
The Design of a Multicast-based Distributed File System

Bjiirn Grijnvall, Assar Westerlund, and Stephen Pink
Swedish Institute of Computer Science and Luleii University of Technology

{bg, assar, steve}@sics.se

Abstract

JetFile is a distributed file system designed to support
shared file access in a heterogenous environment such
as the Internet. It uses multicast communication and op-
timistic strategies for synchronization and distribution.

JetFile relies on “peer-to-peer” communication over
multicast channels. Most of the traditional file server re-
sponsibilities have been decentralized. In particular, the
more heavyweight operations such as serving file data
and attributes are, in our system, the responsibility of the
clients. Some functions such as serializing file updates
are still centralized in JetFile. Since serialization is a rel-
atively lightweight operation in our system, serialization
is expected to have only minor impact on scalability.

We have implemented parts of the JetFile design and
have measured its performance over a local-area net-
work and an emulated wide-area network. Our measure-
ments indicate that, using a standard benchmark, JetFile
performance is comparable to that of local-disk based
file systems. This means it is considerably faster than
commonly used distributed file systems such as NFS and
AFS.

1 Introduction

JetFile [15] is a distributed file system designed for a
heterogenous environment such as the Internet. A goal
of the system is to provide ubiquitous distributed file ac-
cess and centralized backup functions without incurring
significant performance penalties.

JetFile should be viewed as an alternative to local file
systems, one that also provides for distributed access.
It is assumed that, if a user trusts the local disk to be
sufficiently available to provide file access, then JetFile
should be available enough too. Ideally a user should
have no incentive to put her files on a local file system
rather than on JetFile.

JetFile is targeting for the demands of personal com-
puting. It is designed to efficiently handle the daily tasks
of an “ordinary”user such as mail processing, document
preparation, information retrieval, and programming.

Increasing read and write throughput beyond that of
the local disk has not been a goal. We believe that most
users find the performance of local-disk based file sys-
tems satisfactory. Our measurements will show that it
is possible to build a distributed file system with perfor-
mance characteristics similar to that of local file systems.

A paper by Wang and Anderson [37] identifies a num-
ber of challenges that a geographically dispersed file sys-
tem faces. We reformulate these slightly differently as:

Availability: Communication failures can lead to a file
not being available for reading or writing. As a
system grows, the likelihood of communication
failures between hosts increases.

Latency: Latencies are introduced by propagation de-
lays, bandwidth limitations, and packet loss. The
special case, network disconnection, can be re-
garded as either infinite propagation delay or guar-
anteed packet loss.

Bandwidth: To reduce cost, it is in general desirable
to keep communication to a minimum. Replacing
backbone traffic with local traffic is also desirable
because of its lower pricing.

Scalability: Server processing and state should grow
slowly with the total number of hosts, files, and
bytes.

JetFile is designed to use four distinct but complemen-
tary mechanisms to address these problems.

Optimistic algorithms are used to increase update avail-
ability and to reduce update latency.

Hoarding and prefetching will be used to increase read
availability and to reduce read latency.

Replication and multicast are used to increase read
availability, reduce read latency, reduce backbone
traffic, and to improve scalability.

Clients act as servers to decrease update latency, min-
imize traffic, and to improve scalability.

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 251

Latencies introduced by the network can often be large,
especially over satellite or wireless networks. This is an
artifact of the limited speed of light and/or that packets
must be repeatedly retransmitted before they reach their
destination.

To hide the effects of network latencies, JetFile takes
an optimistic approach to file updates. JetFile promises
to detect and report update conflicts, but only after the
fact that they have occurred.

The optimistic approach assumes that write sharing
will be rare and uses this fact to hide network latencies.
Experience from Coda [23, 191 and Ficus [29] tell us
that in their respective environments write sharing and
update conflicts were rare and could usually be handled
automatically and transparently.

JetFile is designed to support large caches (on the or-
der of gigabytes) to improve availability and to avoid the
effects of transmission delays.

JetFile takes a “best-effort” approach with worst-case
guarantees to maintain cache coherency. Coherency is
maintained through a lease [14] or callback [17]-style
mechanism’. The callback mechanism is best-effort in
the sense that there is a high probability, but no abso-
lute guarantee, that a callback reaches all destinations.
If there are nodes that did not receive a callback mes-
sage, the amount of time they will continue to access
stale data is limited by a worst-case bound. In the worst
case, when packet loss is high, JetFile provides consis-
tency at about the same level as NFS [30]. Under more
normal network conditions, with low packet drop rates,
cache consistency in JetFile is much stronger and closer
to that of the Andrew File System [171.

Applications that require consistency stronger than
what JetFile guarantee may experience problems. This
is an effect of the optimistic and best-effort algorithms
that JetFile uses. Only under “good” network conditions
will JetFile provide consistency stronger than NFS. To
exemplify this, if a distributed make fails when run over
NFS, it will sometimes also fail when run over JetFile.

There is a scalability problem with conventional cull-
back and lease schemes: servers are required to track
the identity of caching hosts. If the number of clients
is large, then considerable amounts of memory are con-
sumed at the server. With our multicast approach, servers
need not keep individual client state since callbacks find
their way to the clients using multicast. Rather than cen-
tralizing/concentrating the callback state at one server,
the state has been distributed over a number of multicast
routers. As an additional benefit, only one packethas to
be sent when issuing the callback, not one for each host.

Traditional distributed file systems are often based
on a centralized server design and unicast communica-

‘A callback is a notification sent to inform that a cached item is no
longer valid.

tion. JetFile instead relies on peer-to-peer communica-
tion over multicast channels. Most of the traditional file
server responsibilities have been decentralized. In par-
ticular, the more heavyweight operations such as serving
file data and attributes are, in our system, the responsibil-
ity of the clients. Some functions such as serializing file
updates are still centralized in JetFile. Since serializa-
tion is a relatively lightweight operation in our system,
serialization is expected to only have a minor impact on
scalability.

Scalability is achieved by turning every client into a
server for the files accessed. As a result of clients tak-
ing over server responsibilities, there is no need to im-
mediately write-through* data to some server after a file
update.

Shared files such as system binaries, news, and web
pages are automatically replicated where they are ac-
cessed. Replication is used as a means to localize traffic,
distribute load, decrease network round-trip delays, and
increase availability. Replicated files are retrieved from
a nearby location when possible.

Files that are shared, will, after an update, be dis-
tributed directly to the replication or via other replication
sites rather than being transferred via some other server.

For availability and backup reasons, updated files will
also be replicated on a storage server a few hours after
update or when the user “logs off.” The storage server
thus acts as an auxiliary site for the file.

JetFile is designed to reduce the amount of network
traffic to what is necessary to service compulsory cache
misses and maintain cache coherency. Avoiding network
communication is often the most efficient way to hide
the effects of propagation delays, bandwidth limitations,
and transmission errors.

We have built a JetFile prototype that includes most
of JetFile’s key features. The prototype does not yet have
a storage server nor does it include any security related
features. However, the prototype is operational enough
for preliminary measurements. We have made measure-
ments that will show JetFile’s performance to be similar
to local-disk based file systems.

The rest of this paper is organized as follows:
The paper starts with a JetFile specific tutorial on

IP multicast and reliable multicast. The tutorial is fol-
lowed by a system overview. The sections to follow are:
File Versioning, Current Table, JetFile Protocol, Imple-
mentation, Measurements, Related Work, Future Work,
Open Issues and Limitations, and Conclusions.

2The file is still written to local disk with the sync policy of the
local file system.

Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USEND(Association

2 Multicast

Traditionally multicast communication has been used to
transmit data, often stream-oriented such as video and
audio, to a number of receivers. Multicast is however
not restricted to these types of applications. The inher-
ent location-transparency of multicast also makes its use
attractive for peer to multi-peer communication and re-
source location and retrieval. With multicast commu-
nication it is possible to implement distributed systems
without any explicit need to know the precise location
of data. Instead, peers find each other by communicat-
ing over agreed upon communication channels. To find a
particular data item, it is sufficient to make a request for
the data on the agreed upon multicast channel and any
node that holds a replica of the data item may respond
to the request. This property makes multicast commu-
nication an excellent choice for building a system that
replicates data.

Multicast communication can also be used to save
bandwidth when several hosts are interested in the same
data by “snooping” the data as it passes by. For instance
after a shared file is updated and subsequently requested
by some host, it is possible for other hosts to “snoop” the
file data as it is transferred over the network.

2.1 IP Multicast

In IP multicast [9, 81 there are 228 (2112 in IPv6) dis-
tinct multicast channels. Channels are named with IP
addresses from a subset of the IP address space. In this
paper, we will interchangeably use the terms multicast
address, multicast channel, and multicast group.

To multicast a packet, the sender uses the name of
the multicast channel as the IP destination address. The
sender only sends the packet once, even when there are
thousands of receivers. The sender needs no knowl-
edge of receiver-group membership to be able to send
a packet.

Multicast routers forward packets along distribution
trees, replicating packets as trees branch. Like unicast
packets, multicast packets are only delivered on a best-
effort basis. I.e., packets will sometimes be delivered in
a different order than they were sent, at other times; they
may not be delivered at all.

Multicast routing protocols [l 1, 3, 10, 241 are used
to establish distribution trees that only lead to networks
with receivers. Hosts signal their interest in a particular
multicast channel by sending an IGMP [121 membership
report to their local router. This operation will graft the
host’s local network onto, or prevent the host’s local net-
work being pruned from, the multicast distribution tree.

The establishment of distribution trees is highly de-
pendent on the multicast routing protocol in use. Mul-

ticast routing protocols can roughly be divided into two
classes. Those that create source specific trees and those
that create shared trees. Furthermore, shared trees can
be either uni- or bi-directional.

We will briefly touch upon one multicast routing pro-
tocol: Core Based Trees (CBT) [3]. CBT builds shared
bi-directional trees that are rooted at routers designated
to act as the “core” for a particular multicast group. When
a leaf network decides to join a multicast group, the
router sends a message in the direction towards the core.
As the message is received by the next hop router, the
router takes notice of this and continues to forward the
message towards the core. This process will continue
until the message eventually reaches the distribution tree.
At this point, the process changes direction back towards
the initiating router. For each hop, a new (hop long)
branch is added to the tree. Each router must for each
active multicast group keep a list of those interfaces that
have branches. Thus, CBT state scales O(G), where G
is the number of active groups that have this router on
the path towards this groups core (see [5] for a detailed
analysis). Remember that different groups can have dif-
ferent cores.

To make IP multicast scalable, it is not required to
maintain any knowledge of any individual members of
the multicast group, nor of any senders. Group member-
ship is aggregated on a subnetwork basis from the leaves
towards the root of the distribution tree.

In a way, IP multicast routing can be regarded as a
network level filter for unwanted traffic. At the level of
the local subnetwork, network adaptors are configured
to filter out local multicasts. Adaptor filters protect the
operating system from being interrupted by unwanted
multicast traffic and allow the host to spend its cycles
on application processing rather than packet filtering.

2.2 Scalable Reliable Multicast

IP packets are only delivered with best-effort. For this
reason, JetFile communication relies on the Scalable Re-
liable Multicast (SRM) [131 paradigm. SRM is designed
to meet only the minimal definition of reliable multicast,
i.e, eventual delivery of all data to all group members.
As opposed to ISIS [6], SRM does not enforce any par-
ticular delivery order. Delivery order is to some extent
orthogonal to reliable delivery and can instead be en-
forced on fop of SRM.

SRM is logically layered above IP multicast and also
relies on the same lightweight delivery model. To be
scalable, it does not make use of any negative or positive
packet acknowledgments, nor does it keep any knowl-
edge of receiver-group membership.

SRM stems from the Application Level Framing
(ALF) [7] principle. ALF is a design principle where

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 253

protocols directly deal with application-defined aggre-
gates suitable to fit into packets. These aggregates are
commonly referred to as Application Data Units, or
ADUs. An ADU is designed to be the smallest unit that
an application can process out of order. Thus, it is the
unit of error recovery and retransmission.

The contents of an ADU is arbitrary. It may contain
active data such as an operation to be performed, or pas-
sive data such as file attributes. In the SRM context,
ADUs always have persistent names. The name is as-
sumed to always refer to the same data. To allow for
changing data such as changing files, a version number
is typically attached to the ADU’s name.

The SRM communication paradigm builds on two
fundamental types of messages, the request and the re-
pair. The request is similar to the first half of a remote
procedure call in that it requests for a particular ADU to
be (re)transmitted. The repair message is quite different
from its RPC counterpart. Any node that is capable of
responding to the request prepares to do so but first ini-
tializes a randomized timer. When the timer expires, the
repair is sent. However, if another node responds earlier
(all nodes listen on the multicast address) the timer is
canceled to avoid sending a duplicate repair. By initial-
izing timers based on round-trip time estimates, repairs
can be made from nodes that are as close as possible to
the requesting node.

During times of network congestion, hosts behind the
point of congestion will sometimes miss repair messages.
In this case, it is sufficient if only one of the hosts make
a request and then the corresponding repair will repair
the state at all hosts.

If the reason to make a request is triggered by an ex-
ternal event such as the detection of a lost packet, one
must be careful not to flood the network with request
messages. In this case, multiple requests should be sup-
pressed using a similar technique as with multiple repair
suppression.

In SRM, reliable delivery is designed to be receiver-
driven and is achieved by having each receiver responsi-
ble for detecting lost ADUs and initiating repairs. A lost
ADU is detected through a “gap” in the version number
sequence. Note that this approach only leads to even-
tual reliable delivery. There is no way for the receiver
to know the “current” version number. The problem of
maintaining current version numbers must be addressed
outside of SRM in an application specific fashion. Also,
applications will often be able to recover after a period
of packet loss by only requesting the current data. Thus,
it is not always necessary to catch up on every missed
ADU. In essence, it is not reliable delivery of packets
that matters; importance lies in reliable data delivery.

It is easy to build systems that replicate data with
SRM. In JetFile we use SRM and replication to increase

availability and scalability. This comes at a low cost
since peers can easily locate replicas while at the same
time the number of messages exchanged will be kept to
a minimum.

3 System Overview

JetFile is built from a small number of components that
interact by multicasting SRM messages3. These are:

File manager The traditional “file system client” that
also acts as a file server to other file managers.

Versioning server The part of the system where file up-
dates are serialized. Update conflicts are detected
and resolved by file managers.

Storage server A server responsible for the long term
storage of files and backup functions.

Key server A server that stores and distributes crypto-
graphic keys used for signing and encrypting file
contents.

We have not yet implemented the storage and key servers.
This paper describes the file manager, the versioning
server, and the protocol they use to interact. The key
server is briefly discussed in the Future Work section.

In the JetFile instantiation of SRM, files are named
using FileIDs. A FileID is similar to a conventional in-
ode number. Using a hash function, FileIDs are mapped
onto the multicast address space. It is assumed that the
range of this mapping is large enough so that simultane-
ously used files will have a low probability of colliding
on the same multicast address.

As mentioned in section 2.2, SRM only provides for
eventual reliable delivery. Any stronger reliability must
be implemented outside of SRM. In JetFile, this prob-
lem is addressed with a mechanism called the current ta-
ble (section 7.2). The current table implements an upper
bound to how long a file manager will be using version
numbers that are no longer current.

When a file is actively used or replicated at a file man-
ager, the file manager must join the corresponding mul-
ticast group. This way the manager will see the request
for the file and will be able to send the corresponding
repairs.

When reading a file, SRM is first used to locate and
retrieve a segment of the file. When the file has been
located, the rest of the file contents is fetched from this
location using unicast.

Attached to the FileID is a version number. When a
file changes, the versioning server is requested to gen-
erate a new version number. The request for the new

3Where multicast is not used it will be explicitly expressed.

254 Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association

version number and the corresponding repair are both
multicast over the file channel. Because both the request
and the repair are sent over the file channel these mes-
sages will also act as best-effort callbacks.

After a file has been updated, it is not immediately
committed. Instead, the file is left in a tentative state.
Only when/if the file is needed at some other host will
it be committed. A file that has not yet been committed
can not be seen by other machines.

JetFile directories are stored in regular JetFile ver-
sioned files. Filename related operations are always per-
formed locally by manipulating the directory contents.
Thus, both file creation and deletion are local operations.

4 File Versioning

Unlike traditional Unix file systems, JetFile adopts a file
versioning model to handle file updates. A file is concep-
tually a suite of versions representing the file’s contents
at different times. To ensure that a file version is always
consistent, JetFile prevents programs running at differ-
ent nodes from simultaneously updating the file through
the use of separate file versions. A new version of a file
is writable at precisely one host. If some other host is to
update the same file, the system guarantees that it will be
writing to a different version. To update a file, it is neces-
sary to request a new version number. Version numbers
are assigned by the versioning server which acts as a se-
rialization point for file updates. Once a file manager has
acquired a new version number, it is allowed to update
the file until the file is committed. A file is not commit-
ted until it is replicated at some other node. Thus, the
new version number act as an update token for the file.
The token is relinquished as a side effect of sending the
file over the network.

Write-through techniques are not necessary in Jet-
File. After a file is updated, there is no need to write
the file data through the file cache and over the network
since the file manager is now, by definition, acting as a
server for the file. The file will be put onto the network
only when a file manager explicitly requests it and only
at this point is the update token relinquished. This is an
important property because it offloads both servers and
networks in the common case when the file is not ac-
tively shared. Moreover, it is very likely that the file will
soon be overwritten. Baker et. al [2] reports that between
65% and 80% of all written files are deleted (or trun-
cated to zero length) within 30 seconds. Furthermore, it
is shown that between 70% and 95% of the written bytes
are overwritten or deleted within 2 hours.

Because file versions are immutable, JetFile insures
that file contents will not change as a result of an update
at some other node. The file contents is always consis-

tent (assuming that applications write consistent output).
This is particularly important for executable files. If the
system allows changing the instructions that are being
executed, havoc will surely arise. Most distributed and
indeed even some local file systems do not keep the nec-
essary state to prevent this from occurring.

JetFile groups sequences of writes into one atomic
file update by bracketing file writes with pairs of open
and close system calls. This approach implies that it
is impossible to simultaneously “write share” a file at
different hosts. The limited form of write sharing that
JetFile supports is commonly referred to as “sequential
write sharing” and means that one writer has to close the
file before another can open the file for update. In our
experience, sequential write sharing does not seriously
limit the usefulness of a file system. Sequential write
sharing is also the semantics chosen by both NFS and
AFS.

Because JetFile only supports atomic file updates there
need to be no special protocol elements corresponding to
individual writes. Only reads have corresponding
protocol elements.

Requests for new version numbers are addressed to
the versioning server but sent with multicast. In this way
file managers are informed that the file is about to change
and can mark the corresponding cache item as changing.
In response to the request, the versioning server sends an
SRM repair message. This repair message will act as an
unreliable callback.

To hide the effects of transmission delays and errors,
JetFile takes an optimistic approach to file updates. When
a file is opened for writing, the application is allowed to
progress while the file manager, in parallel, requests a
new version number. This approach is necessary to hide
the effects of propagation delays in the network. For in-
stance, the round-trip time between Stockholm and Syd-
ney is about 0.5 seconds. If one was forced to update
files in synchrony with the server and could not write
the file in parallel with the request for a new file version,
file update rates would be limited to two files per second,
which is almost unusable.

It is arguable that these kind of optimistic approaches
are dangerous and should be avoided because of the po-
tential update conflicts that may arise. There is how-
ever empirical evidence indicating that sequential write
sharing is rare, Kistler [19] and Spasojevic et. al [33]
instrumented AFS to record and compare the identities
of users updating files and directories. Kistler found
that over 99% of all file and directory updates were by
the previous writer. Spasojevic found that over 99% of
all directory modifications were by the previous writer.
Spasojevic were only able to report on directory write
sharing due to a bug in the statistics collection tools. It
should be noted that in Kistler’s study few users would

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 255

use more than one machine at a time and that thus cross-
user sharing should be similar to cross-machine sharing.
In the Spasojevic study it is unknown how users spread
over the machines.

In the event that two applications unknowingly up-
date a file simultaneously, conflicting updates are guar-
anteed to be assigned different version numbers. This
fact is used to detect update conflicts: one of the file
managers will receive an unexpected version number and
will signal an update conflict4. We intend to resolve con-
flicts with application specijc resolvers as is done in
Coda (231 and Ficus [29]. Currently update conflicts are
reported but the latest update “wins” and “shadows” the
previous update. We have deferred conflict resolution as
future work.

File manager caches are maintained in a least-recently-
used fashion with the constraint that locally created files
are not allowed to be removed from the cache unless
they have been replicated at the storage server. It is the
responsibility of the file manager that performs the up-
date to make sure that modified files in some way get
replicated at the storage server before they are removed.
Updated files are allowed to be transferred to the stor-
age server via other hosts and even using other protocols
such as TCP. The important fact is that the file manager
verifies that a replica exists at the storage server before
the file is removed from the cache.

5 Current Table

Unlike the unicast callbacks used by AFS, the multicast
callbacks in JetFile do not verify that they actually reach
all of their destinations. For this reason, JetFile instead
implements an upper bound on how long a file manager
can unknowingly access stale data. The upper bound is
implemented with the use of a current table. The current
table conceptually contains a list of all files and their cor-
responding highest version numbers. The lifetime of the
current table limits how long a client may access stale
data in case callbacks did not get through. If a file man-
ager for some reason does not notice that a file was as-
signed a new version number, this will at the latest be
noticed at the reception of the next current table. The
current table is produced by the versioning server and
can always be consulted to give a version number that is
“off” by at most lifetime seconds.

The file manager requests a new current table before
the old one expires. Since the current table is distributed
with SRM, the table is only transferred every lifetime
seconds. This work does not impose much load on the
versioning server. If some hosts did not receive the table

4Note that since update conflicts are not detected until after a file is
closed, the process that caused the conflict may already be dead.

when it was initially transmitted, it will be retransmit-
ted with SRM. If a current table is retransmitted, it is
important that the sender first decrement the lifetime by
the amount of time the table was held locally. The use
of lifetimes rather than absolute expiration dates has the
advantage of not requiring synchronized clocks.

If the current table contained a list of all files, it would
clearly be too large to be manageable. For this reason,
the file name space has been divided into volumes [32]
and the current table is produced on a per volume ba-
sis. Lifetime is currently fixed at 30 seconds but should
probably adapt to whether the volume is changing.

The prototype current table consists of pairs of file
and version numbers. The frequent special case when
the version number is one is optimized to save space.
Version one is assumed by default. We also expect that
the current table can be compressed using delta encod-
ings and using differences to prior versions of the current
table. We see these optimizations as future work.

The combination of multicast best-effort callbacks and
current tables is similar to leases [141. One of the differ-
ences is that with current tables it is not necessary to
renew individual leases as lease renewal is aggregated
per-volume. Another important difference is that the
versioning server is stateless with respect to what hosts
were issued a lease. This allows for much larger and
more aggressive caching. However, our scheme does not
provide any absolute guarantees with its best-effort call-
backs, as does traditional leases.

In the normal case, JetFile expects that either the re-
quest or response message for a new version number will
act as a callback break. When this fails, consistency is
not much worse than for NFS since we use the current
table as a fallback mechanism. By avoiding state in the
versioning server, it can serve a much larger number of
file managers. This comes at the price of only slightly
decreased consistency guarantees.

6 The JetFile Protocol

At the JetFile protocol level, files are identified by a file
identifier (FileID) similar to a Unix inode number. The
FileID is represented by a tuple (organization, volume,
file-number). The organization field divides the FileID
space so that different organizations can share files. This
is similar to the cell concept in AFS and DFS. Group-
ing files into volumes [32] allows several versioning and
storage servers to exist and share load within one organi-
zation. Each volume is served by precisely one version-
ing server.

Every FileID is mapped with a hash function into a
IP multicast address (the jile address). All communi-
cation related to a file is performed on that file’s corre-

256 Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association

sponding address which thus acts as a shared commu-
nication channel. There is also a multicast address for
each volume (the volume address): the current table is
transferred over this channel.

The basic JetFile protocol is simple. Messages con-
sist of a generic header and message type specific pa-
rameters, see figure 1. A simplified header consists of
a FileID, file version number, and the message type. In
requests, the version number zero is used to indicate that
the latest version is requested.

erg vol f-num vers msg-type param.. .

Figure 1: JetFile message header

r
message type
status-request
status-repair
data-request
data-repair
version-request
version-repair
WakeuD

parameters . . .

attributes
file-offset length
file-offset length data.. .
transaction id
transaction id

Table 1: JetFile messages and parameters

To request the file attributes of a specific file ver-
sion, the FileID and version number are put into a status-
request. The attributes are returned in a status-repair. To
request the current file attributes without knowing the
current version number, zero is used as the version num-
ber.

Requests for new version numbers are handled slightly
differently. Because of the non-idempotent nature of
version number incrementation, the versioning server
must insure that a repeated request does not increment
the version number more than once. To prevent this from
occurring, the request (and the repair) carry a transaction
id that is used to match retransmitted requests.

File contents is retrieved using data-request and data-
repair messages. The requested file segment is identified
by offset and length. Retrieval of an entire file is how-
ever somewhat more involved than to retrieve only one
segment. First, a segment of the file is requested us-
ing SRM, then, when we know one source of the file we
can unicust SRM compatible data-requests to the source,
and receive unicust data-repairs. A TCP like congestion
window is used to avoid clogging intermediate links. A
more precise description of this protocol is outside the
scope of this paper.

The wakeup message is used to gain the attention of
the versioning server and will be described in section 7.2.
The list of messages types and their parameters is shown
in table 1.

The JetFile file name space is hierarchical and makes
FileIDs transparent to applications and users. As in many
other Unix file systems, directories are stored in ordinary
files. The file manager performs directory manipulations
(such as the insertion of a new file name) and the trans-
lation from pathnames to FileIDs. Directory manipula-
tions are implemented as ordinary file updates. Thus,
JetFile does not require any protocol constructs to han-
dle directory manipulations.

7 Implementation

We have implemented a prototype of the JetFile design
for HP-UX 9.05. Implemented are the file manager (split
between a kernel module and a user-level daemon) and
the versioning server. The storage server, key server and
security related features have not been implemented.

7.1 File Manager

The implementation of the file manager consists of a
small module in the operating system kernel and a user-
space daemon process. The daemon performs all the
protocol processing and network communication as well
as implements the semantics of the file system. The tra-
ditional approach would be to implement all of this code
inside the kernel for performance reasons. That it was
possible to split the file system implementation between
a kernel module and a user-level daemon with reason-
able performance was shown to work for AFS-like file
systems in [34]. There, the authors describe the split im-
plementation of the Coda MiniCache. We will confirm
their results by showing that it is possible to implement
an efficient distributed file system mostly in user-space.
The advantages of a user-level implementation are im-
proved debugging support, ease of implementation, and
maintainability. Also, having kernel and user modules
tends to isolate the operating system-specific and the file
system-specific parts, making it easier to port to other
Unix “dialects” and other operating systems.

The file manager caches JetFile files in a local file
system (UFS). Only whole-file caching has been imple-
mented. This is, however, an implementation limitation
and not a protocol restriction.

7.1.1 Kernel Module

The kernel module implements a file system, a charac-
ter pseudo-device driver, and a new system call. Com-
munication with the user-space daemon is performed by
sending events over the character device. Events are sent
from user-space to update kernel data structures and to
reschedule processes that have been waiting for data to

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 257

arrive. The kernel, on the other hand, sends events with
requests for data to be inserted into the cache or when
about to update read-only cache items. When possible,
events are sent asynchronously to support concurrency.
For obvious reasons, this is not possible after experienc-
ing a cache read miss. As an optimization, the device
driver also supports the notion of “piggy backed” events,
i.e. it is possible to send a number of events in sequence
to minimize the number of kernel/user-space crossings.
The contents of files are not sent over the character de-
vice, only references yile handles) are transferred.

A new system call is implemented to allow the user-
space daemon to access files directly by file handle. This
is simpler and more efficient than accessing them by
name with open.

A typical example of the communication that can arise
is the following:

the kernel module experiences a cache miss while
trying to read an attribute.

the kernel module sends an event to the daemon
and blocks waiting for the reply.

the daemon reads the event, does whatever is nec-
essary to retrieve that data, installs the data in the
kernel cache by sending one or more piggy backed
events. The last event wakes up the blocked pro-
cess.

The kernel module also implements a new file sys-
tem in the Virtual File System (VFS) switch, called YFS
(Yet another File System). The VFS-switch in HP-UX
is quite similar to the Sun Vnode [21] interface.

The kernel cache contains specialized vnodes used by
YFS (called ynodes), these have been augmented with
fields to cache Unix attributes, access rights, and low-
level file identifiers. There is also a reference to a local
file vnode that contains the actual file data. The YFS
redirects reads and writes to this local file with al-
most no overhead.

For simplicity of implementation, the user-space dae-
mon handles lookup operations and the result is cached
in the kernel directory-name lookup cache (DNLC [30]).
When a lookup operation misses in the DNLC, an event
is sent to user-space with a request to update the cache.

Pathname translation is performed by the VFS on a
component by component basis through consulting the
DNLC. For each pathname component, the cached ac-
cess rights in the ynode are consulted to verify that the
user is indeed allowed to traverse the directory. Sym-
bolic links are cached in the same way as file data. After
access rights verification, the readlink operation is
performed by reading the value from the contents of the
local file vnode.

To summarize, YFS consists of a cache of actively
and recently used ynodes and a cache of translations
from directory and filenames to ynodes. The ynodes
cache Unix attributes, a reference to a local vnode, and
access rights. The local vnode contains file data, direc-
tory data, or the value of a symbolic link.

7.1.2 User-space File Manager

The responsibilities of the user-space file manager is to
keep track of locally created and cached files. The file
manager listens for messages on the multicast addresses
of all cached files and for events from the kernel on the
character device. When a message arrives from the net-
work, the target file is looked up in the table of all cached
files. If the file is found, the message is processed oth-
erwise the message is discarded. These spurious mes-
sages result from collisions in the hash from FileID to
multicast address or limitations in the host’s multicast
filtering.

s /optimistically bump version number

I MODIFIED
I

;JyGy&
/If wrong version stgnal conflict

1 TENTATIVE 1

Figure 2: File states

For each cached file, the user-space file manager keeps
track of the current version and of the file sfufe. The
most important states are shown in figure 2. Locally cre-
ated files start in state tentative. The file will stay in
this state and can be updated any number of times un-
til some other file manager requests it, at this time the
file is committed and the state changes to stable. Files
received over the network always start in state stable.

If some application wants to modify a file that is sta-
ble, a request for a new version number is made. After
sending the version-request, the file manager changes
the state to modi$ed and optimistically increments the
version number by one. A file in the modijied state only

258 Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association

exists locally and cannot be sent to other file managers.
When the new version number arrives, the file state will
change to tentative. If the version number received from
the versioning server is not the expected one, the file
manager reports that there was an update conflict.

735/99 model workstations. In table 2 we present aver-
ages and standard deviations over seven runs. We use
one machine as the benchmark machine; another is used
as a JetFile file manager housing the files, thus acting as
a server. Finally, a third machine is used as a versioning
server.

7.2 Versioniug Server

The versioning server runs entirely as a user-space dae-
mon. It keeps track of the current version of all files in a
volume and replies to requests for new version numbers.
Every version number request carries a random transac-
tion id that will be copied to the reply. This is to handle
messages that get lost and have to be retransmitted.

To emulate a wide area network (WAN) with long
transmission delays, we put a bridge between the bench-
mark machine and the two other machines. The bridge
was configured to delay packets to yield a round trip time
of 0.5 seconds.

The versioning server does not always listen on all
file addresses in the managed volumes. Initially, it only
listens on volume addresses. When a file manager does
not get a repair back from a version-request, the file
manager sends a wakeup message on the volume ad-
dress prompting the versioning server to join the mul-
ticast group named by the file address. When creating
files, the file manager by definition has a token for cre-
ating the first version. This avoids needless requests for
initial version numbers.

The benchmark was run first in the local HP-UX Unix
File System (UFS) with a hot cache, i.e. all files were al-
ready in the buffer cache and file attributes were cached
in the kernel. We then ran JetFile with a hot cache, and
finally, we ran the same benchmark but with a cold Jet-
File cache on the benchmark machine so that all files
first had to be retrieved over the network.

Before we start to make comparisons, a few facts
need to be pointed out:

Allocation of file numbers in a volume is handled by
the versioning server to guarantee their uniqueness.

The versioning server is also responsible for creating
and distributing the current table. The table consists of
all files in the volume and their latest version numbers.

For unknown reasons the HP-UX UFS initially cre-
ates directories of length 24 bytes. When the first name
is added, the directory length is extended to 1024 bytes.
When adding more names, the directory is normally not
extended, only updated. All this results in an extra disk
block being written when adding the first name to a di-
rectory. JetFile directories start with a length of 2048
bytes and stays that long until full. In both UFS and
JetFile, changes to directory blocks are always written
synchronously to disk.

8 Measurements

The goal of these measurements is to show that the Jet-
File design has performance characteristics that are sim-
ilar to existing local file systems when running with a
warm cache.

Inode allocation in JetFile is asynchronous and logged.
The log records are written to disk when either a log disk
block becomes full or when the file system is idle. In
HP-UX UFS, inode allocation is always synchronous.

We$rst compare UFS with JetFile, both running with
hot caches:

To make the evaluation we used a standard distributed
file systems benchmark, the Andrew Benchmark [16].
This benchmark operates on a set of files constituting
the source code of a simple Unix application. Its input
is a subtree of 71 files totaling 370 kilobytes distributed
over 5 directories. The output consists of 20 additional
directories and 91 more files. Thus, in this benchmark
the file manager joins 187 IP multicast groups plus one
for the current table.

In the MakeDir phase, JetFile performs slightly bet-
ter because UFS suffer from extending directories when
adding the first name. JetFile also benefit from its asyn-
chronous inode allocation.

In the CopyAll phase, JetFile benefit the most from its
asynchronous inode allocation. Note that JetFile stores
file data in local UFS files. Both UFS and JetFile use
precisely the same “flush changes to disk every 30 sec-
onds” algorithm. Only inode allocation differ between
UFS and JetFile.

The benchmark consists of five distinct phases: Make- In the StatAll, ReadAll, and Compile phases, perfor-

Dir, which constructs 5 subtrees identical in structure to mance of JetFile and UFS are very similar.

the source subtree; CopyAll, which populates one of the Next we compare JetFile with hot and cold caches:

target subtrees with the benchmark files; StatAll, which The only difference in the MakeDir phase is that we

recursively “stats” every file at least once; ReadAll, which need to acquire a new version number for the top level

reads every file byte twice, and finally Compile which directory. Since we optimistically continue to write di-

compiles and links all files into an application. rectories while waiting for the new version number to

Tests were conducted over a lOMb/s Ethernet on HP arrive, we should expect only marginal differences in

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 259

Copy All 2.68(0.06) 1.56 (0.02) 1.55(0.04) 3.71(0.13) 50.86(0.21)
StatAll 2.60(0.02) 2.59 (0.01) 2.58 (0.01) 2.60 (0.01) 2.58 (0.01)
ReadAll 4.99(0.02) 5.01(0.02) 5.01(0.02) 5.01(0.02) 5.02(0.05)
Compile 11.16 (0.05) 11.05 (0.03) 11.05 (0.07) 11.08 (0.08) 11.04 (0.07)
Sum 22.98(0.08) 21.43(0.04) 21.45(0.07) 23.65(0.12) 70.79(0.28)

Phase UFS hot 1 JetFile hot 1 E-WAN hot 1 JetFile cold 1 E-WAN cold
MakeDir 1 1.55 (0.01) I 1.22 (0.06) I 1.26 (0.03) 1 1.25 (0.03) 1 1.28 (0.02)

Table 2: Phases of the Andrew benchmark. Means of seven trials with standard deviations. JetFile over an emulated
WAN (E-WAN) had a round trip time of 0.5 seconds. All times in seconds, smaller numbers are better.

elapsed time, regardless of round trip time.
In the CopyAU phase with a cold cache, the bench-

mark makes a copy of every file byte, while at the same
time JetFile transfers all the files over the network and
writes them to local disk. In effect, every byte is writ-
ten to disk twice, although asynchronously. The combi-
nation of waiting for the file bytes to arrive so that the
copying can continue in combination with issuing twice
as many disk writes explains why the elapsed time in-
creases from 1.56 to 3.7 1 seconds.

Running with a cold cache over the emulated WAN
results in times for the CopyAll phase to increase from
3.71 to 50.86 seconds. This is to expect since it takes
0.5 seconds to retrieve a one byte file over the emulated
WAN. There is no way out of this problem other than to
fetch files before they are referenced. Prefetching will
be briefly discussed in the Future Work section 10.2.

~~

29:54(0:05) 129; 30:20(0:20) 131;

Table 3: Total elapsed time of the Andrew benchmark.
Percent numbers are normalized to UFS with a hot
cache. All times in seconds, smaller numbers are bet-
ter.

It is interesting to compare JetFile to existing com-
mercially available distributed file systems. We repeated
the above experiments using the same machines and net-
work. One machine was used as the benchmark machine
and a second was used either as an AFS or NFS file
server. Even with tuned commercial implementations
such as AFS and NFS, users pay a performance penalty
on the order of 20% to make their files available over the
network.

It would be very interesting to measure the scalability
of the system. Unfortunately, we currently do not have a
JetFile port to a more popular kind of machine.

9 Related Work

The idea of building a storage system around the distri-
bution of immutable object versions is not entirely new.
These ideas can be traced back to the SWALLOW [28]
distributed data storage system. SWALLOW is, how-
ever, mostly concerned with the mechanisms necessary
to support commitment synchronization between objects,
a relatively heavyweight mechanism that is usually not
required in distributed file systems.

Another system based on optimistic versioned con-
currency control is the Amoeba distributed file system
[26]. Their concurrency algorithms allows for simulta-
neous read and write access by verifying read and write
sets before a file is allowed to be committed. Since Jet-
File targets an environment where files are usually up-
dated in their entirety and write sharing is rare, we de-
cided to use a more lightweight approach.

Coda uses the technique “trickle integration” [27] to
reduce delay and bandwidth usage when updating files.
File updates are written to the server as a background
task after they have matured and been subject to write
annulation optimizations. This should be contrasted with
the JetFile approach where clients are turned into servers.
The JetFile approach make file updates available earlier.
The Coda people argue that this is not always desirable,
a strongly connected client can be forced to wait for data
propagation before it can continue to read the file.

AFS [171 and DFS [181 both implement a limited
form of read-only replication. This replication is static
and has to be manually configured to meet the expected
load and availability. In JetFile the replication is dy-
namic and happens where the files are actually used rather
than where they are expected to be used.

In xFS [l] servers have been almost eliminated by
making all writes to distributed striped logs. The de-
sign philosophy is “anything anywhere” which should
make the system scalable. This is however a different
form of scalability: the goal is to scale the number of
nodes within a compute-cluster and to improve through-
put. The goal of JetFile is to scale geographically over
different network technologies. JetFile is also self con-

260 Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association

figuring. There is no need to configure clients as servers
or vice versa since JetFile clients per definition take server
responsibilities for files accessed.

Frangipani [36] is also designed for compute-cluster
scalability, but takes a different design approach. It is
designed using a layered structure with files stored in
Petal [25] (a distributed virtual disk) and complemented
with a distributed lock service to synchronize access.

Both xFS and Frangipani suggest that protocols such
as NFS, AFS, and DFS [181 be used to export the file
system and provide for distributed access. As far as we
know, nothing in our design prevents JetFile file man-
agers from storing their files in xFS or Frangipani.

An earlier xFS paper [37] discusses a WAN protocol
designed to connect several xFS clusters. Each cluster
has a consistency server, and inter-cluster control traf-
fic, flow through these. Like the JetFile protocol, this
protocol also addresses typical WAN problems such as
availability, latency, bandwidth, and scalability. This is
done by a combination of moving file ownership (read or
write) between clusters and on-demand-driven file trans-
fers between clients. To reduce consistency server state,
file ownership is aggregated on a directory subtree basis.

10 Future Work

10.1 Data Security and Privacy

The security architecture of JetFile is an important and
central part of the entire design.

Validating the integrity of data is necessary in a global
environment. It is also vital to be able to verify the origi-
nator of data to prevent impostors masquerading as orig-
inators. In JetFile, both these issues will be handled with
the use of digital signatures [3 11.

To allow for cryptographic algorithms with different
strengths, JetFile defines different types of keys. These
key types in turn define signature types. For instance,
there might be one key of type (MD5, RSAJ 12) which
means that when this key is used to make signatures the
algorithm MD5 should be used to generate 128 bit cryp-
tographic checksums and RSA with 5 12 bit keys shall be
used for encryption. A different and stronger key type is
(SHAl , RSA- 1024). Note that key types not only define
the algorithms to use but also key lengths.

Since JetFile design is based on the Application Level
Framing (ALF, section 2.2) principle it is most natural
to protect application defined data units rather than the
communication per se. The data units that make up a file
are:

Data object: holds the file data and is only indirectly
protected.

Status object: holds file attributes. It also contains a
lists of cryptographic checksums, each sum pro-
tect a segment of the file. The status object is
signed by the file author.

Protection object: holds a list of users that are allowed
to write to the file and a reference to a privacy ob-
ject. The protection object is signed by the system.

Privacy object: holds a list of users that are allowed to
read the file. It also contains a key that is used
to encrypt file contents when the file is transferred
over the network.

To verify the integrity of a publicly readable file, first re-
trieve (with SRM) the key used to sign the status object,
check that the author is allowed to write to the file by
consulting the protection object and verify the signature.
If everything is ok, verify the file segment checksums
(checksum algorithm is derived from key type).

Verifying private files is only slightly different. Be-
fore the file segment checksums can be calculated the
file data must be decrypted with the key that is stored in
the privacy object.

The privacy object is not per file. Some files have no
associated privacy object at all (publicly readable files).
Private files can also be grouped together to share a com-
mon privacy object by all pointing out the same privacy
object. Note that private files are always transferred en-
crypted over the network.

Privacy objects cannot be distributed with SRM and
shall instead be transferred from the key server through
encrypted channels (the channels that are used for boot-
strapping, more about this below).

When a user “logs on” a workstation the necessary
keys to make signatures are generated: The private key
is held locally and is used to make signatures. The pub-
lic key is registered with the key server using a bootstrap
system such as Kerberos [35]. The key server will then
sign this key and it will be distributed with SRM to all
interested parties. The key used by the system for sign-
ing is given to the user during this initial bootstrap.

In JetFile signatures have limited lifetimes, i.e. an ob-
ject that has been signed can only be sent over the net-
work as long as the signature is still valid. There is no
reason to discard an object from the local cache just be-
cause the signature expired. Expiration only means that
if this object would be sent over the network, receivers
will not accept it because the signature is no longer valid.
The signature lifetime is derived from the key lifetime.
When the key server publishes keys on behalf of users
they are also marked with an issue and expiration date.

Signatures will eventually expire, there must be some-
where in the system to “upgrade” signatures. This task is
assigned to the storage server. Files are initially signed

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 261

by users, then stabilize and migrate to the storage server,
and eventually their signature expires. At this point, the
storage server creates a new signature using a system key
and the file is ready for redistribution.

Encryption algorithms are often CPU intensive, we
intend to use keys with short key lengths for short lived
files such as the current table. Similarly when files are
updated they are first signed with a lightweight signa-
ture. If the file stabilizes, its signature gets upgraded.

Our strategy of migrating files to the server every few
hours is intended to avoid needless CPU-consuming en-
cryptions. In systems such as AFS and NFS where file
updates are immediately written through to the server,
CPU usage can be costly. In JetFile we only have to in-
voke the encryption routines when the file is committed,
and this happens only when the file is in fact shared, or
when it must be replicated at the storage server.

If all files are both secret and shared then there will be
extensive encryption. We expect, however, only a small
percentage of files to fall into this category and accept
that some encryption overhead is unavoidable. In nor-
mal operation, users do not share their secret files, so
encryption only has to be performed on transfer to and
from the storage server.

10.2 Hoarding and Prefetching

For JetFile to work well in a heterogenous environment
it must be prepared to handle periods of massive packet
loss and even to operate disconnected from the network.
JetFile’s optimistic approach to handle file updates is
only one aspect of attacking these problems. There must
also be mechanisms that try to avoid compulsory cache
misses.

One way of avoiding compulsory cache misses is to
identify subsets of regularly used files and then hoard
them to local disk. A background task will be respon-
sible for monitoring external file changes and to keep
the local copies reasonably fresh. External file changes
can be detected by snooping the current table. Hoarding
has been investigated in Coda 1201 and later refined in
SEER [22]. We plan to integrate ideas from their sys-
tems into JetFile.

Hoarding can only be expected to work well with reg-
ularly used files. There must also be a mechanism to
avoid compulsory cache misses on files that are not sub-
ject to hoarding. We suggest that files are prefetched
as a background task controlled by network parameters
delay and available bandwidth. If the delay is long and
bandwidth is plentiful it makes sense to prefetch files to
decrease the number of compulsory cache misses.

11 Open Issues and Limitations

JetFile requires file managers to join a multicast group
for each file they actively use or serve. This implies that
routers will be forced to manage a large multicast rout-
ing state.

The number of multicast addresses used may be de-
creased by hashing FileIDs onto a smaller range. This
has the disadvantage of wasting network bandwidth, and
to force file managers to filter out unwanted traftic. How
to strike the balance between address space usage and
probability of collision we do not know.

The concept of wakeup messages can be generalized
to wakeup servers for files. A message can be sent to
a file’s corresponding volume address, the message will
make passive servers join the file address, in effect acti-
vating servers. This idea can be further generalized. A
message can be sent to an organization address to make
passive servers join the volume address. A disadvantage
of this approach is that wakeup messuges will introduce
a new type of delay.

Lastly, when writing this, we do not yet have any ex-
perience with large scale Inter-domain multicast routing.
If the routers and multicast routing protocols of tomor-
row will be able to cope with the load generated by Jet-
File remains to be seen.

12 Conclusions

The JetFile distributed file system combines new con-
cepts from the networking world such as IP multicast
routing and Scalable Reliable Multicast (SRM), as well
as proven concepts from the distributed systems world
such as caching and callbacks, to provide a scalable dis-
tributed file system for operation across the Internet or
large intranets. JetFile is designed for ubiquitous dis-
tributed file access. To hide the effects of round-trip de-
lays and transmissions errors, JetFile takes an optimistic
approach to concurrency control. This is a key factor in
JetFile’s ability to work well over long high-speed net-
works as well as over high delay/high loss wireless net-
works.

Dynamic replication is used to localize traffic and dis-
tribute load. Replicas are synchronized, located, and re-
trieved using multicast techniques. JetFile assigns server
duties to clients to avoid the often expensive effects of
writing dam through the local cache to a server. In the
common case when files are not shared, this is the op-
timal means to avoid unwanted network effects such as
long delays, packet loss, and bandwidth limitations. Mul-
ticast routing and SRM are used to keep communication
to a minimum. In this way, files are easily updated at
their replication sites.

Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association

Callback renewal is aggregated on a per-volume basis
and shared between clients to reduce server load. More-
over, JetFile callbacks are stateless and best-effort. This
implies that servers need not keep track of which hosts
are caching particular files. Thus client caching can be
much more aggressive. It should be pointed out, that be-
cause of the best-effort nature of our callback scheme,
clients may, under some circumstances, not be aware of
cache invalidity for up to 30 seconds.

We have implemented parts of the JetFile design and
experimentally verified its performance over a local area
network. Our measurements indicate that, using a stan-
dard benchmark, JetFile performance is close to that of
a local disk-based file system.

13 Acknowledgments

We would like to thank our shepherd Tom Anderson
and the anonymous reviewers for their constructive com-
ments which lead to significant improvements of this pa-

per.
We also thank Mikael Degermark for reading early

versions of this paper and making many insightful com-
ments.

References

111

PI

[31

141

PI

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, R. Y. Wang, Serverless
Network File Systems, In Proceedings of the 15th
ACM Symposium on Operating Systems Princi-
ples, 1995.

M. G. Baker, J. Hartman, M. D. Kupfer, K. W.
Shirt%, J. Ousterhout, Measurements of a Dis-
tributed File System, In Proceedings of the 13th
ACM Symposium on Operating Systems Princi-
ples, 1991.

T. Ballardie, P. Francis, J. Crowcroft, Core Bused

Trees (CBT), In Proceedings of the ACM SIG-
COMM 1993.

D. Banks, C. Calamvokis, C. Dalton, A. Edwards,
J. Lumley, G. Watson. AAL. at a Gigabit for a

Kilobuck. Journal of High Speed Networks, 3(2),
pages 127- 145,1994.

T. Billhartz, J. Cain, E. Farrey-Goudreau, D. Fieg,
S. Batsell, Performance and Resource Cost Com-
parisons for the CBT and PIM Multicast Rout-

ing Protocols, IEEE Journal on Selected Areas in
Communications, 15(3), Apr. 1997.

WI

[71

181

PI

1101

u 11

r121

u31

iI41

[I51

[I61

I171

K. Bit-man, A. Schiper, P. Stephenson, Light-
weight Causal and Atomic Group Multicast, ACM
Transactions on Computer Systems, 9(3), Aug.
1991.

D. D., Clark, D. L. Tennenhouse, Architectural
considerations for a new generation of protocols,
In Proceedings of the ACM SIGCOMM 1990.

S. Deering, Host Extensions for IP Multicasting,
RFC 1112, Internet Engineering Task Force, 1989.

S. Deering, Multicust Routing in u Dutagram In-
ternetwork, PhD thesis, Stanford University, Dec.
1991.

S. Deering, D. Es&in, D. Farinacci, V. Jacobson,
C. Liu, L. Wei, The PIM Architecture for Wide-

Area Multicust Routing, IEEE/ACM Transactions
on Networking, 4(2), Apr. 1996.

S. Deering, C. Partridge, D. Waitzman, Distance
Vector Multicust Routing Protocol, RFC 1075, In-
ternet Engineering Task Force, 1988.

W. Fenner, Internet Group Management Protocol,
Version 2, RFC 2236, Internet Engineering Task
Force, 1997.

S. Floyd, V. Jacobson, , C. Liu, S. McCanne, L.
Zhang, A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing,
IEEE/ACM Transactions on Networking, 5(6),
Dec. 1997.

C. G. Gray, D. R. Cheriton, Leases: an eflicient
fault-tolerant mechanism for distributedjle cache
consistency, In Proceedings of the 12th ACM Sym-
posium on Operating System Principles, 1989.

B. Gronvall, I. Marsh, S. Pink, A Multicustbused
Distributed File System for the Internet, In Pro-
ceedings of the 8th ACM European SIGOPS Work-
shop, 1996.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham,
M. J. West, Scale and Performance in u Distributed
File System, ACM Transactions on Computer Sys-
tems, 6(l), Feb. 1988.

M. L. Kazar, Synchronization and Caching Issues
in the Andrew File System In Proceedings of the
USENIX Winter Technical Conference, 1988.

USENIX Association Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) 263

1181

u91

WI

WI

[221

M. L. Kazar, B. W. Leverett, 0. T. Anderson, V.
Apostolides, B. A. Buttos, S. Chutani, C. F. Ev-
erhart, W. A. Mason, S. Tu, E. R. Zayas, DEco-
rum file system architectural overview In Proceed-
ings of the Summer USENIX Technical Confer-
ence, 1990.

J. J. Kistler, Disconnected Operation in a Dis-
tributed File System, PhD thesis, Carnegie Mellon
University, May. 1993.

J. J. Kistler, M. Satyanarayanan, Disconnected Op-
eration in the Coda File System ACM Transactions
on Computer Systems, 1 0(1), Feb. 1992.

S. R. Kleiman, Vnodes: An Architecture for Mul-
tiple File System Types in Sun UNIX, In Proceed-
ings of the USENIX Summer Technical Confer-
ence, 1986.

G. H. Kuenning, G. J. Popek, Automated Hoarding
for Mobile Computers, In Proceedings of the 16th
ACM Symposium on Operating Systems Princi-
ples, 1997.

[23] P. Kumar, M. Satyanarayanan, Flexible and Safe
Resolution of File Conflicts, In Proceedings of the
USENIX Winter Technical Conference, 1995

[24] S. Kumar, P. Radoslavov, D. Thaler, C. Alaet-
tinoglu, D. Estrin, M. Handley, The MASCIBGMP
Architecture for Inter-domain Multicast Routing,
In Proceedings of the ACM SIGCOMM 1998.

[25] E. K. Lee, C. A. Thekkath, Petal: Distributed vir-
tual disks, In Proceedings of the 7th Intl. Conf. on
Architectural Support for Programming Languages
and Operating Systems, 1996.

[26] S. J. Mullender, A. S. Tanenbaum, A Distributed
File Service Based on Optimistic Concurrency
Control, In Proceedings of the 10th ACM Sympo-
sium on Operating Systems Principles, 1985.

[27] L. Mummert, M. Ebling, M. Satyanarayanan, Ex-
ploiting Weak Connectivity for Mobile File Access,
In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 1995.

[28] D. P. Reed, L. Svobodova, SWALLOW: A Dis-
tributed Data Storage System for a Local Network,

I Local Networks for Computer Communications,
North-Holland, Amsterdam 198 1.

[29] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, G.
Popek, Resolving File Confricts in the Ficus File
System, In Proceedings of the USENIX Summer
Technical Conference, 1994.

1301

[311

1321

1331

[341

[351

[361

[371

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
B. Lyon, Design and Implementation of the
Sun Network Filesystem, In Proceedings of the
USENIX Summer Technical Conference, 1985.

B. Schneier, Applied Cryptography, Second Edi-
tion, John Wiley & Sons, Inc, 1996.

B. Sidebotham, VOLUMES - The Andrew File Sys-
tem Data Structuring Primitive, In Proceedings
of the European Unix User Group Conference,
Manchester, 1986.

M. Spasojevic, M. Satyanarayanan, An Empiri-
cal Study of a Wide-Area Distributed File System,
ACM Transactions on Computer Systems, 14(2),
May. 1986.

D. C. Steere, J. J. Kistler, M. Satyanarayanan,
EfJicient User-Level File Cache Management on
the Sun Vnode Interface, In Proceedings of the
USENIX Summer Technical Conference, 1990.

J. S. Steiner,C. Neuman, J. I. Schiller, Kerberos:
An Authentication Service for Open Network Sys-
tems, In Proceedings of the USENIX Winter Tech-
nical Conference, 1988.

C. A. Thekkath, T. Mann, E. K. Lee, Frungipani:
A Scalable Distributed File System, In Proceedings
of the 16th ACM Symposium on Operating Sys-
tems Principles, 1997.

R. Wang, T. Anderson, xFS: A Wide Area Mass
Storage File System In Proceedings of the Fourth
Workshop on Workstation Operating Systems,
1993.

264 Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association

