
Technical Report GIT-GVU-98-32

The Design and Use of a Generic Context Server*

Daniel Salber and Gregory D. Abowd
GVU Center, College of Computing

Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30309

{salber, abowd}@cc.gatech.edu

* Information on the context server is available on the web at: http://www.cc.gatech.edu/fce/contextserver/

Abstract

Although context awareness is a key component for
perceptual user interfaces, we lack generic infrastructure for
developing context aware applications. We propose a
generic infrastructure based on context servers that store,
share and archive contextual data. We describe a few
applications we have built that take advantage of context
sharing and context history. We then turn to the overall
design of our context server and analyze in detail its services
with a worked example.

1. Introduction

Context awareness is recognized as an important feature
for ubiquitous and wearable computing. Context sensing
and interpretation techniques are maturing and applications
demonstrate the value of using context. However, bridging
the gap between sensing and interpretation techniques on
one hand and applications on the other hand is mostly done
using ad hoc techniques. The lack of generic infrastructure
requires developers to rely on custom solutions for handling
context and hinders the development of new applications.

In this paper, we first look at common sources of
context and emphasize the need for two often overlooked
generic context handling features: context sharing in multi-
user settings and context history. We describe applications
that take advantage of these features. We then turn to the
design of an infrastructure for supporting such applications.
We first explain our goals and then describe our architecture
for a generic context server. We finally explain its behavior
in detail with the analysis of an example application that
uses both shared context and context history to provide a
group of users with notifications of their common web
surfing interests.

1.1. What is Context?

Context is usually understood as information that the
system can sense and process to facilitate human-computer
interaction. In most cases, this information is peripheral to
the user’s task. Typically, context information is used to
modify the system’s behavior, trigger system actions, tag
captured data or inform the user. Contextual information is
acquired by specific sensors and is either posted to or polled
by context-aware applications.

In the next section, we look at commonly used sources
of context. Besides these, we identify two overlooked areas:
sharing context in multi-user settings and exploiting
context history.

1.2. Sources of Context

We distinguish four broad categories of context
environments: physical, system, application, and social.
The physical environment and notably the user’s location is
a most commonly used source of context [1, 4, 10, 12].
The system’s environment, i.e., OS-level information, is a
second popular source of context: nearby computing
resources [13], network traffic [17] and connectivity [6] are
presented to the user or used to tailor the interaction.
Similarly, application environment data, such as the current
text selection, provides context information that can help
anticipate user actions [3, 5, 11]. Finally, the social
environment is a relevant source of context information:
information about people such as the presence of people,
their identity, their activity, may be used by systems to
either provide information to other users or tailor the
system’s behavior to a user’s needs or preferences [1].

Although research has been carried out on identifying
and tracking people in a scene, there are few convincing
applications that take advantage of social context. Shared
context information can provide richer social context and

Technical Report GIT-GVU-98-32

provide a foundation for applications. We also notice that
context aware applications use context information at the
present time. Context history also provides interesting
information. We will discuss context sharing and history
further in section 1.4.

1.3. Shared Context

There is previous work on sharing physical context
information and namely location. For instance, a user’s
current location tracked by an active badge may not trigger
any relevant actions for the wearer. But this information
will help a colleague locate her to discuss an urgent
problem or allow the secretary to forward a phone call [16].
However, context sharing can be extended profitably to a
user’s system and application context in order to provide
social context to other users. Context sharing at the level of
a group is another unexplored area.

While Daniel is editing this document, information
related to his current task such as the name of his frontmost
window or the paragraph he’s working in are part of his
application context information. Unless he uses a context
aware application that for example exploits application
context to anticipate his actions, it has little value outside
his current task. However, for Gregory who is trying to
decide if he should get to work on the paper or carry on an
unrelated task, Daniel’s application context provides him
with social context that makes him aware of Daniel’s
current activity and can help him decide his course of action.
Similarly, if Gregory is on the road and Word is not
available in his system environment, Daniel’s system
should be made aware of it and be able to provide him with
a format that Gregory can read.

Sharing context is also interesting for larger groups. An
application we envision provides a group of people gathered
in a social area with a display of news likely to interest
most of them. By gathering each user’s preferred daily Web
sources of news, it decides to display on a large screen the
news source that most people present prefer and the news
items people haven’t read yet. Another potential application
relies on the inspection of people’s unread email. When a
member of a workgroup sends everybody else an urgent
message (e.g., a meeting time change), the application
allows the sender to check that everybody has read the
message.

In group-level context sharing, context information
from several users is gathered and synthesized into a new
piece of context. Everybody being aware of the meeting
time change is social context to the sender. This gathering
of private information may appear like a potential privacy
threat. To give users control over the information that is
gathered, our infrastructure provides users with customizable
privacy protection mechanisms (see section 4.2).

1.4. Context History

Most context aware applications deal with context data
concerning the present. Except for context-based retrieval
applications [7], there has not been much work done on the
value of context data history. A marginal example is capture
applications. In this case, context data is not remembered
for itself, but because it is associated with some captured
piece of data.

However, in everyday social relationships we rely
naturally on historical data. For instance, when looking for
somebody, we ask colleagues if they have seen this person
in the recent past. This information may actually be more
useful than the current location of the person. If she’s been
in her office, she saw the note left on her desk, or she’s
probably read her email. A user’s recent context (her
whereabouts) helps other users interact with her.

Similarly, a history of URLs visited may provide
interesting clues to both the user and colleagues as to what
tasks the user was engaged in.

Another example would be a context history-aware note-
taking aid. It could look up meeting history information and
pull up notes taken the last time the user was attending a
meeting with the same persons. A similar application could
be provided to students attending classes.

2. Applications

We have designed and built applications based on a
generic context server. In this section, we describe three of
them that exploit context sharing and context history
capabilities of the infrastructure.

2.1. Where Have You Browsed Today?

The “Where Have You Browsed Today?” application
aims at stimulating discussion between people who may
share common interests based on their web surfing activity.
In contrast to collaborative browsing tools [9], this
application matches users’ interests after they’re done
browsing to stimulate interaction when they may be more
available to engage in discussion.

The application consists of a URLs logger that captures
the current URL displayed in the user’s web browser. Using
the history feature, logs of visited URLs can be generated.
At the end of the day, URLs logs are compared for common
web pages or sites. The result is used to notify the users if
they’ve been visiting the same pages or sites that day.

It is important to note that users do not know each
other’s URL logging history, which most users would
consider private data. Only those URLs that are common to
all users are revealed and only to them. Still, other options
may be explored, like requesting permission from each user
before sharing her common URLs.

Technical Report GIT-GVU-98-32

2.2. Are You Reading Me?

The “Are You Reading Me?” application is intended to
facilitate email communication. Suppose Daniel needs to
send an urgent message to Gregory, who is usually
overloaded with email. Email seems convenient but is it the
right medium to get in touch effectively with Gregory
today?

The “Are You Reading Me” application adds two
functions to Daniel’s email client:

- The first one allows Daniel to know how many
messages are left unread in Gregory’s Inbox.

- The second function allows Daniel to know how
many previous messages from him to Gregory are
still left unread.

Daniel’s email client fetches these two pieces of
information from Gregory’s context. They allow Daniel to
assess Gregory’s current email load and the fitness of email
for sending an urgent message.

Gregory has the possibility to restrict access to these
pieces of his context. Typically one would want only close
colleagues to be able to inquire about one’s current email
load.

2.3. Let’s Have A Meeting!

The “Let’s Have A Meeting!” application uses context
to provide more efficient scheduling. When two people
decide to have a meeting, they usually both create an entry
into their schedule. Both entries have the same date,
symmetrical information (A enters “meeting with B”, B
enters “meeting with A”) and each user may add private
notes. Using context may alleviate this duplication of work.

With our application, only one user has to create an
entry in her schedule. She then shares this entry with the
other person involved. If for instance, Gregory and Daniel
decide to schedule a meeting, Gregory creates an entry
labeled “meeting with Daniel” in his schedule. With an
extra click, he shares this entry with Daniel. This action
creates a symmetrical entry (i.e., “meeting with Gregory”)
in Daniel’s schedule at the same date. If the meeting
involves a third party, the name of the third party appears in
both entries. Users can add personal information to the entry
once it is created.

In this case, both Daniel’s and Gregory’s context
information is used. When Gregory shares his meeting
entry, his own context is queried for the user’s name to
reconstruct a complete meeting entry, namely to add
Gregory’s name as a participant to the meeting (this was
implicit in Gregory’s entry). Then, the complete meeting
information is sent over to Daniel’s scheduling application.
This application in turn queries Daniel’s context for the
user’s name and scans the meeting information to try to
match the user’s name. It then removes it if present and
creates the entry in Daniel’s schedule.

3. Context Infrastructure Design

In this section, we describe our design of a context
infrastructure to support the applications described in the
previous section. We first outline our design goals and
observe that existing context infrastructures don’t achieve
them. We then turn to our overall design and architecture.

3.1. Design Goals

To provide the services required by the applications we
just described, our infrastructure goals are threefold:

1) allow for networked applications to access local and
remote context data in a heterogeneous
environment;

2) accommodate a variety of applications, sensors, and
operations on context data;

3) preserve the history of contextual data sensed.

With these objectives in mind, let us examine previous
work on context infrastructures.

3.2. Previous Work

A few generic context-handling infrastructures have
already been developed, notably Schilit’s architecture for
context aware mobile computing [13] and Hull et al.’s
SitComp service [8].

Schilit’s architecture mainly aims at storing context data
in a repository accessible by networked applications running
on mobile ParcTab devices or fixed computers. Applications
as well as sensors manipulate context data directly and thus
must be aware of the storage model. Independence of
applications and sensors from context data is not guaranteed.
Furthermore, no provision is made for storing the history of
context data.

The SitComp (Situated Computing) service software
component utilizes local sensors to provide situation
information to applications through an API. Applications
can either query the SitComp service or ask to be notified of
context changes. SitComp also performs fusion of data
from multiple local sensors and abstracts raw data into
context information at a higher level of abstraction.
SitComp puts the emphasis on these abstraction
mechanisms and provides a clear separation between
applications on one hand and context sensing and
abstracting mechanisms on the other. However, SitComp is
intended for applications running on a single computer and
doesn’t allow remote access. Although the authors envision
using context history for context-based retrieval, SitComp
does not seem to support this yet.

3.3. Global Design

Our infrastructure is comprised of context servers that
maintain a dynamic model of context data. We first look at

Technical Report GIT-GVU-98-32

the services provided by a context server and assess how this
infrastructure achieves our objectives stated in section 3.1.

In our model, context data is sensed by devices and
gathered in a repository by the computer these devices are
attached to. Computers may be fixed or mobile and are
connected through fixed or wireless networks. A computer
is attached either to persons (individuals or groups) or places
(e.g., rooms, buildings, vehicles). Each computer runs a
context server that gathers raw local context data through
sensors, stores it and provides context data access to local
and remote applications. In addition, each context server
runs services, called context synthesizers, that act on local
or remote context data to generate context information at a
higher level of abstraction.

Access to local and remote context data is provided
through a context access API. This API guarantees
independence of applications from sensors as well as from
the particular storage model used. To allow access by
heterogeneous clients, the API is a network API based on
XML [15] and HTTP. Each context server runs an HTTP
server as well as an XML parser. Requests and replies are
encoded in XML. This mechanism is detailed in section
3.4.2. Similarly, a component mediates accesses from and
to context sensors so they do not access the context
repository directly. As in SitComp, two models of
communication are supported: events and requests. In the
events based mechanism, the context-generating component
(either a sensor or the context repository) generates events
to registered components when the sensed or stored data
changes. In the request method, the context gathering
component (either an application or the repository) polls the
context-generating component when needed. This distinction
reflects the dichotomy already observed in user interfaces
between status, i.e., continuously available information and
events, i.e., atomic, transient information [2].

As emphasized in SitComp, raw context data must
sometimes be abstracted into higher level information. To
achieve this, a context server hosts synthesizers.
Synthesizers are pluggable modules that access context data
through the API and generate new context data that is fed
back to the context server. The plug-in mechanism will
allow us to reuse or develop our own context abstraction
components based on, e.g., heuristic rules or case-based
reasoning. Examples of abstraction mechanisms include:
deducing the state and country from a city name and
assessing if a room is occupied or not by combining
ambient lighting, sound level and presence sensors data.
Synthesizers also aggregate context data from multiple
context servers and perform comparisons as in the URLs
log comparison example of paragraph 2.1. Another example
of aggregation is the detection of spatial relationships (e.g.,
adjacency, inclusion) between geographical context
information collected from multiple context servers.

Finally, to allow the use of context history, context

servers log changes in context data and preserve historical
data. They allow access to context data at any point in the
past or retrieval of a value over a time interval.

3.4. Architectural Design

The context server’s architecture is organized in three
functional layers (see figure 1):

- The context management layer deals with context
storage and acquisition;

- The context access layer provides an API for local
and remote access to context data as well as access
control mechanisms;

- Finally, the context-synthesizing layer provides
abstraction mechanisms that act on local and remote
context data e.g., for group context sharing.

Context Management

Sensors

Context
Synthesizers

Context Access API

Context
Aware App

Figure 1 . The overall architecture of the
context server. The three rectangles constitute
the context server. Arrows show context data
flow between components. Dashed arrows
denote XML encoded communications.

3.4.1. Context Management

The context management layer provides context storage
and acquisition. It consists of three components: a persistent
object database, a context acquisition component, and a
context handlers component.

The repository of context data relies on an object
database. Context data is organized hierarchically according
to categories and is referred to according to a naming
scheme. Top level categories correspond to entities context
data is attached to, e.g., group, user, room, system,
application. Lower levels partition each entity into
categories of context data (e.g., sound, light and location for
a room, relevant objects or properties for an application,
etc.)

In our context data model, a number of common

Technical Report GIT-GVU-98-32

attributes are attached to a piece of context data in addition
to the current value. These attributes serve three functions:

- First, a timestamp attribute is used for historical
purposes.

- Second, some attributes describe the data so that
applications can make sense of it or request
conversions e.g., units and reference systems for
geographical coordinates,

- Third, other attributes give an estimate of the
validity of the data. For instance, polled values have
a lifetime attribute that may be queried by an
application to check the data is still valid for its
purpose.

In addition, the history of a given piece of data is stored
in the database and can be queried. For data whose future
values can be discovered (e.g., by looking up the user’s
schedule), the future scheduled values are also stored.

The context acquisition component provides a sensor-
independent interface for storing and updating context data
values. This component gets raw data from context sources
and updates the database accordingly. This component
insulates the context database from the sensors and
guarantees independence with regard to the specifics of a
particular sensor.

The context handlers component provides context data
manipulation functions that mediate all accesses to the
database. Its roles are twofold: it hides the actual structure of
the data to guarantee independence with regard to the
accessing components, including applications, and it
provides access control capabilities. Remote access to any
piece of context can be granted or forbidden by the user, or
can be restricted to a list of authorized context servers. This
privacy protection scheme however, places a burden on the
user who has to configure access explicitly.

3.4.2. Context Access

The context access layer consists of the context
accessors component. It provides an application interface to
access context data remotely. The interface allows an
application to get or set the value of a piece of context data
and/or specific attributes. Context accessors query the
context database through its context handlers component.
The query is encoded as a remote procedure call (RPC)
expressed in XML and routed via HTTP. A typical remote
context query is shown in figure 2. The reply is also
encoded in XML and is shown in figure 3.

In distributed heterogeneous environments typical of
ubiquitous computing or mobile and wearable systems, the
variety of platforms and programming languages in use
makes interoperability a prime requirement. Interoperability
at the networking level can be achieved by using TCP/IP.
Our choice of HTTP as the transport protocol facilitates
interoperability further: HTTP servers and client APIs are

available on a large variety of platforms. Interoperability at
the data format level is achieved by the use of XML to
encode all exchanges over the network. Using XML, we can
publish and share our context data hierarchy and naming
scheme in a DTD (Document Type Definition) as well as
the methods to access the context server, thus providing a
public API to the context server. Furthermore, XML
capabilities are available for a growing number of languages
and platforms, making the port of our context access layer
relatively easy.

<?XML VERSION="1.0"?>
<methodCall>
 <methodName>ContextServer.get</methodName>
 <params>
 <contextName>
 <contextCategory>
 <User/>
 </contextCategory>
 <contextItem>
 <EmailAddress/>
 </contextItem>
 </contextName>
</params>
</methodCall>

Figure 2. An XML/RPC query (simplified). An
application calls the “get” method of a context
server. It passes as a parameter the name of the
requested piece of context: item EmailAddress in
category User. This query is sent using HTTP
POST.

<?XML VERSION="1.0"?>
<methodResponse>
 <params>
 <contextRecord>
 <contextValue>
 salber@cc.gatech.edu
 </contextValue>
 </contextRecord>
 </params>
</methodResponse>

Figure 3. The XML reply to the query of figure
2 (simplified). A context record is returned
which contains the requested value. A context
record may contain additional attributes for a
piece of context (e.g., a timestamp).

3.4.3. Context Synthesizers

The context synthesizer layer is in charge of using raw
context data to generate higher level of abstraction context
data. It consists of two components: context abstractors
abstract local context data; context aggregators generate
higher-level context data from local and remote context
servers.

The context abstractors component is in charge of
extracting higher-level data from raw context data. It relies
on an active values mechanism and recomputes high-level
data whenever the raw data sources are updated. It stores its

Technical Report GIT-GVU-98-32

result into the context database. For example, an application
may need the current location of the user as a street name
whereas only geographical coordinates are available. An
abstractor would implement the required algorithms to
generate geographical context as street names from the
sensed geographical coordinates.

The context aggregators component consists of
functions that operate on similar pieces of local and remote
context data. They access local data through the context
handlers interface and remote data through the context
accessors. An example aggregator is the URL comparison
function described in section 2.1 and detailed in section 4.2.

4. Context Servers at Work

In this section, we explain in detail how the context
servers work. We revisit the “Where Have You Browsed
Today?” application (WHYBT for short) described in section
2.1 and look at what is happening behind the scenes. This
particular example takes advantage of most services of the
context servers: history, context access and context sharing.

The current context server prototype is implemented in
Frontier, a scripting language and environment that runs on
MacOS and Windows [14]. Frontier provides us with a
persistent object database, XML encoding and parsing,
HTTP client and server support, and an AppleEvents or
COM interface for inter-application communication.

From the point of view of the WHYBT application,
things are pretty simple: it requests a comparison of the
history of a piece of context data (the current URL) for all
users concerned. It then sends an email to all users who
have URLs in common. It thus needs to retrieve an
additional piece of context information: the email address of
the users involved. This application assumes that a context
server is assigned to each user and is running on the user’s
workstation that she uses for browsing. More elaborate
schemes could be devised to let users browse indifferently
on a number of workstations or mobile devices.

The role of the context server for the WHYBT
application is twofold: it first gathers and stores URL
context data, and then interacts with the WHYBT
application to serve its requests.

4.1. Gathering and Storing the Current URL

To allow handling by the context server of the “Current
URL” piece of context, two components are needed: a
sensor component that is able to grab the current URL from
the browser application, and an entry in the context
database. The sensor component is a script that connects
through MacOS AppleEvents to the Netscape or Explorer
browser of the user. At first, the script registers with the
context handlers component (see 3.4.1) and declares it will
provide “WebBrowser.CurrentURL” information as events.
The context handlers then create an entry in the database if

necessary. The sensor script then polls the value of the
current URL at five-second intervals and generates an event
to the context handlers whenever the value changes. In turn,
the context handlers update the value stored in the database
and maintain history information.

An interesting issue that arises is how long should
history information be kept for a particular piece of context.
Since the use of history information is up to the
applications, we don’t have an easy answer to this question.
The current context server allows for arbitrary cutoff dates to
reduce the amount of context data that is stored.

4.2. Interacting With the Application

A scheduler runs the WHYBT application every day late
in the afternoon. The application is configured to serve a
fixed list of users referred to by the name of their
workstations. It runs on a group context server hosted by
one of the users’ workstations. It must first request the list
of URLs common to all users for the current day and, if the
list is not empty, request each user’s email address from the
context servers and notify each user by email.

The comparison of the URLs histories is performed by a
dedicated “URLHistoryAggregator” script. It is a synthesizer
and as such, registers with the local context handlers to
declare the names of the context data that it takes as input
and that it provides as output. In this case, the synthesizer
uses “WebBrowser.CurrentURL” data and provides
“WebBrowser.CurrentURLCommonSubset” data. It needs as
an additional parameter the list of context servers that take
part in the comparison as well as the history timespan to be
considered. For aggregators, this list is usually provided by
the client application.

Finally the WHYBT application queries local and
remote context servers for the email addresses of the users
involved. The XML query and reply used are shown in
figure 2 and 3. It then generates email messages informing
users of their common web visits for the day.

5. Conclusion

We have presented a generic context-handling
infrastructure based on context servers. Context servers are
particularly suited for sharing context data and providing
access to context history. These features enable us to
explore promising new applications. Our immediate goal is
to develop more applications based on the context servers
infrastructure. Of particular interest are applications that rely
on elaborate context interpretation (e.g., from video images)
and applications aimed at mobile users.

6. Acknowledgments

The first author is currently funded by a fellowship from
INRIA whose support is gratefully acknowledged. We wish
to thank members of the Future Computing Environments

Technical Report GIT-GVU-98-32

group at Georgia Tech for fruitful discussions and
particularly Anind Dey for insights and comments on our
architecture and prototype applications.

7. References

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R.
Kooper and M. Pinkerton. Cyberguide: A Mobile
Context-Aware Tour Guide. ACM Wireless Networks,
3:421-433, 1997.

[2] G. D. Abowd and A. J. Dix. Integrating status and
event phenomena in formal specifications of
interactive systems. ACM Software Engineering
Notes, 19(5):44-52, December 1994.

[3] Apple Research Laboratories. Apple Data Detectors
homepage.
http://www.research.apple.com/research/tech/AppleDat
aDetectors/, Apple Computer, 1997.

[4] N. Davies, K. Mitchell, K. Cheverst and G. Blair.
Developing a Context Sensitive Tour Guide.
Proceedings of First Workshop on Human-Computer
Interaction for Mobile Devices, pp. 64-68, 1998,
Glasgow, UK.

[5] A. Dey. Context-Aware Computing: The CyberDesk
Project. Proceedings of the 1998 Spring AAAI
Symposium on Intelligent Environments, 1998.

[6] M. R. Ebling and M. Satyanarayanan. On the
Importance of Translucence for Mobile Computing.
Proceedings of First Workshop on Human-Computer
Interaction for Mobile Devices, pp. 69-72, 1998,
Glasgow, UK.

[7] M. L. M. Flynn. Forget-me-not: Intimate computing
in support of human memory. Proceedings of
FRIEND21: International Symposium on Next
Generation Human Interfaces, pp. 125-128, 1994.

[8] R. Hull, P. Neaves and J. Bedrod-Roberts. Towards
Situated Computing. Proceedings of IEEE ISWC'97,
First International Symposium on Wearable
Computers1997, Cambridge, MA, USA.

[9] H. Lieberman, N. V. Dyke and A. Vivacqua. Let's
Browse: A Collaborative Web Browsing Agent.
http://lieber.www.media.mit.edu/people/lieber/Liebera
ry/Lets-Browse/Lets-Browse.html, MIT Media Lab,
1998.

[10] E. D. Mynatt, M. Back, R. Want and R. Frederick.
Audio Aura: Light-Weight Audio Augmented Reality.
Proceedings of the ACM UIST'97 Symposium on
User Interface Software and Technology, p. 211-212,
1997.

[11] M. Pandit and S. Kalbag. The Selection Recognition
Agent: Instant Access to Relevant Information and
Operations. Proceedings of Intelligent User Interfaces
'97, 1997.

[12] J. Pascoe, N. Ryan and D. Morse. Human-Computer-

Giraffe Interaction: HCI in the Field. Proceedings of
First Workshop on Human-Computer Interaction for
Mobile Devices, pp. 48-57, 1998, Glasgow, UK.

[13] W. N. Schilit. System architecture for context-aware
mobile computing. Ph.D. Thesis, 1995, Columbia
University.

[14] UserLand Software. Frontier 5.1.
http://www.scripting.com/frontier5/, UserLand
Software, 1998.

[15] W3C XML Working Group. Extensible Markup
Language (XML) 1.0.
http://www.w3.org/TR/1998/REC-xml-19980210,
World-Wide Web Consortium, 1998.

[16] R. Want, A. Hopper, V. Falcao and J. Gibbons. The
active badge location system. ACM Transactions on
Information Systems, 10(1):91-102, 1992.

[17] M. Weiser and J. S. Brown. Designing Calm
Technology. Workshop on Ubiquitous Computing at
CHI 1997, 1997.

