication malia!ement or the original design,

we decided to make some modifications and extensions in the Berkeley implementation. These are

discussed in the next section.

2.3.2. The Berkeley Modlfteatlona and Extenalona

2.3.2.1. Interactive UHr Updates

From the above description or the proposed design, we conclude that the latency or domain

data updates may be intolerably long. This is even more the case il information with a short

expected liCe, like the communication porta or a proces5 used in process rendenous, is supported

by the name serven1. Here the problem stems rrom the human involvement in update operations.

In the Berkeley implementation we automated update operations by permitting user upd::~.te

queries. Three types or the queries were defined, a.s shown in Table 1.

.
OPERATION OPCODE SEMANTICS

addition UPDATEA add a RR, return NOC~NGE il already exists

deletion tTPDATED delete a RR, return NOCHA.l'lGE iC nonexistent

modification UPDATEM replace old data section or RR with new one atomic3.Uy

Table 1. Update query types and their semantic!!.

The rormat or update queries are the same as that or standard queries, and the resou::c~

records to be added or deleted are stored in the additional section. For modification operations,

both the old and the new records are provided to racilitate complete error checking. We require

that the old and new records have exactly the same domain name, cla.sa, and type, but di!rer in

their data fields. We feel that this is adequate, as modifications are meant to be atomic

operations. Indeed, il di.lferent domain names and/or classes are allowed, the operation may

involve two zones, and increase the hazard or leaving the database in an inconsistent state ~· a

crash occun1 in the middle o(the modification. Such more general kind o(modification c:1n alway!!

be performed by doing an addition followed by a deletion. So, we 1~ no functionality by

imposing the above restriction.

It is possible that the response to an update query is lost because the communic:J.tion

between resolven~ and name servefl! normally ll&eS connectionless protocols, 11uch a.s data~r:J.ms

-

-9-

[Postel 80j. In such cases, a resolver may time out and send the update query again. This should

be tolerated a.s a (act o(lite. Instead o(returning an error message in such a case, we decided to

define the new response code "NOCHANGE". For addition, it indicates that the resource record

is already in the database. For deletion, it means that the record is absent, and, Cor modification,

it means that the old record is absent and the new one present. Error checking is performed a.s

carefully a.s possible to ensure consistency in the zone database. No redundant resource records,

that is, multiple identical records in the same zone database, are permitted. This restriction

mates the implementation easier and the semantics clearer, while causing no foreseeable damage

to the generality or the naming service.

An important question is which name servers can accept update queries. Although we can

allow all the authoritative name servers to accept updates and operate on their copies or the zone

databases, this scheme would increase the system's complexity significantly. Propagation or

updates becomes a serious problem. Suppose that there are n authoritative name servers. II we

perform the zone refresh operations periodically, every copy or the zone may contain some recent

information that none or the other name servers has. Therefore, in the worst case, n{n-1) zone

refreshes will have to be performed during every period. II we decide to propagate each update

immediately, n-1 transfers are needed for each update. Since update propagation is crucial to

name server operations, we need to use reliable communication protocols, lite those which

establish virtual circuits [Postel 8Ij. For each zone refresh operation, a connection would have to

be set up between the two parties involved. Such a connection is expensive, and it is desirable to

minimize the frequency or zone refreshes while still providing timely information to user!. A

reasonable solution is to buffer the updates and propagate them in batches. We will discuss our

approach later.

Besides causing potential performance degradation, allowing multiple name servers to

process update queries may even create logical errors. As an example, consider the following

scenario. A user decides to modify a resource record. He performs an update query at one site in

the network and succeeds. He then goes to another site and discovers that his previous

modification was wrong. So, he performs another update query which, unfortunately, goes to

another name server. These two updates will eventually propagate to a third name server.

However, because or the asynchronous nature or the propagations and the random communication

delays, the second modification may arrive before the first. As a result, now the third server

database contains a wrong record but gives the user no warning.

Considering the above problems, we decided to restrict all updates to be directed only to the

primary name server, the server which derives its zone data directly !rom the master file. Now

the picture becomes much clearer. The price we pay is possibly one more query Cor a user update.

II updates are relatively infrequent, as reported in !Terry 84J, such a price is probably easily

affordable. The details or our de5ign are d~ribed below.

2.3.2.2. Incremental Zone Refresh

The decision to allow interactive user updates and to require updates to be performed only

through the primary name server changes the original picture or domain data management

drastically. First or all, the role of the zone master file becomes much less important. Now, the

most up-to-date image or the zone data is not this text file but rather the zone database of the

primary server. The only reasons that the master file is kept now are to provide a source or zone

data for loading the database when the primary server is booted for the first time or it the zone

database is unrecoverably damaged, and to provide a human readable version of all the records in

the zone which may be slightly out of date. Instead of calling it the master file, we call it the

backup file o(the zone. At appropriate times, for instance at regular intervals or &fter a certain

number or updates, the primary name server dumps its database to create a new version of the

backup fib.

While describing the proposed de5ign of zone update propagations, we stated that it would

be grossly inefficient to transfer a whole zone from the primary server to each secondary server

Cor every re!re5h operation. This would be even more the case it the nodes o(a zone are

- 10-

transferred one by one. We decided to use incremental refre8h queri~ inetead or whole zone

transfers after the initial transfer. When an update arrives at a primary name server, in addition

to performing the update to ita database, the server also records the update in a data structure

called the update li~t. Each secondary server periodically requests a connection to the primary

server and sende a refresh query identifying itself and the zone desired. The primary server then

places aU the updates since last refresh Cor this secondary server into the answer section or the

response and sends it back. Multiple messages will be used iC there are too many updates to be

stored into one response message. Pointers into the update list are maintained Cor each secondary

server to k~p track or how much or the update list this server has received, and the storage

occupied by update records that have been distributed to aU the secondary servers is reclaimed.

The structure or the update list and its management will be discussed in the next section.

Performance-wise, the incremental refresh echeme ha.s t~o advantages. One is that the

whole zone transfers are avoided, thereby reducing network and h06t load significantly. The other

is that the updates are propagated in batches, and their frequencies are controlled by each

secondary server, 50 that frequent connection costs are avoided. However, the timeliness or

update propagation is atrected. This is remedied by defining an "important" class or retrieval

queries. We designate a bit in the header or a query as the prima111 required, or PR, ftag. H this

ftag is set in a query, a secondary server for the zone will not answer it but rather redirect it to

the primary server where the m06t up to date 'information exists. Thus, without sacrificing

essential functionality' we have reduced the frequency or zone refresh operations.

Four observations are in order here. First, the secondary servers for a zone are used as

caches, i.e., used to improve performance and accessibility. They get their initial data as weU as

all the updates from the primary server. Data propagation has a radiation pattern, Bowing out or

the primary server to all the secondary servers, and to the backup file. Secondly, absolute data

consistency among aU the copies or the zone data is not guarant~; instead, we ensure only the

eventual convergence or the data. Such a relaxation or the multiple copy coneistency requirement

seems tolerable in our naming service environment, a.nd greatly simpli.6es the design, as well a.s

improving system efficiency. and service availability. Thirdly, the terms primary servers and

secondary servers are meaningful only with respeet to a particular zone. While a server is

secondary Cor one zone, it may well be primary Cor another. This generality prom~ to make the

name serven highly adaptive to working requirements imposed by organizational and

administrative structures. For instance, an industrial corporation and its research division may

have separate zones and name serven and the research division server may have the zone for the

corporation as a secondary zone, vice vena. Lastly, it should be pointed out that permitting

interactive user updates substantially increases the complexity or the authentication and access

control mechanisms needed in order for the name serven to be usable in the real world. The zone

manager definitely would not appreciate it iC an "ordinary" user deleted his mailbox, or modified

the root name server record. No authentication and accesa control has been implemented in the

current venion or the BIND servers but we discuss the problem briefly in Section 4. In Figure 3,

we show the name servers' structure in relation to a particular zone, and the data propagation

pattern.

2.4. Compatlblllty wlth the Prop<)Hd Deslsn

The Berkeley extensions to the proposed lSI design are based on functionality and

performance considerations. The Berkeley implementation is upward compatible to the propo&ed

design 50 that name servers or difrerent implementations can maintain secondary zones for e::~.eh

other and communicate with each other using the same protocol. We shall now discuss two

problems that need to be resolved for the Berkeley implementation to achieve Cull compatibility.

Firs~ in the lSI design a serial number field in the SOA type resource record Cor a zone is

incremented every time that zone is reloaded (rom its master file. A secondary server ready to

perform a refresh operation will lint retrieve this SOA record from the primary server and

compare its serial field with the serial field in its own SOA record. H the two are equal, no new

version o(the master file ha.s been loaded since the last refresh, and therefore the zone need not be

User Updates

Initial
Loading

Dumping

Backup File

- 11-

Secondary
NS 1

Secondary
NS 2

•
•
•

Secondary
NS n-1

Figure 3. Name server structure in relation to a particular zone.

transferred. In the Berkeley implementation, every user update query changes the content of a

zone database, and thus corresponds to the loading or a new version of the master file. Therefore,

we increment the serial number or the zone with every update. For efficiency, we may not want

to increment the serial number after every update but only after a certain number of updates.

This number or updates is settable to allow a balance to be reached between the timeliness or the

information in the secondary servers and the frequency or zone refresh operations.

The second difference is the way maintenance queries are processed in the two designs. A

Berkeley version primary server should be able to answer maintenance queries from a secondary

server or the proposed design. Two sets of routines are provided, and the type or the secondary

server can be detected by its first query over a virtual circuit connection. For a Berkeley type

server, the query operation code in the header is zor--c'EINIT or ZONEREF, and for the propo5ed

implementation, it is QUERY with the type field in the question section set to SOA.

Similarly, a secondary server or the Berkeley implementation must be able to refresh its

zone from a primary server or the lSI design. When first started, the Berkeley type server will try

a ZONE~1T query and get an error message back. It can then switch protocol to get the zone

and initialize its database. From this point on, the secondary server will use the same protocol for

every maintenance query for the zone.

The two different styles or zone transfers have effects on the underlying databases, and are

discussed in [Riggle 84J.

3. SOME IMPLEMENTATION ISSUES

3.1. Name ~erver Operation Overview

In this section we present a general des-cription of the operation of a name server and

identify a number of issues to be discn~ in later sections.

When a name server is first started, it reads in a boot file which ~pecifies all the zones that

this server has, followed by a number or resource records to be loaded 3.8 the initial contents or

the cache database. These records usually provide information about the name servers of the
---...._

---·

- 12-

higher level dom:Uns so that this server can forward a query that it is unable to answer. Then the

name server loads its zone databases in order. For a primary zone, its backup file speeified in the

boot file is used as the source or the data. For a seeondary zone, the server tries to ~et data from

the zone's primary server. After all zones are taken care or, the name server creates two

communication ports with a well-known port number. One is a datagram port for reeeiving user

queries; the other is a virtual circuit port for reeeiving maintenance queries, that is, initial zone

transfe~ ~nd zone refresh queries. Periodically the name server is interrupted by a timer that is

set at the server initialization time and determines whether the dumping intervals for its primary

zones or the refresh intervals for its secondary zones have expired. U so, it acts accordingly. It

should be noticed that each zone has its own dumping or refresh interval. Appendix ill provides

an annotated list or the name server's program modules and functions.

3.2. Name Server Inltlalbatlon and Data Structures

In order Cor a name server to be able to start its operation, a minimal amount or

information about its environment has to be provided. This is included in the boot file, which is

read in when the name server first starts. Some data structures are initialized that will later

direet all of the name server operations. The specification or the boot file's format is given in

Appendix I. For each zone, a reeord structure is created that includes all the relevant information

about the zone.

3.3. The Proceaa Structure of Name Servers and It. Impact on Server Operations

~ shown in the above description, a name server has to carry out the following three

activities:

1) user query proc~ing: both retrievals and updates;

2) zone data maintenance: periodically writing primary zones to backup Iiles and

refreshing ~ondary zones;

3) name server maintenance query processing: both zone transfers and incremental

refreshes.

Ideally, we would like to have multiple processes cooperating to perform the5e operation!;

for example, there could be one for user query processing, one for maintenance query processing,

and a third for zone data maintenance. In this way, we would achieve concurrency and thus high

availability or naming services ~ause user queries and server refresh queries can still be

processed during maintenance operations. Such cooperation requires that the processes be able to

share zone databases and name server data structures. For example, the user query process will

perform user updates and store them in the update list to be used later by the maintenance query

process for propagation. Unfortunately, this is very difficult to implement in Berkeley Unix

!LetHer e:t al. 83J, since each process bas its own private address space, and thus no memory

sharing between processes is possible. Communication between processes can be realized by

shared files or by messages, but they either fail to meet our needs or are too inefficient. For

simplicity, we chose to use a single process for a name server and to multiplex the various

activities within that process. Although some degree of par:illelism can still be achieved by

rorking off a child process to perform a specific task while keeping the parent available to user

queries, th~ parallelism is bound to be very limited ~ause the child now has a copy or its

parent's address space and therefore any change in the parent's or child's address space will not

affeet. the address space or the other. Moreover, a "fork" operation in Unix is fairly expensive for

the whole address space or the parent hat~ to be copied over. The newer system call "vfork" i.s

not appropriate here. Although the address space or the parent process i.s not fully copied with

"vfork", no parallelism can be achieved as the parent proct"SS will be suspended while the child

proce55 is using its resources.

The deeision to use a single process for the name server has important implications on its

behavior. For example, maintenance queries and user queries cannot be processed simultaneously.

A name server usually waits for a query to arrive by initiating the blocking call "8elect". When

--~---.-

- 13-

the call returns, the server determines what kind or query baa arrived and proceeds to serve it. If

both maintenance and user queries a.re waitin&, maintenance queries a.re taken care of first, since

they are considered more important. It should be noted that a maintenance query may take a

long time to process, especially an initial zone transfer. But since durin& normal operation zones

at different servers need only be refreshed, and the number of updates in each response to a

refresh query is not likely to be la.rge it updates a.re infrequent, we do not expect to suffer the

serious degradation in user query procesaing that would be caused by long delays.

However, queries may be delayed when a name server is performing zone data maintenance.

As mentioned above, a name server is periodically interrupted to maintain ita zone data. For a

primary zone, its dumping interval is decremented by the interrupt interval and it the value

becomes negative, the whole zone is dumped to the backup file. This is a time consuming

operation it the zone contains a la.rge number of resource records. Similarly, for a secondary zone,

ita refresh interval is decremented and a refresh query is sent to the primary server it the value

becomes negative. This involves requesting a connection, sending out the query, waiting for the

response, and performing all the updates in the response. Again, this may take quite some time.

Such operations have to be performed on every zone and, in the mean time, all the incoming

queries are queued up. Fortunately, we expect that zone data maintenance operations will be

performed at relatively long intervals, and hence their impact will be felt only occaaionally.

As discussed above, we recognize the constraints imposed by the single process structure of

the name servers; however, since such a decision is based on the operating system characteristics,

there seems little that we can do about it. Ir in the future shared memory between processes is

implemented in Berkeley Unix, the name servers may be reimplemented with a relatively small

amount or effort to take advantage or that feature. We feel that the constraint& or multiplexing

several activities within a single process is tolerable. To verity this, performance meaaurements in

a production environment are needed but are unfortunately unobtainable at present, eince no

applications of·the name servers have been implemented.

3.4. The Update Llat and Ita Management

An update list is created and maintained by a name server for each of its primary zones to

record all the recent updates to be propagated to the secondary servers. There a.re two

requirements for its data structure:

1) It should be flexible enough to accommodate the fluctuating rates of update queries

without losing any of them.

2) It should not waste too much space. The space occupied by updates that a.re already

propagated to all the secondary servers should be reclaimable.

The first data structure we considered was a cyclic list. This is a static data struct\!re

containing a number of records for: storing updates. A pointer to the next available record is kept.

When reaching the end of the list, this pointer wraps around, overwriting old records with new

ones. The size of such a list is difficult to decide. It it is too small, we run the risk of overfiowii:.g

the list. It it is too large, memory is wasted. Clearly, a cyclic list doe! not meet the requirements

stated above.

The data structure we used in the Berkeley implementation is shown in Figure 4. It is

essentially a chain of structures, each or which contains a number of update records. This chain

grows and shrinks as new updates come and old updates go. The primary name server maint::~.ins

a pointer in the corresponding zone record, called the primary pointer, which points to the next

available location for updates, a.s well as a number of pointer5, one (or each secondary server, to

remember where the last refresh operation of that secondary server stopped. Such a pointer i.s

called a secondary pointer and is initialized to the primary pointer when an initial zone trans{er i.s

performed Cor this secondary server. When the secondary pointe.r that lags behind the most

passes over a structure, the space occupied by the structure is reclaimed.

When first started, the primary server ha.s no knowledge about the secondary servers except

lor the NS type resource re<:ords in the zone. At the time when an initial zone transfer request

-

Primary
Pointer

-14-

I

I

J,

... ~

-

-

Secondary
Pointer 2

Secondary
Pointer n-1

Secondary
Pointer 1

Figure 4. Data structure for the update list of a zone

comes, the primary l!!erver checks whether there i8 an NS re!!Ource record with the data field being

the secondary name l!!erver domain name provided in the query. Ir so, the zone is transferred, and

a new record is created for this secondary name l!!erver to store ita secondary pointer. Such

records form a chain, and a pointer to this chain is kept in the zone record. For every

maintenance query, thi8 chain is searched to get the appropriate pointer into the update list.

More uses of the chain of records will be discussed in the next section.

3.5. Recovery In Cue of Ha.t Cruh

A difficult problem that distributed systems designers have to solve is that of recovery from

network partitions due to failures in communication media and/or host crashes. The LOCUS

project at UCLA, for example, spent large amounts or time and talent trying to solve such a

problem for their distributed tile systems [Walker et al. 83J. Fortunately, in our case, the dear

distinction between the primary server and the secondary l!!ervers for a zone greatly simplifies the

problem. Below we study the problem !!!eparately (or primary and secondary eerver!.

3.5.1. Crash Recovery of Primary Name Serven

When the host on which a primary server for a zone runs crashes, the server dies, but the

zone database is usually preserved on disk. The secondary l!!erver! for the zone will keep trying to

connect to the primary l!!erver at every refresh interval for the zone. After a certain number of

unsuccessful tries, the secondary servers will understand that the primary server must be down.

In such a case, the secondary l!!erver! should move the whole zone to their cache databa.&ea and Ul!!e

a. time<>ut mechanism to delete them eventually. A eecondary l!!erver, however, ehould not &ive up

the zone completely. It should keep trying to connect to the primary l!!erver, probably at much

longer intervale than those used for the refresh operation. Once the primary l!!erver is restarted

alter a.· host crash, it will check for the existence or the zone database, and will not perform an

initial loading from the backup file if the database already exists. The next connection attempt

by a secondary l!!erver will succeed, a.nd the whole zone will be transferred, thus resumin& normal

service. It should be noted that a whole zone transfer has to be ~rformed in this case since the

primary server might have lost some of the recent updates that have been proyagated to the

secondary servers. This may happen if the database on the permanent stor2.ge is badly damaged

or the most recent updates have not been fiushed out to the permanent storage. Therefore, to

achieve consistency, all the secondary zones should be reinitialized to the primary zone, even ii

- 15-

this means losa or &<>me updates.

It is pos!ible that the host or a primary name server experiences a short breakdown, and

that the secondary servers do not notice it. When the primary server reeeives the next refresh

query from a seeondary server, it finds that it does not have such a seeondary server on its chain

or seeondary servers (or the zone since this chain was in memory and therefore was lost in the

breakdown. In this case, the primary server refuses the query and forces the secondary server to

perform a whole zone transfer. The old copy or the zone database in this secondary server should

be replaced. This meehanism alro prevents a malfunctioning ·secondary server (rom tryin& a

refresh operation before a whole zone transfer.

3.5.:. Crash Recovery ot Secondary Name Servers

Recovery or a seeondary name server is much simpler. When restarted, such a server

performs a whole zone transfer to replace iu old zone database. \\'bile zone refresh before zone

transfer is prohibited by the primary server, multiple zone transrers are allowed since a secondary

server may experience a brier breakdown that is not deteeted by the primary server. A&ain we

notice here that every secondary server is responsible for the maintenance or its own zones, and

the primary server simply checks the validity of a maintenance query when it arrives, but makes

no activ-~eft'ort to keep the secondary servers up to date. This is a form or distributed

management or replicated data, and is designed to relieve a primary server (rom part or its

burden.

4. FUTURE WORK

4.1. Authentication and Aeeesa Control

Name servers store and manage critical information in networks, and therefore the access to

server databases must be well controDed. Authentication deals with the verification of the real

identities or users. The simplest example of authentication is the user name-password meehanism

that most computer systems use to verify the identities or their usen. Accesa control specifies the

information that a user is authorized to access, and the types or permitted accesses. In an

academic environment, it can be expected that most or the naming information, lite host

addresses, user mailboxes, and server ports, may be readable by all users, hence the read access

control is not a serious problem; however, with user update queries implemented in the BU\TD

servers, authentication and access control ~ome indispensable.

No authentication and accesa control mechanisms have been implemented in the BIND

servers, but this must be done to make these servers usable in a production environment.

4.%. Caehlng

Internet naming services will be widely used for many applications, and information about

all the objects in the whole DARPA internetwork will be available to any authorized user. This

may mean a large volume or remote access traffic. Every time a student at Berkeley, for

example, wants to send mail to MIT, the remote MIT name server baa to be queried to &et the

location or the destination mailbox. As in other information systems, for example in the

Grapevine system developed at Xerox P ARC [Birrell et al. 821, we can expect locality in naming

information accesses [Terry 84J. There are two aspects o(locality. One respect is temporal

locality, that is, information tha.t is being used is likely to be used again in the near future. The

other is spatial locality, that is, information near that cur::t.ntly being accessed is likely to be

needed soon. Considering the large ratio between the time for a remote accesa over a long-haul

network and that for a. local access, it makes sense to c~he frequently u~ remote information in

local name servers for improved performance.

Two problems arise with respect to caching. The first ha.s to do v.rith the granularity. The

smallest cachable unit is a resource record. Other choices include a node in the domain space, a

whole zone, or a group or zones. The second issue is the management or cached data. It should

be pointed out that caches in name servers are usually read-only, and that there are no rigid

- 16-

limits on their sizes as in hardware caches. Belew we investigate several approaches to caching.

4.2.1. Seeondary Zones

At. we observed in Section 2, the replication of a zone on several name servers is a form of

caching. Each or the secondary servers gets the zone from the primary server and thereafter

refreshes it from the primary server. Here the ~ranularity or caching is a whole zone, and the

cached data is managed by the refresh scheme. This form o(caching should be used with

prudence, for the cost of maintaining a secondary zone is relatively high. A situation in which

this type of caching is appropriate is that of two organizations, each having its own zone and

having !tiQng ties of cooperation, for example, two research facilities of a big corporation, or two

universities with extensive academic exchanges. Other factors also have to be considered in

establishing secondary zones, e.g., organizational structures and accesaibility requirements.

4.2.2. Database Shared with the Resolvers

Caching can be done in the resolvers; resource records returned from queries are both

returned to the users and stored in a local cache. Painter discusses this subject in [Painter 84J.

Caching in resolvers is bound to be limited, since a resolver is a collection of subroutines to be

linked into user programs that use naming service;s, thus, caching is done on a per-process basis.

In RFC883, Mockapetris proposed the use of a database shared between a name server and a

resolver. The shared database contains both zones that are maintained with a refresh scheme and

resource records acquired by the resolver and maintained by a timeout mechanism. We feel that

such a shared database approach complicates the clean functional separation between the

resolvers, seen as local agents that make queries on behalf of the users, and the name servers,

which are system processes providing naming service; furthermore, this complication does not

seem to be accompanied by any obvious benefits.

4.2.3. Caehlng by Recursive Query Proeesalng

We mentioned in Section 2 that user queries are usually processed in an iterative fashion. U

the first server being asked cannot answer a query, it redirects the resolver to another server, and

will not involve itself in resolving that query any longer. Thus, the next time the server receives

the same query, the same expensive iterative steps will have to be performed again. Based on this

observation, it is reasonable to suggest that the resource records that the resolver finally receives

as the answer be stored in the cache of the first server. One simple way to do this is to have the

resolver send the records to the first server. One more mesaage is needed to do this. Moreover,

the roles or resolvers and name servers become more complicated. In addition to regular queries,

a resolver can send information to a name server. Whether this method can provide better

performance depends on the user's access behavior. U there exists a strong temporal locality, this

method may appredably reduce remote query traffic. Otherwise, the co6t of one more message ~r

remote query may outweigh the occasional benefits. The advantage or this method is obviously

its simplicity.

A more e:egant way to do caching is by recursive query processing. Instead of returning a

forwarding reference, the first server without the required information will track down a chain of

servers to find this information (or the resolver. The resource records are also stored in the local

cache. This means that a name server has to be able to act as a resolver too.

While being conceptually elegant, recursive query procesaing has two problems. Fir!t, the

response time that a resolver can expect for a query is more unpredictable. U the requested

information is stored in the server that is first queried, a response is usually returned quickly. U,

however, this server does not have the information, then it will query other server! trying to

resolve the query. In this C:l.Se, the resolver h~ to wait a variable amount o(time without

knowing what is going on. Secondly, for an implementation like ours in which a single process is

used (or each server, the potentially long delays due to recursive query processing may be

unbearable. Forking a child process does not help much in this case, for the two processes will

have completely Sf'parate address spaces.

----·-·-

,.

- 17-

From the above discussion on the possible ways to do caching, we conclude that there is no

single method that satisfies aU our requirements. A combination or them may give better result!.

Caching is a difficult problem in general, but is probably indispensable to achieve acceptable

performance in a production environment. ~ a. research topic in ita own r~ht, caching should be

given a substantial amount or attention.

4.3. Poulble Applleatlona

BIND servers are intended to be a general purpose facility that can incorporate many types

of applications. For each application, specific user interface programs will be written that invoke

naming services. ~ new applications are added, the name servers should remain relatively stable.

Below we discuss a (ew o(the possible applications, most of which are replacements and

extensions o(currently available system services, often implemented in an ad hoc manner. We are

confident that as experience with name servers and their uses grows, more applications will be

proposed and implemented.

4.3.1. Internet Ha.t Addreu Blndln1

The classical use of name servers is to perform the mapping from host names to their

addresses. Currently, a complete table or aU the hosts in the DARPA Internet and their addresses

is maintained by the Network Information Center and distributed to every host. When the

address or a host is n~ded, the local copy has to be searched. Name servers can easily perform

this function in a distributed manner by assigning each host to a domain in the domain space and

storing an address type resource record Cor it. The lookup or an addresa is a simple name server

query. Local servers can cache frequently used remote host addresses to improve performance.

Similar information, such as the network addresses or file server and print server ports, can aLso

be maintained.

4.3.2. Uaer Information and Mailboxes

General information about users, such as their addresses, telephone numbers, and job titles,

is often useful. In 4.2BSD, such information is stored in the password file and accessed by the

"finger" command. We can create a new resource record type, say UINFO, and store the above

information into these records. For each user, a new domain within his/her organization can be

created, probably with his/her login name. Organizing users according to administrative

structures detaches them from specific hosts and therefore offers greater flexibility and ease oC use.

Similarly, information about user mailboxes, mailing lists, and user aliases can also be supported

by name servers.

4.3.3. Procesa Rendezvous

Interprocess communication can be assisted by name servers. Processes willing to

communicate with each other may register themselves with name servers and find potential

partners there. A process can be represented by the host on which it runst and its communication

port number. The inclusion or relatively transient information like that about processes poses new

challenges to the name server's database management. Timeliness or the information now

becomes critical. We have not implemented process rendezvous, and much study is called Cor in

this area.

4.4. Performance Meuurement and Evaluation

Many or the design choices we made Cor the BTI\TD servers were based on ~umptions :>.hout

the working environments or the naming service, and the naming information access patterns.

Although these assumptions ~m reasonable, they must be verified U!ing measurement data

tHere we L'J:!UIDI! th&t 1. proees resides on one host throughout it.a life time. A more 110phisti~ sc:heme is n~ed

if' process miq&tion is &llowed.

- 18-

derived from production environments. Unfortunately, no application using the Bll\ID servers has

been implemented yet; thus, a comprehensive evaluation of the server's performance has not been

possible.

&. CONCLUSIONS

We have described the design and implementation or the Berkeley Internet Name Domain

servers. A number or important design dedsions have been made, including the incorporation of

interactive user update queries, the distinction between primary and secondary name servers,

which is useful in update query processing, the management scheme for replicated zones, the

protocol Cor increment&! zone refresh, and the elimination of master files Cor zone data. These

decisions were based on experiences obtained from other distributed information systems and on

intuitive arguments. While the decisions seem reasonable, their validity must be and can only be

tested by measurements of the naming service operating in a production environment. Even

though the above decisions represent departures from the spedfications in RFC882 and RFC883,

compatibility nevertheless must be maintained so that name servers of diKerent implementations

can communicate with each other. This was achieved by implementing two sets of routines Cor

maintenance queries, and automating the switching between diJferent protocols. The crash

recovery problem has been dealt with in a simple manner and the adequacy or the solution is to

be verified. Throughout the implementation of the name servers, the constraint of using a single

process Cor each server has been painfully Celt. It may still be early to fully appreciate its

influence.

The basic name servers are running, and the proposed design has been proved to be sound.

We have made the very important first step towards an extensive, easy-to-use computer network

naming service. With the backbone established, various applications can be built, and the name

servers used in production environments. The experiences to be derived from using the name

servers will shed light on the ~t direction for future work.

A number of important issues are still to be resolved, however. Since the user update

queries have been implemented, the authentication and access control problems must be solved in

order Cor the naming service to be usable in the real world. Caching schemes are to be designed

Cor the purpose of achieving satisfactory server performance in a widely distributed internetwork

environment. Once the name servers go into regular use, their performance should be measured

so that various design and implementation decisions can be evaluated, and the servers can be

tuned for optimal operation. Great efforts are still needed to make the Bll'ID servers an integral

part of a distributed computing environment.

e. ACKNOWLEDGEMENTS

I would like to thank Professor Domenico Ferrari, my research advisor, for his support of

this project and for his guidance. Spe1:ial thanks are due to Profe560r Luis F. Cabrera, my second

reader, whose many criticisms and suggestions have made this report more readable. Douglas

Terry motivated the BIND server project and provided invaluable advice throughout its course.

The discu!!ions with Mark Painter and David Riggle have been very helpful. The financial

support of the Defense Advanced Research Projects Agency is gratelully acknowledged. The

responsibility for any errors in this report lies with nobody else but myself.

7. REFERENCES

!Aimes and Lazowska 79]

Almes, G. T. and Lazowska, E. D., "The Behavior of Ethernet-like Computer

Communications Networks," Proceedinga of the Seventh Sympoaiu.m on Operating Syatema

Principle.!, Pacific Grove, Calilornia, Dec. 1979, pp. ~1.

[Birrell d ~l. 82j

Birrell, A., Levin, R., Needham, R. M., and Schroeder, M. D. "Grapevine: A.n experience in

Distributed Computing," Comm. of ACM 25, 4, pp.260-27 4.

- 19-

[Leffler et al. 83J

Leffler, S., Joy, W., and McKusick, M. "4.2BSD Berkeley Unix Programmer's Manual," July

1983.

[Mock 83, 1J
Mockapetris, P. "Domain Names - Concepts and Facilities," RFC882, USC/Information

Sciences Institute, November 1983.

[Mock 83, 2J
Mockapetri.s, P. "Domain Names - Implementation and Specification," RFC883,

USC/Information Sciences Institute, November 1983.

[Painter 84J
Painter, M. "The Design and Implementation oC a 'Domain Names' Resolver", Master

Report, Computer Science Division, Univ. oC Calil., Berkeley, May 1984.

[Pickens et al. 79J

Pickens, J. R. Feinler, E. J., and Mathis, J. E. "The NIC Name Server- A Datagram Based

Information Utility," Proc. of Fourth Berkeley Workshop on Distributed Data Management

and Computer Network8, August 1979, pp. 275-283.

[Postel 80J
Postel, J. "User Datagram Protocol," RFC768, USC/Information Sciences Institute, August

1980.

[Postel 81J

Postel, J. "Transmission Control Protocol," RFC793, USC/Information Sciences Institute,

September 1981.

[Riggle 84J

Riggle, D. "A Name Server Database, Master Report, Computer Science Division! Univ. oC

Cali!., Berkeley, May 1984.

[Su and Postel 82J

Su, Z., and Postel, J. "The Domain Naming Convention for Internet User Applications,"

RFC819, USC/Information Sciences Institute, August 1982.

[Terry 84J

Private communication, 1984.

[Walker et al. 83J

Walkers, B., et al. "The LOCUS Distributed Operating System," Proc. of the Ninth Symp.

on Operating System" Principle.,, Bretton Woods, New Hampshire, October 1983, pp. 49-70.

APPENDICES

Appendix 1:

Boot Flle Format

-20-

The information included in the boot file for a name server is purposely kept at a minimum.

A boot file for a name server consists o(three sections. The first section is simply one line

specifying the domain name or the host on which this name server runs and the time interval at

which the name server is interrupted (or maintenance operations. The name server host domain

name is needed when making maintenance queries. The second section lists all the zones for

which this server is authoritative. For each zone, the first line specifies the domain name of the

zone origin, the name or the zone database, and the keyword "PRIMARY" or "SECONDARY" to

indicate whether this server ~ the primary server for this zone or not. For a primary zone, the

next line specifies the name or its backup file. For a secondary zone, the next line specifies the

domain name or the primary server's host and its address.

The three sections are separated by lines starting with a "$" sign. Lines starting with

spaces or semicolons are ignored and strings are freely separated by spaces and/or tab characters.

An example or a boot file is listed below.

; boot file for name server with

secondary zone 'arpa', and

primary zone 'ucb.arpa', and

secondary zone 'cc.ucb.arpa';

; name server located at domain 'ucbarpa.ucb.arpa' and

; interrupted every 5 minutes

ucbarpa.ucb.arpa 300

$

arpa arpadb

ucbcalder.ucb.arpa

ucb.arpa ucbdb

ucbfile

SECONDARY

128.32.0.12

PRIMARY

cc.ucb.arpaccdb SECONDARY

ucbmonet.ucb.arpa 128.32.0.7

s

; followed by resource records to be loaded into the cache database,

; omitted here.

- 21-

Appendix ll:

Maintenance Query Format.

For uniformity, we adopt, for maintenance queries, formats similar to that Cor user queries,

but with some modifications. The query identification number and some of the flags in the header

are not needed because we use a reliable virtual circuit protocol for maintenance operations. The

opcode is used, however, to speeify whether this is an initial zone transfer or an incremental

refresh. Two new opcodes, ZONEINIT and ZONEREF are defined, respeetively. Following the

header are not the question section or resource records but rather two domain names. The first is

the origin or the zone required, and the second is the secondary server's host domain name.

The format of a response to an initial zone transfer and to an incremental refresh are

slightly different. For an initial transfer, the response consists or a header and a number or

resource re<:ords in the answer section. For an incremental refresh, the response consists or a

header and a number or update re<:ords, each being simply a resource record preceded by a code

specifying the type or update. Both or the old and the new records are transmitted for a

modification.

The response code in the header may be one or several values. It everything is corr~ct, it

should be "NERROR". It the primary server is unable to answer the query due to internal

failures, "SERVF AIL" is returned. It the primary server is not willing to provide the zone or its

updates, "REFUSED" is returned. It is possible that the resource recorde or the updates of a zone

cannot fit into one message. In this case the truncation flag "tr" in the header is set and multiple

messages will be sent Cor the zone.

- 22-

Appendix III:

An Annotated Llatlng of Name Server Prop-am Modules and Function.

nameser.e:
This module contains the main function or the name server.

"main":

query.e:

It reads in the boot file to initialize the name server data structures, loads or transfers

zone databases, creates virtual circuit and datagram ports, sets interrupt interval, and

then starts serving queries. All interprocess communication protocol!! are handled here.

This module includes all the functions for user query processing.

"proc_query":

It parses a query, searches the appropriate zone database or cache, and assemble!! the

response.

"check_auth":

It checks whether or not this server is authoritative for the domain name in query and

returns a code indicating one of several ~onditions:

-authoritative and zone loaded;

-authoritative but zone not loaded;

-authority delegated to a zone not stored in this server;

-no appropriate zone found, cache to be searched.

"8earch_cache":

It searches the cache database for pertinent resource records and stores them into

response.

"forward":

It puts rorwarding NS and A resource records m response, used for iterative query

processing.

"pforward_q":

It forwards a query to the primary name server.

"aforward_q":

It forwards a query to another n3llle server.

"8tore_rr":

It stores a resource record derived from zone database into response message.

"update_init":

It performs initial steps of update query processing, including query parsing, authority

checking, and query forwarding it not the primary server.

"rec_ update":

dbrta.e

It records an update in the zone update list to be transferred to secondary servers in

refresh operations.

This module contains all the functions (or n:lme server main~nance and maintenance query

processing.

"boot_n8":

It reads in the boot file and initializes all the server data structures.

"maintain":

This is the name server interrupt ha.ndler. It checks dumping intervals for primary

zones and refresh intervals for secondary zones, and in·rokes appropriate functions

accordingly.

- 23-

''refre~h_zone'';

It requests a virtual circuit connection to the primary server. For an initial zone

transfer, it gets the whole zone from the primary server. For an incremental refresh, it

gets the recent updates from the primary server.

"zone_init":

It loads the resource records in a zone transferred from the primary server into the

zone database.

"zone_ ref':

It refreshes the zone by performing all the updates received from the primary server.

"zone_ update~":

It serves a maintenance query from a secondary server. Ir initial transfer is requested,

it sends all the resource records in the zone. It incremental refresh is requested, it

sends all the recent updates.

"8tore_zone";

It stores the resource records in a zone into response to be sent to a secondary server.

"8tore_ update"":

It stores the recent updates or a zone into response to be sent to a secondary server.

"i8i_zonetran.5":

It serves a maintenance query from a secondary server or the lSI implementation (to

be implemented).

"store_domain ":

It stores all the records or a domain i.:lto the response (to be implemented).

"iBi_getzone":

It sets up a virtual circuit with a primuy server or the lSI implementation and ~ets a

zone (to be implemented).

"load_ domain":

fune..c:

It loads into the zone database all the resource records or a domain received from a

primary server of the lSI implementation (to be implemented).

This module contains all the basic utility functions to be used by the above modules.

"dn_compare":

It compares two domain names and returns the number or matching labels. Zero is

returned it the second name is the root (null domain), and minus one is returned it it is

not a substring or the first name.

"fillda.t a";

It stores the data section or a resource record into a message according to specified

format decided by record type.

"conv _data.":

It converts the data section of a resource record from the message format into the

string format to be stored into the :::one database.

"check_cla.,_,";

It checks the validity or a resource reco~d cla.s8 value.

"check_type":

It checks the validity or a resource record type value.

debug.c:

This module contains 3.11 the functions for name server debugging, m:Unly functions that

print out relevant information.

"print_n8":

It prints out all the name server data structures.

- 24-

"pup_list":

, •· -- It prints out the content of the update list Cor a zone.

"-
"print_p":

It prints out a query or respon~.

"print_q":

It prints out the question section of a query or respon~.

"print_ud":
It prints out an update record in a query or response.

"print_rr":
It prints out a resource record in a query or response.

compress.c:

This module contains functions that operate on domain names. It is written by Mark

Painter and used by both the resolvers and the name seners. Irrelevant functions are

omitted.

"dn_6kip":
It returns pointer to the first byte after a compressed domain name.

"dn_ezpand":

It converts domain name (rom the compressed message format into the strin& format.

"dn_comp":

It converts domain name from the string format into the compressed message format.

- 25-

Appendix IV:

Currently Defined Resource Record Types and The!r Encodlnp

(Adapted from RFC883)

<·TYPE VALUE MEANING

'"""-

A 1 a host address

NS 2 an authoritative name server

MD 3 a mail destination

MF 4 a mail forwarder

CNAME 5 the canonical name for an alia.s

SOA 6 marks the etart or a zone or authority

MB 7 a mailbox domain name

MG 8 a mail group member

MR 9 a mail rename domain name

NULL 10 a null resource record (RR)

WKS 11 a well known service d~ription

PTR 12 a domain name pointer

lllNFO 13 host information

MINFO 14 mailbox or mail list information

