
Approved for public release;
distribution is unlimited.

\
C’

Title.

Author(s).

Submitted to;

The Design, Implementation, and Evaluation of mpi8LAST

Aaron Darling, Lucas Carey, and Wu-chun Feng

ClusterWorld Conference & Expo 2003

, ,A”+,’ P .S”L-)

Los Alarnos
N A T I O N A L L A B O R A T O R Y

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the US.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US.
Government purposes. Los Alamos National Laboratory requests that the publisher Identify this artlcle as work performed under the
auspices of the US. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a rbearcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correclness.

Form 836 (8100)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.For additional information or comments, contact:Library Without Walls ProjectLos Alamos National Laboratory Research LibraryLos Alamos, NM 87544Phone: (505)667-4448E-mail: lwwp@lanl.gov

The Design, Implementation, and Evaluation of

mpiBLAST

Aaron E. Ilarling' , Liicas Ca.rey2, Wu-chun Feng3

Ihpt . of Coaiputer Scierice, IJniversity of Wisconsin, Madison WI 53703, USA,

Ceriter for Developiiieiital Gerktics, SUNY Storiy Brook, USA

darlingGcs.wisc.edu,

lcarey@odd.bio.sunysb.edu

'' Advariced Coriipul.ing Laboratory, Los Alairios Na.tioiia1 Laboratory, USA

feng@lanl.gov

Abstract. riipiBLAST is aii opeii-source parallelizat,ioii of BLAST tliat
achieves sirperlinenr speed-up by segineriting a BLAST database arid
tlieri Iia.virig each iiode i r i a coiriput.atioiia1 cluster search a unique por-

tioii of tlie tlatabixe. Da taba.se segrneiitat,ioii permits each riodo to search
a smaller portiori of the database, eliminating disk 1/0 and vastly im-
proving IITAST perforinarice. 13ecause thtnbase segrrieiitaliori does riot,

create lieavy coinrriuriici~tinii tlerriatids, BLAST users can take advantage
of low-co:;t iuid cflicient Liiiux cliister architectures sucli as the bladed
Beowulf' (8, lG]. In ~~dditiori to preseiiting tlic softwarc architecture of

rripiBLAST, we preserita detailed perforina.iice analysis of rripiBLAST
to tlerrioiistra(,e its scalability.

1 Introduction

The 13LAST fairiily of scqueiice diitnbnse-searcli dgorithms serves as the fouiida-

tion for much biological research. The BLAST algorithms search for similarities
between a short query sequerice and a large, infrequently changing database of

DNA or a.miiio acid sequences [I , 21. Newly discovered sequences are commonly

searcliccl aga,iiist ii. dat,a.base of kiiown DNA or amino-a.cic1 sequences. Similari-

ties hetween the new sequence tirid a gene of known function can help identify

the function of the new sequence. Other uses of BLAST searches include phy-

logenetic proliling a.ntl pairwise genome alignment. Unfortunately, t,raclitiorial

approaclics to sequence homology searches usiiig BLAST have proven to be too
slow to ltcep up with the current rate of sequence a.cquisition [12].

Bccausc BLAST is both cuniputatioiinlly iiiteiisive and embarrassingly par-

allel, inany approaches to pairallelizing its algorithms have been investigated [4,

5,7,10,13-15]. We present an open-source pa.rallelixation of BLAST that seg-

monts m c l distributes a, I3LAST database among cluster nodes such that each

iiode searchcs a. uniquc portion of the database.

Di\.tt\.base segnienta.lion in I1LAST ofl'ers two primary advantages over other

pa.ra.lle1 I3LAST algorithms. First, data1m.w segmenta.tion can eliminate the high

overliead of disk I/O. The sizes ol bioinforinaiic tlatabases are now larger t h m

2

tblastri
Idastx
hlasto

core memory on most computers, forcing BLAST searches to page t o disk.

Database segmentation permits each node to search a smaller portion of the

database, thus reducing (or even eliininating) extrnneous disk I/O, a.nd hence,

vastly improving BLAST performance. With sequence databases doubling in size

each year, the problem of extraiieous disk 1 / 0 is cxpectctl to persist. The acl-

verse effects of disk 1/0 are so significant t1ia.t BLAST scarclies using clata.base

segmentation can exhibit super-linear spcedup versus searches on a single node.

Second, database segmentation in inpiBLAST does not produce heavy in-

tercommunica.tion between nodes, allowing it to continue a.chieving super-linear

speedup over hundreds of nodes. Consequently, scientists using BLAST with

database segmentation can take advantage of low-cost and highly efficient Linux

clusters such as Green Desthy (8,16]

mpiBLAST, an open-source parallelization of BLAST, uses the Message Pass-

ing Interface [11] (version 1) to implement database segmentation, allowing it to

work on diverse system architectures. mpiBLAST has been designed to run on

clusters with job-scheduling software such as PBS (Porta.ble Batch System). In

such environments, it adapts t o resource changes by dynamically re-distributing

database fragments.

Peptide Nucleotide Da.tahase
Nucleotide Peptide Query

Pentide Pentide None

2 The BLAST Algorithm

BLAST searches a query sequence consisting of iiucleotitles (DNA) or peptides

(amino acids) against a. datab<ase of nucleotide or peptide sequences. Because

peptide sequences result from ribosomal translation of nucleotides, comparisons

can be made between nucleotide sequences and pcptide sequences. BLAST pro-

vides functionality for comparing all possible combinations of query and data.base

sequence types by transla.ting the seqiienccs on the fly. Tablc 1 lists the names

used to refer t o searches on each possible combination of query versus database

type.

Table 1. BLAST search types

[Search NarnelQuery TypelDntahase Type1 Translat,ion
.~ -~

I blastri I Nucleotide I Nucleotide I None I

I I

tblilstx I Nucleotide I Nucleotide 1Query a.rid Database

The algorithms for each type of search operate nearly identically. The BLAST

search heuristic [11 indexes both the query and target (database) sequence into

words of a chosen size (11 nucleotides or 3 residues by default.). It then searches

for matching word pairs (hits) with a score of at least T and extends the match

along the diagonal. Gapped BLAST [2] consists of several modifications to

3

the previous algorithm that result in both increased sensitivity and decreased

runtime. Gappocl BLAST (herca.ft,er referretl to simply as BLAST) moves down

the secluences until it hiis foiiiitl two hits, ea.ch with a score of a t least T, within

A 1et.ters of each other. An ilngilpped extension is performed on the second

hit, generating it ’high-scoring segment pair’ (HSP). If the HSP score exceeds

LL second cutoff, a gapped extension is triggered simultaneously forward a.nd

bacltward. Standarc1 BLAST out,put consists of a set of local gapped alignments

fount1 within ea.cli query sequence, tlie alignment’s score, an alignment of‘ the

query and clef,iilmm sequences, a ~ i d a ineasrire of the likelihood that the alignmerit

is a. rnntlom match betweell the query aiicl chtabase (e-value).

3 Related Work

3.1 BLAST Hardware Parallelieation

1’a.re.lleli~ivtioii a.t the hardware level takes place during the sequence alignment

itself. Such techiiiques are cihpable of pa.rallelixing the comparison of a single

query sequence to a sirigle database entry, but require custom hardware with

a greater degree of para.lleliza.tion than is present in symmetric multi-processor

(SMP) or symmetric niulti-threa.cled (SMT) systems. The first hardware BLAST

acce1eral;or was reported by R..I<. Singh [15]. More recentsly, TimeLogic [141 has
commercialized a11 FPGA-based a.ccelora.tor called the DeCypher BLAST hard-

ware accelerator.

3.2 Query Segmentation

Query segmentation splits up a. set of query sequences such that each node in a

cliister or CPU 011 an ShlP system searches a fraction of the query sequences.

By doiiig so, several BLAST searches c a n executo in parallel on different queries.

B1,AST searches iisiiig qiiery segmentation on a. cluster typically replicate the

entire diitabase on ea.cli node’s locd storage system [4, 51. If the data.bme is larger

i h n core memory, query-segirieiitecl searches sufler thc same adverse effects of

disk I/O as trditioiial BLAST. When the tia.tatmse fits in core memory, however,

query segmento,lion can achieve new linear scalability for all BLAST search

types, evcn on SVfP architectures [7] I

3.3 Database Segmentation

In dtitabase segmentation, intlependent segments of the database are searched

on e i d l processor or node, ~ n d results a.re collated into a single output file.

Seveml imp1ement;ations of clata.b,?se segmeiita,tion exist, the first of which was

within NCDI’s BLAST itself. NCDI-I3 LAST implcmcnts data.base segnientation

by multit1iree.cling the search such tha.t ea.ch processor in an SMP system is

assigiiecl a distinct portion of tlie data.base.

Data.base segmentation has also been implemented in a closed-source com-

mercial product by T~~rboWorx, Inc. called TLirboBLAST [3,6]. TurboBLAST

4

provides ada tabase seginentstioii and distribution mechanism explicitly de-

signed for use oii networlts of worltstations. By using TurboWorx’s proprietary

TurboHub scheduling and load balancing software, TurboBLAST dynamically

adapts to the current cluster environment. However, its proprietary implementa-

tion only results in linear speed-up (see http: //www. turboworx. com/products/

turboblast-overview . html). Furthermore, a recent survey on bioinformatics

and Linux clusters (see http : //bioinf ormatics . org/pipermail/bioclusters/
2002-0ctober/000432. html) shows that mne of the sample population uses

this distribution, primarily because of its exorbitant cost and its proprietary

nature, which makes it difficult to integrate with ot,her bioinforinatics codes.

Itecently another iinplementa.tioii of thtabase segmentation was released a.t

ftp://saf.bio.caltech.edu/pub/software/molbio/parallelblast.tar.parallelblast

is composed of a. set of scripts that operate in the Sun Grid Engine/PVM envi-

ronment. Aside from requiring the SGE/PVM environment, it also differs from

mpiBLAST in that it is not directly integrated with the NCBI toolkit and does

not explicitly provide a load-balancing mechanism.

4 mpiBLAST Algorithm

Tlie mpiBLAST algoritlini coi1sist.s of two primary steps. First, the databasc is

segmented and plijced on a shared stsorage device. Second; mpiBLAST queries

are run 011 each node. If a. node does not yet have ii database fragment, to search,

it copies a fmgment from shared storage. Fragment assignments to each iiode

are determined by an algorithm that minimizes the number of fra.gment copies

during each search.

4.1

Database,formatting is clone by a wrapper for the standard NCBI formatdb

called mpiformatdb. mpiformatdb formulates the correct command line arg~i-

ments to muse NCBI formatdb to format and divide the database into inany

small fragments of approximately equal size. Adclitional command line param-

eters to mpiformatdb allow the user to specify the number of fragments or the

.fragment size. Upon successful completion of formatdb, the formatted fragments

are placed on shared storage.

Querying the database is accomplished by directly executing the BLAST al-

gorithm as implemented in the NCBI development library available at

ftp: //ftp.ncbi .nih.gov/toolbox/ncbi-tools/. Upon sta.rtup, each worker

process reports to the master process which database fragments it alrea.dy has

on local storage. Next, the mmter process (that with rank 0), reads the query

sequences from disk and broadcasts them to all processes in the communica.tion

group. When the query broadcast has completed, each process reports to the

master that it is idle. The master, upon receiving ail idle message, assigns the

idle worlter a. dat.abase fraginent to eit,lier scarcli or copy. Tlie worker copies or

Formatting and Querying the Database

5

Algorithm 1 mpiBLAST master

Let, resriilts be tlie curreut set of BLAST results

Let F = {fl , fz, ...} be tlie set of data.base fragments

Let, Unsearchecl C F be the set. of uiisea.rclied datalxwe fragineiits
Let, Unassigned C F be the sol of uriassigncd database fragriients

Let W = { u J ~ , u J ~ , .,.} be the set of pa.rticipa.tirig workers
Let D,
L d Distributed=Q

W I)(? I.tie sct of workers tlial, liave fmgirieut f, oil local st,orage

1, Da, ,..} be the set, of D for each fragineiit

Roquire: IWI .I/. 0

Ensure: IUnsearchedl = 0

Unsearched +- F
Unassigned +- F

r e s d t s t a
Broadcast queries to workers

while IUnsearchedl # 0 do

R.eceive a rrresscige from a worker '111,;

if 'rrressuye is a state request, then

if JUnassignedJ = 0 then

else

end if

Find f i such that ininD,E~istributed lDij arid fi 6 Unassigned

if ID;[= 0 then

end if
Rerriove 11; from Unassigned

Serid fragriierit assigiiiiiciit j.; to worker 'wj

Merge 'rrresstrye with ,rcs,irlts

R.cttiiove f, f r o r r i Unsearcliod

Send worker ro,; the state SEAH.CH-COh/lPLETE

Seiid worker the sta.te SEARCH-FRAGMENT

else if 9rrLcusu.ye is a fragment request then

Add 'UJ,~ to Di

else if m c s x q e is a. set of search results for fragrrierit f i then

end if

end while

Pririt 7~es.ult.s

8

searches its assigned fragment mid reports t o the master that it is idle when com-

plete. This process is repeated until all database fragments have been searched.

The master process uses a greedy algorithm to determine which fragments

t o assign each worker. First, if the idle worker has any unsearched fragments

that no other worker lias on local stora.ge, the worker is msignecl to search the

unique fmgment. If a worltcr has no unique fragment, the worker is assigned

the unsearched fragment which exists on the smallest number of other worlt-

ers. Finally, if an idle worker lias no unsearched fragments, it is told t o copy

the unsearched fra.gmentexi sting on the fewest other worlters. The set of frag-

ments currently being copied is tracked by the ma.ster t o prevent duplicate copy

assignments to different worlters.

Algorithm 2 mDiBLAST worker

cpuev.ies t R.eceive tlir qiicries Goiii the master
curr.rrt.tStiztc +- R.cceive the statc froin the riiaster

while cnrre?itStcite # SEARCH-COAdPLEl'E do
c?l77entF,~tc!lrtrr.,L2 +- R.cceivr ii fragiiieiit assigriiiieiit. froiii the iriastoi
if cu7.7.erctF1.iigrriert.t is uot oil local storage then

end if

results c BL/IST(cper-ies, currentFricgrrt,ewt)
Send results to master

Copy currentFriryment to local storage

currentstate t Receive the state from the master
end while

When each worker completes a fragment search: it reports the results to the

master. The inaster merges the results from each worker and sorts thein accord-

ing to their score. Once all results have been reccived, they are written to a

user-specified output file using the BLAST output functions of the NCBI devel-

opment library. This approach t o generating merged results permits mpiBLAST

to directly product results in any format supported by NCBI-BLAST, including

XML, HTML, tab clelimited text, and ASN.l.

5 mpiBLAST Performance

NCBI-BLAST and mpiBLAST have Ixen benchmarked on several systems in

an effort to characterize their performance and scahbility. We first present the

performance of NCBI-BLAST when the tlata.l)ase is la.rger than core memory,

demonstrating a. significant decrease in performance caused by additional disk

I/O. Next, we show that mpiBLAST (with its database-segmenting technique)

a.chieves superlinear speed-up on multiple nodcs when the da.tabme is larger

than the core memory of a single node. We continue by assessing the scala-

bility of mpiBLhST to many nodes. Then, we present the additional running

time incurred by various components of the mpiBLhST algorithm as it scales.

7

3000 -I I I

2750 - Average blocks ropdis ----- FX -
-

,""c -

2500 -
2250 -

// -

/../ -
-
-

NCBI-BLAST execution iime I .A+--:. I**-

-
>i

/ "-"--

! /

h r X * x ,

t! 1
1750

-
-

:! /
C 1500 -
0

'F? 1250 -
3
0 1000 -

750 -

500 -
250 - -.+,++/*--+-- .~ /y -

-

o-, , 4

6000

5500

5000 3
4500 3

0)
4000 I-

3500 2
0

3000 2
2500 2
1500 &
2000 g

1000 4
500

0

Our bencliinarlcing inethods have been carelully designed to accurately reflect a

typical usage pattern by molecular biologists.

5.1 Benchmarking Methods

Wheii benchmarlting BLAST search performance, decisions about the type of

see.rch to perform can significa.ntly influence timing results. Factors such as query

length, number of qucries, t o t d database size, length of data.base entries, a.nd

seqiimce simihrity hetweeii the query a.ncl da.ta.base entries a.ffect the a.moiint,

of time consunid by the BLAST algoritlirn. [7] Each fa.ctor must be carefully

consiclererl iT the bencliniarks a.re to a.ccurately reflect typical BLAST usage

pa t tc i~ is by iriolsci.ila.r biologist,s.

We he#ve entleitvored t o perform benchmarks that model the typical usage of

BLAST when integrated into it high throughput genome sequencing and a n n o t a

tion pipeline. When used in this context, ea.ch BLAST query is a predicted gene

in a ~iewly seqiienced organisni. The BLAST scarcli results are used t o assist

hurnan annotatms in determining the biological role of each predicted gene. [9]
Because niany organisms have thousands oC genes, the large number of search

queries generated by genome sequencing and annotation projects demand heavy

computation. We have chosen to niodel this scetmrio beca.use sequencing and an-

nota.t.ion projects can honefit from mpiBLAST's improved BLAST performance.

The bendl11ii~,~lts clescribetl i n the following sectioiis utilize predicted genes

from a. newly sequeiicetl bacterial genonie as BLAST queries. The query gene

lengths are approximately exponentia.lly distributed with a inearl 0 = 747.2 base

pairs and si;a.nda.rd devia.tion u = 684.2. The da.ta.base sequences are talten from

8

160

140

the GenBanli n t database, a large public repository of 11011 retlundaiit, iiiicleoticle

sequences. Ignoring a sinall number of outliers whose length is greater than

25,000 bp, the length of the n t datixbase entries can also bc reasonably approx-

imated by an exponential dist.ribution where 0 = 1370.

Linear S eedup - -1%

rnpiBLAST. Green bestiny --* - - _+ '

-

5.2 Low Memory Performance

NCBI-BLAST was benchmarked on a. system with 128iVIB memory using in-

creasingly large tli).tRbase sizes t,o tlet.ermine the efTect of cla.talmes t1ia.t do not

fit in core memory. Each run measured the total ruiiiiing time of a blastn search

using the same set of query sequences against a larger da.tabase. Weuti lized

Linux's BSD process-accounting fa,cilities to collect system-activity statistics.

Figure 1 shows total BLAST run times alongside the average bloclts read per

second from the disk for each database size tested. Formatted BLAST data.bases

are compressed versions of the raw sequence clatabases. A formatted nucleotide

database consumes approxima.tely 25% as much space as a text file containing the

sequences. As the database size exceeds the total system memory size, BLAST

running times and average blocks read per second increase sharply. Because the

operating system can not cache the entire database BLAST must wait for it to

be rerea.cl from disk when processing each query sequence.

Like NCBI-BLAST, the perforinaim of mpiZ3LAST suflers when confronted

with low memory conditions. However, because inpiBLAST effectively uses the

aggregate incmory of all worker nodes, the database can grow much larger before

causing extra disk I/O.

120
a
2

100
a,

60

cr) 60

40

20

0
0 20 40 60 80 100 120 140

Number of processors

Fig. 2. Speedup of inpiBLAST on Green Destiny. 300kh of query sequences were

searched against a 5.1-GR datatme. The size of tlie forrriatted database is approx-

irnately 1.2 GB, much larger t1ia.n the O40-MB core inernory per node. The search
causes heavy disk 1/0 wheii a siiigle tiotle is used.

To get an overview of scalability when lhe database is larger than a sin-

gle node’s core inemory, we benchmarlted mpiBLAST on Green Destiny [8, l G] .

Green Destiny is a 240-node bladed Beowulf cluster based on the Transmeta

Crusoe processor. Each compute node consists of a 667-MHz TM5G00, G40MB

RAM, 100-Mb/s Ethernet, a.ncl a 20-GB ha.rc1 drive running under Linux 2.4.

Figure 2 shows InpiULAST performance moa.surements taken on Green Des-

tiny. Frtj.gments ol‘ i1, 5.1-GB uincoinpressed database were pre-distributed to each

worltcr a.nd a short query was executed to prime the buffer-cache. By priming the

cache, we hope to simulate the case when the cluster is processing many BLAST

queries in quick succession. Each timed run used YoOKbytes of predicted gene

sequences.

The single worker search consumed 22.4 hours w1ierea.s 128 workers completed

the search in under 8 minutes. Relative t o this single-worker case, mpiBLAST

a.chieved super-linear speedup in all cases tested. However, as the number of

workers increases the eficiency of mpiBLAST decreases.

Where The Time Goes

I.!.:Lrz‘.T ”:”!.i?

! .) .I <! L1 13 I B)I !C 1 1 I > 13 14 I: ; d ‘ 1 it; la ?I! 21 :!1 2:. 21 xi

Number of Workers

Fig. 3. Ilow tiirie is spent iii inpiRLhST. Each baI is a coiiiposite that shows how time

was speiit 011 the longest rurining worker. node in additiori to the time spent merging
results by the Ina.ster node. Totill executioii time is largely dorriiiiated by BLAST search
time.

5.3

The decrease in efliciency observed when scaling mpiBLAST to ma.ny nodes leads

11s i,o irsk “Whiit, is nipil3LAST cluing wiih t.hc extra timc?” inpil3LAST’s running

time ciin be decomposecl into five primary components: (1) MPI and mpiBLAST

initializa.f,ion, (2) databme-fra,gnient copying time, (3) BLAST sea.rch time, (4)

coniniuiiication time, aiicl (5) resiili, nierging and printing time. In order to de-

termine how each componeni, coiltributes to the t o t d execution time, we profiled

Where does the time go?

mpiBLAST with the MPE library to collect wall-clock timing statistics aiid used

gprof to measure CPU usage.

Measurements were talcen on systems located in the Galaxy cluster at SUNY
Stony Brook. Ea.ch node contains dual 700-MHz Petitium I11 processors with 1-

GB PC133 SDR.AM, 100-hIb/s Ethernet coiinectecl to a Founclry Networks Big

Iron 8000 switch, and a 20-GI3 hard drive.

Two gigabytes of the nt, da.tabase were formatted into 25 fragments. Each run

measured the compoiicnts of execution time on 1 through 25 workers using the

same set of database fragments and an 10-ltb query of predicted ORP sequences.

Figure 3 shows the contribution of each component to the total running time of

mpiBLAST. Based on these measurements, we conclude that for small numbers

of workers, execution time is dominated by BLAST searches. As more workers

are utilized, the time spent forma.tting and writing results grows relative to total

execution time. Communication consistently accounts for less than 1% of the

total execution time.

Although some workers may finish before others during the search phase,

the master waits until all workers have completed before formatting the results.

Thus, the total execution time is depenclent, on the longest running worker. Ea.ch

bar in Figure 3 shows the run-time of components of the longest running worker

in addition to the time spent formatting by the mCwter in order to accura.tely

reflect the components of the total execution time.

3000
h

Y
cn

E 2500

.- -
5 2000 .-
e

- *

$ 1000

500

I I I

5 10 15 20 25 30 35

Number of processors

Fig. 4. The overhead of performing the same rripiBLAST search increases with the
number of database fragments used. Each irieasureirieiit of ruririirig time (y-axis) was

taker1 by forriiattirig an identical database with a varying riuiriber of fiagriients. The
unusual numbers of database fragments arise because NCBI formatdb's segmentation
method tries to guarantee a inaxiinuin fragrrient size, iiot a particular riumber of frag-
ments.

11

The measureinelits discussed here were taken by searching the sa.me 25 frag-

ment, cla.tal)ase with a variablc number of workers. In a seti,rcli using a single

worlter, iill 25 fi'iigme11ts wo~il(l be assigned to the same worlter. When searching

with 25 workers, oacli worlter soarches a. single fragment. However, when searcli-

iiig with some nrniiber or worlters that is not an even divisor of the number of

frti.gmciits, a.11 i l n b i ~ l a ~ ~ ~ in the number of fragments searched by ea.ch worlter

occurs. In such a scenario, sonic workers complete early while the other worlt-

ers search the remaining fril,gments. Also, some database fragments may take

much longer to senrch t1ia.n others because the query sequence is very similar

to that fragment. Siiice result formatting proceeds after all workers have com-

pleted sea.rching, a.11 inibahiice in the ratio of workers t o fragments can result in

execution time 1)eyontl w1ia.t would be observed in the balanced case.

One potent,ia.l soliitioii to tlie problenis of imba.lance in the worlter/fragment

ratio n.nd variiible fragnient searcli times would be segmenting tlie da.ta.bim iiito

11. hrge number of sinall hagments. The expectation is that a. small fragment

would get searched cpicltly. 111 the case of imbalance, worlters that must search

an ailditional fiagmeiit would not delay result formatting by much. In the case

of highly variable fragment search times, the large number of fragments would

allow mpiBLAST to bala.nce the 1oa.d a.mong the workers, ~~ssigning additional

da.tal)ase fragments to workers as they complete fragment searches,

A tracleofl exists when segmenting the database into many small fragments

because there is significant overhead in searching extra fragments. Figure 4 shows

the t,otal execii tion time of inpiBLAST when searching the same database bro-

ken iiito a. variable number of frtigments. Sea.idiing a 422 fragment versus a 105

fragiiieiit datil,bas(! iiiciirs a n addit.ional 140% wdl clock t h e . The t h e required

t,o format a,nd output results increases with the number of fragments used, but is

independcnt of l.lie number of processors iised. Figiue 6 shows immurements of

the result fornia.tting and output component times for mpiBLAST when searcli-

ing a clatabtwe broken into a variable number of fragments.

The rnea.siirements suggest that by varying the iiumber of da,ta,base frag-

monts, :i,n mpiDLAST user c u i trade aclditional CPU overhea,cl and some wall

clock execution time for less variability in the execution time over different

queries. 1iiclea.sing the number oC processors reliably shortens the execution time

but lllily a.lso reqiiire increasing i,he iiuinber of database fragments, which in-

crcmcs (,lie cos^ of the serial rosult format, a.nd output component of execution

time. The opt,imal bidailce bet,ween number of processors mid niimber of frag-

incnl,s will depciitl 011 tlie priorit,ics of the indiviclu~ <I I user.

Finally, it is iniportmit i,o iiote thiit i n inany cases fraignient copy time will be

negligible or rion-existent because the database will have already been distributed

during a previous search.

G Future Work

Them are several directions for future work on mpiBLAST's algorithms. mpi-

BLAST does not provide transparent fault tolerance when a node goes down. A

12

h

v
cn 120 120

100

80

I 2 60 1 + -- .+ , +- + .-+ ,

, x
4-

I

I,

*

Fig. 5 . Tlie overhead of forrnattiitg aid outputtiiig result,s for the same rnpiBLAST
search increases with the nuiriber of database fragirterits used. The time spent format-
ting arid outputtiiig results is irideperident of tlie nmnber of processors used because it
is a serial coinporieiit of the algoritlirn executed 011 the master node.

transparent fault tolerance mechanism could be easily integrated into the current

InpiBLAST algorithm. Each node would periodically message the master that

it is still alive and searching, If the master does not receive a message from a
particular iiode before a timeout occurs, that node's work would be reassigned to

another node. Ragnietit searching would continue as normal without tlie downed

node.

A second potential improvement to tlie mpiBLAST algorithm is the integra-

tion of database updates. To implement such a scheme, each node could check

a central repository of versioning information for the database fragments. If a
fragment has been updated the node responsible for processing that fragment

can retrieve an updated copy of tlie fragment. Tlie master node would also check

the database for new fragments that should be searched.

Because mpiBLAST spends the majority of its time executing NCBI Toolbox

code, improvement t o the Toolbox could signficantly influence performance. Our

me~lsureineiits indicate that there is high overhead for using additional database

fragmcnts. Further profiling t o rccluce the fi agment overhead would allow mpi-

BLAST to more efficiently load-balance the search and r e d i m total search time.

7 Conclusion

We have described mpiBLAST, an open-source, MPI-based implementation of

databasc segmentation for parallel BLAST searches. Database segmentation

yields near linear speedup of BLAST in most. cases ant1 super-linear speedup

in low mcmory conditions. nipiBLAST directly interfaces with the NCBI de-

13

velopnient library to provide I3LAST users with interface and output formats

identical to NCBI-BLAST.

Finally, ana.lyzing the components of mpiBLAST's running time shows that

the bulk oC execiition time is spent perforining BLAST searches. Communication

consiiines a relatively snia.11 portion oE time. Merging aid printing BLAST results

;rlso represents ij rcla.tively sninll ainouiit, of the total execution time. Our findings

iiirlicntx t,hii.t; i r i l) i I31,AST scil.leR well to at, least, one hunrlrcd nodes.

8 Acknowledgements

Ma.ny tha.nlts go to Eric Weigle and Ada.m Englehart of the Los Alainos RA-
D1 ANT group for their suppor t arid insightful comments. Wea Is0 thank the

referees for their suggestions. Use of the Galaxy cluster in the AMS Depsrt-

inent of SUNY Stony Brook is gratefully a.cltnowledged. Aaron E. Darling was

supported in part by NLM Training Grant lT15LM007369-01.

Refercnces

1. S. Altschul, W. Gisli, W. Miller, E. Myers, arid D. Liprnan. Ba.sic local alignnierit

2 . S. F. Altscliul, T. J,. Madden, A. A. Scliaffer, J . Zliang, Z. Zhang, W. Miller, arid
D. ,J . Lipmmi. Gapped BLAST aiid PSI-BLAST: a new generation of protein
da.ta.base search piograms. Nucleic A d s Res., 25:338!1-3402, 19!17.

3. R.. BJornsoii, A. Sherrnan, S. Weston, N. Willard, arid J. Wing. Turboblast: A
parallel irriplernetit,al,ioii of blast, based on the turboliub process integration archi-
tect.iirc. In f P D P S 200.2 M~or~ksliops, April 2002.

4 . R. Brauii, I<. Petlret.ti, T. Cixmvaiit, T. Sclieetz, C. BirkctL, aid C. R.oberts. Par-
a.llelizat,joii of local BLAST sorvice oii worlcsta.tion clusters. EWure Gencrution

L'o,rrip,fikr S y s t e m s , 17((i):745--754, April 200 1,

5. K, Ciiiiij), I [. C!oL'ei, aii(l R.. Goiiipert,~. l - l i ~ l i - ~ , l i ~ ~ ~ ~ g l i ~ ~ i i ~ , BLASI', Septerriber. 19!M

6. R.. Chcn, C. TaHf~e-I-ledgliii, N. Willard, a.iid A. 1-1. Slierman. Beiiclirriark and

perforinaiice nria.lysis of TurboBLAST on IBM xSeries server cluster, 2002.
7. E. Chi, E. Slioop, 3 . Carlis, E. R.etze1, a.iid J. R.ied1. Eficiency of shared-memory

niultiprocessors for a geiietic sequelice siiriila.rit,y search algoritlim, 1097.

8. W. Ferig, M. Warren, arid E. Weigle. The bladed beowulf A cost-effective alter-

native to tradilioiial lxmwiilfs. I i i ProceedCrigs of IEBE Cluster 2002, 2002.
9. J. D. Glasuer, G. 1'. 111, P. Liss, A. Darling, T. Prasad, M. R.usch, A. Byrries,
M. Gilsoii, I3. Bielil, F. R.. Blattner, and N. T. Perria. ASAP, a systematic an-

riota.tiori paclta.gc for coiriiriuiiity analysis of' genomes. Nucleic A d s keseurch,

10. E. Gleinet mid ,J. Cotlaui. LASSAP, a LArge Scale Scquerice coinpArisori Package.

11. W. Gropp, E. Lusk, id A . 81c.jcllu hIP1: Portable parallel prograinriiiiig
with tlie Message Passiiig Interfiice, 1

. Blat - the BLAST-like

~(3arch tool. . J o r t / ' d of M O ~ ~ C I L ~ U ~ B . i o l ~ ~ ? / , 215:403-410, 1990.

3 1(l):I47-151, J t ~ ~ i ~ a r y 2003.

C.'fJ'lrl~J'fltf2'r A / ~ ~) l ' L f : I I , / , ~ (J ' f I , ~ S Irl Thf? pi0 19(2): 137--143, April 1097.

14

13. I<. Pedretti, T. Casavarit, R.. Brauri, T. Sclieetz, C. Birkett, arid C. R.oberts. Three
coiriplerneritary approaches to psrallelizatiori of local BLAST service or1 worksta-
tioii clusters. Lectirre Moles I n Co,mp,uter. Science, 1(%2:271-282, 1999.

14. A. Slipuritof sild C. Hoover. Personal co~nrriunicstioii, August 2002.
15. R.. I<. Singh, W. D. Dett,loff, V. L. Chi, D. L. Hoffinan, S. G. Tell, C. T. White, S. F.

Altschul, arid B. W. Ericksoii. BioSCAN: A dyrinrriically reconfigurable systolic
array for biosequerice aria.lysis.

l(j. M. Warren, E. Weigle, aiid W. Feiig. Higli-deiisity coinputiiig: A 240-riOde beowulf
in oiie cubic riieter. 111 Proceerlinqs of SC2llU2, 2002.

