
The Design, Deployment, and Analysis of

SignetLab: A Sensor Network Testbed and

Interactive Management Tool

Riccardo Crepaldit, Simone Frisot, Albert Harris Illt, Michele Mastrogiovanni§
Chiara Petrioli§, Michele Rossit, Andrea Zanellat, and Michele Zorzit
tDepartment of Information Engineering, University of Padova, Italy

§Department of Computer Science, University of Rome "La Sapienza," Italy
{riccardo.crepaldi,simone.friso,harris,rossi,zanella,zorzi}@dei.unipd.it, {mastrogiovanni,petrioli}@di.uniromal.it

Abstract-The emergence of small, inexpensive, network-
capable sensing devices led to a great deal of research on the
design and implementation of sensor networks. A critical step in
taking protocols from theory to actual deployment is comprehen-
sive testing on physical sensor networks. Sensor network testbeds
provide one way to facilitate such testing without requiring the
deployment of a specialized sensor network for each protocol.
However, for such testbeds to be useful, they must not overwhelm
researchers with maintenance tasks and high learning curves.

Previous work in testbed design has primarily focused on cre-
ating interfaces to maximize their usage by convenient scheduling
of jobs and output access. In this work, we present two contri-
butions to sensor network testbed design. The first is a unique
management tool that allows users to program, interact with,
and receive data from nodes in the network, filling a gap in
current testbed management solutions. The second is the design,
deployment, and analysis of the SignetLab testbed. The analysis
of the testbed and its results provide quantitative measurements
of the impact of physical deployment on signal propagation
characteristics. Additionally, we present two case studies where
researchers have used the testbed and discuss the user experiences
and lessons learned.

I. INTRODUCTION

The ability to manufacture small, inexpensive computing
devices with wireless networking capabilities has led to a large
amount of research in the area of sensor network protocol
design. The vision of large, self-forming networks of small
devices, each equipped with sensing hardware to monitor an
environment (e.g., a battlefield or disaster zone), requires the
design of communication protocols that are highly scalable
(to thousands of nodes), loss-tolerant (the devices can be
unreliable and prone to failure), and energy-efficient (sensor
devices operate on batteries that are not easily replaceable). A
key difficulty in designing protocols for this type of system
is the lack of appropriate methods of testing. There are a
number of simulation options available (e.g., the ns2 network
simulator [1]), but each of these necessarily hides real-world
effects (fading properties, anisotropic propagation, etc.).

To address this limitation, a number of testbed solutions
have been proposed very recently. The primary focus of these

This material is based upon work partially supported by the MIUR
International FIRB RBIN047MH9.

early testbeds has been either on sensor node design [2],
[3], [4], [5] or on tools to allow users to timeshare the
network [6], [7]. One feature that these works cite as a future
goal is a tool that allows users to have fine-grained control of
experiments during their timeslot as well as real-time feedback
from the network [6]. The first contribution of our work is the
development of such a tool, which provides a simple interface
through which to program, interact with, and receive data from
the sensor nodes that does not rely on any single technology
or operating system, such as TinyOS [8].

Software tools are only a partial solution to the problem,
however. First, appropriate hardware must be chosen that
supports functionalities favorable to protocol testing (e.g.,
supporting various sensing capabilities and data aggregation).
Second, a physical space for the deployment of the network
must be chosen to approximate realistic sensor deployments
(e.g., is the space large enough and how does it affect the
results). Third, a backplane must be chosen to allow data
collection and node monitoring for the sensor network without
interfering with the wireless traffic.

Our second contribution is the design, deployment, and
analysis of SignetLab, our sensor network testbed. Signet-
Lab is composed of 48 EyesIFXv2 nodes [2], a USB data
backplane, and is supported by a software tool that allows
node selection, visualization, and network programming and
debugging. It is deployed in the Signet research lab in the
University of Padova, DEI building. SignetLab is actively
used by researchers at the University of Padova as well as
the University of Rome. The analysis of the testbed provides
insight into the impact of physical deployment on its function-
ality. This analysis and its results will aid other researchers in
designing and deploying their own testbeds.

We conclude this paper with the presentation of two case
studies, where researchers have used our testbed to test de-
ployments of their protocols and applications. We discuss
their experiences in using the testbed and in expanding and
using the software tool via the provided API. We follow the
case studies with a discussion of user experiences and lessons
learned.

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

Testbed > l

Deployment

Fig. 1. From Theory to Deployment

II. RELATED WORK

Research progresses from theory to deployable systems (see
Figure 1). While simulations are an important step towards
deployment due to their ability to provide repeatability of
experimentation, simulation environments typically ignore the
effects of some real world network properties (e.g., anisotropic
links and lack of time synchronization). However, building de-
ployments to test protocols is prohibitive in terms of difficulty,
cost, time commitment, and repeatability of experimentation.
Therefore, a middle-ground is needed: the testbed. Testbeds
aim to provide most of the real characteristics of a deploy-
ment while maintaining some experimental repeatability and
providing rapid testing and prototyping capabilities.

There have been a number of attempts to create testbeds
maximizing usability and realism. Some work focuses on

mobile ad hoc networks [9], [10]. Typically, these solutions are

targeted at dealing with issues specific to supporting mobility.
These networks also tend to focus on IEEE 802.11 [11]
wireless technology. Other testbeds focus on the analysis of
protocols addressing specific problems (e.g., power control [3],
[5] or mobility [4]).
The two works that are most relevant to our testbed are

MoteLab [6] and Mobile Emulab [7], [12]. Both are aimed at
maximizing testbed utilization among different users. To this
end, they provide a web interface through which users can

schedule jobs.
MoteLab gives the users access to the nodes to do realtime

data analysis via the TinyOS serialforwarder [8]. Data is stored
in a mySql database [13] as well. Mobile Emulab focuses
on providing users remote access to a testbed that supports
mobility. Both MoteLab and Mobile Emulab strictly limit the
users' ability to interact with the node reprogramming phase.
A desire has been expressed for a tool that would give users

fine-grained control during their timeslots [6]. Our software
tool provides this capability and is presented in Section IV-B.

In addition to full testbed solutions, some tools have been
developed that provide similar functionality to some of the
plugins included with our tool. Marionette [14] provides a

library of hooks to be embedded on a sensor device allowing
users to remotely interact with the application executing on

the node. Essentially applications are compiled with the em-

bedded Marionette libraries and then, using remote procedure
calls (RPC), clients can interact at runtime with the nodes.
Marionette provides a method to execute instructions on nodes
similar to the capability provided by TinyOS; however, it
works over the wireless link, interfering with the network
operations. Marionette could be integrated into our SignetLab
tool, if desired.

TinyOS has a utility called the Message Center [8] that

provides a graphical user interface to the serial forwarder to
send and receive messages between a PC and nodes in the
network. One of the plugins for our tool provides a similar
interface, but our tool is not limited to TinyOS, only using it
as an example.

In addition to testbed projects, there have also been a
number of research sensor network deployments [15], [16],
[17], [18]. Each one of these demonstrates problems that are
encountered in terms of hardware failure, anisotropic signal
propagation, and many other properties of physical networks.
It is important for our testbed to replicate any of the real
properties of these sensor networks to maintain a high level
of realism. The next section presents the exact goals of our
design, which are directly driven by observations made about
deployed sensor networks and current testbed solutions.

III. GOALS FOR A TESTBED

The first step in designing a sensor network testbed is to
identify specific goals the testbed should achieve. We have
identified seven primary goals.

First goal: the testbed should improve research productivity.
This is the fundamental goal of our design. If it is more time-
efficient for researchers to build their own sensor network
deployments for protocol experimentation, then the testbed
would be a failure. This first goal leads immediately to the
next two goals.

Second goal: the testbed should be easy to maintain.
Normally, research groups do not want to hire a full-time
network administrator; therefore, the researchers themselves
must handle management duties. If these duties are too time
consuming, research will end up being stifled rather than
augmented.

Third goal: the testbed should provide a minimal learning
curve to be useful for researchers. Therefore, the tool should
have a convenient graphical user interface and be easily
customizable.

Fourth goal: utilization of the testbed should be maximized
across groups of researchers. It should be easy for them
to use the network, whether physically present or not. An
effective time-sharing tool should be provided to allow various
researchers the ability to schedule experiments. We do not di-
rectly address this goal in this paper because there are previous
solutions providing web-based, timesharing utilities [6], [19].

Fifth goal: the testbed should support a large variety of
protocol experiments. There are a large number of sensor
network scenarios for which protocols can be designed (dense
networks, sparse networks, multihop networks, etc.). Exper-
imentation for protocols on any number of these scenarios
should be possible with minimal reconfiguration.

Sixth goal: the testbed should be deployable in a reasonable
setting. One that requires 100,000 square meters would not be
practical.

Seventh goal: the testbed should provide as close to a
realistic environment as possible, while still allowing realtime
monitoring of the protocols running on it. Clearly, if the en-
vironment is too sterile (e.g., engineered to minimize external

I l
Theory Simulation

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

interference) it will not provide the bridge between simulation
and deployment for which it was meant.

It is clear that some of these goals can be conflicting. For
example, it may be desirable to deploy the network in a lab;
however, the conditions in the lab are almost certainly not
similar to those in a large outdoor space. Therefore, some
design decisions must be made to accommodate these trade-
offs. The following section describes the design choices that
we made in the implementation of SignetLab.

IV. SIGNETLAB

SignetLab is a sensor network testbed deployed at the
University of Padova. In its design, we followed a two pronged
approach: design of the physical deployment and design of
the software tool. We elected to make the tool as independent
from the physical deployment as possible. This will allow the
testbed to grow and change without the need to re-implement
the software. Also, this decision allows other labs to easily
make use of our tool without the need to replicate the hardware
used in SignetLab. The following subsections describe each
part of SignetLab in detail.

A. Testbed Hardware

The choice ofhardware for the sensor network testbed needs
to support a number of goals. First, the radio should provide
sufficient range and power settings to allow the testing of a
variety of protocols. Second, the nodes must provide a means
to alter their sensing capability in order to provide support for
a variety of applications. Third, the processor on the nodes
should provide sufficient computational resources to allow
the execution of interesting protocols and applications while
still being realistic for a sensor node. Finally, there should
be a reasonable way to get realtime status and debugging
information from the testbed without interfering with the
execution of the main application.

1) Deployment Space: SignetLab is deployed in a 10m x
1lm lab due to space limitations at the University of Padova.
Our deployment is on a grid suspended 60cm from the ceiling
and 2.4m above the floor. In this way, the lab is not overtaken
by the sensor network deployment. The network is made up of
48 EyesIFXv2 nodes [2], separated by 160cm in one direction
and 120cm in the other direction. These distances were chosen
to provide a uniform distribution in the lab.

2) Sensor Nodes: The EyesIFXv2 nodes were developed
during a three year European research project on self-
organizing energy-efficient sensor networks [2]. The nodes use
an ultra-low power MSP430 processor with 10 KB on chip
RAM, 48 KB flash/ROM, and an additional 512 KB serial
EPROM.

The radio chip is a low power FSK/ASK transceiver, provid-
ing half-duplex, low data rate communication in the 868 MHz
ISM band. It operates using FSK modulation, with a sensitivity
of < -109 dBm, enabling up to 64 Kbps, half-duplex, wireless
connectivity.

The platform is also equipped with an on-board stripline
antenna and an SMA-connector for an external antenna. The

Fig. 2. SignetLab Node Map

external antenna is the default. The onboard antenna can be
selected by soldering a resistor into the correct location on
the chipboard. However, using either of the available antennae
created a radio range, even at the lowest transmit power
setting, which reduced the testbed to a one-hop network. One
option was to use a low-gain setting at the receiver; however,
this does not decrease the interference range of the transmit-
ters. Therefore, this is not an acceptable option. SignetLab
uses home-grown, low-gain antennae inserted into the external
antenna plug to provide transmission ranges that require the
use of multiple hops. Section V presents the performance of
the testbed with various transmit power settings.

The transceiver can accepts a supply voltage of 5.5 V.
The typical current is Is = 9 mA in receive mode, and
Is = 12 mA in transmit mode. The transmit power can
be modulated by means of a digital potentiometer with 255
settings (although only 180 to 255 produce useful transmit
power level variations).

The nodes come with onboard temperature and light sensors
as well as an SPI expansion port that can be used for
additional sensing capabilities. The SPI bus is shared between
the expansion port, the radio, and the processor. Therefore,
there is a hard restriction on the amount of resources used at
a time.

The nodes can be powered either by batteries with a capacity
of 1000 mAh or through a power supply connected via an
external polarized connector or a USB connection.

3) Backplane Connections: So that debugging and data
gathering do not interfere with the operation of the testbed, we
provide a backplane using USB connections. These same USB
connections are used to supply power to the nodes; therefore,
only a single cable is required to connect each node. Figure 2
depicts the backplane architecture, which is composed of two
tiers of hubs. Each of the hubs (15 in all) has its own power
supply. The dashed squares represent the second tier hubs,

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

8 848822 8El,.P823 EY% 24 EY825 EY E8 2 6

241 22 28 24 5 8 26

888278 y2 28 8Y82288429 EY2 8 M f&84
27 2R9 #Bn

ENEo03:3 EYESO44ES 0p05 UUDN EY519 3

33 c 34 ~ 35. 35 ;' t B@,

CY3o9 0~~)Qk EyEs"041 :y X42 AD4
39 r445 4422 6 8

EY -45 ej >li Ib?EStp8 E

4- 47 4 8

Node SCoIer8ed:3u 8 .822 8 8 8

EYEEeS,EYEdP0045 @E

22 Properties Regist£,rt82l I l %

{lgiil#Dl£ii£d~~~~~~~~~~U5 EYMU iiie111|1 -.

Cumpoi2C48OM22222C488A823 4 O8> EY8CamE.Eg *e~
: 88P

Li(; r8,sDiE e|||| ||| ||||| w X .
_. .u Iokel 8488'888 2287 8888

Fig. 3. Application Main View

each ofwhich connects four sensor nodes. The solid rectangles
represent the three first tier hubs, each connecting four second
tier hubs. The first tier hubs are connected directly to the
controlling PC.
One of the driving factors in this layout was the fact that

USB cable lengths could not be greater than 5 m, in order to
keep transmission error rates sufficiently low. This is due to
insufficient power at the hubs to transmit signals that can be
accurately decoded over long distances.

B. Software Tool

The software tool of SignetLab was designed to support
a number of goals. It should provide a single programming
interface to all users that is intuitive to use (i. e., small learning
curve). It should be supported on multiple operating systems
to allow users to easily integrate it into their own work
environment. The tool should also support multiple physical
sensor network testbeds (i. e., different node technologies,
different node layouts, etc.). Programming nodes (either all or

some subset), including compiling and uploading code, should
be simple and automated, giving the user as much control as

possible during their use of the testbed. Finally, it should be
easy for users to add functionality to the tool. We point out
that our software tool does not have a component installed
on each node and does not rely on TinyOS. We present a

number of plugins for TinyOS as examples to demonstrate the
tool's use without loss of generality. The software tool is freely
available under the LGPL license on the Signet group website
(http://www.dei.unipd.it/research/signet/).

1) Main Application Window: The SignetLab software tool
is a Java application and a set of configuration files that set
up the environment. When the application starts up, the main

window is split into two sections, the GUI node selection pane
on the left and the plugin pane on the right (see Figure 3).

The GUI node selection pane reproduces the topology of
the network as specified in the topology configuration file.
The user is able to select the entire set of nodes or any subset
of nodes by either clicking on the nodes, dragging a bounding
box around them, or using the selection menu. Once nodes are

selected, various plugins can be used to program the nodes and
begin code execution.

The plugin pane contains various plugins and their interfaces
(described in Section IV-B3). Users can easily expand the
capabilities of the application by using a simple API to write
their own plugins.

2) Configuration Interface: The SignetLab software tool is
easily customizable by each user through the use of configura-
tion files. The main configuration file defines paths for various
utilities (e.g., Perl) that are needed by the application.

The topology configuration file is used to input the physical
topology of the network. Through the use of this file, it is
trivial to connect the application to different testbeds, or use

subsets of nodes for different testbed configurations.
Finally, the plugin configuration file allows users to choose

which plugins are displayed in the plugin pane (see Figure 3).
3) Plugins: The application has four main plugins to allow

interactions with the testbed: the ComListener plugin, the
Programmer plugin, the SendCommand plugin, and the
SerialSender plugin.
The ComListener plugin: The ComListener plugin

provides the backplane functionality that allows realtime de-
bug and trace information to be collected from the nodes
without interfering with the wireless traffic. Essentially, the
ComListener listens on the USB backplane and provides
analysis and viewing functionality. The plugin is attached to

)01, 235;
)ot: 2.SS;
pot,255

)o0tr 255i

)Ot; 235it

)OLt 2S i;

i)otF 255i

m0t; 2SSi

)-otr 2SS;

)wts 2SS,

)ot: 2SS5;

tot: 2SS;

W1. 2SS;

)ptr 2SSr

wof; 2St;

)ot; 2SSi

)pt; 2SSI

MIle,i

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

one or more nodes and begins collecting data, which is passed
to the analyzer thread. This thread performs data filtering,
writes the data out to log files, and prints the data to the screen.
In order to avoid causing the plugin to consume 100% of the
CPU, the analyzer thread is run at low priority and buffers up
to 10,000 lines of output for realtime debugging (configured
with a slide bar).

The analyzer thread allows filters to be defined to
make the debugging information be presented on screen in
a more useful manner. Filters can be written as regular
expressions and include output formatting and highlighting
and background coloring (see Figure 3). This allows users
of the tool to format the output in a way that facilitates rapid
debugging of the experiments running on the sensor network.
The ProgrammerPlugin: The Programmer plugin im-

plements the node programming interface. It currently supports
nesC [20] applications but is easily expandable to support
other languages. The user selects a Makefile and then uses the
compile button to build the application. A pane is provided to
show compile-time output so the user can debug if necessary.
Finally, when the application has been built, it can be installed
on any subset of nodes by highlighting them in the GUI pane
and clicking install. Any installation errors are displayed in a
dialog window. This plugin can also be used to reset or erase
selected nodes, using the appropriate command buttons.
The SendCommand Plugin: The SendCommand plu-

gin implements the ability to send commands to the nodes
using TinyOS's Active Message header format [8]. We de-
signed a structured message format to support the control of
nodes. Different commands are described by the entries in a
configuration file according to the following simple format:
COMMAND/EDITABLE cmd name cmd num pl p2 p3
p4 p5. The first keyword specifies if the user is allowed
to modify the parameters of the command before sending it.
This is followed by the name of the command and a number
identifying it. Finally, there is a parameter list.
The SerialSenderPlugin: The SerialSender plu-

gin also implements the ability to send commands to the
nodes; however, it merely provides a byte stream for the
communication. The interface is extremely simple, allowing
the user to select a node and enter any ASCII string. When
the enter key is pressed, the message is sent. Alternatively, the
user can send messages to groups of nodes.

V. ANALYSIS OF SIGNETLAB

Analysis of the testbed in terms of the environment it pro-
vides for protocol experimentation yields insight into the best
practices for testbed design and deployment. The fundamental
tunable parameter that alters the sensor network environment
is the potentiometer setting that adjusts the transmit power
of the nodes. This setting determines the distance each node
can reach, subject to additional propagation and environmental
phenomena (e.g., multipath fading). Analyzing the effects of
different potentiometer settings shows the range of environ-
ments that the testbed can provide.

Fig. 4. Outdoor Transmission Pattern

We define two metrics to analyze the testbed. Consider
the signal propagation from a single sensor node for a given
transmit power level. Theoretically, in the absence of any inter-
ference or reflections, the area where the signal is received at
greater than some strength, x, would define a circle. However,
in real physical environments, there are a number of factors
that alter this perfect circle. Figure 4 depicts the received signal
strength versus relative node position. The sender and receivers
in this case were placed outdoors, in an environment with no
trees, buildings, or other close obstructions. A horizontal slice
of this graph at a given signal strength, x, does not describe a
perfect circle, although it is close. For an indoor environment,
the contour resulting from such a slice would, in general,
be very different. Our two metrics are defined by inscribing
and circumscribing circles for each of these signal strength
slices in the graph. We define the greatest continuous distance
reached as the radius of the inscribed circle, which is the
distance inside which the average received signal strength is
guaranteed to be greater than x. We define thefarthest distance
reached as the radius of the circumscribed circle, which is the
distance outside which the average received signal strength is
guaranteed to be less than x. Instead of using received signal
strength as our metric to slice the graph, we use percentage of
packets received, which is essentially the same, as a received
signal strength can always be translated to a probability of
packet error and vice versa.

To demonstrate the impact on distance reached of the choice
of the percentage of packets received that defines x, Figure 5
shows the greatest continuous distance reached and the farthest
distance reached with 9500, 9000, 80%, and 300O packet
reception. This shows that the performance of the network
with respect to the farthest distance is not very sensitive to
the definition of reachability in terms of percentage of packets
received. The continuous distance is more sensitive because a
single node in a region of poor signal quality will reduce the
radius of the inscribed circle defining this value.

Using these metrics, we analyzed the characteristics of
SignetLab in terms of number of hops required to traverse
the network (demonstrating its ability to support a variety
of sensor network scenarios, including significant multihop
behavior) and in terms of the propagation characteristics of

1200 ,

1000,

800,

In 600-In
af

400,

200 -

01.
50

50

-3u -50

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

12

11

10

9

8

-Farthest 95%
Continous 95%
Farthest 90%
Continous 90%
Farthest 80%
Continous 80%
Farthest 30%
Continous 30%

12
11-
10
9
8-

-7-

. 6
e 5-
x, 4-

3-

109

12
11-
10

1
-

-7-

'. 6-
e 5

x, 4-
3
2

10 9
9 10

210 215 220 225 230 235 240 245 250 255
Pot setting

Fig. 5. Impact of Reachability Definition

Y coords [m]

4
, ,

X coords [m]

10

Y coords [m]

4X [

X coords [m]

Fig. 6. Greatest Continuous Distance Reached, High Fig. 7. Greatest Continuous Distance Reached, Low
Potentiometer Potentiometer

different nodes in the network. This analysis gives insight into
the effects of node placement on the properties of the network.

Figures 6 through 9 represent a map of the network, with
each node being depicted according to the x and y coordinates.
Figure 6 presents the greatest continuous distance reached with
the potentiometer set at the highest level (255). This graph
represents the case where a node is considered reachable if
80% of the transmissions arrive reliably. We also did mappings
with other choices of the percentage of packets received;
however, their general shape is the same. Nodes in the center
reach shorter distances only because they reach the edges of
the network, which are about five meters away. Nodes at the
corners of the network can reach about seven meters, meaning
that even with the highest potentiometer setting, they cannot
reach the entire network with a single hop.

Similarly, Figure 7 presents the greatest continuous distance
reached with the potentiometer set at a lower level (230). With
this setting, the distance reached is dramatically decreased,
around two meters on average. One interesting thing to notice
is that nodes at the borders of the network on average have
shorter continuous distances reached than other nodes. This
is due to their close proximity to the walls, which causes the
signal reflections to be stronger.

Figure 8 maps the farthest distances reached for each node
in the network. From here it can be seen that at the highest
transmit power setting, the edges of the network can reach
each other with high probability (though the corners cannot).
However, at the lower potentiometer setting (230), the distance
is reduced by about 5000 (see Figure 9).

To further analyze the effects of the indoor environment on
signal propagation patterns we present three additional sets of
data. Figure 10 shows the greatest continuous distance reached
for each of a line of nodes against the wall at the top of
Figure 2 as a function ofthe potentiometer settings. As desired,
the distance increases with higher potentiometer settings;
however, the nodes do not reach uniform distances, mostly
due to their location in the network. Figure 11 presents the
farthest distance reachable as a function of the potentiometer
setting. Again, this distance is greater than in the case of
the greatest continuous distance and increases with increasing
potentiometer settings. The nodes with the lowest distance
increases are the ones near the corners of the network. In fact,

our results show that nodes at the edges of the network (i. e.,
the nodes closest to the walls) consistently had the lowest
reachable distance. This implies that our node placement
should be farther away from the walls if a more uniform
environment is desired.

Finally, the same anisotropic behavior can be seen when
considering signal propagation in different directions from a
single node. Consider the circle around a node to be divided
into 450 wedges, Figure 12 and Figure 13 depict the greatest
continuous distance and the farthest distance reachable, respec-
tively, by a single node located in the middle of the network
in these eight wedges (given as directions) as a function
of the potentiometer setting. This quantitatively demonstrates
that not only do physically distinct nodes have different
propagation patterns, but also the same node has different
propagation patterns in different directions. It can be seen that
the magnitude of the difference between directions is quite
large. This variance depends on certain physical characteristics
of the walls (e.g, a network wiring cabinet sticking out of one
of the walls). This effect in the lab environment is not easy
to avoid, though we would expect deployments in rooms of
more regular shape (e.g., hallways) to show less variance.

VI. CASE STUDY 1: THE ROCRSSI LOCALIZATION
PROTOCOL

The SignetLab testbed has been used in order to study
the performance of a localization algorithm, ROCRSSI [21],
ROCRSSI+, and a refinement of each [22], [23]. These experi-
ments were run locally in the Signet laboratory using the soft-
ware management tool. The management tool was extended
using the provided API to allow specialized visualization of
the results of the localization algorithm.
ROCRSSI uses Received Signal Strength Indicator (RSSI)

values instead of distances to compute the position of the
nodes in a distributed fashion, where every node computes its
own position based on information from beacon nodes (i.e.,
nodes that know their exact position).

The protocol can be summarized as follows: each beacon
collects RSSI values for transmissions from other beacons and
stores them in a table. The beacons then broadcast the tables
to all nodes in the network. Each localizing node compares the
signal strength of broadcast messages received with the values

2

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

12
11
10
94

9 10

'1 -6

1 2
X coords [m]

'. 60

=, 4
3

109

12

11

10

8-

10

Y coords [m]
l4

X coords [m]

4

210 215 220 225 230 235 240 245 250 25
Pot. setting

Fig. 8. Farthest Distance Reached, High Potentiome- Fig. 9. Farthest Distance Reached, Low Potentiome- Fig. 10. Greatest Continuous Distance Reached,
ter ter Line of Nodes

12 = N

11 E

SE
8 SW

--NW

12 = N

11 E

10

9- - NE
SE

8 SW
--NW

210 215 220 225 230 235 240 245 250 25
Pot setting

210 215 220 225 230 235 240 245 250 25:
Pot setting

210 215 220 225 230 235 240 245 250 25
Pot setting

Fig. II. Farthest Distance Reached, Line of Nodes
Fig. 12. Greatest Continuous Distance Reached in Fig. 13. Farthest Distance Reached in 8 Directions,
8 Directions, Single Node Single Node

contained in the tables in the messages. Using this information,
it estimates its distance from the source beacon. This distance
is used to describe a ring around the source beacon in
which the node must lie. This operation is repeated for every

beacon message received. When all the beacon messages are

processed the node assumes its location is in the centroid of the
intersection of all rings. ROCRSSI+ is a derivative algorithm
that yields more accurate localization [22], [23].

These algorithms suffer from the fact that they use RSSI
values to attempt to determine distance, which are strongly
affected by shadowing and anisotropic propagation and fading.
While some attempts to solve this problem have been worked
into the algorithms [23], only through the use of real hardware
can the extent of these effects be quantified.

A. Test Setup

The performance tests have been conducted in both an in-
door and an outdoor environment (for the outdoor experiments
the entire testbed structure was replicated out of the lab). The
software management tool was extended with a new plugin
using the API provided. This plugin uses the software tool
features to catch the debug messages coming over the serial
line of each node. These messages have different prefixes
depending on their type (localization started, beacons table
filled, localization done). The data is displayed in a table in
the plugin frame to allow the user to quickly compare the
real position to the result of localization before and after the
refinement. After the entire process is completed two buttons

allow the user to display on the topology frame a colored
line for each node, again using the main software API. These
lines start on the real positions of the nodes and end on

the computed ones (see Figure 14). This allows the user to
immediately visualize the magnitude of the localization error

and see whether or not systematic errors appear.

B. Results

Figures 15 and 16 show the results of the described tests
for the indoor and outdoor testbeds respectively. Many runs

were conducted, for both the ROCRSSI and the ROCRSSI+
algorithms, varying the number of beacons present in the
network, but preserving the topology. After each run the
localization error was computed. The figures depict the mean
of all errors. From the figures, it can be seen that having more
beacons allows the nodes to perform more precise localization,
while in every case the ROCSRSSI+ is more accurate than
ROCSRSSI.

VII. CASE STUDY 2: THE IRIS PROTOCOL

The IRIS protocol suite was implemented on the testbed
to validate previously published simulation and theoretical
results [24], [25]. The testbed was used remotely from Rome.
IRIS is a cross-layer solution including nodes awake-asleep
schedules, MAC, and routing. It supports both interest dis-
semination and data convergecasting to the sink. IRIS can be
summarized as follows. Nodes alternate between awake and
asleep states according to a duty cycle d. Each node does

10 | 1

ms4

332

Y coords [m]

12

11

10

9
8

-node 2 1
-node 22
-node 23
node 24

-node 25
node 26

-node 2 1
node 22
node 23
node 24
-node 25
-node 26

I
I

I

I I
I

-* -* -

1,
" 1, I/

I

40 40
4-

3
20

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

File Tools Nodtes Hel

EYESOO21 EYES0022 EYES0023 EYES0024 EYES0025 EYES0026

21 22 23 24 25 26

EYESOO27 EY028 EY029 EY030 EYES0031 EYES0032
0 %c

27 8 29 0 31 32

EYSF33E 0034 EY 0Q35 EY 0Q36 EY 0O37 EYESOO38
W Uc 1 c c c

33 J34 35 36 37 38

EYESO39 H 40 £EYQQ41 EY5i2 Q,,OQ43 EYES044
40

c c c
3S9 40 4442 4y 44

EYES0045

45

EYES0051

51

EYES0057

57

EY% .46EYB9.47

1 97 C3
EY ..OOO

52 5

EYE0058 E59
0 c 1Wc
58 59

Eu 9948 E_ 9949

\, 48 49

EY'954 EYES0055
. c 0 cZ.,,54 55

761

60 1cso 61

EYES0050

50
EYES0056

56

EYfS0062

62

EYES0063 EYES0064 EYES0065 EYES0066 EYES0067 EYES0068

63 64 65 66 67 68

Selection Ontions:

Sele Al Selet NoniE filvert

Send Command Loialization
ADV CONM-Listener Programmer

Node v RwID MD- ItIr AR VA

EYES 028 160
EYESO029 20
EYIESO00 5 10
EYES0031 7r0
EYIESO 4 160
EYES0035 20
EYIESO 6 5 10
EYES00:77670
EYES0040 160
EYES0041 320
EYES0042 5 10
EYES0043 670
EYES0046 160
EYES0047 320
EYES0048 5 10
EYES0049 670
EYES0052 160
EYES0053 320
EYES0054 510
EYES0055 l670
EYES0058 160
EYES0059 320
EYES0060 510
EYESOO61 670

_.

50 435 200 35 3 17
482 0 2 00 976 992
2 98 2 2 7 2 00 894 478

15.....................
227
2 43
2 43
400
2 43
2 19
400
400
~245
~25

454
203
400

505
505
400
505
2 94
400
400
447

DonekFES
K-......-..

K-

I-

...,

Iy-l

ii-
ii-
ii-
ii-
ii-
ii-
ii-
ii-
ii-
ii-
ii-

.

400 200 729 403 i
7840 400 200 B O1 949 i

708 0400 400 166 92 1 729 i4oS C _ D4

1 1-lim

Fig. 14. Localization Plugin

1 ~~~~~~~~~450r

400

l-- 350

-d0 3000

E 250E

-~̀!-200-

- o~~~~~~~~~x150
q 1~~~~~~~~~~~~~00

Ef 250

"I 200

XL 150

Fig. 15. Indoor localization results

not know its neighbors and their awake-asleep schedules. The
interest dissemination is performed according to the Fireworks
algorithm [26], where each node receiving the interest takes
one of two possible actions. With probability p it re-transmits
the interest to all of its neighbors, or with probability 1- p
it randomly picks c of its neighbors and sends the interest
to them. Implementing such a simple scheme in a scenario in
which nodes do not know their neighbors and their duty cycles
is quite challenging. For this purpose the interest dissemination
is integrated with a neighbor estimation procedure. The interest
broadcast by a node triggers ACKs from the receiving neigh-
bors, allowing the node to get a sample ofthe awake neighbors.
This information is in turn used by the node to refine its
estimate of the number of neighbors. This estimate is exploited
to decide whether the interest has to be further broadcast by
the node or not (the node stops sending the interest as soon

Fig. 16. Outdoor localization results

as it believes it has reached all the intended destinations).
The interest dissemination also allows nodes to discover their
distance (in hops) from the sink. When the interest is received
by source nodes, the convergecasting procedure is started.
Nodes choose optimal next hops according to the SARA
algorithm. For complete details of the algorithms, see [24],
[25].

A. Test Setup

In order to perform the experiments researchers had to
implement their own plugin to be used with the software
management tool. The plugin, using the library of the testbed
manager, configures a selected node as sink, instructs the sink
to perform a given number of interest disseminations and
collects results in a single file. IRIS code was then remotely
uploaded on the SIGNET nodes.

450,

400 0

350 P

3009;

100~

ROCRSSI
ROCRSSI & Refinement
ROCRSSI,
ROCRSSI, &Refinement

ROCRSSI
ROCRSSI & Refinement
ROCRSSI,
ROCRSSI, &Refinement

50

0L
3

50

0L
3

Number of beacons Number of beacons

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

In the first experiment, a node in one corner of the network
was programmed to act as the sink, in the second the sink
was instead located at the center of the deployment area.
The two experiments were performed on the indoor SIGNET
laboratory. In both of the experiments the transmission power
of the nodes was set to the maximum allowed. The duty cycle
d was varied between 0.05 and 0.9.

Metrics we investigated include the average time needed to
complete the interest dissemination, the coverage (defined as
the percentage of nodes reached by the interest dissemination),
the overhead (number of interest messages and ACKs sent per
node, on average, during each interest dissemination), and the
average number of estimation rounds needed before a node
decides it has reached all its intended destinations. Results
reported are averaged over 20 different experiments.

B. Results

In all the experiments IRIS had a 100% coverage. Results on
the interest dissemination duration are reported in Figure 17.
As expected, the higher the duty cycle, the smaller the number
of times the interest has to be rebroadcast by each node and
the faster the interest dissemination.

Figure 18 shows the average number of REQUEST and
RESPONSE messages transmitted by each node during a
single interest dissemination. REQUEST messages contain
the interest and hop count information and trigger ACKs
(named RESPONSE messages). When the duty cycle is low,
an inquiring node (i.e., a node sending a REQUEST) is likely
to find no awake neighbors. This forces the node to repeat the
inquiry procedure several times leading to a higher overhead
in terms of REQUEST messages. The duty cycle has instead
only a limited impact on the number of RESPONSE messages
which mostly depend on the number of neighbors and the p
and c parameters.

Finally, Figure 19 displays the number of estimation rounds
per node. The lower the duty cycle, the more challenging it
is to achieve an accurate neighbor estimation and therefore
the higher the number of rounds needed by each node before
the neighbor estimation process is completed. However, the
number of estimation rounds is quite low for all the different
d values, ranging from 4 (d = 0.9) to 16 (d = 0.05).

VIII. LESSONS LEARNED AND USER EXPERIENCE

The first case studied involved the extension of the software
tool using the provided API to allow the rapid visualization
of the results of a localization technique. The researchers
reported that the creation of the localization data collection and
visualization pane was simple and facilitated the rapid testing
of their protocol. The testbed allowed the examination of the
extent to which real propagation effects distort the location
predictions based on RSSI and whether or not their methods
to mitigate this error were effective.

While the researchers were able to produce the needed
results using the testbed, they expressed a desire for a more
easily deployable testbed as a number of their tests needed
to be performed in outdoor environments. To this end, we

are developing such a deployable testbed (for a preliminary
description see [27], presented as a demonstration at Sensys).

The second case studied involved using the testbed remotely.
The researchers from Rome reported that the software tool
made the process of compiling, executing and testing code
on the testbed very simple, even remotely. Furthermore, it
aided the ability to generate meaningful results quickly without
interfering with the execution of the sensor network.

Using a real testbed demonstrated difficulties in implement-
ing solutions that were not shown through simulation. The
main such difficulty was in timing issues. The simulations per-
formed allowed "perfect" knowledge of event times; however,
in the real network, often times events occurred simultaneously
or close enough in time that the granularity of the timers
could not distinguish them. This led to synchronization issues
that needed to be solved. To this end, the researchers had
to implement more complicated task handlers to augment the
protocols to work in real deployments.
Two needs were identified by the remote tests. First, while

the hop count provided by the SignetLab testbed is highly
variable, for routing protocols it may be desirable to have even
larger hop counts than currently provided. Our deployable ver-
sion of the testbed will also solve this problem, allowing wider
distances and greater numbers of nodes to be deployed [27].

The second need was a time management portion of the
software tool. Since the testbed is remotely accessible it
is critical to incorporate a method to make sure only one
researcher is using the testbed at a time. To this end, we plan
to include a time-sharing solution in the tool. As mentioned
earlier, there are many such solutions to choose from (e.g.,
Motelab [6]), some of which will be included in the next
version of the tool.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented the SignetLab sensor network
testbed. It is composed of 48 EyesIFXv2 sensor nodes de-
ployed in a single lab at the University of Padova, and of
a software tool for managing and running experiments on
the network. The software tool provides a graphical inter-
face that allows researchers to select nodes to program, to
send messages to nodes, and to gather realtime output and
debugging information from nodes. The testbed provides a
backplane so that such realtime information can be transmitted
without interfering with the operation of the sensor network
applications and protocols being tested. The software tool is
written in Java and is therefore platform independent and can
support any sensor network topology.

This paper has also presented an analysis of the propagation
properties of the physical network. Key to the design of the
testbed was the ability to fit the nodes within the space of
the Signet lab while still providing an adequate multihop
environment to test routing protocols. To solve this problem
we had to construct our own antennae and then analyze the
propagation capabilities of the network at various transmit
power settings. The deployment provides a large variance in
node coverage areas, providing the capability to test a wide

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

tvg. Num. Messages

REQ, Sink Angle
REQ, Sink Center
RES, Sink Angle
RES, Sink Center

18-

16

14

12

10

8-

6-

4-

xg. Ntu Estimations

Sink Angle
Sink Center

43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duty Cycle

Fig. 17. Average time needed to be reached by
Interest

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duty Cycle

Fig. 18. Average number of messages

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duty Cycle

Fig. 19. Average number of estimation requests

variety of protocols. However, we also found that the testbed
deployed shows a large amount of anisotropic behavior due to
the physical characteristics of the area in which it is deployed.

Finally, the paper presented lessons learned from two case

studies of researchers using the testbed and extending the
software tool using the provided API. These experiences with
the testbed led us to developing a deployable version of our

testbed [27].
Integrating scheduling management software would round

out the system and the next version of the tool will incorporate
one of the available solutions. We have enough nodes to
double the size of the testbed and are looking for meaningful
ways to do so. It would also be interesting to incorporate
nodes with different wireless technologies (e.g., ZigBee [28],
MicaMotes [29], etc.) to allow testing on a hybrid network.
The software tool is prepared to handle this case and all that
needs to be performed is the installation and profiling of the
new nodes.

REFERENCES

[1] ns2 Network Simulator, http://www.isi.edu/nsnam/ns/.
[2] Infineon, Ltd., "EyesIFXv2 version 2.0," http://www.infineon.com.
[3] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Os-

terweil, and T. Schoellhammer, "A system for simulation, emulation,
and deployment of heterogeneous sensor networks," in ACM Sensys,
November 2004.

[4] S. Jadhav, T. Brown, S. Doshi, D. Henkel, and R. Thekkekunnel,
"Lessons learned constructing a wireless ad hoc network test bed," in
First Workshop on Wireless Network Measurements, April 2005.

[5] E. Welsh, W. Fish, and P. Frantz, "GNOMES: A Testbed for Low-
Power Heterogeneous Wireless Sensor Networks," in IEEE International
Symposium on Circuits and Systems (ISCAS), Bangkok, Thailand, May
2003.

[6] G. Werner-Allen, P. Swieskowski, and M. Welsh, "Motelab: A wireless
sensor network testbed," in IEEEIACM IPSNISPOTS, April 2005.

[7] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and
J. Lepreau, "Mobile Emulab: A Robotic Wireless and Sensor Network
Testbed," in IEEE INFOCOM, April 2006.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, "Sys-
tem architecture directions for network sensors," in ASPLOS, November
2000.

[9] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Lui, and M. Singh, "Overview fo the
orbit radio grid testbed for evaluation for next-generation wireless
network protocols," in IEEE Wireless Communications and Networking
Conference, March 2005.

[10] P. De, A. Raniwala, S. Sharma, and T. Chiueh, "Mint: A miniaturized
network for mobile wireless research," in IEEE INFOCOM, March 2005.

[11] IEEE 802 LAN/MAN Standards Committee, "Wireless LAN medium
access control MAC and physical layer (PHY) specifications," IEEE
Standard 802.11, 1999.

[12] M. Hiber, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, "Feedback-directed virtualization techniques
for scalable network experimentation," Technical Note FTN-2004-02.
University of Utah, 2004.

[13] mySql, http://www.mysql.com/.
[14] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui,

P. Dutta, and D. Culler, "Marionette: Using RPC for interactive devel-
opment and debugging of wireless embedded networks," in IEEEIACM
IPSNISPOTS, 2006.

[15] K. Langendoen, A. Baggio, and 0. Visser, "Murphy loves potatoes:
Experiences from a pilot sensor network deployment in precision agri-
culture," in Workshop on Parallel and Distributed Real-Time Systems,
April 2006.

[16] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
"Wireless sensor networks for habitat monitoring," in ACM WSNA,
September 2002.

[17] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, "Lessons from
a sensor network expedition," in EWSN, January 2004.

[18] M. Yarvis, W. Conner, L. Krishnamurthy, J. Chhabra, B. Elliott, and
A. Mainwaring, "Lessons from a sensor network expedition," in EWSN,
January 2004.

[19] B. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes, J. Shneidman,
A. Snoeren, and A. Vahdat, "Mirage: A microeconomic resource allo-
cation system for sensornet testbeds," in IEEE Workshop on Embedded
Networked Sensors, May 2005.

[20] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
"The nesC Language: A Holistic Approach to Networked Embedded
Systems," in Proceedings of Programming Language Design and Im-
plementation, June 2003.

[21] T. H. Chong Liu, Kui Wu, "Sensor localization with ring overlapping
based on comparison of received signal strength indicator," in Proced-
dings of the 1st IEEE international Conference on Mobile ad-hoc and
sensor system (MASS), October 2004.

[22] S. Blom, M. Andretto, A. Zanella, M. Zorzi, S. Friso, and R. Crepaldi,
"Poster abstract: Experimental localization results in an indoor wireless
sensor network testbed," in Third European Workshop on Wireless
Sensor Networks (EWSN), Feb. 2006.

[23] R. Crepaldi, P. Casari, A. Zanella, and M. Zorzi, "Testbed implementa-
tion and refinement of a range-based localization algorithm for wireless
sensor networks," in Proc. ofIEE Mobility Conference, Oct. 2006.

[24] M. Rossi, R. R. Rao, and M. Zorzi, "Cost Efficient Routing Strategies
over Virtual Topologies for Wireless Sensor Networks," in IEEE Globe-
com, 2005.

[25] M. Mastrogiovanni, C. Petrioli, A. Vitaletti, M. Rossi, and M. Zorzi,
"Integrated Data Delivery and Interest Dissemination Techniques for
Wireless Sensor Networks," in IEEE Globecom, 2006.

[26] L. Orecchia, A. Panconesi, C. Petrioli, and A. Vitaletti, "Localized
techniques for broadcasting in wireless sensor networks," in ACMDIAL
M-POMC, 2004.

[27] R. Crepaldi, A. Harris, A. Scarpa, A. Zanella, and M. Zorzi, "Demo:
Signetlab: A deployable sensor network testbed and management tool,"
in ACM Sensys, 2006.

[28] ZigBee Alliance, "Zigbee specification," http://www.zigbee.org/.
[29] XBOW, "2nd generation micamote," http://www.xbow.com.

12

11

10

9

,g. Duration Dissemination

Sink Angle
Sink Center

30

25

20

15

10

Authorized licensed use limited to: University of Illinois. Downloaded on September 25, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

