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Traditional distributed object computing (DOC) middle-

ware such as CORBA, DCOM, and Java RMI support re-
Abstract guest/response semantics for distributed applications. How-

ever, an increasingly important class of applications require

Recent advances in network bandwidth and processing poftapsfer of continuous media data streams. For instance, pop-
of CPUs has led to the emergence of multimedia streaW@r Internet-based streaming mechanisms, such as Realvideo
ing frameworks, such as NetShow, Realvideo and Vxtreidé and Vxtreme [2], allow suppliers to transmit continuous
These frameworks typically rely on proprietary stream esta#fféams of audio and video packets to consumers. Likewise,
lishment and control mechanisms to access multimedia cBRN-continuous media applications, such as medical imag-
text. To facilitate the development of standards-based dR9 servers [3] and network management agents [4], employ
tributed multimedia streaming applications, the OMG has dél'éaming to transfer bulk data efficiently from suppliers to
fined a CORBA-based specification that stipulates the key GRII'SUMETS.

terfaces and semantics needed to control and manage auStringent performance requirements for streaming data of-
dio/video streams. ten preclude DOC middleware from being used as the trans-

This paper makes two contributions to the study of CORB%%E;??SQSXr Ir:tlsjalﬁlr:?efollIri:rl?cp)lggtlg?c?tgsc:]bllzzz Cl)ns)ta[rg]:e,
based distributed multimedia streaming frameworks. Firdf ) ; .
@_plementatlons often perform excessive data-copying and

it describes the design and performance of an implemen . S
tion of the OMG audio/video (A/V) streaming model based emory allocationper-request which increases packet la-
cy [7]. Likewise, inefficient marshaling/demarshaling in

TAO, which is a real-time CORBA ORB. Second, it descri ) ;

the design and performance of a distributed application that ¢ mlddleware decreases streaming data th_roughput [8].
uses TAO's A/V streaming framework to establish and con!f the design and performance of DOC middleware can
trol MPEG video streams. Our experience with TAQ's ARE improved, however, the stream establishment and control
streaming framework indicates that CORBA defines a flexiGmPonents of distributed multimedia applications can benefit

and efficient model for developing standards-based multing€atly from the portability and flexibility provided by middle-
dia streaming applications. ware. To address these issues, the Object Management Group

(OMG) has defined a specification for the control and man-

agement of A/V streams [9], based on the CORBA reference
Keywords: CORBA-based Multimedia Streaming, QoSmodel [10].

enabled OO Middleware, Performance Measurements The CORBA A/V streaming specification defines a model

for implementing an open distributed multimedia streaming
*This work was supported in part by Boeing, GDIS/CDI, DARPA Conf_ramework. This mOde.l Integrates (1) We”_.dEfmed modules,
tract 9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and'U@rfacesv and semantics for stream establishment and control

Sprint. with (2) efficient transport-level mechanisms for data trans-
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mission. In addition to defining standard stream establigh} may use the UDP protocol, whereas a local intranet video-
ment and control mechanisms, the OMG specification alloasnferencing tool [20] might prefer the QoS features offered
distributed multimedia applications to leverage the portabiliby native high-speed ATM protocols. Thus, it is essential that
and flexibility provided by DOC middleware. a streaming service support a range of transport protocols.
Our prior research on CORBA middleware has exploredThe OMG streaming service makes no assumptions about
several dimensions of real-time ORB endsystem design tihe transport protocol used for data streaming. Consequently,
cluding static [11] and dynamic [12] real-time schedulingfje stream establishment components in our A/V streaming
real-time request demultiplexing [13], real-time event preervice framework provide flexible mechanisms that allow ap-
cessing [14], real-time 1/O subsystem integration [15], apdications to define and use multiple transport endpoints, such
the real-time performance of various commercial and reseagstsockets and TLI, and multiple protocols, such as TCP, UDP,
ORBs [16] over ATM networks. This paper focuses on a previr ATM.
ously unexamined point in the real-time ORB endsystem de-Another design challenge, therefore, is to define stream es-
sign spacethe design and performance of the CORBA Aftgblishment components that can work with a variety of trans-
streaming service specification port endpoints. To resolve this challenge, we applieStnat-
egypattern [17], as explained in Section 2.2.5.

1.2 Design Challenges Flexibility in stream control interfaces: An A/V stream-
ing framework must provide flexible mechanisms that allow

We have developed the first freely available implementatidevelopers to define and use different operations for different
of the OMG A/V streaming model using TAO [11], which is atreams. For instance, a video application typically supports
real-time CORBA ORB that has been ported to most OS platvariety ofoperations such aslay , stop andrewind .
forms. In addition to implementing the components defin@bnversely, a stream in a stock quote application might sup-
by the OMG specification, TAO’s A/V streaming service usgsrt operations likstart andstop . Because the operations
patterns [17] to resolve the following key design challengpsovided by the stream are application-defined, it is useful for
that arise when developing distributed multimedia streamitige control logic component in a streaming service to be very
frameworks: flexible.

Therefore, another design challenge facing designers of

Flexibility in stream endpoint creation strategies: The gyreaming services is to allow applications the flexibility to de-
OMG specification defines the interfaces and roles of stregfy their own stream control interfaces.

components. Many performance-sensitive multimedia appli- _ )
cations require fine-grained control over the strategies goverlexibility in managing states of stream supplier and con-

ing the creation of stream components. For instance, our paghers: The transport component of a streaming application

studies of Web server performance [18, 3] motivate the ne¥ften needs to change behavior depending on the custatet

to supporadaptiveconcurrency strategies to develop efficierif the system. For instance, invoking thiay operation on

and scalable streaming applications. the stream control interface of a video supplier may cause it to
In the context of our A/V streaming service, we determin&fter into &PLAYING state. Likewise, subsequently sending it

that the supplier-side of our MPEG application described $#¢'Stop operation may cause it to transition to tiEOPPED

Section 3 required a process-based concurrency strategzt%e- More complex state machines can result due to addi-

maximize stream throughput by allowing parallel processifigna! operations, such aswind - andfast _forward  op-

of separate streams. Other types of applications required 8[@tions. _ _

ferent implementations, however. For example, the consumerI NUS, an important design challenge for developers is de-

side of our MPEG application benefited from the creation $/9ning flexible applications whose states can be extended.

reactive [19] suppliers that contain all related endpoints witHiz addition, the behavior of supplier/consumer applications,

a single process. and the A/V streaming framework itself, in each state must be

To achieve a high degree of flexibility, therefore, our A/We!l-defined, To address this issue we applied3tee Pattern

streaming service design decouples tehaviorof stream [17], @s described in Section 3.1.
components from the strategies governing tleediation We
achieved this decoupling via th&ctory MethodandAbstract 1.3 Paper Organization

Factorypatterns [17], as described in Section 2.2.1. ) . i .
The remainder of this paper is organized as follows: Sec-

Flexibility in transport protocol: A streaming service maytion 2 describes our implementation of the OMG A/V stream-
need to select from a variety of transport protocols. For iimg service specification using TAO [11], which is a real-time
stance, an Internet-based streaming application like Realvi®@RBA ORB; Section 3 outlines the design of an MPEG
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Stream
Interface

streaming application that uses TAO’s A/V streaming servicg e
Section 4 analyzes the performance results of TAO's A/lErEel:
streaming service over a high-speed ATM network; Secti 8&"&?’
summarizes related work; and Section 6 presents concluding t f
remarks. For completeness, Appendix A outlines the OMG ‘
CORBA reference model and Appendix B presents a br
overview of the CORBA Property Service, which is used [
transfer QoS information between consumers and suppliers

the A/V streaming service.
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IAnd Management
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2 The Design of TAO’s Audio/Video M SrREAM
Streaming Service

Figure 1:OMG Streams Architecture

This section presents an overview of the key architectural

components in the OMG A/V streaming model. It also de- gach stream endpoint consists of three logical entities: (1) a
scribes the design challenges facing developers of A/V streafifleam interface control objethat exports an IDL interface,
ing frameworks and explains how TAO's A/V streaming se{2) a data source or sinkand (3) astream adaptothat is re-
vice resolves these challenges. sponsible for sending and receiving frames over a network.
Control and Management objedse responsible for the es-
2.1 Overview of the OMG Audio/Video tablishmentand control of streams. The OMG A/V specifica-
. e s tion defines the interfaces and interactions of 8teeam In-
Streaming Specification terface Control Objectand the Control and Management ob-
The OMG A/V streams specification [9] presents an architgects. Section 2.2 describes the various components in Figure 1
tural model and OMG IDL interfaces for building distributedn detail.
multimedia streaming frameworks. The goals of the OMG

ANV streaming model are the following: 2.2 OMG A/V Streaming Service Components

S.tandf";lrd|ze.d stream establls_hment and control mecha- The OMG A/V streaming specification defines a set of stan-
nisms: Using these mechanisms, consumers and suppllgrs

. : . . ard IDL interfaces that can be implemented to provide a
can be developed independently, while still being able to €s- . . . . . .

. . istributed multimedia streaming framework. Figure 2 illus-
tablish streams with one another.

trates the key components of the CORBA streaming frame-
Support multiple transport protocols: To avoid unneces- work. This subsection describes the TAO’s implementation of
sary overhead, the A/V streaming model separates control sig-
naling from the data transfer protocol, such as TCP, UDP, ¢

Stream MMDevice
ATM. Controller Stream Stream
) A ndPoint ndPoint
Support various types of sources and sinks: Common -
MMDevice @

stream sources include a video-on-demand server, a vid

camera attached to the network, or a stock quote server. Com-
mon sinks include a video-on-demand client, a display device\
attached to a network, or a stock quote client. . T Multimedia
. . . L \=T¥=] Stream )
Figure 1 shows anultimedia streamwhich is represented Supplier
as a flow between twilow data endpointsOne endpoint acts -~ [C_1 One per device

as a source of the data and the other endpoint acts as a sinkConsumer One per stream

Note that the control and signaling operations pass through the

GIOP/lIIOP-path of the ORB, demarcated by the dashed box.  Figure 2:A/V Streaming Service Components

In contrast, the data stream useg-of-bandstream(s), which

can be implemented using protocols that are more suitabletfa A/V streaming service framework components shown in
multimedia streaming than IIOP. Maintaining this separatidfigure 2. The corresponding OMG interface name for each
of concerns is crucial to achieve high performance. role is provided in brackets. In addition, we discuss how TAO
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provides solutions to the design challenges outlined in Sec-  connection
tion 1.2. Readers who are already familiar with the OMG A/V

streaming specification may want to skip to Section 3, which
describes how we developed an MPEG player application us-

ing TAO's implementation of this service. (VDev) MediaCtrl)
Child
Process | (_StreamEndpoint )

creates

Server Process

requested

2.2.1 Multimedia Device Factory MMDevice)

The MMDevice component abstracts the behavior of a mu||:_|gure 4:MMDevice Process-based Concurrency Strategy

timedia device. The actual device cangigysical such as a
video microphone or speaker. Likewise, a device cafobe . .
ical, such as a program that reads video clips from a file of stream the audio and video data to the consumer concur-
database that contains information about stock prices. Thr&%tly'
is typically oneMMDevice per physical or logical device.

The MMDevice encapsulates the device-specific param@eactive strategy: In this strategy, endpoint objects for each
ters of a multimedia device, as shown in Figure 3. For inew stream are created in the same process as the factory, as

shown in Figure 5. This means that a single process handles
Name (String) [ Value (CORBA "Any" type)
"Video_Format"|"MPEG", "JPEG", "AVI" PropertySet
"Movies" "Gandhi", "Star wars" ....

"Connections" | 4

Connection creates

MMDevice

requested

\
(VDev) MediaCtrl)

(- Server _
define_property (); . Process ( StreamEndpomt )
get_property_value () Properties .
delete_property (); MMDevice Figure 5:MMDevice Reactive Concurrency Strategy

Figure 3:Multimedia Device Factory
all the simultaneous connectioreactively[19]. This strategy
stance, a particular device might suppelfPEG-1[21] com- is useful for applications that dedicate one process to control
pression olULAWaudio [22]. Such parameters are termedultiple streams. For instance, the consumer of the MPEG
“properties” of theMMDevice. Properties can be associated/V player application described in Section 3.2 creates the
with theMMDevice using the CORBA Property Service [23]yvideo and audio endpoints in the same process using this strat-
which is described in Appendix B. egy to minimize synchronization overhead.
The MMDevice is an endpoint factony,e., it is responsi-
ble for creating new endpoints for new stream connectionsWe are enhancing TAO's A/V streaming framework to
Each endpoint consists of a pair of objects: (1) a virtual devisgpport otheMMDevice concurrency strategies, such as a
(VDev), which encapsulates the device-specific parameterstokad-based strategy that creates new stream endpoints to run
the connection and (2) th8treamEndpoint , which en- in separate threads within the same process.

capsulates the transport-specific parameters of the connectiorh TAO's A/V streaming service, th&IMDevice uses the

The roles ofvDev andStreamEndpoint  are described in Apstract Factoryattern [17] to decouple (1) the creation strat-

Section 2.2.2 and Section 2.2.5, respectively. egy of the stream endpoint and virtual device from (2) the
The MMDevice component also encapsulates the implgoncrete classes that define it. Thus, applications that use the

mentation ofstrategiesthat govern the creation of théDev  MMDevice can subclass both the strategies described above,

andStreamEndpoint  objects. For instance, the implemengs well as th&treamEndpoint  and theVDev that are cre-
tation of MMDevice in TAO’s A/V streaming service frame-gted.

work provides the following two concurrency strategies: Subclassing allows applications to customize the concur-

Process-based strategy: The process-based concurrenagncy strategies to suit their needs. For instance, by default,
strategy creates new virtual devices and stream endpointthm reactive strategy creates new stream endpoints using dy-
a new process, as shown in Figure 4. This strategy is usefamic allocationg.g, via thenew operator in C++. Appli-

for applications that create a separate process to handle eations can override this behavior via subclassing so they can
new endpoint. For instance, the supplier in our MPEG playadlocate stream endpoints using other allocation techniques,
application described in Section 3.1 creates separate processels as thread-specific storage [24] or special framebuffers.
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2.2.2 Virtual Device (VDev) {

void select_video (string name_of_movie);
The virtual device YDev) component is created by the void play ();
MMDevice factory in response to a request for a new streamvoid rewind (short num_frames);
connection. There is onéDev per stream. Th&Devis used  Void pause ();
by the application to define its responsectnfigure  re- ., void stop 0
guests. For instance, if a consumer of a stream wants to hse
the MPEG video format, it can invoke tloenfigure  oper-

) - - The OMG A/V streaming service provides developers with
ation on the suppliev¥Dev, as shown in Figure 6.

the flexibility to associate an application-defiridddiaCtrl
interface with a stream. Thus, the A/V streaming service can
be used with an infinitely extensible variety of streams, such
as audio and video, as well as non-multimedia streams, such
as a stream of stock quotes.

The VDev object represented device-specific parameters,
such as compression format or frame rate. Likewise, the
MediaCtrl  interface is device-specific since different de-

configure (string name, Any value)
{
if (name == "video_format")
switch (value)
case "MPEG": use_mpeg ();
default: return Exception;

VDev
configure () = 0;

confi vices support different control interfaces. Therefore, the

gure configure (); : . . . . )
("video_format" ! . MediaCtrl  is associated with th&Dev object using the
"MPEG™); ’ Video_VDev Property Service [23].

There is typically onéMediaCtrl  per stream. In some
cases, however, application developers may choose to control

Stream establishmeig a mechanism defined by the OMdnuIti_ple streams l_JSing the sarMediaC_trI .' For instance,
A/V streaming specification to permit the negotiation of Qo@e v_|deo and audio stream_s for a movie might ha_we acommon
parameters vigroperties Properties ar@mame-valugpairs, MediaCtrl  to enable a single CORBA operation, such as
i.e, they have astring name and a corresponding valué).Iay
The properties used by the A/V streaming framework are im-
plemented using the CORBA Property Service, described2i2.4 Stream Controller StreamCtrl )
Appendix B.

Figure 6:Virtual Device

, to start both audio and video playback simultaneously.

. . . The Stream ControllerStreamCtrl ) interface abstracts a
The OMG A/V streaming specification specifies the NaMESntinuous media transfer between virtual devica3dvs). It

OI the C(t)rr]nmon properftles utsed by fbftB_ev (:EjetCtS' tF_or "t1h supports operations to bind twdMDevice objects together
stance, the properturriorma IS astring that contains eusing a stream. Thus, tistreamCtrl  component binds the

current encoding format.g, “MPEG.” During the stream es-Supplier and consumer of a streaerg, a video-camera and a

tabhsft]_ment, e_?cldDe“\y/lgan E[Jse thget _tE]rc;pt(ra]rty ~value ¢ display. It is the key participant in th&tream Establishment
operation on its peevDev to ensure that the peer uses the .~ 1\ oo din Section 2.3.1.

same encoding format. oo . .
. . TheStreamCtrl  objectis generally instantiated by an ap-
When a new pair oWDev objects are created, eavidev I;%Iication developer. There is or&treamCtrl  per stream,

uses thecqnflgure operation on its peer to se_t the strealle“ per consumer/supplier pair.

configuration parameters. If the negotiation fails the stream

can be torn down and resources released immediately. ) .
Section 2.3.1 describes the OMG A/V streaming serviée?-> Stream Endpoint GtreamEndpoint )

stream establishment mechanism in detail. The StreamEndpoint  object is created by théMDevice
in response to a request for a new stream. There is one
2.2.3 Media Controller (MediaCtrl ) StreamEndpoint  per stream. AStreamEndpoint en-

The Media C I diaCtrl )i DL interf h capsulates the transport-specific parameters of a stream. For
& Media ControllerNediaCtrl ) is an IDL interface that j q1ance o stream that uses UDP as the transport proto-

plefines operations_ for controlling a stream. 'Nlmd-iaCtrl ._col will use a host name and a port number to identify its
interface isnot defined by the OMG A/V streaming SeIViC&reamEndpoint

specification. Instead, itis defined by application developerst AO’'s AV streaming service implementation of the
support operations for a specific stream, such as the fOI|OWi§'t9eamEndpoint

. ! uses patterns, such as Double Dispatch-
OMG IDL for a video service:

ing and Template Method [17], to allow applications to define
and exchange transport-level parameters flexibly. This inter-

interface video_media_control .=t e
action is shown in Figure 7 and occurs as follows:
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yet still be able to establish streams with one another via a
common protocol.

create transport endpoint; Several components are involved in the stream establish-
return "TCP=tango:8455";

handle_connection_requested (..)

A

. ment. A key motivation for providing an elaborate stream
} TCP_StreamEndpoint establishment protocol is to allow components to be config-
connection_requested (..) ured independently of one another. This allows the stream es-
Connection | { tablishment mechanism to remain standard, and yet provide
Requested handle_connection_requested (); sufficient hooks for framework developers to customize this
<tum | retumflowspec; < - process for a specific set of requirements. For instance, the
"TCP=tango:8455"| } StreamEndpoint

MMDevice can be configured to use one of several concur-
Figure 7:Interaction Between StreamEndpoint  and the rency strategies to create stream endpoints. Thus, at each stage
Application of the stream establishment process, individual components
can be configured to implement the desired policies.

The OMG A/V specification identifies the two peers in
Step 1: An A/V streaming application can inherit fromstream establishment as tAeparty and theB party. These
the StreamEndpoint  class and override the operatioferms define complimentary relationship., a stream al-
handle _connection _requested in the new subclassways has ar party at one end andBparty at the other. The
TCP_StreamEndpoint . A party may be thaink i.e., the consumer, of a video stream,

Step 2: While binding twoMMDevices, theStreamCtrl whereas thd party may be thsource i.e, the supplier, of a

invokesconnect on oneStreamEndpoint  with the peer video stream and vice versa. ) e '
TCPStreamEndpoint  as a parameter. Note that the OMG A/V streaming specification defines two

distinctIDL interfaces for theA andB type endpoint. Hence,
Step 3: The StreamEndpoint then requests thefor a given stream, there will be two distinct types for the
TCP.StreamEndpoint  to establish the connection for thisupplier and the consumer. Thus, the OMG A/V streaming
stream using the transport addresses it is listening on. specification ensures that the complimentary relationship be-
tween suppliers and consumers is typesafe. An exception will

Step 4 The virtualhandle _conne_ction ) _rgquested be raised if a supplier accidentally tries to establish a stream
operation of theTCP.StreamEndpoint  is invoked and with another supplier

connects with the listening transport address on the peer sideStream establishment in TAO's A/V streaming service oc-

Thus, theStreamEndpoint  design uses patterns that alcurs in several steps, as illustrated in Figure 8. This fig-
low each application to configure its own transport protocol,

while reusing the generic stream establishment control logic aStreamCtyl_— 1) bi”d—de"s(g',\\mgg’,‘).

in TAO's A/V streaming service framework. e A 4
aMMDev 1) ¢ e g
Endpd\“" p\’\lde" 24) B\Endpd bMM Dev
. . POl nt, g
2.3 Interaction Between Components in the 00(\0& V0,

OMG Audio/Video Streams Model

Section 2.2 described the structure of components that consti-
tute the OMG A/V streaming model. The remainder of this
section describes how these componéntsractto provide

two key A/V streaming service features: stream establishment VP
and flexible stream controls.

5) request_connection
A_EndPoint B_EndPoint

- 3) configure
-
ev bVDev

Figure 8: Stream Establishment Steps in the A/V Stream-
ing Service

2.3.1 Stream Establishment

An important feature provided by the OMG A/V streamingre shows a stream controlle§treamCtrl ) binding the
specification is a standard mechanism to establish a bindfhgarty together with thé8 party of a stream. The stream
between streams. Stream establishment is the process of H#agtroller need not be co-located with either end of a stream.
ing two peers who need to communicate viateam Stan- To simplify the example, however, we assume that the con-
dardizing this binding mechanism is important because it oller is co-located with theA party, and is called the

lows suppliers and consumers to be developed independeafjjreamCtrl . Each step shown in Figure 8 is explained
below:

0-7695-0001-3/99 $10.00 (c) 1999 IEEE 6
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1. The aStreamCtrl binds two Multimedia Device MediaCtrl s from theirVDev. These object references con-
(MMDevice) objects together: Application developers in- trol the flow of data through the stream. For instance, a video
voke thebind _devs operation onaStreamCtrl . They stream might support operations likgay , rewind , and
provide the controller with the object references of twstop and be used as shown below:

MMDevice objects. These objects are factories that create

the twoStreamEndpoint s of the new stream /I The Audio/Video streaming service invokes this
' /I application-defined operation to give the
2. Stream Endpoint creation: In this stepaStreamCitrl Il application a reference to the media controller

. . . . /I for the stream.
requests theMMDevice objects, i.e, aMMDevice and \jjeo Client VDev::set media ctrl

bMMDevice, to create thestreamEndpoint s andVDev (CORBA::Object_ptr media_ctrl,

objects. = The aStreamCitrl invokes create _A and CORBA::Environment &env)

create B operatlons on the twoMMDevu:e. objects. /I "Narrow" the CORBA:Object pointer into
These operations request them to createéndpoint and |, 5 edia controller for the video stream.

B_Endpoint endpoints, respectively. this->video_control_ =
) ] ) Video_Control::_narrow (media_ctrl);
3. VDev configuration: After the two peeVDev objects }

have been created, they can usedbefigure  operation to
exchange device-level configuration parameters. For instanideg video control interface can be used to control the stream,
these parameters can be used to designate the video formagaridllows:

compression technique used for subsequent stream transfers.
/I Select the video to watch.

4. Stream setup: In this step,aStreamCtrl  invokes the this->video_control_->select_video ("gandhi”);
.ConneCt operation Qn theA_.Enquint ) ThiS. oper_atio_n /I Start playing the video stream.
instructs theAEndpomt. to initiate a connection WI.th ItS this->video_control_->play ();

peer. TheA_ Endpoint initializes its transport endpoints in

response to this operation. In TAO's A/V streaming framé-Pause the video.

work, applications can customize this behavior usingiba- Ms->Vvideo_control_->stop ();

ble Dispatchpattern described in Section 2.2.5. J/ Rewind the video 100 frames.

. . . this->video_control_->rewind (100);
5. Stream Establishment: In this step, theA_Endpoint

invokes therequest _connection  operation on its peer
endpoint. TheA Endpoint passes its transport endpoinB Design and Implementation of an
parameters,e.g, hosthame and port number, as parame- . . . . .

ters to this operation. When thii2 Endpoint receives the Audio/Video Streamlng Appllcatlon
request _connection  operation, it initializes its end of
the transport layer connection. It subsequently connects to
transport endpoint passed to it by thé&endpoint

have developed a CORBA-based A/V streaming applica-
tion that uses the components and interfaces described in Sec-
tion 2.2. This application is an enhanced version of a non-

After these five steps are complete, a transport-level stre@@RBA MPEG player developed at the Oregon Graduate In-
has been established between the two endpoints of gkigute [25]. Our application plays movies using Mi€EG-1
stream. Section 2.3.2 describes how Media Controller video format [21] and the SudLAWaudio format [22]. Fig-
(MediaCtrl ) can control an established streamg, by ure 9 shows the architecture of our A/V streaming application.
starting or stopping the stream.

The MPEG player application uses a supplier/consumer de-
sign implemented using TAO. The consumer locates the sup-
plier using the CORBA Naming Service [26]. Future versions
Each MMDevice endpoint factory can be configured wittof our MPEG application will use the Trading Service [26] to
an application-defineMlediaCtrl  interface, as described infind suppliers that match the consumer’s requirements. For in-
Section 2.2.3. Each stream has dvediaCtrl and every stance, a consumer might want to locate a supplier that has a
MediaCtrl  controls one stream. Thus, if a particular movigarticular movie or a supplier with the least number of con-
has two streams, one for audio and the other for video, it wslimers currently connected to it.
have twoMediaCtrl s. Once the consumer obtains the supplié®Device ob-

After a stream has been established by the stream cjewt reference it requests the supplier to establish two streams,
troller, applications can obtain object references to thée., avideo stream and an audio stream, for a particular movie.

2.3.2 Stream Control

0-7695-0001-3/99 $10.00 (c) 1999 IEEE 7
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Using the ORB and the A/V streaming service greatly re-
duced the amount of software that otherwise would have been

< Media written from scratch.
!
RIMPEG| =
e 3.1 Supplier Architecture
CIXX)

COmov

< Cntl)ln‘tjl:ol > CUPEG Mowes o - o - .
Cént?'o:fer) MMDevice The supplier in the A/V streaming application is responsible

for streaminglPEG-1video frames antdLAWaudio samples

Resolve Register to the consumer. The files can be stored in a filesystem ac-

cessible to the supplier process. Alternately, the video frames
o , ) L and the audio packets can be sent by live source, such as a
Figure 9:Architecture of the A/V Streaming Application  yigeo camera. Our experience with the supplier indicates that

it can support-10 concurrent consumers simultaneously on a

The streams are established as described in Section 2.3.1. StHeUltrasparc-1l with 256MB of RAM over a 155 mbps ATM

consumer then uses tMediaCtrl  to control the stream, asnetwork. o . .
described in Section 2.2.3. The role of the supplier is to read audio and video frames

The supplier is responsible for sending A/V packets Viggm a file, encode them, and transmit them to the consumer
UDP to the consumer. For each consumer, the supplier se#ef9ss the network. Figure 11 depicts the key components in
two streams, one each for the MPEG video packets and i@ supplier architecture.

Sun ULAW audio packets. The consumer decodes th

streams and plays these packets in a viewer, as shown in VIDEO AubIo SERVER
ure 10. E CONTROL; E CONTROL; cre PROCESS
S - DATA DATA = Ej
peqy Player - X —
—
Gods must bhe crazy [ \ CONNECTION HANDLERS Movies
CD ° om ]

Figure 11:TAO Audio/Video Supplier Architecture

The main supplier process contains tkdDevice end-
point factory described in Section 2.2.1. TMdMDevice cre-
ates connection handlers in response to consumer connections,
using process-based concurrency strategyach connection
triggers the creation of one audio process and one video pro-

EXitl |nfo| Paral ngl F”el §§| Norm|§|§|§|ﬁlﬁ| cess. These processes respond to multiple events. For in-
50 0

stance, the video supplier process responds to CORBA oper-

50 60 ations, such aplay andrewind , and sends video frames
J JE J JE J JE | JE— . . . .
Balance Volume Play Speed Position periodically in response to timer events.
Each componentin the supplier architecture is described be-
low.

Figure 10:The TAO Audio/Video player
This section describes the various components of the cgrfli'l The Media Controller Component
sumer and supplier in detail. The following table illustratégsis component in the supplier process is a servant that im-
;@Ztglr;mabnedr :g;'"r::%?i c()):1 C++ source required to develop ﬂB?ements the Media Controller interfaclé¢diaCtrl ) de-
' scribed in Section 2.2.3. The Media Controller responds to

Component Lines of code CORBA operations from the consumer. The interface ex-
TAO CORBA ORB 61,524 ported by theMediaCtrl component represents the various
TAO Audio/Video (A/V) streaming service 3,208 operations supported by the supplier, suchlag , rewind ,
TAO MPEG video application 47,782 andstop .

8
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At any point in time, the supplier can be in several statedjon in theStopped State object instructs the data com-
such asPLAYING, REWINDING, or STOPPED Depending on ponent to play frames in reverse chronological order.
the supplier’s state, its behavior may change in response to

consumer operations. For instance, the supplier ignoreg 82 The Data Transfer Component
consumer'splay operation when the supplier is already in

the PLAYING state. Conversely, when the supplier is in thEhe data component is resppnsible_for _transferring data to the
STOPPEDstate, a consumeewind operation transitions theconsumer. Our MPEG supplier application reads video frames
supplier to the(REWINDING state. from aMPEG-1file and audio frames from a SWwi.AWaudio

The key design forces that must be resolved while impfgf" It sgnds these frames to the consumer, fra}gmenting long
mentingMediaCtrl s for A/V streaming are (1) a”0ngtheframes if necessary. The current implementation of the data
same object to respond differently, based on its current st&@nPonent uses the UDP protocol to send A/V frames.

(2) providing hooks to add new states, and (3) providing ex-A key design challenge related to data transfer is to have the
tensible operations to change the current state. application respond to CORBA operations for the stream con-

To provide a flexible design that meet these requiremerﬂg,I otbjects,e_.g th?Medl?Ctrl ' astwe'g asftfhetQata trar’:sfgr
the control component is implemented using Bi@ate pat- eventse.g, vigeo irame imer events. An efiective way 1o do

tern [17]. This implementation is shown in Figure 12. ThtgIIS Is to use thkeactorpattern, as shown in Figure 13.

. . : Periodic
Media Controller Q%» Media State & N:edllla
play () = "1 play () = 0; ntrotier transmitter
rewind () | rewind () = 0;
stop () I stop () = 0; :
i
1

' ' ORB . i
state->play (); Playing State Stopped State Descriptor Timer Data (UDP)

play () play () : Reactor
rewind () rewind ()
StOp () stop () | OS EVENT DEMULTIPLEXING INTERFACE |

Figure 12:State pattern implementation of the Media Con-

troller

. . . . Figure 13:Reactive Architecture of the Video Supplier
MediaCtrl  has astate object pointer. The object be- g PP

ing pointed to by the Media Controllerate pointer rep-  The video supplier registers two event handlers with TAO's
resents the current state. For simplicity, the figure shog®p Reactor . One is a signal handler for the video frame
thePlaying State  and theStopped State ,whichare (imer events. The other is a UDP socket event handler for
subclasses of theledia State  abstract base class. Addifeedpack events coming from the consumer. The frames sent
tional states, such as tiewinding State , can be added y the data component correspond to the current state of the
by subclassing frorMedia State MediaCtrl  object, as outlined above. Thus, in thieaYING

The diagram lists three operationplay , rewind and state, the data component plays the audio and video frames in
stop . When the consumer invokes an operation on thRronological order.
Media Controller , this class delegates the operation to Fyture implementations of the data transfer component in
the state object A state object implements the response #,r MPEG player application will support multiple encoding
each operation in a particular state. For instancergtnd  protocols via the simple flow protocol (SFP) [9]. SFP encod-
operation in thePlaying State  contains the response ofng encapsulates frames of various protocols within an SFP
the media controller to theewind - operation when itis in the frame. It provides standard framing and sequence numbering
PLAYING state. State transitions can be made by changing figchanisms. SFP uses the CORBA CDR encoding mecha-
object being pointed to by thetate  pointer of theMedia  nism to encode frame headers and uses a sinTptiit-based
Controller flow control mechanism described in [9].

In response to consumer operations, the custte ob-
ject instructs the data transfer component discussed in Sg(‘z Consumer Architecture
tion 3.1.2 to modify the stream flow. For instance, when
the consumer invokes threwind operation on theMedia The role of the consumer is to read audio and video frames off
Controller  while inthesTopPPEDstate, theewind oper- the network, decode them, and play them synchronously. The

0-7695-0001-3/99 $10.00 (c) 1999 IEEE 9
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audio and video servers stream the frames separately. AlV Control/Audio Playback process: The Control/Audio
frame synchronization is performed on consumer. Figure g¢bcess is responsible for the following tasks:
depicts the key components in the consumer architecture:

e Control — This component receives control messages

from the GUI process and sends the appropriate CORBA
Vipeo |—IIITIMIT ]‘)/fl(;;’('))f,'; x‘;‘;‘;; GUIVIDEO operation to thélediaCtrl ~ servant in the supplier pro-
DECODE CONTROL/AUDIO cess.
. " @ e Audio playback- The audio playback component is re-
épﬁj‘:{‘;’mé ’ ”)))) sponsible for dequeueing audio packets from the Audio
L L (« > m) Buffer process and playing them back using the multime-
VIDEO Aupio (Video Control) dia sound hardware. Decoding is unnecessary because
BUFFER | | BUFFER the supplier uses the ULAW format. Therefore, the data
Audio Control ||,_Commands| received can be directly written to the sound port, which
is/dev/audio  on Solaris.

Figure 14:TAO Audio/Video Consumer Architecture
4 Performance Results

The original non-CORBA MPEG consumer [25] used fhis section describes the design and results of three perfor-
process-based concurrency architecture. Our CORBA-baséd 9 P

o . ; L mance experiments we conducted using TAO’s A/V streaming
consumer maintain this architecture to minimize changes to

the code. Separate processes are used to do the buffering?e ice-
coding, and playback, as explained below:

4.1 CORBA/ATM Testbed

1. Video Buffer: The video buffering process is responsi- ) ) ) ) )
ble for reading UDP packets from the network and enqueueﬂ;’Be experiments in this section were conducted using a
them in shared memory. The Video Decoder process dequeitidRE Systems ASX-1000 ATM switch connected to two

these packets and performs MPEG decoding operationsdgg!-Processor UltraSPARC-2s running Solaris 2.5.1. The
them. ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each

UltraSPARC-2 contains a 300 MHz Super SPARC CPUs with
2. Audio Buffer: Similarly, the audio buffering process? 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP proto-
is responsible for reading UDP packets of the network af@l stack isimplemented using the STREAMS communication
enqueueing them in shared memory. The Control/Audi@mework [28].
Playback process dequeues these packets and sends themF@ch UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
/dev/audio . 155s-MF ATM adaptor card, which supports 155 Megabits

per-sec (Mbps) SONET multimode fiber. The Maximum
3. Video Decoder: The video decoding process reads thBansmission Unit (MTU) on the ENI ATM adaptor is 9,180
raw packets sent to it by the Video Buffer process and decobigtes. Each ENI card has 512 Kbytes of on-board memory.
them according to the MPEG-1 video specification. These demaximum of 32 Kbytes is allotted per ATM virtual circuit
coded packets are sent to the GUI/Video process, which disanection for receiving and transmitting frames (for a total of
plays them. 64 Kb). This allows up to eight switched virtual connections

per card. The CORBA/ATM hardware platform is shown in
4. GUI/Video process: The GUI/Video process is responsiFigure 15.

ble for the following two tasks:
4.2 CPU Usage of the MPEG decoder

e GUI — It provides a GUI to the user, where the user can
select operations likplay , stop , andrewind . These The aim of this experiment is to determine the CPU overhead
operations are sent to the Control/Audio process viaaasociated with decoding and playing MPEG-1 frames in soft-
UNIX domain socket [27]. ware. To measure this, we used the MPEG/ULAW A/V player

application described in Section 3.

9 We used the application to view two movies, one of size

Y8x96 pixels and the other of size 352x240 pixels. We mea-

sured the percentage CPU usage for diffefiamhe rates The

e Video — This component is responsible for displayin
video frames to the user. The decoded video frames
stored in a shared memory queue.

10
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SPARC 2

(FORE ATM

ADAPTORS
AND ETHERNET)

Figure 15: Hardware for the CORBA/ATM Testbed

FORE SYSTEMS
ASX 200Bx
ATM SWITCH
(16 porT, OC3
155MBPS/PORT,
9,180 mTU)

while playing 12 frames per second, or higher. However, for
smaller frame sizes (128x96), MPEG decoding in software
does not cause heavy CPU utilization. At 30 frames per sec-
ond, CPU utilization is~38%.

4.3 AJV Stream Throughput

The aim of this experiment is to illustrate that TAO’s A/V
streaming service does not introduce appreciable overhead in
transporting data. To demonstrate this, we wrote a TCP-based
data streaming component and integrated it with TAO’s A/V
service. The producer in this application establishes a stream
with the consumer, using the stream establishment mechanism
discussed in Section 2.3.1. Once the stream is established, it
streams data via TCP to the consumer.

We measured the throughpug., the number of bytes per
second sent by the supplier to the consumer, obtained by this
streaming application. We then compared this throughput with
the following two configurations:

frame rate is the number of video frames displayed by thes TCP transferi.e., by a pair of application processes that

viewer per second.

do not use the OMG stream establishment mechanism. In

The results are shown in Figure 16. These results indicate this case, sockets and TCP were the transport mechanism.

100

/ —+-128x96 frame size | |

90

/ -=-352x240 frame size

ol

80 /
70

50

40

Percentage CPU used

30

20 /
10

9 12 15 18 24 30
Frames per second

Figure 16:CPU Usage of the MPEG Decoder

This is the “ideal” case since there is no additional ORB-
related or presentation layer overhead.

e ORB transferi.e, the throughput obtained by a stream
that used aroctet streanpassed through the TAO [11]
CORBA ORSB. In this case, the IIOP data path was the
transport mechanism.

We measured the throughput obtained by varying the buffer
size of the sender.e., the number of bytes written by the sup-
plier in onewrite  system call. In each stream, the supplier
sent 64 megabytes of data to the consumer.

The results shown in Figure 17 indicate that, as expected,
the A/V streaming service does not introduce any apprecia-
ble overhead to streaming the data. In the case of using the
IIOP path through the ORB as the transport layer can incur
more performance overhead. This overhead could arise from
the dynamic memory allocation, data-copying, and marshal-
ing/demarshaling performed by the ORB’s IIOP protocol en-
gine [8].But TAO could achieve almost the socket performance
at higher buffer sizes due to its optimizations, in particular for
octet data [29]

The largest disparity occurred for smaller buffer sizes,
where the performance of the ORB was approximately half
that of the TCP and A/V streaming implementations. As
the buffer size increases, however, the ORB performance im-
proves considerably and attains nearly the same throughput as
TCP and A/V streaming. Clearly, there is a fixed amount of

that for large frame sizes (352x240), MPEG decoding in softverhead in the ORB that is amortized and minimized as the
ware becomes expensive, and the CPU usage becomes 1€i@&00of the data payload increases.

11
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Figure 17:Throughput Results Figure 18:Stream Establishment Latency Results

reactive concurrency strategy, the latency is only about 0.4 sec-
onds.
This experiment measures the time required to establish &he process-based strategy is well-suited for supplier de-
stream using TAO's implementation of the OMG CORBA A/\Wices that have multiple streams,g, a video camera that
stream establishment protocol described in Section 2.3.1. M¥eadcasts a live feed to many clients. In contrast, the reac-
measured the stream establishment latency for the two contiue- concurrency strategy is well-suited for consumer devices
rency strategies, process-based strategy and reactive stratkgiyhave few streams,g, a display device that has only one
described in Section 2.2.1. or two streams.
The timer starts when the consumer gets the object refer-
ence for the supplierMMDevice servant from the Naming
Service. The timer stops when the stream has been establisbed, Related \Work
i.e., when a transport-layer TCP connection has been estab-
lished between the consumer and the supplier. Distributed multimedia streaming frameworks have received
We measured the stream establishment time as the numareasing focus in the R&D community. A popular Internet-
ber of concurrent consumers establishs connections with ligsed streaming mechanism is Realvideo [1], from Real Net-
supplier increased from 1 to 10. The results are shownviorks. Like the MPEG application described in Section 3, the
Figure 18. When the supplieldMDevice is configured to Realvideo system uses the UDP protocol to send A/V packets
use the process-based concurrency strategy (described in ®em the supplier to the consumer. However, the Realvideo
tion 2.2.1), the time taken to establish the stream is highapplication uses proprietary stream establishment and control
due to the overhead of process creation. For instance, wheipgocols, as well as a proprietary audio and video format. Mi-
concurrent consumers establish a stream with the produceegisoft's Vxtreme [2] is another popular streaming mechanism
multaneously, the average latency observed is about 2.25 #eat is similar to Realvideo.
onds with the process-based concurrency strategy. With th€ONA Inc. has develope®rbix MX [30], which is an im-

4.4 Stream Establishment Latency

12
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plementation of the CORBA A/V streaming specification. THgection 2.2.3.
key features of Orbix MX are similar to TAO’s implementation However, our measurements described in Section 4 revealed
of the A/V Streaming service.e., support for multiple trans- that while CORBA provides solutions to many recurring prob-
port protocols, flexible stream controls, and support for multems in network programming, using CORBA for data transfer
ple concurrency strategies while creating stream endpointsin bandwidth-intensive applications is not as efficient as using
The NEC C&C Laboratories have implemented a priswer-level protocols like TCP, UDP, or ATM directly. Thus,
liminary prototype of the A/V streaming specification [31]Jan important benefit of the TAO A/V Streaming service is to
Their prototype has been implemented with Orbix2.2 and @urovide applications the advantages of using CORBA IIOP in
bixWeb2.0.1. ThdlowAdapters in their implementation their stream establishment and control modules, while allow-
are similar to theStreamEndpoint  of the A/V specifica- ing the use of more efficient transport-layer protocols for data
tion,i.e, they deal with the network specific aspects ibav ~ streaming.
within a streamFlows are a forthcoming extensionto TAO's Enhancing an existing A/V streaming application to use
A/V implementation. CORBA was a key design challenge. By applying patterns,
The Distributed Multimedia Research Group at the Univestch as theState Strategy [17] andReactor[19], we found
sity of Lancaster is working on standardization of Open Di#-was much easier to address these design issues. Thus, the
tributed Systems using CORBA middleware. Towards tHise of patterns helped us rework the architecture of an existing
goal, they propose thexplicit open bindingsoncept [32], MPEG A/V player and make it more amenable to a distributed
which is a mechanism using which application developers daghnology such as CORBA.
explicitly set up an additional transport connection betweenBuilding the CORBA A/V streaming service also helped us
two CORBA objects. This connection can then be used forprove TAO, the CORBA ORB used to implement the ser-
streaming data. vice. An important feature added to TAO was support for
The H.323 standards specified BjU ensures interoper-nested upcallsThis feature allows a CORBA-enabled appli-
ability between heterogeneous multimedia devices over heation to respond to incoming CORBA operations, while it is
erogeneous networks. The H.323 document defines staaking a CORBA operation on a remote object. During the
dards for video/audio coding/decoding, signalling and comevelopment of the A/V streaming service, we also applied
trol and also provides facilities for network and bandwidtiany optimization to TAO and its IDL compiler, particularly
management. The A/V streaming service can interopér sequences ajctet s and theCORBA::Any type.
ate with H.323 clients/servers using &h323-Adapter .  All the C++ source code, documentation, and bench-
The H.323-Adapter  is a CORBA object that convertsmarks for TAO and its A/V streaming service is available at
the H.323 control messages into appropriate Audio/Videavw.cs.wustl.edu/  ~schmidt/TAO.html
CORBA control messages.
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A Overview of the CORBA Reference object —operation(args) . Figure 19 shows the un-
Model derlying components described below that ORBs use to trans-
mit remote operation requests transparently from client to ob-

CORBA Object Request Brokers (ORBs) [10] allow clients f§ct

invoke operations on distributed objects without concern f@fject: In CORBA, an object is an instance of an Interface
the following issues [33]: Definition Language (IDL) interface. The object is identified

Objectlocation: CORBA objects can be collocated with th®y anobject referencewhich uniquely names that instance

client or distributed on a remote server, without affecting théi€ross servers. A@bjectldassociates an object with its ser-
implementation or use. vant implementation, and is unique within the scope of an Ob-

ject Adapter. Over its lifetime, an object has one or more ser-

Programming language: The languages supported b ants associated with it that implement its interface.

CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others. Servant: This component implements the operations de-

OS platform: CORBA runs on many OS platforms, inclugfined by an OMG Interface Definition Language (IDL) in-

ing Win32, UNIX, MVS, and real-time embedded systems li{g"face. In languages like C++ and Java that support object-
VxWorks, Chorus, and LynxOS. oriented (OO) programming, servants are implemented us-

ing one or more class instances. In non-O0 languages, like

Communication protocols and interconnects: The com-  “senants are typically implemented using functions and
munication protocols and interconnects that CORBA can ruf,t 5. A client never interacts with a servant directly, but
oninclude TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ethélways through an object.

ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-eﬁectQRB Core: When a client invokes an operation on an ob-

stemming from differences in hardware such as storage Ia))t(ﬁﬁ ' tS_e CiRBdCorte |s_responS|bIe for qfellverl?gttrt\e r?quteslt:to
and data type sizes/ranges. e object and returning a response, if any, to the client. For

objects executing remotely, a CORBA-compliant ORB Core
Figure 19 illustrates the components in the CORBA 2.x rGﬁ(_)mmunicates via a version of the General Inter-ORB Proto-
erence model, all of which collaborate to provide the port Qg(lflo?’ ITOSt comm%nIyTtgg Internet Inter—ORIIB irotg;%l
bility, interoperability, and transparency outlined above. Ea ) which runs atop the transpprt pTO‘OCO AN
ore is typically implemented as a run-time library linked into

both client and server applications.

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY ORB Interface:

An ORB is an abstraction that can be im-
plemented various ways,g, one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
v (1) initialize and shutdown the ORB, (2) convert object ref-

y Y
1 SIT]I)JI];S (—((;JECT erences to strings and back, and (3) create argument lists for
INTERFACE ADAPTER . s : .
requests made through tignamic invocation interfag®ll).

[ % ] OMG IDL Stubs and Skeletons: IDL stubs and skeletons

serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typsthtic invoca-
tion interface(Sll) that marshals application parameters into a

. ) . common data-level representation. Conversely, skeletons de-
Figure 19: Components in the CORBA 2.x Reference Mod arshal the data-level representation back into typed parame-

. _ . ters that are meaningful to an application.
component in the CORBA reference model is outlined below: ¢ PP

in args
operation()
REF ) out args + return value
<+—O0

OBJECT
(SERVANT)

CLIENT

Q STANDARD INTERFACE QSTANDARD LANGUAGE MAPPING

Q ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL

Client: This program entity performs application tasks bgl- Compiler: ~An IDL compiler automatically transforms
obtaining object references to objects and invoking opefMC IDL definitions into an application programming lan-
tions on them. Objects can be remote or collocated re@4!@ge like C++ or Java. In addition to providing program-

tive to the client. Ideally, accessing a remote object shodiind language transparency, IDL compilers eliminate com-
be as simple as calling an operation on a local objeet, MON sources of network programming errors and provide op-
portunities for automated compiler optimizations [34].
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Dynamic Invocation Interface (DIl): The DIl allows B Overview of the CORBA Property
clients to generate requests at run-time. This flexibility is Service

useful when an application has no compile-time knowledge

of the interface it accesses. The DIl also allows clients to L

makedeferred synchronousalls, which decouple the requesB-1  Motivation

and response portions of twoway operations to avoid blocki

the client until the servant responds. In contrast, in CORB&QCORBA object consists of (1) an identifye, an object

2.x, Sll stubs only suppotiwoway i.e., request/response, anéefferenctg, (2) andlnfr.fba(iee., de;mgd n l.DL land C(t)nflsnn?th
onewayi.e, request-only operatiorts. of operations and attributes, and (3) an implementation of the

interface,i.e., one or more servants. The operations and at-
tributes in an IDL interface arstatic, i.e., they are defined
Dynamic Skeleton Interface (DSI): The DSl is the Server's priori. In general, statically-typed IDL interfaces enhance ap-
analogue to the client's DII. The DS allows an ORB to delivgjflication robustness by preventing accidental violations of the
requests to servants that have no compile-time knowledggyfesystem.
the IDL interface they implement. Clients maki_ng requestsyynen building frameworks like the A/V streaming service
need notknow whether the server ORB uses static skeleton§ Qi rined in this paper, however, certain attributes cannot be
dynamic skeletons. _L|keW|se, servers need not know if clieRjsfineq statically because the names, types, and values of these
use the DIl or SlI to invoke requests. attributes will vary depending on how the application uses the
framework. For example, when a video output device is repre-
Object Adapter: An Object Adapter associates a servagented as allMDevice, the typical attributes ofiMDevice
with objects, demultiplexes incoming requests to the servanight bevideo encoding formatndframe rate In contrast, if
and collaborates with the IDL skeleton to dispatch the appibis an audio output device, thHdMDevice attributes might
priate operation upcall on that servant. CORBA 2.2 portiee audio formatandsample rateas shown in Figure 20.
bility enhancements [10] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB. Of
ject Adapters enable ORBs to support various types of g
vants that possess similar requirements. This design resul
a smaller and simpler ORB that can support a wide rangg Encoding - MPEG] Format : an
object granularities, lifetimes, policies, implementation stylg Fame Rate 26 Encoding mu-law
and other properties.

Video Out Audio Out

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on the
object and make invocations on it. In addition, the Interface
Repository provides a common location to store additional in-
formation associated with interfaces to CORBA objects, such
as type libraries for stubs and skeletons.

MM Device

Figure 20:Properties for AV Streams

To maximize flexibility, therefore, the A/V streaming
framework requires attributes that contaiynamictypes and

Implementatlo_n R_eposnory: The Implementation Rep(.)s"values. The CORBA Property Service provides this flexibility
tory [36] contains information that allows an ORB to actlva@Ia the following features:

servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS enviroB-

ment. In addition, the Implementation Repository provides ynamic prqperty assomapon. The Eroperty Service pro .
. ; : ; . vides the ability to dynamically associate hamed values with
common location to store information associated with server . . .
o ) . jects more flexibly than the statically defined IDL-type sys-
such as administrative control, resource allocation, secur, S . d
- m. Thus, they allow applications to associdymamic at-
and activation modes.

tributeswith object. By using the Property Service, applica-
1 , . o ftions can create and delete new properties, change the values
The OMG has standardized an asynchronous method invocation inter a<f‘e ti d iat i ith d h
in the Messaging specification [35], which will appear in CORBA 3.0. Orf properties, and assoclate properties with modes, such as

readonly mode.
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Dynamically typed values: The Property Service defines Empe':ty SSettD’ .
operations to create and manipulate setmiarhe-valueand operyoete .
name-value-modeiples. Names are OMG IDL strings and|define_property (‘format’, MPEG)

values are OMG IDlany s. The use ofiny s allows a Prop- [5#.mede (format’, read only) MMDevice
erty Service implementation to handle any value that can be C Properties )
represented in the OMG IDL-type system. /
Figure 3 shows how thielMDevice interface uses the Prop-
erty Service to store properties related to the multimedia ¢ Ne"m® 2/:::;16 Type) | Mode
vice that it represents.
Movie "Gandhi" fixed_normal
Format MPEG read_only

B.2 Design Overview

. - ) Figure 22:Using the Property Service Via Inheritance
The UML diagram in Figure 21 shows the components in the

Property Service. These components are described below.

Property Set \

define_property ()

clients of MMDevice will also have access to the Property
Service operations. For example, a client may define a new

PropertyNameslterator

_ | get_property_value () : Any 0 property and associate that with a servant that implements
_ delete_property () next_one () : Property Name] MMDevice.
e
Property Set Pro i
perties Iterator . . . .
Factory = Factory interfaces: As an alternative to inheritancéac-
resel
PropertySetDef e ) § Fey tory methodg17] can be used to creafropertySet s or
P 'deﬁne_zroperty_with_mode 0 PropertySetDef s. This approach is shown in Figure 23.
t N . .
- e 8 - Property Mode Type In this approach, the objeétV_Server obtains one or more
PropertySetDef
Factory
. . AV_Server
Figure 21:UML for the Property Service Property Set /
Property Set Def
A

PropertySet: This interface supports a set of properties. |
A property is a tuple consisting ofproperty _name, |
property _value> . Theproperty _name is astring
that names the property. Theoperty _value is a type
any that contains the value assigned to the property.

PropertySetDef: This interface is a subclass of theigyure 23:Using The Property Service Via Factory Meth-
PropertySet interface that exposes characteristics of eagRg

property,e.g, readonly or read/write access. There are two
factory interfaces: one for theropertySet interface and
the other for thePropertySetDef interface. lterators are
defined to iterate over the property names and properties.

Property Set Factory /
Property Set Def Factory

PropertySet  or PropertySetDef objects through the
factory methods. Objects can keep properties under different
PropertySet s depending on how they are related.

B.3 Associating Properties with CORBA Ob-  opjects should use the inheritance approach, if they want to

jects allow the clients to access the properties with the servants. For

. . . .. .. example MMDevice interface of A/V streams inherits from

Propertle_s can be f;lssomated with a CORBA object in e'therﬂ‘?fPropertySet interface and hence the clients can invoke
the following ways: property service operations on the servants. Factory approach
Inheritance: The application IDL interface can inheritof the property service should be used when the objects want
directly from the PropertySet or PropertySetDef to keep track of some properties internally. For example, as
interfaces, as shown in Figure 22. In this approadhown in Figure 23, a\V_Server object can have a se-
interface MMDevice inherits from PropertySet or quence ofPropertySet s orPropertySetDef s to keep
PropertySetDef interface. If it is a public inheritance,track of the various properties of all its clients.
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B.4 Advanced Features of the Property Service

As with CORBA attributes, clients can read and write prop-
erty values. In addition, clients can use the Property Service
to dynamically create and delete properties associated with
a remote object. Clients can manipulate properties individu-
ally or in batched modesing a sequence of the Property data
type calledProperties For example, to define new properties,
the define _properties operation can be called with a
sequence of Properties , which are a dynamically-sized
array of name-value pairs.

If objects support th@ropertySetDef  interface, clients
can create and manipulate properties and their character-
istics, such as the property modeg, readonly and
fixed _readonly . ThePropertySetDef interface also
provides operations for clients to retrieve constraint informa-
tion about &PropertySet , such as the list of all the property
types that are allowed in thRropertySet  or the list of all
the property names that are allowed in tRi®pertySet
This constraint information can be specified using the factory
creation operations when tiRropertySet  is created.
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