

Design and Implementation of Zero-Copy for Linux

Liu Tianhua, Zhu Hongfeng, Liu Jie and Zhou Chuansheng

Shenyang Normal University, China
liutianhua@sina.com, zhfzpku@sina.com, nan127@sohu.com, jasoncs@126.com

Abstract
Zero-Copy has been a hot research topic for a long history,

which is an underlying technology to support many
applications, including multimedia retrieval, datamining,
efficient data transferring, and so on. Zero-Copy means
during message transmission, there is no data copy among
memory segments on any network node. When a message is
sent out, the data packets in user application space go through
network interface directly and reach outside of the network;
and when receiving a message , the same way is used,
meaning the data packets are transmitted into user application
space directly. In this paper we present the design and
implementation of Zero-Copy technology for the Linux
(kernel version 2.6.11) operating system, by modifying its
network device driver snull.c and improving on the COW
(copy-on-write) technology,. The main method we used is the
combination of MMAP and PROC procedures to implement
the test program and the test strategies, and finally we
successfully simulated the ARP protocol module with the
VHDL language.

Index Terms—Zero-Copy, COW, VHDL, TOE

I. INTRODUCTION AND RELATED WORK
Nowadays, with the increasing popularity of the Internet,

users demand massive bandwidth to transmit increasingly
more data and to provide advanced services with high quality.
At the same time, the wide deployment of optical fibers
enables data transmission at wire speeds. As the transmission
speeds are reaching 10 Gbps (OC-192) and heading towards 40
Gbps (OC-768), the bottleneck for high speed transmissions
has become the network data processing speed. Special
instances for the network processing tasks are the processing
functions in the TCP/IP domain. TCP/IP functions are
generally referred to as the data processing functions existing
in the lower four layers of the TCP/IP model. They are
working together to guarantee robust and effective data
communications over the Internet. Traditionally, most of the
TCP/IP processing functions are performed by software
running on general-purpose processors (GPPs). As the
network speeds increased drastically, GPPs become burdened
with the large amount of TCP/IP processing. Moreover, the
processing speeds of some of these functions, especially
those computational intensive functions or those functions
with high processing overheads, have lagged behind the
network speeds. Accordingly, there is an urgent need to
identify those performance-critical TCP/IP functions and

accelerate them in order to keep pace with the transmission
speeds. A challenge in designing the TCP/IP functions is that
the demand for advanced services requires the network devices
to support a wide range of applications and protocols, however,
these applications and protocols are constantly evolving. So
the communication bottleneck of the network is moved to
the message processing software. In traditional systems, the
kernel processes messages, causing many times of data copy
and a lot of content transforming and at the end resulting in the
high delay between network point-to-points. Therefore, in
some developed user level network protocols, the kernel is
moved out from the critical message path, this means some or
all of protocols are moved into user space from kernel space.

Another trend is to improve the capabilities of NIC. In
traditional system architecture, NIC just simply receives data
from the host machine and then passes them to network; but an
intelligent NIC has programmable processor and memory, so
it can take portion or all of message processing tasks from
host machine. Therefore, the host machine can focus on its
application processing, such as TOE (TCP/IP Offload
Engine), etc. Anyway we can summarize these two trends as
follows: 1. by using a message processing system to
implement message transforming mechanism that walks
around the kernel, such as the Zero-Copy technology; 2. by
trying the best to use the programmable NIC capabilities and
bringing into play of hardware transmission speed, such TOE.

The basic idea of Zero-Copy is: during grouped data
transmission from network device to user application space, by
reducing the times of data copy and system calls to realize
the CPU zero involvement, and totally remove CPU
workloads in this processing at the end. The main
technologies used to implement Zero-Copy are DMA data
transmission technology and memory mapping technology.

Today the implementation of Zero-Copy technology is
critical in many systems, such as large scale network
intrusion detection systems, network protocol analysis
with huge data, high capacity communication
systems, different routers, peer-to-peer communication
systems, etc The traditional message process has become
the bottleneck of the performance of whole system, as it needs
two times of data copy at least, one is from network device to
operating system memory, and another one is from system
memory to user application space; and also it needs the user
sending system calls to the operating system. According to
Intel reports, the cost of data copy and its related
operations has occupied 69% the cost of whole system [1].
Thereby, removing the useless data copy is a critical process

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)

http://www.mirlabs.org/ijcisim
ISSN: 2150-7988 Vol.3 (2011), pp.009-018

to improve the whole system performance.
Authors in [2] directly used the NIC interfaces and

stored them into user space. Pietikainen used an interface
of ST (Scheduled Transfer Protocol) protocol and wrote it into
intelligent NIC fixed components, to implement OS-bypass [3].
Martin et. al. researched cost problems in NIC [4]. Virtual
Interface Architecture (VIA) is a user level industrial
standards of network interface [5]. Zero-Copy has important
effects for many protocols improvement [6]. Zero-Copy has
been implemented in some operating system, such as in Solaris
[10] and in embedded operating systems [11]. There are many
articles on Zero-Copy, but the characteristics of this article is
that we mainly concern about its scalability, adaptability, and
configurability in Linux and our implementation can work with
software based TCP/IP in transferring simple packets. In
addition, we used common socket to connect a user space
application in this study and the result is transparent to users.

The paper is organized as follows. In section 2, we present
the structural design and analysis of the Zero-Copy model
and section 3 describes its implementation, development idea
and some key technologies and explanation of source code.
Section 4~6 illustrates ARP module function which set an
example for the whole design. Finally section 7 presents test
program and conclusion.

II. THE STRUCTURAL DESIGN AND
ANALYSIS OF ZERO-COPY MODEL

Firstly we analyse the structure of Windows. There are
three major models: buffered I/O, direct I/O with MDLs and
Direct I/O. Figure 1 illustrates the three modes. In buffered

I/O mode the OS allocates a kernel buffer that can handle a
request. In the case of a write operation, the OS validates the
supplied user space buffer and copies data from the user
space buffer to the newly allocated kernel buffer and passes
the kernel buffer to the driver. In the case of read, the OS
validates the user space buffer and copies data from the
newly allocated kernel buffer to the user space buffer. The
kernel buffer is accessible to drivers as the AssociatedIrp.
SystemBuffer field of an IRP. Drivers read form or write to
this buffer to communicate with applications when buffered
I/O is in use.Direct I/O is the second I/O method that can be
used for data exchanges between applications and a driver.
An application-supplied buffer is locked into memory by the
OS, so that it will not be swapped out, and a memory
descriptor list(MDL) for the locked memory is passed to a
driver. An MDL is an opaque buffer through the MDL. The
MDL is accessible to drivers through the MdlAddress field of
an IRP. The advantage of using direct I/O is that it is faster
than buffered I/O since no copying of data to and from user
and kernel space is necessary and I/O is per formed directly
into a user space buffer.

The third method for I/O is neither buffered nor uses
MDLs. Instead the OS passes the virtual address for a user
space buffer to the driver. The driver is then responsible for
checking the validity of the buffer before it makes use of it. In
addition, the user space buffer is only accessible if the current
thread context is the same as the application’s, otherwise a
page fault will occur since the virtual address is valid only
while that application’s process is active.

Figure 1. The three ways in which data from kernel to user and user to kernel space is exchanged

In this paper, we only based on network card and by

directly modifying the code of network processing in
operating system, to implement the Zero-Copy technology.
Figure 1 only displays the data receiving procedure. In Linux

User space

Kernel space

1. Buffer I/O

Device driver
performs direct I/O
to the user space
buffer using the
buffer’s virtual
address

User Space Buffer User Space Buffer

2. Direct I/O with MDLs

User Space Buffer

3. Direct I/O

For reads, the kernel
validates the user space
buffer, creates a copy of
it and passes the new
buffer to the driver.
For writes, when I/O is
done the kernel copies
the contents of the kernel
space buffer to the user
space buffer.

Kernel Space Buffer

Device Driver

Device driver
performs I/O to a
kernel space buffer

The kernel
creates an MDL
to the user space
buffer and passes
it to the device
driver

MDL to user Buffer

Device driver
performs DMA
using the MDL

Device Driver Device Driver

010Design and Implementation of Zero-Copy for Linux

system, the normal network data packets receiving procedure
is illustrated as below:

1) Network card receives a data packet via to host machine
DMA transferred.

2) Network card sends hardware interrupt to host machine.
3) Hardware interrupt: program moves data to receive queue.
4) Software interrupt: program distributes data packets in

terms of protocol.
5) User application copies the data packet into user

application space by system calls.
6) User application processes the data packet.
Obviously, in traditional model, when application layer

wants to obtain message data, it needs to go through two
buffers and the normal TCP/IP protocol stack. Inside, the
software interrupt is responsible to receive the message
from the first of the receiving queue, and then copy them to
MSGBuff; at the end application layer reads the message
data to user application space by system calls. But in
platform with Zero-Copy, it by-passes the protocol stack;
when network card is doing DMA operation, it directly
transmits the message data to user application space. The
broken lines indicated the Zero-Copy implantation in the
left of Figure 2. By expanding the broken lines are shown in
the right of Figure 2:

Our Zero-Copy implementation contains two steps (here we
use data packet receiving as an example):

The first step is to implement DMA data transmission. This
step is very closely related to hardware and its device driver.
The solution is first to pre-allocate sk_buff (structure) of
DMA , and then let the network card receive and store data
packets into sk_buff; and finally map the sk_buff into user
application space by procedure mmap.

The second step is the address mapping. Linux system
provides a technology which can directly map image file and
data file into address space of a process. The content of the
file can directly map into virtual address space of a process,
this is the memory mapping technology. In the kernel, it
allocates sequential space as packet pool, and then it can
map this space into user application space by the system
procedure mmap. In user application space, it can allocate
sequential space as packet pool by the procedure sharemem.
The link table (physical address mapping table) is stored in
kernel, and is used to implement the user application space
to physical address mapping, and then the packet address of
descriptor received by network card can be read directly from
this table.

Figure 2. Compare traditional model with zero-copy model

III. THE IMPLEMENTATION OF ZERO-COPY AND
ITS KEY THECHNOLOGIES

Now in the TCP/IP network the main communication is
interrupt, memory copy and protocol process. Some
experiments show that the cost of data copy and its
evocable cost (e.g. interrupt, checksum etc.) has occupied
69% of whole cost [1]; in the immediate communication
between Linux and FreeBSD, when the data are 64768 bytes
and 1460 bytes, the overhead of data copy, context switch
and link operate occupy 62%~71% in the total overhead [9].

The latency of kernel to user is 5 times than the latency of user
to kernel in the same length just because of misaligned data. It
is obvious that for the latency of communication in TCP/IP
network, data copy is the main overhead. We show that the
COW technology can be improved by removing data copy in
the sink node. The COW technology uses already loaded
information in the MMU for immediate mapping between
user buffer and kernel buffer, so to avoid data copy. All the
buffers are stored in the user-space and DMA directly
connects the NIC and host.

Hardware
Interrupt

User Buffer Area

Other
Protocols

Sk_Buff rev Queue

Application
Space

Kernel
Space

Software
Interrupt

DMA Mechanism

Network Card

Kernel Buff Queue
Buff

TCP/IP

Socket

Msg Buff

Internet

User Buffer Area
Application

Space

Kernel
Space

（1）DMA

Network Card

Sk_Buff
Structure

（2）Mmap mapping

Physical
Address
Mapping

Table

Internet

Software
Interrupt

Packet Pool

Hardware
Interrupt

011 Liu et al.

 In detail, we mainly modify the network
device driver source code snull.c, by calling a
number of procedures (SetPageReserved,
learPageReserved, and Page, PROC related procedures) [7][8],
to allocate memories in kernel space, and by assign them with
some value for user applications accessing them.

A．Memory allocation and its data structure
Here we defined the maximum allocation page as 512, so

the size of each buffer is 1500 bytes. In i386 system, the size
of a page is 4096 bytes. Then adding variable declaration and
struct declaration, by get_free_pages procedure to get the
number of PAGES page address in kernel space, data can be
transferred into user application space address.

The members of buffer structure are width, length, write
pointer and read pointer. Relatively means the buffer size and
number of buffers, currently writable pointer and currently
readable pointer, as illustrated below:

struct MEM_DATA
{ unsigned short width;
unsigned short length;
 unsigned short wi;
 unsigned short ri;
 } *mem_data;
The unit of buffer in buffer area, its size is based on a group

in real Ethernet, it is 1500 bytes. The size of unsigned int is 4
bytes, the rest space is 1496 bytes, and its structure is illustrated
as follow:

struct MEM_PACKET
{ unsigned int len;
unsigned char packetp[MEM_WIDTH - 4];
}
Two procedures are also needed, the buffer deletion

procedure: void del_mem() and the initialization buffer
procedure: void init_mem().

During buffer deletion, ,the procedure virt_to_page will
change the kernel address to pointer first, and then the
procedure ClearPageReserve() sets its flag to no-reserved,
after that a loop process is used to set all pre-allocated pages
flags to no-reserved and at the end free all pre-allocated
memory.

During buffer initialization, the procedure get_free_page
gets 29

 pages buffer for directly access; the procedure of
SetPageReserved() can keep pages always in memory so
cannot be replaced in order to secure its data; by using a loop
process, all buffers are cleaned first and then can be read and
written directly.

B．Accessing buffer space
Two procedures are used here: the buffer writing procedure:

int put_mem(char* aBuf, unsigned int pack_size) and the
buffer reading procedure: int read_procaddr(char* buff, char
**start, off_t offset, int count, int *eof, void * data). The buffer
writing procedure parameters char* aBuf and unsigned int
pack_size contain the content address and the length of
content to be written, respectively. The procedure looks up
the first buffer with length 0, writes its content and returns

its sequential order in buffer space; if lookup reaches to the
end of the buffer space, then the lookup goes back to the
beginning of buffer space to restart looking up again, unless
the whole buffer space has been looked up and the destination
buffer location is returned. If the buffer space is full, then rerun
0.

int put_mem(char *aBuf, unsigned int pack_size)
{ register int s, i, width, length, mem_i;
char *buf;
struct MEM_PACKET *curr_pack; s = 0;
mem_data =(struct MEM_DATA*)su1_2;
width = mem_data[0].width;
length = mem_data[0].length;
mem_i = mem_data[0].wi;
buf = (void *)((char *)su1_2 +width * mem_i);
for(i=1; i<length; i++)
{
// Lookup all buffer and writing
}
if(i>=length)
s = 0;
return s;
}
When reading buffer, procedure _pa() is used to transfer

logical address to physical address of the kernel, and then the
PROC read procedure is called.

int read_procaddr(char *buf, char **start, off_t offset, int
count, int *eof, void {

sprintf(buf, "%u\n", __pa(su1_2)); *eof = 1;
return 9;}
In driving procedure snull_cleanup(), the following

statements are added: del_mem();
remove_proce_entry(“nf_addr”,NULL);
As the procedure snull_cleanup is called when the module

is unloaded, here the purpose of doing in this way is to
remove our allocated memory and unload the PROC inputs
when test is done.

To create PROC inputs in procedure snull_init_module(),
we just allocate and initialize the buffer space, and then assign
them with certain values.

C. Key technologies and resolutions

Problem 1: Synchronization Problem. The network card
driver in the kernel space writes message data to the user
application buffer, and the user application processors directly
analysis the message data in buffer.

Resolution: In the packet data structure, the flag bit is used to
indicate when to read and write. When network card driver
writes real message data into this structure, the flag bit is set to
READ, indicating the data is readable. After user application
processors analyzed and used this data structure, the flag bit
is set to WRITE. In the reverse way, the resolution is same.
As illustrate in Figure 3, this is the procedure of simplex
workload; if in duplex workload, in order to prevent the
conflicts and confusions, we can use one flag bit to divide the
buffer into 2 partitions.

012Design and Implementation of Zero-Copy for Linux

Figure 3. Synchronization Problem

Problem 2: How to make network card and application
access the same buffer without any conflicts？

Resolution: We can use the resolution of Problem 1 by
adding some protection mechanism to resolve this problem.
That is, when multiple connections are working at same time,
the mechanism protects the occupied buffer and do not allow
any other connections to access it. When initialization
sends descriptors, if multiple applications share the same
network port, some application may break the descriptor sent
by another application. We can use cache to store the active
communication node, and store the inactive communication
nodes in host memory. When a processor wants to send
information through inactive node, network interface will
work together with the operating system to activate this node,
and moves it to the cache in the network memory.

IV . THE DESIGN AND SIMULATION OF ARP
BUFFER MODULE

First we introduce the important characteristics of ARP and
the whole ARP data processing.

The key point of ARP running more effectively is that on
each host, there is an ARP buffer. Each table filed in buffer
stores the mapping record for recent internet address to
hardware address. There is a timer for each table field, base
on its set clock to remove intact or non-intact table field. For
each table field, its normal life cycle is 20 minutes (1200
seconds), the initial time is started at the table creation.
During the start of buffer, each table filed lift cycle is set to 0
(means non-useful record). So forth the data writing and
query is different from most common data storages. It means
before the data writing, it checks each table field life cycle
first, if there is some table field which waste all life cycle
(means non-useful record), the data writing is allowed, and
the life cycle is set to 1200 seconds. If there is not this kind
table filed, then the data writing is failure, the status of buffer
is overflow (in this design, we don’t do special process for
overflow, and just discard the record and pass it to upper layer
protocol for processing). During data query, it also need
checking the table field TTL and just ignore all the records
with life cycle equaling to 0.

The structure of table field in buffer is illustrated below; the
TTL（time-to-live）means its life cycle. Figure 4 shows the
structure of table field in buffer and figure 5 illustrates the
whole ARP data processing chart. [13][14].

Figure 4. Structure of table field in buffer

Figure 5. ARP data process chart

A. Design of state machine
The state machine of ARP protocol buffer is used to control

data writing and query in the buffer，and communication to
control module。Based on these functional requirements, we
designed 4 states; the state name and their corresponding
mean are listed in table 1. [15-17]

Table 1. ARP_BUFFER state machine 4 states and meaning

State Meanings

BUFFER_MAIN_STATE Complete data input and state shift

BUFFER_READ Complete data query
BUFFER_WRITE Complete data writing

BUFFER_OUTPUT Complete query result output
Base on Table 1, it generated state shift diagram is

described as Figure 6。Start at BUFFER_MAIN_STATE (the
CS means segment section signal, signal read is query control
signal), when segment selection signal is 1, the query control
signal is moving from low to high, the buffer is starting query
matching for input data. At this time, the system is on
BUFFER_READ state. If the query outputs results, then it
turns to BUFFER_OUTPUT state, and output results. After
output the results, it turns to BUFFER_MAIN_STATE. If

IP address information TTL MAC address information

0 31 79 90

After Read
(flag=READ)

After Read
(flag=WRITE)

After Read
(flag=READ)

After Read
(flag=WRITE)

Network
Card

Buffer User
App

013 Liu et al.

there is not any query results, then returns “no results” signal,
the state turns to BUFFER_MAIN_STATE.

Figure 6. ARP_BUFFER Module State Shift

Signal write is data writing control signal. When segment
selection signal is 1, writing signal is moving from low to
high, the buffer is start writing operation for input data and
the module is turned to state BUFFER_WRITE. After data
writing completion, the system returns to
BUFFER_MAIN_STATE and waiting for the next input data.
B. Actual Module Design

ARP_BUFFER module ports are illustrated in Figure 7.

Figure 7. ARP_BUFFER Module Ports Illustration

Input Ports：
1) ARPbuf_din(0:15) : Input ports。The data waiting for

query and writing is going through this port to enter module.
The port width are 16 bits, this is also the pre-setting data bus
width.

2) ARPbuf_clk : The clock signal of module.

3) ARPbuf_init : Reset signal, high voltage meaningful.
4) ARPbuf_cs : Segment selection signal
5) ARPbuf_read: Query control signal. When segment

selection signal is 1, query signal is moving from low to high,
buffer start the query matching for input data in the module.

6) ARPbuf_write: Write control signal. When segment
selection signal is 1, write signal is moving from low to high,
buffer start to writing operation for input data.

Output Ports:
7) ARPbuf_dout(0:15) : Output port. It output query

results.
8) ARPbuf_state(0:2) : Buffer state signal, 3 bits, they are

mapped to following states :
 “000”: Buffer Free State
 “001”: Outputting Results
 “010”: No Results
 “011”: Buffer Overflow (Not processing here)
 “111”: Buffer Busy

C. ARP buffer module functional simulation
The main aim of ARP buffer function is to validate query

and write in about the buffer. The experiment process: the
simulation results are showing in figure 8. First the system
begins reset at 100ns and this time the ARPbuf_state is
“000”(means buffer idle, wait for data to be input). Here the
module keeps itself in BUFFER_MAIN_STATE. Then we
write a address information which including IP and MAC at
500ns, just like figure 8, the ARPbuf_cs is 1 and
ARPbuf_write is from bottom to top. Because we beforehand
set bandwidth is 16bits, both the 32bits of IP address and the
48bits MAC address need 5 clock cycle altogether. We can
see when the data input the buffer state is “111” (buffer busy).
After a while the module shifts to BUFFER_WRITE state,
and then finishes writing address of IP and MAC. In order to
validate that, we query the IP address from buffer at1800ns,
when the ARPbuf_cs is 1 and ARPbuf_read is from top to
bottom, the query data begin to input. Here we can see after
IP address has been input a cycle, the state of buffer from
“111” shift to “001”, which means the buffer is outputting the
result. At the same time the port of ARPbuf_dout output
48bits data which are the MAC address that has been input
before. The test result indicates that the function is accord
with design original intention.

Figure 8. ARP buffer module simulation results

014Design and Implementation of Zero-Copy for Linux

V. THE DESIGN AND SIMULATION OF ARP
CONTROL MODULE

Now we design ARP_control module in the base of the
ARP_buff module. The basic functions as below:

(1) When IP send a ARP query, ARP control module query
buffer; If ARP control module found a record, then sent the
record to export; on the contrary, it sent ARP query to
network.

(2) When a ARP query message is sent form network, we
write the send node address to buffer. If receive node is local
address, we send responding message, otherwise discard.

(3) If local node receive a ARP respond from another node,
host will keep the address information to buffer, then discard.
A. Design of state machine

According to the basic function of ARP control module, we
design 6 states and each of them illuminates as table 2.

Table 2 estates and its meanings

State Meanings

ARP_CTRL_MAIN_STATE data import and state shift

ARP_CTRL_REQUEST_INSIDE query from buffer

ARP_CTRL_OUTPUT_INSIDE export query result

ARP_CTRL_WAIT wait when query buffer

ARP_REQUEST_OR_ANSWER process request and answer message

ARP_SEND_FRAME sent out data frame

 According to table 2, we create state machine as figure 6:
ARPctrl_in_source mark data source, “10”stand for query
request of MAC from IP. “01”stand for ARP request or
respond message from outside. ARP_CTRL_MAIN_STATE
will based on these signals to decide which state to shift.

Figure 9. ARP control state shift

B. Actual Module Design
The ports of ARP control module as figure 9 show:

Figure 10. ARP control module ports

PORTS illuminates as below:
Input ports:
1) ARPctrl_clk : clock signal.
2) ARPctrl_reset : reset signal.
3) ARPctrl_buf_in(0:15) : port which takes data from

buffer.
4) ARPctrl_buf_state(0:2) : buffer state.
5) ARPctrl_din(0:15) : port which takes data from

outside.
6) ARPctrl_in_source(0:1) : identify the data origin of

ARPctrl_din (0:15), “10”stand for IP query, “01” stand for
network query; “00” stand for no data input.

Output ports:
7) ARPctrl_buf_out(0:15) : port which sends out data to

buffer.
8) ARPctrl_dout_to_ip(0:15) : port which sends out query

result to IP.
9) ARPctrl_out_ip_en : port enable signal of

ARPctrl_dout_to_ip(0:15), high level electricity output is in
effect.

10) ARPctrl_send_frame(0:15) : port which sends out
data frame.

11) ARPctrl_send_en : port enable signal of
ARPctrl_send_frame (0:15), high level electricity output is in
effect.

12) ARPbuf_state(0:2) : buffer estate signal，each
of them related as below:

 “000”: idle
 “001”: export result
 “010”: no query result
 “011”: buffer overflow
 “111”: buffer busy

C. ARP control module functional simulation
1) simulate the query and send function of ARP request

message
According to ARP standard, when receives MAC address

query request, ARP will query the buffer. In common when
there is no query result, ARP will send a broadcasting
message just like figure 10. First we reset the system. Then at

015 Liu et al.

250ns we import a query data, ARPctrl_in_source is “10”
indicates that the query is coming from IP. As we can see
from figure 11, the module immediately shift the
ARPCTRL_BUF_CS and ARPCTRL_BUF_READ from
bottom to high, and export IP address to the port of
ARPctrl_buf_out. This indicates that ARP control module has
export query request to buffer automatically. And about at
1800ns, buffer return a signal standing for no data found

(because this IP is inexistent), we can see that
ARPctrl_send_en turns into high level electricity immediately,
at the same time the port of ARPctrl_send_frame sends out
42bytes request message to outside. Until now we validate the
message according with ARP request message format and the
front 6bytes of the message are broadcasting address, and the
IP field includes the IP address which we have input before.

Figure 11. Waveform diagrams of query and sending message functional simulation (ARP control module)

Query result exports please see ARP buffer module
simulation.

2) Simulation of receiving data frames about ARP
control module

The test is showed in figure 12. Simulation process: first we
input a virtual user-defined frame to module. In figure 8 we
can see the signal of ARPctrl_in_source is “01” and this
stands for outside ARP request or respond message.
According to ARP standard, both ARP request and ARP

respond will write the sending end information of MAC and
IP to buffer. The test result indicate that ARP control module
turns the ARPCTRL_BUF_CS and ARPCTRL_BUF_WRITE
to high, and the port of ARPctrl_buf_out will export 5 cycles
data to buffer. We validate that 10bytes data are the right
which we had define the virtual frame of MAC and IP
information in sending end, so these circumstances show us
that the ARP control module can export address information
to buffer automatically.

Figure 12. Waveform diagrams of receiving data frames simulation (ARP control module)

016Design and Implementation of Zero-Copy for Linux

VI THE WHOLE ARP MODULE FUNCTION
SIMULATION

Now we combine the two module and draw a top file link
map just as figure 13, the left is ARP buffer module and the
right is ARP control module. The ports of them and the related
function have been introduced.

ARP module function simulation process：As figure 14, we
import an ARP message to ARP module. According to ARP

function, ARP module will put IP and MAC addresses into
buffer (no matter how the frame is request or respond). After a
while about 2us we query the right IP address thought ARP
module, we can see that arp_data_out_ip exports the
corresponding MAC address. At last about 3us, we import an
inexistent IP address to query, and we can see at 3.5us,
module exports an ARP request message. Until now we
validate the whole ARP module function.

Figure 13. The file combined chart

Figure 14. ARP module function simulation

VII. THE TEST OF ZERO-COPY AND CONCLUSION
The programming of test program can follow the policies

below:
1) Detection whether the buffer contains valid data.

The method is to test whether the curr_pack->len is 0 and
its flag is READ.

2) Obtaining the data from buffer. The method is to
write the buffer indicator to certain location, then the
application retrieves the read location via mapping.

3) Looking up the buffer area to find the buffer with
valid data, when the buffer is found, repeat the steps 1 and 2.

4) Using the mmap procedure to do memory mapping,
and to allow application to access the kernel space directly.

5) After read the buffer, set the buffer to WRITE, and
free the buffer space.

During the test, we can use the makefile file and the snull.h
header file in the snull program which is contained in LDD3.
The test procedure contains 3 steps:

1) Putting the files snull.c, snull.h, makefile, mymain.c

into folder snull, and input the make command to compile
them. If successul, we can get file snull.ko.

2) Compiling the file mymain.c by input command: gcc
-o mymain mymain.c. If successful, we can find the
executable file mymain. Now we get the loadable module
snull.ko and test application mymain.

3) Executing command insmod ./snull.koto load
module snull. If successful, we can use command lsmod to
check the current using module of the operating system. Then
we can execute the command: ./mymain to get test results. The
test results indicate that the allocated buffer in kernel space
can be accessed by user application with mapping. Zero-Copy
removes the multiple memory copies and provides a
useful resolution to resolve the bottleneck of computer
system communication.

In the practice, we had used Intel Pentium IV-3.0G CPU
512M system memory and linux(Redhat)kernel-2.6.11. The
SEND Processing time is from Socket to RJ45 and the
RECEIVE processing time is from RJ45 to Socket as list in
Figure 5. We tested the processing time of data transmission

017 Liu et al.

through protocol stack, INET and TOE, in linux kernel. The
test outcome: the average processing time for SEND through
INET required 86.5us, average processing time through TOE
with ML403 was 68.5us. Therefore, the result says that TOE
method can offload nearly 20.8 percents of the processing
cost in SEND to TOE. About RECEIVE the average
processing time through INET was about 78.8us and 70.1us
was required in the TOE. The result shows that TOE module
can offload about 11.0 percents of the TCP/IP processing cost
in RECEIVE. As like the result, TOE with ML403 method
can offload about 10~20 percents of TCP/IP processing time
in kernel to TOE device in the case of data transmission. So
we can see the result is not perfect, the main reason is detail
and process of design should improve on. But this kind of
TOE method has a great potential to make offload percents
improving.

In this paper, based on the analysis of the traditional
message communication mechanism, we improved the
current communication mechanism. By implementation of
Zero-Copy technology in Linux system, we resolve the
synchronization problem between user application and
network card driver during the data transition. Meantime, by
mapping amount of user application space to kernel DMA
space, by modifying the network card driver interface to use
application buffer directly, we reduced the message
communication path, avoided the cost of memory copy and
also dropped the CPU workload. Consequently we saved a lot
of CPU time for application to do any complex computing,
and resolved the bottleneck of whole system. This is very
useful and has a realistic meaning to high capacity network.

The next further work is to design an effective and low
delay protocol and evaluate its performance [11][12]. The
work will involve the development of a high performance
protocol stack, taking full advantages of hardware speed, and
to implement the technology on a series of high speed network
communication platforms.

ACKNOWLEDGMENT

REFERENCES
[1] Preparing for 2004－2005 Networking Ttransitions ,

Gary Gumanow, Carl Wilson, 2003

[2] I. Pratt and K. Fraser. Arsenic: a user-accessible gigabit
ethernet interface. In Proceedings of Infocom, April
2001.

[3] P. Pietikainen. Hardware acceleration of Scheduled
Transfer Protocol. http://oss.sgi.com/projects/stp.

[4] R. Martin, A. Vahdat, D. Culler, and T. Anderson.
E_ects of communication latency, overhead, and
bandwidth in a cluster architecture. In Proceedings of
ISCA, June 1997.

[5] Jin-Soo Kim, Building a High Performance
Communication Layer Over ,Virtual Interface
Architecture on Linux Clusters,Acm,2001

[6] Efficient Operating System Support for Group Unicast,
Martin Karsten, Jialin Song, ACM, 2005

[7] Linux Device Drivers 3 rd Edition by Jonathan Corbet,
Greg Kroah-Hartman, Alessandro Rubini

[8] The Linux Kernel Module Programming Guide by Peter
Jay Salzman, Michael Burian, Ori Pomerantz

[9] Ling Li, Liu Haipeng, Research of the Network Software
Latency on Linux OS.

[10] Hsiao-Keng and Jerry Chu, Zero-Copy TCP in Solaris.
Proc. of the USENIX 1996 Annual Technical
Conference, Jan. 1996http://www.usenix.org.

[11] Mei-Ling Chiang and Yun-Chen Li, "LyraNET: A
zero-copy TCP/IP protocol stack for embedded systems",
Journal of Real-Time Systems, Springer Netherlands,
Volume 34, Number 1, September, 2006, pp. 5-18

[12] S. Yamagiwa, K. Aoki and K. Wada, "Active Zero-copy:
A performance study of non-deterministic messaging",
Proceedings of the 4th International Symposium on
Parallel and Distributed Computing (ISPDC’05), July,
2005, IEEE CS Press, pp. 325-332.

[13] W.Richard Stevens, TCP/IP Illustrated, Volume 1:The
Protocol.

[14] David C. Plummer, An Ethernet Address Resolution
Protocol-- or --Converting Network Protocol Addresses
to 48.bit Ethernet Address for Transmission on Ethernet
Hardware, RFC 826.

[15] Hou Boheng, Gu Xin, VHDL hardware describe
language and numeral logic circuit design, University of
Xin An Electron publishing company.

[16] Steve Golson，State machine design techniques for
Verilog and VHDL.

[17] 2004 Vol.15 No.11 P.1689-1699Douglas L. Perry,
VHDL--Programming by Example (4th Ed.)
McGraw-Hill.

018Design and Implementation of Zero-Copy for Linux

This project is supported by Foundation of Liaoning
Educational Committee in China (No. 2009A665) and
Liaoning Provincial Natural Science Foundation of China
(Grant No. 20102202) and Laboratory Chief Fund of
Shenyang Normal University (No. SY200906).

