
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
The Design and Performance of a CORBA
Audio/Video Streaming Service

Sumedh Mungee, Nagarajan Surendran, Douglas C. Schmidt

fsumedh,naga,schmidtg@cs.wustl.edu
Department of Computer Science, Washington University

St. Louis, MO 63130, USA�
M

a

a
c

d
y

B
r
n

i
h

m

d

e-
re-
ow-

uire
pop-
video
us
ise,
ag-
loy
to

of-
ns-

ce,
]
and
-
in
].
an
ntrol
efit
-
roup

an-
nce

el
ing
es,
ntrol
ns-
This paper will appear in the HICSS-32 International Co
ference on System Sciences, minitrack on Multimedia DB
and the WWW, Hawaii, January, 1999.

Abstract

Recent advances in network bandwidth and processing po
of CPUs has led to the emergence of multimedia stre
ing frameworks, such as NetShow, Realvideo and Vxtre
These frameworks typically rely on proprietary stream est
lishment and control mechanisms to access multimedia
text. To facilitate the development of standards-based
tributed multimedia streaming applications, the OMG has
fined a CORBA-based specification that stipulates the ke
terfaces and semantics needed to control and manage
dio/video streams.

This paper makes two contributions to the study of COR
based distributed multimedia streaming frameworks. Fi
it describes the design and performance of an impleme
tion of the OMG audio/video (A/V) streaming model based
TAO, which is a real-time CORBA ORB. Second, it descr
the design and performance of a distributed application t
uses TAO’s A/V streaming framework to establish and c
trol MPEG video streams. Our experience with TAO’s A
streaming framework indicates that CORBA defines a flex
and efficient model for developing standards-based multi
dia streaming applications.

Keywords: CORBA-based Multimedia Streaming, QoS
enabled OO Middleware, Performance Measurements

�This work was supported in part by Boeing, GDIS/CDI, DARPA co
tract 9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, an
Sprint.
1

0-7695-0001-3/99 $1
n-
S

wer
m-
me.
b-
on-

dis-
e-
in-
au-

A-
st,
ta-
on

bes
at

on-
/V
ible

e-

-

n-
US

1 Introduction

1.1 Motivation

Traditional distributed object computing (DOC) middl
ware such as CORBA, DCOM, and Java RMI support
quest/response semantics for distributed applications. H
ever, an increasingly important class of applications req
transfer of continuous media data streams. For instance,
ular Internet-based streaming mechanisms, such as Real
[1] and Vxtreme [2], allow suppliers to transmit continuo
streams of audio and video packets to consumers. Likew
non-continuous media applications, such as medical im
ing servers [3] and network management agents [4], emp
streaming to transfer bulk data efficiently from suppliers
consumers.

Stringent performance requirements for streaming data
ten preclude DOC middleware from being used as the tra
port mechanism for multimedia applications [5]. For instan
inefficient CORBA Internet Inter-ORB Protocol (IIOP) [6
implementations often perform excessive data-copying
memory allocationper-request, which increases packet la
tency [7]. Likewise, inefficient marshaling/demarshaling
DOC middleware decreases streaming data throughput [8

If the design and performance of DOC middleware c
be improved, however, the stream establishment and co
components of distributed multimedia applications can ben
greatly from the portability and flexibility provided by middle
ware. To address these issues, the Object Management G
(OMG) has defined a specification for the control and m
agement of A/V streams [9], based on the CORBA refere
model [10].

The CORBA A/V streaming specification defines a mod
for implementing an open distributed multimedia stream
framework. This model integrates (1) well-defined modul
interfaces, and semantics for stream establishment and co
with (2) efficient transport-level mechanisms for data tra
0.00 (c) 1999 IEEE 1

r

a

t

g

/

eo-
red
hat
.
bout
ntly,
ing

ap-
uch
DP,

es-
ns-

ow
rent
orts

up-
s

l for
ery

s of
e-

tion

it to
it

ddi-

de-
ded.
ns,
t be

ec-
m-
e
G

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
mission. In addition to defining standard stream establ
ment and control mechanisms, the OMG specification allo
distributed multimedia applications to leverage the portabi
and flexibility provided by DOC middleware.

Our prior research on CORBA middleware has explo
several dimensions of real-time ORB endsystem design
cluding static [11] and dynamic [12] real-time schedulin
real-time request demultiplexing [13], real-time event p
cessing [14], real-time I/O subsystem integration [15], a
the real-time performance of various commercial and rese
ORBs [16] over ATM networks. This paper focuses on a pre
ously unexamined point in the real-time ORB endsystem
sign space:the design and performance of the CORBA A
streaming service specification.

1.2 Design Challenges

We have developed the first freely available implementa
of the OMG A/V streaming model using TAO [11], which is
real-time CORBA ORB that has been ported to most OS p
forms. In addition to implementing the components defin
by the OMG specification, TAO’s A/V streaming service us
patterns [17] to resolve the following key design challen
that arise when developing distributed multimedia stream
frameworks:

Flexibility in stream endpoint creation strategies: The
OMG specification defines the interfaces and roles of stre
components. Many performance-sensitive multimedia ap
cations require fine-grained control over the strategies gov
ing the creation of stream components. For instance, our
studies of Web server performance [18, 3] motivate the n
to supportadaptiveconcurrency strategies to develop efficie
and scalable streaming applications.

In the context of our A/V streaming service, we determin
that the supplier-side of our MPEG application described
Section 3 required a process-based concurrency strateg
maximize stream throughput by allowing parallel process
of separate streams. Other types of applications required
ferent implementations, however. For example, the consum
side of our MPEG application benefited from the creation
reactive [19] suppliers that contain all related endpoints wit
a single process.

To achieve a high degree of flexibility, therefore, our A
streaming service design decouples thebehaviorof stream
components from the strategies governing theircreation. We
achieved this decoupling via theFactory MethodandAbstract
Factorypatterns [17], as described in Section 2.2.1.

Flexibility in transport protocol: A streaming service may
need to select from a variety of transport protocols. For
stance, an Internet-based streaming application like Realv
2

0-7695-0001-3/99 $1
ish-
ws

lity

ed
in-

g,
ro-
nd
rch
vi-
de-
/V

ion
a
lat-
ed
es
es
ing

am
pli-
ern-
past
eed
nt

ed
in
y to

ing
dif-
er-
of

hin

V

in-
ideo

[1] may use the UDP protocol, whereas a local intranet vid
conferencing tool [20] might prefer the QoS features offe
by native high-speed ATM protocols. Thus, it is essential t
a streaming service support a range of transport protocols

The OMG streaming service makes no assumptions a
the transport protocol used for data streaming. Conseque
the stream establishment components in our A/V stream
service framework provide flexible mechanisms that allow
plications to define and use multiple transport endpoints, s
as sockets and TLI, and multiple protocols, such as TCP, U
or ATM.

Another design challenge, therefore, is to define stream
tablishment components that can work with a variety of tra
port endpoints. To resolve this challenge, we applied theStrat-
egypattern [17], as explained in Section 2.2.5.

Flexibility in stream control interfaces: An A/V stream-
ing framework must provide flexible mechanisms that all
developers to define and use different operations for diffe
streams. For instance, a video application typically supp
a variety ofoperations, such asplay , stop and rewind .
Conversely, a stream in a stock quote application might s
port operations likestart andstop . Because the operation
provided by the stream are application-defined, it is usefu
the control logic component in a streaming service to be v
flexible.

Therefore, another design challenge facing designer
streaming services is to allow applications the flexibility to d
fine their own stream control interfaces.

Flexibility in managing states of stream supplier and con-
sumers: The transport component of a streaming applica
often needs to change behavior depending on the currentstate
of the system. For instance, invoking theplay operation on
the stream control interface of a video supplier may cause
enter into aPLAYING state. Likewise, subsequently sending
thestop operation may cause it to transition to theSTOPPED

state. More complex state machines can result due to a
tional operations, such asrewind andfast forward op-
erations.

Thus, an important design challenge for developers is
signing flexible applications whose states can be exten
In addition, the behavior of supplier/consumer applicatio
and the A/V streaming framework itself, in each state mus
well-defined, To address this issue we applied theState Pattern
[17], as described in Section 3.1.

1.3 Paper Organization

The remainder of this paper is organized as follows: S
tion 2 describes our implementation of the OMG A/V strea
ing service specification using TAO [11], which is a real-tim
CORBA ORB; Section 3 outlines the design of an MPE
0.00 (c) 1999 IEEE 2

i

r

r

u

e

-

-
l

v

e
i

1) a
,

.
-
a-

b-
re 1

n-
a

s-
e-
of

in
ch
O

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
streaming application that uses TAO’s A/V streaming serv
Section 4 analyzes the performance results of TAO’s A
streaming service over a high-speed ATM network; Sectio
summarizes related work; and Section 6 presents conclu
remarks. For completeness, Appendix A outlines the OM
CORBA reference model and Appendix B presents a b
overview of the CORBA Property Service, which is used
transfer QoS information between consumers and supplie
the A/V streaming service.

2 The Design of TAO’s Audio/Video
Streaming Service

This section presents an overview of the key architect
components in the OMG A/V streaming model. It also d
scribes the design challenges facing developers of A/V stre
ing frameworks and explains how TAO’s A/V streaming s
vice resolves these challenges.

2.1 Overview of the OMG Audio/Video
Streaming Specification

The OMG A/V streams specification [9] presents an archit
tural model and OMG IDL interfaces for building distribute
multimedia streaming frameworks. The goals of the OM
A/V streaming model are the following:

Standardized stream establishment and control mecha
nisms: Using these mechanisms, consumers and supp
can be developed independently, while still being able to
tablish streams with one another.

Support multiple transport protocols: To avoid unneces
sary overhead, the A/V streaming model separates contro
naling from the data transfer protocol, such as TCP, UDP
ATM.

Support various types of sources and sinks: Common
stream sources include a video-on-demand server, a v
camera attached to the network, or a stock quote server. C
mon sinks include a video-on-demand client, a display de
attached to a network, or a stock quote client.

Figure 1 shows amultimedia stream, which is represented
as a flow between twoflow data endpoints. One endpoint acts
as a source of the data and the other endpoint acts as a
Note that the control and signaling operations pass through
GIOP/IIOP-path of the ORB, demarcated by the dashed b
In contrast, the data stream usesout-of-bandstream(s), which
can be implemented using protocols that are more suitabl
multimedia streaming than IIOP. Maintaining this separat
of concerns is crucial to achieve high performance.
3

0-7695-0001-3/99 $1
ce;
/V
n 5
ding

G
ief
to
s in

ral
e-
am-
r-

ec-
d
G

liers
es-

sig-
, or

ideo
om-
ice

sink.
the
ox.

for
on

End-point
Flow data

Adaptor
Stream

(Source)

Flow data

Adaptor

Objects
And Management

Object
Control
Interface

ORB CORE

POA

End-point

Stream

Control
Interface

Object

Stream

Stream

POA

Control

(Sink)

MULTIMEDIA
STREAM

Figure 1:OMG Streams Architecture

Each stream endpoint consists of three logical entities: (
stream interface control objectthat exports an IDL interface
(2) adata source or sink, and (3) astream adaptorthat is re-
sponsible for sending and receiving frames over a network

Control and Management objectsare responsible for the es
tablishment and control of streams. The OMG A/V specific
tion defines the interfaces and interactions of theStream In-
terface Control Objectsand the Control and Management o
jects. Section 2.2 describes the various components in Figu
in detail.

2.2 OMG A/V Streaming Service Components

The OMG A/V streaming specification defines a set of sta
dard IDL interfaces that can be implemented to provide
distributed multimedia streaming framework. Figure 2 illu
trates the key components of the CORBA streaming fram
work. This subsection describes the TAO’s implementation

MMDevice

MediaCtrl

Controller
Stream
EndPoint

Stream

VDev VDevVDevMMDevice

Stream

MediaCtrl

Stream
Controller

EndPoint

One per device
One per stream
One per device
One per stream

VDev

EndPoint
Stream

MMDevice

Multimedia
Stream
Multimedia
Stream

Supplier

Consumer

Figure 2:A/V Streaming Service Components

the A/V streaming service framework components shown
Figure 2. The corresponding OMG interface name for ea
role is provided in brackets. In addition, we discuss how TA
0.00 (c) 1999 IEEE 3

h

n
-

e

cur-

h
ry, as
dles

trol
EG
the
trat-

to
a

o run

t-
he
the

ove,

ur-
ult,
dy-

can
ues,
s.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
provides solutions to the design challenges outlined in S
tion 1.2. Readers who are already familiar with the OMG A
streaming specification may want to skip to Section 3, wh
describes how we developed an MPEG player application
ing TAO’s implementation of this service.

2.2.1 Multimedia Device Factory (MMDevice)

The MMDevice component abstracts the behavior of a m
timedia device. The actual device can bephysical, such as a
video microphone or speaker. Likewise, a device can belog-
ical, such as a program that reads video clips from a file o
database that contains information about stock prices. T
is typically oneMMDevice per physical or logical device.

The MMDevice encapsulates the device-specific param
ters of a multimedia device, as shown in Figure 3. For

MMDeviceMMDevice
PropertiesProperties

Name (String)Name (String) Value (CORBA "Any" type)Value (CORBA "Any" type)

PropertySetPropertySet"Video_Format" "MPEG", "JPEG", "AVI"

"Movies" "Gandhi", "Star wars"

"Connections" 4

define_property ();

get_property_value ()

delete_property ();

Figure 3:Multimedia Device Factory

stance, a particular device might supportMPEG-1[21] com-
pression orULAWaudio [22]. Such parameters are term
“properties” of theMMDevice. Properties can be associate
with theMMDevice using the CORBA Property Service [23
which is described in Appendix B.

The MMDevice is an endpoint factory,i.e., it is responsi-
ble for creating new endpoints for new stream connectio
Each endpoint consists of a pair of objects: (1) a virtual dev
(VDev), which encapsulates the device-specific parameter
the connection and (2) theStreamEndpoint , which en-
capsulates the transport-specific parameters of the connec
The roles ofVDev andStreamEndpoint are described in
Section 2.2.2 and Section 2.2.5, respectively.

The MMDevice component also encapsulates the imp
mentation ofstrategiesthat govern the creation of theVDev
andStreamEndpoint objects. For instance, the impleme
tation ofMMDevice in TAO’s A/V streaming service frame
work provides the following two concurrency strategies:

Process-based strategy: The process-based concurren
strategy creates new virtual devices and stream endpoin
a new process, as shown in Figure 4. This strategy is us
for applications that create a separate process to handle
new endpoint. For instance, the supplier in our MPEG pla
application described in Section 3.1 creates separate proc
4

0-7695-0001-3/99 $1
ec-
/V
ich
us-

ul-

r a
ere

e-
in-

ed
d

],

ns.
ice
s of

tion.

le-

-

cy
ts in
eful
each
yer
sses

Connection

requested

creates

VDev MediaCtrl

StreamEndpoint
Child
Process

Server Process

MMDevice

Figure 4:MMDevice Process-based Concurrency Strategy

to stream the audio and video data to the consumer con
rently.

Reactive strategy: In this strategy, endpoint objects for eac
new stream are created in the same process as the facto
shown in Figure 5. This means that a single process han

VDev MediaCtrl

StreamEndpoint

Connection

requested

creates

Server
Process

MMDevice

Figure 5:MMDevice Reactive Concurrency Strategy

all the simultaneous connectionsreactively[19]. This strategy
is useful for applications that dedicate one process to con
multiple streams. For instance, the consumer of the MP
A/V player application described in Section 3.2 creates
video and audio endpoints in the same process using this s
egy to minimize synchronization overhead.

We are enhancing TAO’s A/V streaming framework
support otherMMDevice concurrency strategies, such as
thread-based strategy that creates new stream endpoints t
in separate threads within the same process.

In TAO’s A/V streaming service, theMMDevice uses the
Abstract Factorypattern [17] to decouple (1) the creation stra
egy of the stream endpoint and virtual device from (2) t
concrete classes that define it. Thus, applications that use
MMDevice can subclass both the strategies described ab
as well as theStreamEndpoint and theVDev that are cre-
ated.

Subclassing allows applications to customize the conc
rency strategies to suit their needs. For instance, by defa
the reactive strategy creates new stream endpoints using
namic allocation,e.g., via thenew operator in C++. Appli-
cations can override this behavior via subclassing so they
allocate stream endpoints using other allocation techniq
such as thread-specific storage [24] or special framebuffer
0.00 (c) 1999 IEEE 4

G
o

i
d

e
-

h

ith

an
ch
uch

rs,
the
e-
he

ntrol

on
as
ly.

t

-

one

For
oto-
its

e
h-

ne
ter-

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
2.2.2 Virtual Device (VDev)

The virtual device (VDev) component is created by th
MMDevice factory in response to a request for a new stre
connection. There is oneVDev per stream. TheVDev is used
by the application to define its response toconfigure re-
quests. For instance, if a consumer of a stream wants to
the MPEG video format, it can invoke theconfigure oper-
ation on the supplierVDev, as shown in Figure 6.

Video_VDevVideo_VDev
configure ();configure ();

VDevVDev

configureconfigure

configure (string name, Any value)

{

 if (name == "video_format")

 switch (value)

 case "MPEG": use_mpeg ();

 default: return Exception;

......

}

configure () = 0;configure () = 0;

("video_format",("video_format",
"MPEG");"MPEG");

Figure 6:Virtual Device

Stream establishmentis a mechanism defined by the OM
A/V streaming specification to permit the negotiation of Q
parameters viaproperties. Properties arename-valuepairs,
i.e., they have astring name and a corresponding valu
The properties used by the A/V streaming framework are
plemented using the CORBA Property Service, describe
Appendix B.

The OMG A/V streaming specification specifies the nam
of the common properties used by theVDev objects. For in-
stance, the propertycurrformat is a string that contains th
current encoding formate.g., “MPEG.” During the stream es
tablishment, eachVDev can use theget property value
operation on its peerVDev to ensure that the peer uses t
same encoding format.

When a new pair ofVDev objects are created, eachVDev
uses theconfigure operation on its peer to set the strea
configuration parameters. If the negotiation fails the stre
can be torn down and resources released immediately.

Section 2.3.1 describes the OMG A/V streaming serv
stream establishment mechanism in detail.

2.2.3 Media Controller (MediaCtrl)

The Media Controller (MediaCtrl) is an IDL interface that
defines operations for controlling a stream. TheMediaCtrl
interface isnot defined by the OMG A/V streaming servic
specification. Instead, it is defined by application developer
support operations for a specific stream, such as the follow
OMG IDL for a video service:

interface video_media_control
5

0-7695-0001-3/99 $1
e
am

use

S

e.
m-

in

es

e

m
am

ice

e
s to
ing

{
void select_video (string name_of_movie);
void play ();
void rewind (short num_frames);
void pause ();
void stop ();

};

The OMG A/V streaming service provides developers w
the flexibility to associate an application-definedMediaCtrl
interface with a stream. Thus, the A/V streaming service c
be used with an infinitely extensible variety of streams, su
as audio and video, as well as non-multimedia streams, s
as a stream of stock quotes.

The VDev object represented device-specific paramete
such as compression format or frame rate. Likewise,
MediaCtrl interface is device-specific since different d
vices support different control interfaces. Therefore, t
MediaCtrl is associated with theVDev object using the
Property Service [23].

There is typically oneMediaCtrl per stream. In some
cases, however, application developers may choose to co
multiple streams using the sameMediaCtrl . For instance,
the video and audio streams for a movie might have a comm
MediaCtrl to enable a single CORBA operation, such
play , to start both audio and video playback simultaneous

2.2.4 Stream Controller (StreamCtrl)

The Stream Controller (StreamCtrl) interface abstracts a
continuous media transfer between virtual devices (VDevs). It
supports operations to bind twoMMDevice objects together
using a stream. Thus, theStreamCtrl component binds the
supplier and consumer of a stream,e.g., a video-camera and a
display. It is the key participant in theStream Establishmen
protocol described in Section 2.3.1.

TheStreamCtrl object is generally instantiated by an ap
plication developer. There is oneStreamCtrl per stream,
i.e., per consumer/supplier pair.

2.2.5 Stream Endpoint (StreamEndpoint)

TheStreamEndpoint object is created by theMMDevice
in response to a request for a new stream. There is
StreamEndpoint per stream. AStreamEndpoint en-
capsulates the transport-specific parameters of a stream.
instance, a stream that uses UDP as the transport pr
col will use a host name and a port number to identify
StreamEndpoint .

TAO’s A/V streaming service implementation of th
StreamEndpoint uses patterns, such as Double Dispatc
ing and Template Method [17], to allow applications to defi
and exchange transport-level parameters flexibly. This in
action is shown in Figure 7 and occurs as follows:
0.00 (c) 1999 IEEE 5

i

ia a

lish-
m
fig-
es-

vide
his
the

ur-
stage
ents

in

,

wo
,
he
ing
be-
will
am

c-
fig-

am.
on-

ed

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
ConnectionConnection
RequestedRequested

returnreturn

"TCP=tango:8455""TCP=tango:8455"

connection_requested (..)
{
 handle_connection_requested ();
 return flowspec;
}

handle_connection_requested (..)
{
 create transport endpoint;
 return "TCP=tango:8455";
} TCP_StreamEndpointTCP_StreamEndpoint

StreamEndpointStreamEndpoint

Figure 7:Interaction BetweenStreamEndpoint and the
Application

Step 1: An A/V streaming application can inherit from
the StreamEndpoint class and override the operatio
handle connection requested in the new subclass
TCP StreamEndpoint .

Step 2: While binding twoMMDevices, theStreamCtrl
invokesconnect on oneStreamEndpoint with the peer
TCP StreamEndpoint as a parameter.

Step 3: The StreamEndpoint then requests the
TCP StreamEndpoint to establish the connection for th
stream using the transport addresses it is listening on.

Step 4: The virtualhandle connection requested
operation of theTCP StreamEndpoint is invoked and
connects with the listening transport address on the peer s

Thus, theStreamEndpoint design uses patterns that a
low each application to configure its own transport protoc
while reusing the generic stream establishment control lo
in TAO’s A/V streaming service framework.

2.3 Interaction Between Components in the
OMG Audio/Video Streams Model

Section 2.2 described the structure of components that co
tute the OMG A/V streaming model. The remainder of th
section describes how these componentsinteract to provide
two key A/V streaming service features: stream establishm
and flexible stream controls.

2.3.1 Stream Establishment

An important feature provided by the OMG A/V streamin
specification is a standard mechanism to establish a bin
between streams. Stream establishment is the process of
ing two peers who need to communicate via astream. Stan-
dardizing this binding mechanism is important because it
lows suppliers and consumers to be developed independe
6

0-7695-0001-3/99 $1
n

s

ide.

l-
ol,
gic

nsti-
is

ent

g
ding
bind-

al-
ntly,

yet still be able to establish streams with one another v
common protocol.

Several components are involved in the stream estab
ment. A key motivation for providing an elaborate strea
establishment protocol is to allow components to be con
ured independently of one another. This allows the stream
tablishment mechanism to remain standard, and yet pro
sufficient hooks for framework developers to customize t
process for a specific set of requirements. For instance,
MMDevice can be configured to use one of several conc
rency strategies to create stream endpoints. Thus, at each
of the stream establishment process, individual compon
can be configured to implement the desired policies.

The OMG A/V specification identifies the two peers
stream establishment as theA party and theB party. These
terms define complimentary relationships,i.e., a stream al-
ways has anA party at one end and aB party at the other. The
A party may be thesink, i.e., the consumer, of a video stream
whereas theB party may be thesource, i.e., the supplier, of a
video stream and vice versa.

Note that the OMG A/V streaming specification defines t
distinct IDL interfaces for theA andB type endpoint. Hence
for a given stream, there will be two distinct types for t
supplier and the consumer. Thus, the OMG A/V stream
specification ensures that the complimentary relationship
tween suppliers and consumers is typesafe. An exception
be raised if a supplier accidentally tries to establish a stre
with another supplier.

Stream establishment in TAO’s A/V streaming service o
curs in several steps, as illustrated in Figure 8. This

1) bind_devs (aMMDev,
bMMDev);

aMMDev
bMMDev

B_EndPointA_EndPoint

aVDev bVDev

aStreamCtrl

2.1) create_A

2.2) A_Endpoint, A_Vdev 2.4) B_EndPoint, B_VDev

2.3) create_B

4) connect

5) request_connection

3) configure

Figure 8:Stream Establishment Steps in the A/V Stream-
ing Service

ure shows a stream controller (aStreamCtrl) binding the
A party together with theB party of a stream. The stream
controller need not be co-located with either end of a stre
To simplify the example, however, we assume that the c
troller is co-located with theA party, and is called the
aStreamCtrl . Each step shown in Figure 8 is explain
below:
0.00 (c) 1999 IEEE 6

f

n

f

e

n

c

-
eo

am,

ica-
Sec-
on-
In-

on.

de-
up-
ns
to
r in-
as a
n-

ms,
vie.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
1. The aStreamCtrl binds two Multimedia Device
(MMDevice) objects together: Application developers in-
voke thebind devs operation onaStreamCtrl . They
provide the controller with the object references of tw
MMDevice objects. These objects are factories that cre
the twoStreamEndpoint s of the new stream.

2. Stream Endpoint creation: In this step,aStreamCtrl
requests theMMDevice objects, i.e., aMMDevice and
bMMDevice , to create theStreamEndpoint s andVDev
objects. The aStreamCtrl invokes create A and
create B operations on the twoMMDevice objects.
These operations request them to createA Endpoint and
B Endpoint endpoints, respectively.

3. VDev configuration: After the two peerVDev objects
have been created, they can use theconfigure operation to
exchange device-level configuration parameters. For insta
these parameters can be used to designate the video forma
compression technique used for subsequent stream trans

4. Stream setup: In this step,aStreamCtrl invokes the
connect operation on theA Endpoint . This operation
instructs theA Endpoint to initiate a connection with its
peer. TheA Endpoint initializes its transport endpoints in
response to this operation. In TAO’s A/V streaming fram
work, applications can customize this behavior using theDou-
ble Dispatchpattern described in Section 2.2.5.

5. Stream Establishment: In this step, theA Endpoint
invokes therequest connection operation on its peer
endpoint. TheA Endpoint passes its transport endpoi
parameters,e.g., hostname and port number, as param
ters to this operation. When theB Endpoint receives the
request connection operation, it initializes its end o
the transport layer connection. It subsequently connects to
transport endpoint passed to it by theA Endpoint .

After these five steps are complete, a transport-level str
has been established between the two endpoints of
stream. Section 2.3.2 describes how theMedia Controller
(MediaCtrl) can control an established stream,e.g., by
starting or stopping the stream.

2.3.2 Stream Control

Each MMDevice endpoint factory can be configured wit
an application-definedMediaCtrl interface, as described i
Section 2.2.3. Each stream has oneMediaCtrl and every
MediaCtrl controls one stream. Thus, if a particular mov
has two streams, one for audio and the other for video, it w
have twoMediaCtrl s.

After a stream has been established by the stream
troller, applications can obtain object references to th
7

0-7695-0001-3/99 $1
o
ate

nce,
t and
ers.

e-

t
e-

the

am
the

h

ie
ill

on-
eir

MediaCtrl s from theirVDev. These object references con
trol the flow of data through the stream. For instance, a vid
stream might support operations likeplay , rewind , and
stop and be used as shown below:

// The Audio/Video streaming service invokes this
// application-defined operation to give the
// application a reference to the media controller
// for the stream.
Video_Client_VDev::set_media_ctrl

(CORBA::Object_ptr media_ctrl,
CORBA::Environment &env)

{
// "Narrow" the CORBA::Object pointer into
// a media controller for the video stream.
this->video_control_ =

Video_Control::_narrow (media_ctrl);
}

The video control interface can be used to control the stre
as follows:

// Select the video to watch.
this->video_control_->select_video ("gandhi");

// Start playing the video stream.
this->video_control_->play ();

// Pause the video.
this->video_control_->stop ();

// Rewind the video 100 frames.
this->video_control_->rewind (100);

3 Design and Implementation of an
Audio/Video Streaming Application

We have developed a CORBA-based A/V streaming appl
tion that uses the components and interfaces described in
tion 2.2. This application is an enhanced version of a n
CORBA MPEG player developed at the Oregon Graduate
stitute [25]. Our application plays movies using theMPEG-1
video format [21] and the SunULAWaudio format [22]. Fig-
ure 9 shows the architecture of our A/V streaming applicati

The MPEG player application uses a supplier/consumer
sign implemented using TAO. The consumer locates the s
plier using the CORBA Naming Service [26]. Future versio
of our MPEG application will use the Trading Service [26]
find suppliers that match the consumer’s requirements. Fo
stance, a consumer might want to locate a supplier that h
particular movie or a supplier with the least number of co
sumers currently connected to it.

Once the consumer obtains the supplier’sMMDevice ob-
ject reference it requests the supplier to establish two strea
i.e., a video stream and an audio stream, for a particular mo
0.00 (c) 1999 IEEE 7

c
t
t

re-
een

ble

ac-
mes
as a
that
n a

es
mer
ts in

tions,

pro-
r in-
per-
s

be-

im-

to
ex-
us

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Naming ServiceNaming Service

`

MMOVIESOVIES

MPEG

MOV

JPEG

MMDeviceMMDevice

ControlControl
(Media(Media

Controller)Controller)

Media
(UDP)

SupplierSupplierConsumerConsumer

RegisterRegisterResolveResolve

Figure 9:Architecture of the A/V Streaming Application

The streams are established as described in Section 2.3.1
consumer then uses theMediaCtrl to control the stream, a
described in Section 2.2.3.

The supplier is responsible for sending A/V packets
UDP to the consumer. For each consumer, the supplier s
two streams, one each for the MPEG video packets and
Sun ULAW audio packets. The consumer decodes th
streams and plays these packets in a viewer, as shown in
ure 10.

Figure 10:The TAO Audio/Video player

This section describes the various components of the
sumer and supplier in detail. The following table illustra
the number of lines of C++ source required to develop
system and application.

Component Lines of code
TAO CORBA ORB 61,524
TAO Audio/Video (A/V) streaming service 3,208
TAO MPEG video application 47,782
8

0-7695-0001-3/99 $1
. The
s

via
ends
the

ese
Fig-

on-
es
his

Using the ORB and the A/V streaming service greatly
duced the amount of software that otherwise would have b
written from scratch.

3.1 Supplier Architecture

The supplier in the A/V streaming application is responsi
for streamingMPEG-1video frames andULAWaudio samples
to the consumer. The files can be stored in a filesystem
cessible to the supplier process. Alternately, the video fra
and the audio packets can be sent by live source, such
video camera. Our experience with the supplier indicates
it can support�10 concurrent consumers simultaneously o
Sun Ultrasparc-II with 256MB of RAM over a 155 mbps ATM
network.

The role of the supplier is to read audio and video fram
from a file, encode them, and transmit them to the consu
across the network. Figure 11 depicts the key componen
the supplier architecture.

MMOVIESOVIES

CCONTROLONTROL

DDATAATA

CCONTROLONTROL

DDATAATA

VVIDEOIDEO AAUDIOUDIO

CCONNECTION ONNECTION HHANDLERSANDLERS

createscreates
SSERVERERVER

PPROCESSROCESS

Figure 11:TAO Audio/Video Supplier Architecture

The main supplier process contains theMMDevice end-
point factory described in Section 2.2.1. TheMMDevice cre-
ates connection handlers in response to consumer connec
using process-based concurrency strategy. Each connection
triggers the creation of one audio process and one video
cess. These processes respond to multiple events. Fo
stance, the video supplier process responds to CORBA o
ations, such asplay and rewind , and sends video frame
periodically in response to timer events.

Each component in the supplier architecture is described
low.

3.1.1 The Media Controller Component

This component in the supplier process is a servant that
plements the Media Controller interface (MediaCtrl) de-
scribed in Section 2.2.3. The Media Controller responds
CORBA operations from the consumer. The interface
ported by theMediaCtrl component represents the vario
operations supported by the supplier, such asplay , rewind ,
andstop .
0.00 (c) 1999 IEEE 8

t

e

e

o

-

the
es

ong
ata

the
on-
r
o

’s
e
for

sent
f the

s in

t in
g
d-
FP
ring

cha-

off
The

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
At any point in time, the supplier can be in several sta
such asPLAYING, REWINDING, or STOPPED. Depending on
the supplier’s state, its behavior may change in respons
consumer operations. For instance, the supplier ignor
consumer’splay operation when the supplier is already
the PLAYING state. Conversely, when the supplier is in t
STOPPEDstate, a consumerrewind operation transitions the
supplier to theREWINDING state.

The key design forces that must be resolved while imp
mentingMediaCtrl s for A/V streaming are (1) allowing th
same object to respond differently, based on its current s
(2) providing hooks to add new states, and (3) providing
tensible operations to change the current state.

To provide a flexible design that meet these requireme
the control component is implemented using theStatepat-
tern [17]. This implementation is shown in Figure 12. T

Media Controller

play ()
rewind ()
stop ()

Media State

play () = 0;
rewind () = 0;
stop () = 0;

Playing State

play ()
rewind ()
stop ()

Stopped State

play ()
rewind ()
stop ()

state

state->play ();

Figure 12:State pattern implementation of the Media Con-
troller

MediaCtrl has astate object pointer. The object be
ing pointed to by the Media Controller’sstate pointer rep-
resents the current state. For simplicity, the figure sh
thePlaying State and theStopped State , which are
subclasses of theMedia State abstract base class. Add
tional states, such as theRewinding State , can be added
by subclassing fromMedia State .

The diagram lists three operations:play , rewind and
stop . When the consumer invokes an operation on
Media Controller , this class delegates the operation
the state object. A state object implements the response
each operation in a particular state. For instance, therewind
operation in thePlaying State contains the response o
the media controller to therewind operation when it is in the
PLAYING state. State transitions can be made by changing
object being pointed to by thestate pointer of theMedia
Controller .

In response to consumer operations, the currentstate ob-
ject instructs the data transfer component discussed in
tion 3.1.2 to modify the stream flow. For instance, wh
the consumer invokes therewind operation on theMedia
Controller while in theSTOPPEDstate, therewind oper-
9

0-7695-0001-3/99 $1
es,

e to
s a

in
he

le-

tate,
ex-

nts,

he

-

ws

i-

the
to
to

f

the

Sec-
en

ation in theStopped State object instructs the data com
ponent to play frames in reverse chronological order.

3.1.2 The Data Transfer Component

The data component is responsible for transferring data to
consumer. Our MPEG supplier application reads video fram
from aMPEG-1file and audio frames from a SunULAWaudio
file. It sends these frames to the consumer, fragmenting l
frames if necessary. The current implementation of the d
component uses the UDP protocol to send A/V frames.

A key design challenge related to data transfer is to have
application respond to CORBA operations for the stream c
trol objects,e.g, theMediaCtrl , as well as the data transfe
events,e.g., video frame timer events. An effective way to d
this is to use theReactorpattern, as shown in Figure 13.

ORBORB
DescriptorDescriptor

TimerTimer Data (UDP)Data (UDP)

OS EVENT DEMULTIPLEXING INTERFACE

: Periodic: Periodic
Video frameVideo frame
transmittertransmitter

: Reactor: Reactor

: Feedback: Feedback
HandlerHandler

CORBA ORBCORBA ORB

: Media: Media
ControllerController

Figure 13:Reactive Architecture of the Video Supplier

The video supplier registers two event handlers with TAO
ORB Reactor . One is a signal handler for the video fram
timer events. The other is a UDP socket event handler
feedback events coming from the consumer. The frames
by the data component correspond to the current state o
MediaCtrl object, as outlined above. Thus, in thePLAYING

state, the data component plays the audio and video frame
chronological order.

Future implementations of the data transfer componen
our MPEG player application will support multiple encodin
protocols via the simple flow protocol (SFP) [9]. SFP enco
ing encapsulates frames of various protocols within an S
frame. It provides standard framing and sequence numbe
mechanisms. SFP uses the CORBA CDR encoding me
nism to encode frame headers and uses a simplecredit-based
flow control mechanism described in [9].

3.2 Consumer Architecture

The role of the consumer is to read audio and video frames
the network, decode them, and play them synchronously.
0.00 (c) 1999 IEEE 9

s
g

e
s

s

d

h

a

es
BA
-

e-
dio
e-

ause
ata
ich

rfor-
ing

g a
o
he

ch
ith
oto-
ion

I-
its
m
0
ory.
it
l of
ns
in

ead
oft-
er

ize
ea-

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
audio and video servers stream the frames separately.
frame synchronization is performed on consumer. Figure
depicts the key components in the consumer architecture:

VVIDEOIDEO

BBUFFERUFFER

AAUDIOUDIO

BBUFFERUFFER

VVIDEOIDEO

DDECODEECODE

"R"RAWAW""

PPACKETSACKETS

DDECODED ECODED MMPEGPEG

VVIDEO IDEO PPACKETSACKETS

Video ControlVideo Control

Audio ControlAudio Control

CCONTROLONTROL/A/AUDIOUDIO

GUI/VGUI/VIDEOIDEO

CommandsCommands

Figure 14:TAO Audio/Video Consumer Architecture

The original non-CORBA MPEG consumer [25] used
process-based concurrency architecture. Our CORBA-ba
consumer maintain this architecture to minimize change
the code. Separate processes are used to do the bufferin
coding, and playback, as explained below:

1. Video Buffer: The video buffering process is respons
ble for reading UDP packets from the network and enqueue
them in shared memory. The Video Decoder process dequ
these packets and performs MPEG decoding operation
them.

2. Audio Buffer: Similarly, the audio buffering proces
is responsible for reading UDP packets of the network a
enqueueing them in shared memory. The Control/Au
Playback process dequeues these packets and sends th
/dev/audio .

3. Video Decoder: The video decoding process reads t
raw packets sent to it by the Video Buffer process and deco
them according to the MPEG-1 video specification. These
coded packets are sent to the GUI/Video process, which
plays them.

4. GUI/Video process: The GUI/Video process is respons
ble for the following two tasks:

� GUI – It provides a GUI to the user, where the user c
select operations likeplay , stop , andrewind . These
operations are sent to the Control/Audio process vi
UNIX domain socket [27].

� Video – This component is responsible for displayin
video frames to the user. The decoded video frames
stored in a shared memory queue.
10

0-7695-0001-3/99 $1
A/V
14

a
sed
to

, de-

i-
ing
ues
on

nd
io

em to

e
des
de-
dis-

i-

an

a

g
are

5. Control/Audio Playback process: The Control/Audio
process is responsible for the following tasks:

� Control – This component receives control messag
from the GUI process and sends the appropriate COR
operation to theMediaCtrl servant in the supplier pro
cess.

� Audio playback– The audio playback component is r
sponsible for dequeueing audio packets from the Au
Buffer process and playing them back using the multim
dia sound hardware. Decoding is unnecessary bec
the supplier uses the ULAW format. Therefore, the d
received can be directly written to the sound port, wh
is /dev/audio on Solaris.

4 Performance Results

This section describes the design and results of three pe
mance experiments we conducted using TAO’s A/V stream
service.

4.1 CORBA/ATM Testbed

The experiments in this section were conducted usin
FORE systems ASX-1000 ATM switch connected to tw
dual-processor UltraSPARC-2s running Solaris 2.5.1. T
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Ea
UltraSPARC-2 contains a 300 MHz Super SPARC CPUs w
a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP pr
col stack is implemented using the STREAMS communicat
framework [28].

Each UltraSPARC-2 has 256 Mbytes of RAM and an EN
155s-MF ATM adaptor card, which supports 155 Megab
per-sec (Mbps) SONET multimode fiber. The Maximu
Transmission Unit (MTU) on the ENI ATM adaptor is 9,18
bytes. Each ENI card has 512 Kbytes of on-board mem
A maximum of 32 Kbytes is allotted per ATM virtual circu
connection for receiving and transmitting frames (for a tota
64 Kb). This allows up to eight switched virtual connectio
per card. The CORBA/ATM hardware platform is shown
Figure 15.

4.2 CPU Usage of the MPEG decoder

The aim of this experiment is to determine the CPU overh
associated with decoding and playing MPEG-1 frames in s
ware. To measure this, we used the MPEG/ULAW A/V play
application described in Section 3.

We used the application to view two movies, one of s
128x96 pixels and the other of size 352x240 pixels. We m
sured the percentage CPU usage for differentframe rates. The
0.00 (c) 1999 IEEE 10

ic

for
are
ec-

V
ad in
sed
/V
eam
nism
ed, it

r
this
ith

at
. In
ism.
B-

m
]
the

ffer
p-
ier

ted,
cia-
the

cur
rom
hal-
n-

nce
for

es,
alf

As
im-
ut as
of
the

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
FORE SYSTEMSFORE SYSTEMS

ASX ASX 200200BXBX

ATM SWITCHATM SWITCH

(16(16 PORT PORT,, OC3OC3
155155MBPSMBPS//PORTPORT,,

9,1809,180 MTU MTU))ULTRAULTRA
SPARCSPARC 22
((FORE ATMFORE ATM

ADAPTORSADAPTORS

AND ETHERNETAND ETHERNET))

Figure 15: Hardware for the CORBA/ATM Testbed

frame rate is the number of video frames displayed by
viewer per second.

The results are shown in Figure 16. These results ind

0

10

20

30

40

50

60

70

80

90

100

6 9 12 15 18 24 30
Frames per second

P
er

ce
nt

ag
e

C
P

U
 u

se
d

128x96 frame size

352x240 frame size

Figure 16:CPU Usage of the MPEG Decoder

that for large frame sizes (352x240), MPEG decoding in s
ware becomes expensive, and the CPU usage becomes
1

0-7695-0001-3/99 $1
the

ate

oft-
100%

while playing 12 frames per second, or higher. However,
smaller frame sizes (128x96), MPEG decoding in softw
does not cause heavy CPU utilization. At 30 frames per s
ond, CPU utilization is�38%.

4.3 A/V Stream Throughput

The aim of this experiment is to illustrate that TAO’s A/
streaming service does not introduce appreciable overhe
transporting data. To demonstrate this, we wrote a TCP-ba
data streaming component and integrated it with TAO’s A
service. The producer in this application establishes a str
with the consumer, using the stream establishment mecha
discussed in Section 2.3.1. Once the stream is establish
streams data via TCP to the consumer.

We measured the throughput,i.e., the number of bytes pe
second sent by the supplier to the consumer, obtained by
streaming application. We then compared this throughput w
the following two configurations:

� TCP transfer– i.e., by a pair of application processes th
do not use the OMG stream establishment mechanism
this case, sockets and TCP were the transport mechan
This is the “ideal” case since there is no additional OR
related or presentation layer overhead.

� ORB transfer– i.e., the throughput obtained by a strea
that used anoctet streampassed through the TAO [11
CORBA ORB. In this case, the IIOP data path was
transport mechanism.

We measured the throughput obtained by varying the bu
size of the sender,i.e., the number of bytes written by the su
plier in onewrite system call. In each stream, the suppl
sent 64 megabytes of data to the consumer.

The results shown in Figure 17 indicate that, as expec
the A/V streaming service does not introduce any appre
ble overhead to streaming the data. In the case of using
IIOP path through the ORB as the transport layer can in
more performance overhead. This overhead could arise f
the dynamic memory allocation, data-copying, and mars
ing/demarshaling performed by the ORB’s IIOP protocol e
gine [8].But TAO could achieve almost the socket performa
at higher buffer sizes due to its optimizations, in particular
octet data [29]

The largest disparity occurred for smaller buffer siz
where the performance of the ORB was approximately h
that of the TCP and A/V streaming implementations.
the buffer size increases, however, the ORB performance
proves considerably and attains nearly the same throughp
TCP and A/V streaming. Clearly, there is a fixed amount
overhead in the ORB that is amortized and minimized as
size of the data payload increases.
1

0.00 (c) 1999 IEEE 11

a

s

h

e

sec-

de-
t
ac-

ces
e

ved
t-
et-

the
kets
eo

ntrol
Mi-
ism

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

Sender buffer size in Kbytes

T
hr

ou
gh

pu
t i

n
M

eg
ab

its
/s

ec

TCP "ideal" case
A/V Stream (via TCP)
Octet Stream (via ORB)

Figure 17:Throughput Results

4.4 Stream Establishment Latency

This experiment measures the time required to establis
stream using TAO’s implementation of the OMG CORBA A/
stream establishment protocol described in Section 2.3.1.
measured the stream establishment latency for the two con
rency strategies, process-based strategy and reactive str
described in Section 2.2.1.

The timer starts when the consumer gets the object re
ence for the supplier’sMMDevice servant from the Naming
Service. The timer stops when the stream has been establi
i.e., when a transport-layer TCP connection has been es
lished between the consumer and the supplier.

We measured the stream establishment time as the n
ber of concurrent consumers establishs connections with
supplier increased from 1 to 10. The results are shown
Figure 18. When the supplier’sMMDevice is configured to
use the process-based concurrency strategy (described in
tion 2.2.1), the time taken to establish the stream is hig
due to the overhead of process creation. For instance, whe
concurrent consumers establish a stream with the produc
multaneously, the average latency observed is about 2.25
onds with the process-based concurrency strategy. With
12

0-7695-0001-3/99 $1
h a
V
We
cur-
tegy,

fer-

hed,
tab-

um-
the
in

Sec-
er,
n 10
r si-
sec-
the

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Number of concurrent bind operations

S
tr

ea
m

 e
st

ab
lis

hm
en

t t
im

e
in

 s
ec

on
ds

Process-based concurrency strategy

Reactive concurrency strategy

Figure 18:Stream Establishment Latency Results

reactive concurrency strategy, the latency is only about 0.4
onds.

The process-based strategy is well-suited for supplier
vices that have multiple streams,e.g., a video camera tha
broadcasts a live feed to many clients. In contrast, the re
tive concurrency strategy is well-suited for consumer devi
that have few streams,e.g., a display device that has only on
or two streams.

5 Related Work

Distributed multimedia streaming frameworks have recei
increasing focus in the R&D community. A popular Interne
based streaming mechanism is Realvideo [1], from Real N
works. Like the MPEG application described in Section 3,
Realvideo system uses the UDP protocol to send A/V pac
from the supplier to the consumer. However, the Realvid
application uses proprietary stream establishment and co
protocols, as well as a proprietary audio and video format.
crosoft’s Vxtreme [2] is another popular streaming mechan
that is similar to Realvideo.

IONA Inc. has developedOrbix MX [30], which is an im-
0.00 (c) 1999 IEEE 12

s
r

O

’s

-
h

o

s

j

n

r
i

b

o
u

aled
b-
fer
ing
,
to
in

ow-
ata

se
ns,

s, the
ting
ted

us
er-
for
li-
is

the
lied
ly

ch-
at

g
e

ing
k

ive

p-
,”

rk
u-
g

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
plementation of the CORBA A/V streaming specification. T
key features of Orbix MX are similar to TAO’s implementatio
of the A/V Streaming service,i.e., support for multiple trans-
port protocols, flexible stream controls, and support for mu
ple concurrency strategies while creating stream endpoint

The NEC C&C Laboratories have implemented a p
liminary prototype of the A/V streaming specification [31
Their prototype has been implemented with Orbix2.2 and
bixWeb2.0.1. TheflowAdapters in their implementation
are similar to theStreamEndpoint of the A/V specifica-
tion, i.e., they deal with the network specific aspects of aflow
within a stream.Flows are a forthcoming extension to TAO
A/V implementation.

The Distributed Multimedia Research Group at the Univ
sity of Lancaster is working on standardization of Open D
tributed Systems using CORBA middleware. Towards t
goal, they propose theexplicit open bindingsconcept [32],
which is a mechanism using which application developers
explicitly set up an additional transport connection betwe
two CORBA objects. This connection can then be used
streaming data.

The H.323 standards specified byITU ensures interoper
ability between heterogeneous multimedia devices over
erogeneous networks. The H.323 document defines s
dards for video/audio coding/decoding, signalling and c
trol and also provides facilities for network and bandwid
management. The A/V streaming service can interop
ate with H.323 clients/servers using anH.323-Adapter .
The H.323-Adapter is a CORBA object that convert
the H.323 control messages into appropriate Audio/Vid
CORBA control messages.

6 Concluding Remarks

The demand for high quality multimedia streaming is gro
ing, both over the Internet and for intranets. Distributed ob
computing is also maturing at a rapid rate due to middlew
technologies like CORBA. The flexibility and adaptability o
fered by CORBA makes it very attractive for use in strea
ing technologies, as long as the requirements of performa
sensitive multimedia applications can be met.

This paper illustrates an approach to building standa
based, flexible, adaptive, multimedia streaming appl
tions using CORBA. While designing and implementing t
CORBA A/V streaming service, we learned a number
lessons. First, we found that CORBA simplifies a num
of common network programming tasks, such as parsing
typed data and performing byte-order conversions. Sec
we found that using CORBA to define the operations s
ported by a supplier in an IDL interface made it much eas
to express the capabilities of the application, as describe
13

0-7695-0001-3/99 $1
he
n

lti-
.
e-
].

r-

er-
is-
his

can
en
for

et-
tan-
n-
th
er-

eo

w-
ect
are
f-
m-
ce-

ds-
ca-
he
of
er
un-
nd,
p-
ier
d in

Section 2.2.3.
However, our measurements described in Section 4 reve

that while CORBA provides solutions to many recurring pro
lems in network programming, using CORBA for data trans
in bandwidth-intensive applications is not as efficient as us
lower-level protocols like TCP, UDP, or ATM directly. Thus
an important benefit of the TAO A/V Streaming service is
provide applications the advantages of using CORBA IIOP
their stream establishment and control modules, while all
ing the use of more efficient transport-layer protocols for d
streaming.

Enhancing an existing A/V streaming application to u
CORBA was a key design challenge. By applying patter
such as theState, Strategy, [17] andReactor[19], we found
it was much easier to address these design issues. Thu
use of patterns helped us rework the architecture of an exis
MPEG A/V player and make it more amenable to a distribu
technology such as CORBA.

Building the CORBA A/V streaming service also helped
improve TAO, the CORBA ORB used to implement the s
vice. An important feature added to TAO was support
nested upcalls. This feature allows a CORBA-enabled app
cation to respond to incoming CORBA operations, while it
making a CORBA operation on a remote object. During
development of the A/V streaming service, we also app
many optimization to TAO and its IDL compiler, particular
for sequences ofoctet s and theCORBA::Any type.

All the C++ source code, documentation, and ben
marks for TAO and its A/V streaming service is available
www.cs.wustl.edu/ �schmidt/TAO.html .

Acknowledgments

We would like to thank Alexander Arulanthu for implementin
the CORBA Property Service using TAO. Also, we would lik
to thank Marina Spivak and Sergio Flores for implement
the CORBA Naming service. Finally, we would like to than
Dr. Aniruddha Gokhale and Irfan Pyarali for their extens
constructive comments on this paper.

References
[1] RealNetworks, “Realvideo player.” www.real.com, 1998.

[2] Vxtreme, “Vxtreme player.”
www.microsoft.com/netshow/vxtreme/, 1998.

[3] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Develo
ing and Measuring High-performance Web Servers over ATM
in Proceeedings of INFOCOM ’98, March/April 1998.

[4] D. C. Schmidt and T. Suda, “An Object-Oriented Framewo
for Dynamically Configuring Extensible Distributed Comm
nication Systems,”IEE/BCS Distributed Systems Engineerin
0.00 (c) 1999 IEEE 13

s

,

o

t

i

p

or
h-

n-

d
ci-
ity,

o

A
ro-
r-

is-

ort

-

,”
ons
ed

-

in,
n
-

k:

ign

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Journal (Special Issue on Configurable Distributed System,
vol. 2, pp. 280–293, December 1994.

[5] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Desig
and Performance of an Object-Oriented Framework for Hig
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[6] A. Gokhale and D. C. Schmidt, “Principles for Optimizin
CORBA Internet Inter-ORB Protocol Performance,” inHawai-
ian International Conference on System Sciences, January
1998.

[7] A. Gokhale and D. C. Schmidt, “Measuring and Optimizin
CORBA Latency and Scalability Over High-speed Network
Transactions on Computing, vol. 47, no. 4, 1998.

[8] A. Gokhale and D. C. Schmidt, “Measuring the Performan
of Communication Middleware on High-Speed Networks,”
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317
ACM, August 1996.

[9] Object Management Group,Control and Management of A/V
Streams specification, OMG Document telecom/97-05-07 ed
October 1997.

[10] Object Management Group,The Common Object Request Br
ker: Architecture and Specification, 2.2 ed., Feb. 1998.

[11] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design a
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[12] C. D. Gill, D. L. Levine, and D. C. Schmidt, “Evaluating Strate
gies for Real-Time CORBA Dynamic Scheduling,”submitted to
the International Journal of Time-Critical Computing System
special issue on Real-Time Middleware.

[13] A. Gokhale and D. C. Schmidt, “Evaluating the Performan
of Demultiplexing Strategies for Real-time CORBA,” inPro-
ceedings of GLOBECOM ’97, (Phoenix, AZ), IEEE, November
1997.

[14] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De
sign and Performance of a Real-time CORBA Event Servic
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[15] D. C. Schmidt, R. Bector, D. Levine, S. Mungee, an
G. Parulkar, “An ORB Endsystem Architecture for Sta
cally Scheduled Real-time Applications,” inProceedings of the
Workshop on Middleware for Real-Time Systems and Serv,
(San Francisco, CA), IEEE, December 1997.

[16] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokha
“Alleviating Priority Inversion and Non-determinism in Rea
time CORBA ORB Core Architectures,” inProceedings of the
Fourth IEEE Real-Time Technology and Applications Sym
sium, (Denver, CO), IEEE, June 1998.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[18] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impa
of Event Dispatching and Concurrency Models on Web Ser
Performance Over High-speed Networks,” inProceedings of the
2
nd Global Internet Conference, IEEE, November 1997.
14

0-7695-0001-3/99 $1
s)

n
h-

g

g
,”

ce
in

.,

-

nd

-

s,

ce

-
e,”

d
i-

ces

le,
l-

o-

ct
ver

[19] D. C. Schmidt, “Reactor: An Object Behavioral Pattern f
Concurrent Event Demultiplexing and Event Handler Dispatc
ing,” in Pattern Languages of Program Design(J. O. Coplien
and D. C. Schmidt, eds.), pp. 529–545, Reading, MA: Addiso
Wesley, 1995.

[20] D. D. et al., “Vaudeville: A High Performance, Voice Activate
Teleconferencing Application,” Department of Computer S
ence, Technical Report WUCS-96-18, Washington Univers
St. Louis, June 1996.

[21] International Organisation for Standardisation,Coding Of Mov-
ing Pictures And Audio For Digital Storage Media At Up T
About 1.5 Mbit/s, 1993.

[22] Sun Microsystems, Inc.,Sun Audio File Format, 1992.

[23] Object Management Group,Property Service Specification,
1.0 ed., July 1996.

[24] T. Harrison and D. C. Schmidt, “Thread-Specific Storage:
Pattern for Reducing Locking Overhead in Concurrent P
grams,” inOOPSLA Workshop on Design Patterns for Concu
rent, Parallel, and Distributed Systems, ACM, October 1995.

[25] S. Chen, C. Pu, R. Staehli, C. Cowan, and J. Walpole, “A D
tributed Real-Time MPEG Video Audio Player,” inFifth Inter-
national Workshop on Network and Operating System Supp
of Digital Audio and Video, Apr. 1995.

[26] Object Management Group,CORBAServices: Common Ob
ject Services Specification, Revised Edition, 97-12-02 ed., Nov.
1997.

[27] W. R. Stevens,UNIX Network Programming, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[28] D. Ritchie, “A Stream Input–Output System,”AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[29] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP
Protocol Engine for Minimal Footprint Multimedia Systems
submitted to the Journal on Selected Areas in Communicati
special issue on Service Enabling Platforms for Network
Multimedia Systems, 1998.

[30] IONA, “IONA Orbix MX.” www.iona.com, 1998.

[31] J.-P. Redlich, “A Distributed Object Architecture for QoS
sensitive Networking,” inOpenArch98, April 1998.

[32] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Rob
“Supporting Adaptive Multimedia Applications through Ope
Bindings,” in International Conference on Configurable Dis
tributed Systems (ICCDS ’98), May 1998.

[33] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE Communica-
tions Magazine, vol. 14, February 1997.

[34] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flic
A Flexible, Optimizing IDL Compiler,” inProceedings of ACM
SIGPLAN ’97 Conference on Programming Language Des
and Implementation (PLDI), (Las Vegas, NV), ACM, June
1997.

[35] Object Management Group,Messaging Service Specification,
OMG Document orbos/98-05-05 ed., May 1998.

[36] M. Henning, “Binding, Migration, and Scalability in CORBA,”
Communications of the ACM special issue on CORBA, vol. 41,
Oct. 1998.
0.00 (c) 1999 IEEE 14

n

d
i

t
y

r
r
a

d

o

e

-
ans-
ob-

ce
d
e
r-
b-
er-

e-
-
ect-
us-
like
nd
ut

b-
t to
For
re
to-
ol
B
to

-
et

ion
an

that
ef-
s for

vely,

o a
de-
me-

s
-

m-
m-
op-

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
A Overview of the CORBA Reference
Model

CORBA Object Request Brokers (ORBs) [10] allow clients
invoke operations on distributed objects without concern
the following issues [33]:

Object location: CORBA objects can be collocated with th
client or distributed on a remote server, without affecting th
implementation or use.

Programming language: The languages supported b
CORBA include C, C++, Java, Ada95, COBOL, a
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, inclu
ing Win32, UNIX, MVS, and real-time embedded systems l
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast E
ernet, embedded system backplanes, and shared memor

Hardware: CORBA shields applications from side-effec
stemming from differences in hardware such as storage la
and data type sizes/ranges.

Figure 19 illustrates the components in the CORBA 2.x
erence model, all of which collaborate to provide the po
bility, interoperability, and transparency outlined above. E

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

DIIDII ORBORB
INTERFACEINTERFACE

ORBORB CORECORE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

OBJECTOBJECT
((SERVANTSERVANT))

IDLIDL
STUBSSTUBS

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGE MAPPINGSTANDARD LANGUAGE MAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

IDLIDL
SKELETONSKELETON

DSIDSI

OBJOBJ

REFREF

Figure 19: Components in the CORBA 2.x Reference Mo

component in the CORBA reference model is outlined bel

Client: This program entity performs application tasks
obtaining object references to objects and invoking op
tions on them. Objects can be remote or collocated r
tive to the client. Ideally, accessing a remote object sho
be as simple as calling an operation on a local object,i.e.,
1

0-7695-0001-3/99 $1
to
for

e
eir

y
d

-
ke

run
h-
.

ts
yout

ef-
ta-
ch

el

w:

by
ra-

ela-
uld

object !operation(args) . Figure 19 shows the un
derlying components described below that ORBs use to tr
mit remote operation requests transparently from client to
ject.

Object: In CORBA, an object is an instance of an Interfa
Definition Language (IDL) interface. The object is identifie
by an object reference, which uniquely names that instanc
across servers. AnObjectIdassociates an object with its se
vant implementation, and is unique within the scope of an O
ject Adapter. Over its lifetime, an object has one or more s
vants associated with it that implement its interface.

Servant: This component implements the operations d
fined by an OMG Interface Definition Language (IDL) in
terface. In languages like C++ and Java that support obj
oriented (OO) programming, servants are implemented
ing one or more class instances. In non-OO languages,
C, servants are typically implemented using functions a
struct s. A client never interacts with a servant directly, b
always through an object.

ORB Core: When a client invokes an operation on an o
ject, the ORB Core is responsible for delivering the reques
the object and returning a response, if any, to the client.
objects executing remotely, a CORBA-compliant ORB Co
communicates via a version of the General Inter-ORB Pro
col (GIOP), most commonly the Internet Inter-ORB Protoc
(IIOP), which runs atop the TCP transport protocol. An OR
Core is typically implemented as a run-time library linked in
both client and server applications.

ORB Interface: An ORB is an abstraction that can be im
plemented various ways,e.g., one or more processes or a s
of libraries. To decouple applications from implementat
details, the CORBA specification defines an interface to
ORB. This ORB interface provides standard operations
(1) initialize and shutdown the ORB, (2) convert object r
erences to strings and back, and (3) create argument list
requests made through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respecti
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters int
common data-level representation. Conversely, skeletons
marshal the data-level representation back into typed para
ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transform
OMG IDL definitions into an application programming lan
guage like C++ or Java. In addition to providing progra
ming language transparency, IDL compilers eliminate co
mon sources of network programming errors and provide
portunities for automated compiler optimizations [34].
5

0.00 (c) 1999 IEEE 15

d

r

j

l

i

the
at-

ap-
the

ce
t be
these
the
re-

g

ity

-
ith
s-

a-
alues
h as

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility
useful when an application has no compile-time knowle
of the interface it accesses. The DII also allows clients
makedeferred synchronouscalls, which decouple the reque
and response portions of twoway operations to avoid block
the client until the servant responds. In contrast, in COR
2.x, SII stubs only supporttwoway, i.e., request/response, an
oneway, i.e., request-only operations.1

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliv
requests to servants that have no compile-time knowledg
the IDL interface they implement. Clients making reque
need not know whether the server ORB uses static skeleto
dynamic skeletons. Likewise, servers need not know if clie
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a serva
with objects, demultiplexes incoming requests to the serv
and collaborates with the IDL skeleton to dispatch the app
priate operation upcall on that servant. CORBA 2.2 po
bility enhancements [10] define the Portable Object Adap
(POA), which supports multiple nested POAs per ORB. O
ject Adapters enable ORBs to support various types of
vants that possess similar requirements. This design resu
a smaller and simpler ORB that can support a wide rang
object granularities, lifetimes, policies, implementation styl
and other properties.

Interface Repository: The Interface Repository provide
run-time information about IDL interfaces. Using this info
mation, it is possible for a program to encounter an ob
whose interface was not known when the program was c
piled, yet, be able to determine what operations are valid on
object and make invocations on it. In addition, the Interfa
Repository provides a common location to store additiona
formation associated with interfaces to CORBA objects, s
as type libraries for stubs and skeletons.

Implementation Repository: The Implementation Repos
tory [36] contains information that allows an ORB to activa
servers to process servants. Most of the information in the
plementation Repository is specific to an ORB or OS envir
ment. In addition, the Implementation Repository provide
common location to store information associated with serv
such as administrative control, resource allocation, secu
and activation modes.

1The OMG has standardized an asynchronous method invocation inte
in the Messaging specification [35], which will appear in CORBA 3.0.
1

0-7695-0001-3/99 $1
is
ge
to

st
ing
BA
d

er
e of
sts
ns or
nts

nt
ant,
ro-
ta-
ter
b-

ser-
lts in
e of
es,

s
r-
ect
om-
the
ce
in-

uch

-
te
Im-
on-
s a
ers,
rity,

rface

B Overview of the CORBA Property
Service

B.1 Motivation

A CORBA object consists of (1) an identify,i.e., an object
reference, (2) an interface,i.e., defined in IDL and consisting
of operations and attributes, and (3) an implementation of
interface,i.e., one or more servants. The operations and
tributes in an IDL interface arestatic, i.e., they are defineda
priori . In general, statically-typed IDL interfaces enhance
plication robustness by preventing accidental violations of
typesystem.

When building frameworks like the A/V streaming servi
described in this paper, however, certain attributes canno
defined statically because the names, types, and values of
attributes will vary depending on how the application uses
framework. For example, when a video output device is rep
sented as anMMDevice, the typical attributes ofMMDevice
might bevideo encoding formatandframe rate. In contrast, if
it is an audio output device, theMMDevice attributes might
beaudio formatandsample rate, as shown in Figure 20.

Video Out

Encoding : MPEG1

Frame Rate : 26

Audio Out

Format : au

Encoding : mu-law

MM Device

Figure 20:Properties for AV Streams

To maximize flexibility, therefore, the A/V streamin
framework requires attributes that containdynamictypes and
values. The CORBA Property Service provides this flexibil
via the following features:

Dynamic property association: The Property Service pro
vides the ability to dynamically associate named values w
objects more flexibly than the statically defined IDL-type sy
tem. Thus, they allow applications to associatedynamic at-
tributeswith object. By using the Property Service, applic
tions can create and delete new properties, change the v
of properties, and associate properties with modes, suc
readonly mode.
6

0.00 (c) 1999 IEEE 16

ty
new
ents

3.

rent

t to
For

ke
oach
ant

, as
-

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Dynamically typed values: The Property Service define
operations to create and manipulate sets ofname-valueand
name-value-modetuples. Names are OMG IDL strings an
values are OMG IDLany s. The use ofany s allows a Prop-
erty Service implementation to handle any value that can
represented in the OMG IDL-type system.

Figure 3 shows how theMMDevice interface uses the Prop
erty Service to store properties related to the multimedia
vice that it represents.

B.2 Design Overview

The UML diagram in Figure 21 shows the components in t
Property Service. These components are described below

define_property ()

get_property_value () : Any

delete_property ()
reset ()

next_one () : Property Name

Properties Iterator

reset ()

next_one () : Property
PropertySetDef

define_property_with_mode ()

set_mode ()

get_mode () : Property Mode Type

Figure 21:UML for the Property Service

PropertySet: This interface supports a set of propertie
A property is a tuple consisting of<property name,
property value> . The property name is a string
that names the property. Theproperty value is a type
any that contains the value assigned to the property.

PropertySetDef: This interface is a subclass of th
PropertySet interface that exposes characteristics of ea
property,e.g., readonly or read/write access. There are tw
factory interfaces: one for thePropertySet interface and
the other for thePropertySetDef interface. Iterators are
defined to iterate over the property names and properties.

B.3 Associating Properties with CORBA Ob-
jects

Properties can be associated with a CORBA object in eithe
the following ways:

Inheritance: The application IDL interface can inheri
directly from the PropertySet or PropertySetDef
interfaces, as shown in Figure 22. In this approac
interface MMDevice inherits from PropertySet or
PropertySetDef interface. If it is a public inheritance,
17

0-7695-0001-3/99 $1
s

d

be

-
de-

he
.

s.

e
ch
o

r of

t

h,

Property Set /

PropertySetDef

define_property ("format", MPEG)

set_mode ("format", read_only) MMDevice

Properties

Name Value

("Any" Type)
Mode

Movie "Gandhi" fixed_normal

 Format MPEG read_only

Figure 22:Using the Property Service Via Inheritance

clients of MMDevice will also have access to the Proper
Service operations. For example, a client may define a
property and associate that with a servant that implem
MMDevice.

Factory interfaces: As an alternative to inheritance,fac-
tory methods[17] can be used to createPropertySet s or
PropertySetDef s. This approach is shown in Figure 2
In this approach, the objectAV Server obtains one or more

AV_Server
Property Set /

Property Set Def

Property Set Factory /

Property Set Def Factory

Figure 23:Using The Property Service Via Factory Meth-
ods

PropertySet or PropertySetDef objects through the
factory methods. Objects can keep properties under diffe
PropertySet s depending on how they are related.

Objects should use the inheritance approach, if they wan
allow the clients to access the properties with the servants.
example,MMDevice interface of A/V streams inherits from
thePropertySet interface and hence the clients can invo
property service operations on the servants. Factory appr
of the property service should be used when the objects w
to keep track of some properties internally. For example
shown in Figure 23, anAV Server object can have a se
quence ofPropertySet s orPropertySetDef s to keep
track of the various properties of all its clients.
0.00 (c) 1999 IEEE 17

p-
vice
with
idu-
ta
s,
a
d

cter-

a-
y

tory

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
B.4 Advanced Features of the Property Service

As with CORBA attributes, clients can read and write pro
erty values. In addition, clients can use the Property Ser
to dynamically create and delete properties associated
a remote object. Clients can manipulate properties indiv
ally or in batched modeusing a sequence of the Property da
type calledProperties. For example, to define new propertie
the define properties operation can be called with
sequence of Properties , which are a dynamically-size
array of name-value pairs.

If objects support thePropertySetDef interface, clients
can create and manipulate properties and their chara
istics, such as the property modee.g., readonly and
fixed readonly . ThePropertySetDef interface also
provides operations for clients to retrieve constraint inform
tion about aPropertySet , such as the list of all the propert
types that are allowed in thisPropertySet or the list of all
the property names that are allowed in thisPropertySet .
This constraint information can be specified using the fac
creation operations when thePropertySet is created.
18

0-7695-0001-3/99 $10.00 (c) 1999 IEEE 18

