Technical Report GIT-GVU-98-32

The Design and Use of a Generic Context Server

Daniel Salber and Gregory D. Abowd
GVU Center, College of Computing
Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30309
{salber, abowd}@cc.gatech.edu

Abstract

Although contextawareness is &ey component for
perceptual user interfaces, weack generic infrastructure for
developing contextaware applications. We propose a
generic infrastructurebased oncontext serversthat store,
share and archive contextual data. We describe a few
applications we havduilt that take advantage ofcontext
sharing and context history. We theturn to the overall
design of our context server and analyze in détsikervices
with a worked example.

1. Introduction

Context awareness igcognized as aimportantfeature
for ubiquitousand wearablecomputing. Context sensing
andinterpretation techniquesre maturing and applications
demonstratehe value of using contexHowever, bridging
the gapbetweensensingand interpretation techniques on
one hand and applications on the othend ismostly done
using ad hodechniques. The lack djeneric infrastructure
requires developers to rely on custgoiutionsfor handling
context and hinders the development of new applications.

In this paper, we first look at commosources of
context and emphasize theeedfor two often overlooked
generic context handling features: context sharinginti-
user settingsnd context history. Wedescribeapplications

that takeadvantage ofhese features. We then turn to the
design of an infrastructure for supporting such applications

We first explain our goals and thelescribeour architecture
for a generic context server. We finally expl#i® behavior
in detailwith the analysis of an example application tha
uses bothsharedcontext and context history toprovide a

group of users with notifications of their common web

surfing interests.

1.1. What is Context?

Context is usuallyunderstood asnformation that the
systemcan sensand process to facilitate human-computer
interaction. In most cases, this informationpiripheral to
the user'stask. Typically, context information iased to
modify the system’s behavior, trigger system actions, tag
captured data anform the user. Contextual information is
acquired by specific sensors and is either posted fltad
by context-aware applications.

In the next section, we look at commonlged sources
of context. Besides these, we identifyo overlookedareas:
sharing context in multi-user settingand exploiting
context history.

1.2. Sources of Context

We distinguish four broad categories of context
environments: physical, system, applicaticand social.
The physical environment and notably the user’s location is
a most commonlyusedsource of contexfl, 4, 10, 12].
The system’s environmenitg., OS-level information, is a
second popular source ofcontext: nearby computing
resourceg13], networktraffic [17] andconnectivity [6] are
presented tothe user orused to tailor the interaction.
Similarly, application environment data, such as cheent
text selectionprovidescontext information thatan help
anticipate user actions [3, 5, 11Finally, the social
environment is a relevant source of context information:
information about people such as theesence opeople,
their identity, their activity, may besed by systems to

¢ either provide information to other users or tailor the

system’s behavior to a user’'s needs or preferences [1].
Although researchhas beercarried out on identifying
and tracking people in a scene, theaee few convincing
applications that takedvantage ofocial context.Shared
context informationcan provide richesocial context and

" Information on the context server is available on the web at: http://www.cc.gatech.edu/fce/contextserver/

Technical Report GIT-GVU-98-32

provide a foundation foapplications. We also notice that 1.4. Context History

context awareapplications use context information at the

presenttime. Context history alsgrovides interesting
information. We will discuss context sharingnd history
further in section 1.4.

1.3. Shared Context

There is previous work on sharing physical context

information and namely location. For instance, wser's
currentlocationtracked by aractive badgemay nottrigger
any relevant actions fahe wearer.But this information

Most contextawareapplicationsdeal with context data
concerningthe present. Except fotontext-based retrieval
applications [7], there has not been much waoke on the
value of context data history. A marginal exampleapture
applications. In thiscase, contextlata is not remembered
for itself, butbecause it is associatedth some captured
piece of data.

However, in everyday social relationships werely
naturally on historicatlata.For instance, when looking for
somebody, we ask colleagues if theave seenhis person

will help a colleague locate her to discuss an urgentin the recentpast. This information may actually lmore

problem or allow the secretary torward aphone call [16].
However, context sharingan beextendedprofitably to a
user’s systemand application context inorder to provide

useful than the current location of the person. If she&n
in her office, she sakhe note left onher desk, or she’s
probably read her email. A user’s recentcontext (her

social context to other users. Context sharing at the level ofvhereabouts) helps other users interact with her.

a group is another unexplored area.
While Daniel is editingthis document, information

Similarly, a history of URLsvisited may provide
interesting clues to both the usardcolleagues as to what

related to his current task such as the name of his frontmosésks the user was engaged in.

window or the paragraphhe’s working in are part of his
application context information. Unless he usesoatext

Another example would be a contdmstory-aware note-
taking aid. It could look up meeting history information and

aware application that for example exploits application pull up notes taken the last time thser was attending a

context to anticipate his actions, it Hae value outside
his currenttask. However, for Gregorywho is trying to
decide if he shoulget to work on thegaper or carry on an
unrelatedtask, Daniel's application contexprovides him
with social context that makes hiraware of Daniel's

meeting with the same persons. A similar applicationld
be provided to students attending classes.

2. Applications

We havedesigned andbuilt applicationsbased on a

current activity and can help him decide his course of actiongenericcontext server. Iithis section, welescribethree of

Similarly, if Gregory is onthe road and Word is not
available in his system environmentPaniel's system
should be made aware of it and be ablgravide him with
a format that Gregory can read.

Sharing context is also interesting fargergroups. An
application we envision provides a group of peajathered
in a socialareawith a display of news likely to interest
most of them. By gatheringachuser’spreferreddaily Web
sources of news, idecides todisplay on a largescreen the
news sourcehat most peopl@resentprefer andthe news

items people haven't read yet. Another potential applicatio

relies on the inspection of peoplelmreademail. When a

member of a workgroup sendsverybody else anurgent

message(e.qg., a meeting timechange), the application
allows the sender tocheck that everybodyhas read the

message.

In group-level context sharing, context information

from severalusers isgathered andynthesizednto a new
piece of context. Everybodybeing aware ofthe meeting
time change issocial context to theender.This gathering
of private information mayppearike a potentialprivacy
threat. To give users control over the informatibat is

gathered, our infrastructure provides users with customizabl

privacy protection mechanisms (see section 4.2).

n

them that exploit context sharingnd context history
capabilities of the infrastructure.

2.1. Where Have You Browsed Today?

The “Where Have You Browsed Today?"application
aims at stimulating discussidmetween peoplevho may
share common interests based on their web susfitigity.
In contrast to collaborative browsingpols [9], this
application matches users’' interesadter they're done
browsing to stimulate interaction when they may rbere
available to engage in discussion.

The application consists of a URLs logger thaptures

the current URL displayed in the user's web browser. Using

the historyfeature,logs of visited URLscan begenerated.
At the end of the day, URLs logs atemparedor common
web pages or sites. The resultused tonotify the users if
they’ve been visiting the same pages or sites that day.
It is important to note that users do not kneach
other's URL logging history, which most usersvould
consider private data. Only those URLs thegcommon to
all users are revealahdonly to them. Still,other options
ay be explored, likeequestingpermission fromeach user
efore sharing her common URLSs.

Technical Report GIT-GVU-98-32

2.2. Are You Reading Me?

The “Are You Reading Me?"application isintended to
facilitate email communication. Suppose Danigeds to
send anurgent message to Gregory, who is usually

3. Context Infrastructure Design

In this section, wedescribeour design of a context
infrastructure tosupport the applicationdescribed in the
previous section. We first outline oultesign goals and

overloaded with email. Email seems convenient but is it theobservethat existing contexinfrastructures don'tachieve

right medium to get in toucleffectively with Gregory
today?

The “Are You Reading Me” application adds two
functions to Daniel’'s email client:

The first one allows Daniel to know how many
messages are left unread in Gregory’s Inbox.

The secondfunction allows Daniel to know how
many previous messages from him Goegory are
still left unread.

Daniel's email client fetches these two pieces of
information fromGregory’scontext. They allow Daniel to
assess Gregory's current emaid andthe fithness of email
for sending an urgent message.

Gregory has the possibility taestrict access to these
pieces of his context. Typically omeould wantonly close
colleagues to be able to inquiadout one’scurrent email
load.

2.3. Let's Have A Meeting!

The “Let's Have A Meeting!” application uses context
to provide more efficient scheduling. Whetwo people
decide tohave ameeting, they usually bottreate an entry
into their schedule.Both entries havethe same date,
symmetrical information (A enters “meetingith B”, B
enters “meetingvith A”") and each user mayadd private
notes. Using context may alleviate this duplication of work.

With our application, only one user has toeate an
entry in herscheduleShe thensharesthis entry with the
other person involved. If for instanc®ory and Daniel
decide toschedule ameeting, Gregory creates an entry
labeled“meeting with Daniel” in his schedule.With an
extraclick, he sharesthis entry with Daniel. Thisaction
creates aymmetrical entry (i.e.meeting with Gregory”)
in Daniel's schedule atthe samedate. If the meeting
involves a third party, the name of the third papypears in
both entries. Users can add personal information temitry
once it is created.

In this case, both Daniel'sand Gregory’'s context
information is used. Wheiregory shareshis meeting
entry, his own context igueriedfor the user's name to
reconstruct a complete meetingntry, namely to add
Gregory’'s hame as a patrticipant tloe meeting (this was
implicit in Gregory'sentry). Then, the complete meeting
information is sent over to Daniel's scheduling application.
This application in turnqueries Daniel's context for the
user’s nameand scans the meeting information to try to

match the user's name. It then removes it if present an

creates the entry in Daniel's schedule.

them. We then turn to our overall design and architecture.

3.1. Design Goals

To providethe servicesrequired bythe applications we
just described, our infrastructure goals are threefold:

1) allow for networked applications taccesdocal and
remote context data in a heterogeneous
environment;
accommodate a variety applications, sensors, and
operations on context data;
preserve the history of contextual data sensed.

2)
3)

With these objectives in mind, let us examine previous
work on context infrastructures.

3.2. Previous Work

A few generic context-handling infrastructurdmve
already been developed,notably Schilit's architecture for
context aware mobile computing [13]and Hull et al's
SitComp service [8].

Schilit's architecture mainly aims at storing contdata
in a repository accessible by networked applications running
on mobile ParcTab devices or fixed computers. Applications
as well as sensors manipulate contatadirectly andthus
must be aware of the storage modellndependence of
applications and sensors from context data igonatanteed.
Furthermore, no provision is made for storing the history of
context data.

The SitComp (Situated Computing) service software
component utilizes local sensors farovide situation
information to applications through an API. Applications
can either query the SitComp service or ask to be notified of
context changesSitComp alsoperforms fusion ofdata
from multiple local sensorsand abstractsraw data into
context information at a higher level of abstraction.
SitComp puts the emphasis ornhese abstraction
mechanismsand provides a clearseparation between
applications on onehand and context sensing and
abstracting mechanisms on the other. HoweS&omp is
intendedfor applications running on a single computer and
doesn’t allow remote access. Although the authors envision
using context historjor context-basedetrieval, SitComp
does not seem to support this yet.

3.3. Global Design

d Our infrastructure iscomprised ofcontext serversthat

maintain a dynamic model of contedata. Wefirst look at

Technical Report GIT-GVU-98-32

the services provided by a context server and assesthiow

infrastructure achieves our objectives stated in section 3.1.

serverslog changes in contextlata andpreservehistorical
data.They allowaccess taontextdata atany point in the

In our model, contexdata is sensed by devices and past or retrieval of a value over a time interval.

gathered in aepository by the computer thesdevices are
attachedto. Computers may béixed or mobile and are
connectedhroughfixed or wireless networks. Acomputer
is attached either to persons (individuals or groupg)james

(e.g., rooms, buildings, vehicledtach computeruns a
contextserverthat gathersaw local contextdatathrough

sensors, stores #nd providescontext dataaccess to local
and remote applications. lraddition, each context server

runs servicesgalled context synthesizers, that act total

or remote contextlata togeneratecontext information at a
higher level of abstraction.

Access tolocal and remote contextdata is provided
through a contextaccess API. This APl guarantees
independence ddpplications from sensors as well fasm
the particular storagenodel used. Toallow access by
heterogeneouslients, the API is a network ARdased on
XML [15] andHTTP. Each contextserverruns an HTTP
server asvell as an XML parser. Requestsd replies are
encoded inXML. This mechanism isdetailed in section
3.4.2. Similarly, acomponenimediates accesséom and
to context sensors so they do natcessthe context
repository directly. As in SitComp, two models of
communicationare supported: eventand requests. In the

events basethechanism, the context-generating component

(either a sensor or the context repositaygnerates events
to registeredccomponents when theensed or storedata
changes. In therequestmethod, the contextgathering

3.4. Architectural Design

The contextserver's architecture is organized three
functional layers (see figure 1):

- The context management laygealswith context
storage and acquisition;

- The contextaccess layer provides &Pl for local
andremoteaccess tacontextdata aswell as access
control mechanisms;

- Finally, the context-synthesizindayer provides
abstraction mechanisms that act on Iaad remote
context data e.g., for group context sharing.

Context Context
Aware App /|Synthesizers
N\

Context Access API
ki
Vi

Context Management

AAAAR

Sensors

component (either an application or the repository) polls the

context-generating component when needed. This distinction

reflectsthe dichotomyalready observed iruser interfaces
between status, i.e., continuouslyailable information and
events, i.e., atomic, transient information [2].

As emphasized irSitComp, raw context data must
sometimes beabstractednto higher level information. To
achieve this, a context server hosts synthesizers.
Synthesizers are pluggable modules thatesscontextdata
through the APlandgeneratenew contextdatathat is fed
back tothe context server. The plug-in mechanisvil
allow us toreuse or developur own contextabstraction
componentsbasedon, e.g., heuristic rules orase-based
reasoning. Examples of abstraction mechanigsmkide:
deducing the stateand country from a city name and
assessing if a room i®ccupied ornot by combining
ambient lighting,sound leveland presencesensorsdata.
Synthesizers alsaggregatecontext data from multiple
context serversand perform comparisons as ithe URLs
log comparison example of paragraph 2.1. Anothemple
of aggregation is the detection of spatial relationstépg.,
adjacency, inclusion) between geographical context
information collected from multiple context servers.

Finally, to allow the use of context historgontext

Figure 1. The overall architecture of the
context server.The three rectanglesonstitute
the context serverArrows show context data
flow between components. Dashed arrows
denote XML encoded communications.

3.4.1. Context Management

The context management lay@ovidescontext storage
and acquisition. It consists of three components: a persistent
object database, aontext acquisition componenand a
context handlers component.

The repository of contexdata relies on an object
databaseContextdata is organizedhierarchically according
to categoriesand is referred toaccording to anaming
scheme. Top levedategories correspond tmtities context
data is attachedo, e.g., group, user, room, system,
application. Lower levels partition each entity into
categories of context data (e.g., sound, light and location for
a room, relevant objects or properties for an application,
etc.)

In our contextdata model, a number of common

Technical Report GIT-GVU-98-32

attributesare attached to piece ofcontextdata in addition

available on a large variety pfatforms. Interoperability at

to the current value. These attributes serve three functions: the dataformat level isachieved bythe use of XML to

- First, a timestamp attribute igsed for historical
purposes.

- Second, some attributetescribethe data sothat
applications can make sense of it orequest
conversionse.g., unitsand referencesystems for
geographical coordinates,

encode all exchanges over the network. Using XML, we can

publish and shareour contextdata hierarchy and naming
scheme in a DTD (Document Type Definition) as well as
the methods t@ccesghe context serverthus providing a

public APl to the context server. Furthermore, XML

capabilities are available for a growing number of languages

- Third, other attributes give an estimate of the andplatforms, making the port of our contetcess layer

validity of the data. For instance, polled vallese
a lifetime attribute that may beueried by an
application tocheckthe data isstill valid for its
purpose.

In addition, the history of a givepiece ofdata is stored
in the database andan bequeried.For datawhose future
valuescan bediscovered(e.g., by looking up theuser's
schedule), the future scheduled values are also stored.

The context acquisition componeptovides a sensor-

independent interfad®r storing and updating contextlata
values. This component geigw datafrom contextsources
and updatesthe databaseaccordingly. This component

insulates the contextdatabase from the sensors and

guaranteesndependencevith regard tothe specifics of a
particular sensor.
The contexthandlerscomponentprovides context data

manipulation functions thamediateall accesses to the
database. Its roles are twofold: it hides the actual structure of

the data to guaranteeindependencewith regard to the
accessing components, including applicationsand it
provides accessontrol capabilities. Remotaccess to any
piece of contextan be granted dorbidden bythe user, or
can be restricted to a list alithorizedcontext serversThis
privacy protection scheme however, placdsueden on the
user who has to configure access explicitly.

3.4.2. Context Access

The context access layerconsists of the context
accessors component.diovides amapplicationinterface to
accesscontext data remotely. The interface allows an
application to get or set the value opiace ofcontextdata
and/or specific attributes. Contextaccessorsquery the
context databaseahrough its contexthandlerscomponent.
The query is encoded as aemote procedurecall (RPC)
expressed irKML androutedvia HTTP. A typicalremote
context query is shown in figure 2. The reply is also
encoded in XML and is shown in figure 3.

In distributed heterogeneousnvironments typical of
ubiquitous computing or mobilandwearablesystems, the

relatively easy.

<?XML VERSION="1.0"?>
<methodCall>
<methodName>ContextServer.get</methodName>
<params>
<contextName>
<contextCategory>
<User/>
</contextCategory>
<contextltem>
<EmailAddress/>
</contextltem>
</contextName>
</params>
</methodCall>

Figure 2. An XML/RPC query (simplified). An
application calls the “get” method of aontext
server. It passes as a parameter the name of the
requested piece of context: item EmailAddress in
category User. Thigjuery is sent using HTTP
POST.

<?XML VERSION="1.0"?>
<methodResponse>
<params>
<contextRecord>
<contextValue>
salber@cc.gatech.edu
</contextValue>
</contextRecord>
</params>
</methodResponse>

Figure 3. The XML reply to the query of figure
2 (simplified). A context record is returned
which contains the requestedvalue. Acontext
record maycontain additional attributegor a
piece of context (e.g., a timestamp).

3.4.3. Context Synthesizers

The context synthesizer layer is ¢harge ofusing raw
contextdata togeneratehigher level of abstraction context
data. It consists of two components: conteadbstractors
abstract local contextlata; context aggregatorgenerate
higher-level contextdata from local and remote context

variety of platformsand programming languages in use servers.

makes interoperability a primrmequirement. Interoperability
at the networking levatan beachieved byusing TCP/IP.
Our choice ofHTTP as the transport protocddcilitates
interoperability further: HTTPserversand client APIs are

The context abstractors component is dharge of
extracting higher-levetlatafrom raw contextdata. It relies
on an active values mechanisand recomputes high-level
data whenever the radatasourcesare updated. Istores its

Technical Report GIT-GVU-98-32

result into the context database. For example, an applicationecessary. The sensscript then polls the value of the

may needthe currentlocation of the user as a stragme
whereasonly geographical coordinateare available. An
abstractor wouldimplement therequired algorithms to
generate geographicalontext as street names from the
sensed geographical coordinates.

The context aggregators componemonsists of
functions that operate on similpieces of locahndremote
context data. They accesslocal data through the context
handlers interfaceand remote data through the context
accessors. An example aggregatothe URL comparison

function described in section 2.1 and detailed in section 4.2.

4. Context Servers at Work

In this section, we explain idletail how the context
serverswork. We revisit the"Where Have You Browsed

Today?” application (WHYBT for short) described in section

2.1 andlook at what is happeninigehindthe scenes. This
particular example takemdvantage omost services of the

context servers: history, context access and context sharingyq; is not empty

The currentcontextserverprototype is implemented in

current URL affive-secondintervalsandgenerates an event
to the context handlers whenever the value changdsirtin
the contexthandlers updatthe valuestored inthe database
and maintain history information.

An interesting issue that arises is how losbould
history information be kept for a particular piece of context.
Since the use of history information is up to the
applications, we don't have an easy answethte question.
The current context server allows for arbitrary cutoff dates to
reduce the amount of context data that is stored.

4.2. Interacting With the Application

A scheduler runs th&/HYBT applicationeveryday late
in the afternoon. The application nfigured to serve a
fixed list of usersreferred to bythe name of their
workstations. It runs on a group contesdrver hosted by
one of the users’ workstations. It must fireguesthe list
of URLs common to all users for the currelaty and, if the
request each user’s enadiressrom the
context servers and notify each user by email.

Frontier, a scripting language and environment that runs on e comparison of the URLSs histories is performed by a

MacOS and Windows [14]. Frontier provides uswith a
persistent objectdatabase XML encoding and parsing,
HTTP client and server support, and anAppleEvents or
COM interface for inter-application communication.

From the point of view of theVHYBT application,
things are pretty simple: itrequests acomparison of the
history of apiece ofcontextdata(the currentURL) for all
usersconcerned. ltthen sends aremail to all users who
have URLs in common. It thusneeds toretrieve an
additional piece of context information: the emaddress of
the users involved. This application assumes thadraext
server is assigned teachuserand isrunning on theuser's
workstation that she uses for browsing. Makaborate
schemes could beevised tolet users browséndifferently
on a number of workstations or mobile devices.

The role of the contextserver for the WHYBT
application is twofold: it first gathersand stores URL
context data, and then interacts with the WHYBT
application to serve its requests.

4.1. Gathering and Storing the Current URL

To allow handling by the conteserver ofthe “Current
URL" piece of context, two componentare needed: a
sensor component that is able to grab the current fuéth
the browser application, and an entry in the context
databaseThe sensor component is a script tltahnects
through MacOS AppleEvents to théetscape or Explorer
browser ofthe user. At first, the script registers with the
contexthandlerscomponentsee3.4.1) and declares iwill
provide “WebBrowser.CurrentURLIhformation as events.
The contexthandlersthen create arentry in thedatabase if

dedicated “URLHistoryAggregator” script. It is a synthesizer
and assuch, registers with the local contetandlers to
declarethe names of the contedatathat it takes asnput
andthat it provides asoutput. In thiscase, thesynthesizer
uses “WebBrowser.CurrentURL” data and provides
“WebBrowser.CurrentURLCommonSubset” data. It needs as
an additional parametéhe list of contexserversthat take

part in the comparison as well as the history timespan to be
considered. For aggregatotBis list is usuallyprovided by

the client application.

Finally the WHYBT application queries local and
remote contexservers fothe emailaddresses ofhe users
involved. The XML query andreply used areshown in
figure 2and 3. Itthengenerateemail messages informing
users of their common web visits for the day.

5. Conclusion

We have presented a generic context-handling
infrastructurebased orcontext servers. Contexdervers are
particularly suited for sharing contexlata andproviding
access tocontext history. These features enable us to
explore promising new applications. Our immediate goal is
to developmore applicationsdased onthe contextservers
infrastructure. Of particular interest are applications taigt
on elaborate context interpretation (e.g., freickeo images)
and applications aimed at mobile users.

6. Acknowledgments

The first author is currently funded by a fellowslfipm
INRIA whose support is gratefullgcknowledged. Wevish
to thank members of the Future Computing Environments

Technical Report GIT-GVU-98-32

group at Georgia Tech for fruitful

discussions and

particularly Anind Dey forinsights and comments on our
architecture and prototype applications.

7. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R.
Kooper and M. Pinkerton. Cyberguide: A Mobile
Context-Aware Tour GuideACM Wireless Networks
3:421-433, 1997.

G. D. Abowd and A. J.Dix. Integrating status and
event phenomena in formal specifications of
interactive systems. ACM Software Engineering
Notes 19(5):44-52, December 1994.

Apple Research Laboratorief\pple Data Detectors
homepage.

http://lwww.research.apple.com/research/tech/AppleDat

aDetectors/, Apple Computer, 1997.

N. Davies, K. Mitchell, K. Cheversand G. Blair.
Developing a Context Sensitive TouGuide.
Proceedings ofrirst Workshop onHuman-Computer
Interaction for Mobile Devices pp. 64-68, 1998,
Glasgow, UK.

A. Dey. Context-AwareComputing: TheCyberDesk
Project. Proceedings ofthe 1998 Spring AAAI
Symposium on Intelligent Environment998.

M. R. Ebling and M. Satyanarayanan. On the
Importance of Translucence fdvlobile Computing.
Proceedings ofrirst Workshop onHuman-Computer
Interaction for Mobile Devices pp. 69-72, 1998,
Glasgow, UK.

M. L. M. Flynn. Forget-me-not: Intimate computing
in support of human memoryProceedings of
FRIEND21: International Symposium on Next
Generation Human Interfacegp. 125-128, 1994.

R. Hull, P. Neavesand J.Bedrod-RobertsTowards
SituatedComputing.Proceedings ofEEE ISWC'97,
First International Symposium on Wearable
Computer§997, Cambridge, MA, USA.

H. Lieberman, N. V. Dykeand A. Vivacqua. Let's
Browse: A Collaborative Web Browsing Agent.
http://lieber.www.media.mit.edu/people/lieber/Liebera
ry/Lets-Browse/Lets-Browse.html, MITMedia Lab,
1998.

E. D. Mynatt, M. Back, R. Wantand R. Frederick.
Audio Aura: Light-Weight Audio AugmenteReality.
Proceedings ofthe ACM UIST'97 Symposium on
User InterfaceSoftwareand Technology p. 211-212,
1997.

M. Panditand S.Kalbag. The Selection Recognition
Agent: InstantAccess toRelevant Information and
OperationsProceedings ofntelligent User Interfaces
'97, 1997.

J.Pascoe, N. Ryaand D. Morse. Human-Computer-

[13]

[14]

[15]

[16]

[17]

Giraffe Interaction: HCI in theField. Proceedings of
First Workshop on Human-Computéteraction for
Mobile Devicespp. 48-57, 1998, Glasgow, UK.

W. N. Schilit. Systemarchitecturefor context-aware
mobile computing.Ph.D. Thesis, 1995, Columbia
University.

UserLand Software. Frontier
http://www.scripting.com/frontier5/,
Software, 1998.

W3C XML Working Group. Extensible Markup
Language (XML) 1.0.
http://iwww.w3.0rg/TR/1998/REC-xm|-19980210,
World-Wide Web Consortium, 1998.

R. Want, A. Hopper, V. Falcaand J.Gibbons. The
active badgelocation system ACM Transactions on
Information Systems0(1):91-102, 1992.

M. Weiser and J. S. Brown. Designing Calm
Technology.Workshop on Ubiquitou€omputing at
CHI 1997 1997.

5.1.
UserLand

