
AD..AIII 715 PASSACWJIETTS INST OF TECH CANSRIDGE LAS FOR COMMUTE-.'flC F/s Ila
THE DESIGN OF A ROUTING SERVICE FOR CAI)JS-WIDE INTERNET TRANSP--ETC EU)

.JAN 82 V SINGH4 N00014971-C-666IUNLSSFE MLfEEEEEEEEE

JIM 1.0 L5 1111f 2.2

I~I

4. 3611111 .1 ~ 40 2_B~0

4 IIIJIL25 -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURAU OF STANDARDS 1963-A

LABORATORY FOR MASSACHUSFTTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

M 1'1'/I,('S/'I'R-27()

THE DESIGN OF A

ROUTING SERVICE

FOR

CAMPUS-WIDE INTERNET

TRANSPORT

Vinect Singh

This rcsc irdi XV iS StApported b the AdNamcd Rcscarch Prolcct% AgCIIC Of

thu Dvpartment Of Defense a'nd vas monltOrcd bN 01C OfflCU Of Nt 0 d

R us car(11 Lin d cr (ont ra(t 11 Ll in bur N H i A 60 1

SECURITY CLASSIFICATION OF THIS PAGE f'Nhe Da Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMmER

MIT/!LCS/TR-270 Ik 1_
4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The Design of a Routing Service for Campus-wide January 1982

Internet Transport. 6. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TR-270

7. AUTHOR(a) S. CONTRACT OR GRANT NUMUER()

Vineet Singh N00014-75-C-0661

S. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT. PROJECT. TASK

Laboratory for Computer Science AREA A WORK UNIT NUMBERS

Massachusetts Institute of Technology

545 Technology Square; Cambridge, Ma. 02139

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA January 1982

1400 Wilson Blvd.. Is. NUMBER OF PAGES

Arlington, Va. 22217 109

14. MONITORING AGENCY NAME A AODRESS(II different AIN C41080llln4 Offic) IS. SECURITY CLASS. (of this report)

Office of Naval Research Unclassified

Department of the Navy

Information Systems Program IS&. DECLASSIFICATION/DOWNGRADING

Arlington, Va. 22217
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale; distribution is

unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. It different team Report)

III. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue an revered aide It neceesw md identify by block nu ber)

Computer Network, routing, servers 82 0 i,

20., ABSTRACT (Continue an reverse side It necessry aid Identify by block number)

A campus-wide network requires many subnetworks connected by gateways and it

has a relatively loose administration. Modularization of network implementati(

is important in this environment to make efficient use of ever-improving tech-

nologies and protocols. The need for modularization makes it desireable to

separate a routing and target identification scheme from gateway implementatio

a facility that source routing provides. Moreover, removing routing and t rget

identification responsibilities from the gateways leads to their simplicity an

DD , FoM 1473 EDITION OF I NOV 5 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (ften Date Entered)

- -s-

sacUmTY CLASMICATIO OF THIS PAOS~ bDie Mse.

.therefore, a better chance that gateways will not be bottlenecks in the high-

bandwidth network. This thesis focuses on the design of a Routing Service to

support source routing in the campus environment.,

The Routing Service is designed to find paths froi">' questor's attachment

point to a node specified by the requestor. The Routing Service accepts hints

from the requester about the destination node's location in the network to

limit the search involved. The Routing Service also provides user-control

of paths and diagnosis for faulty paths. The design of the Routing Service

places strong emphasis on scaleability with respect to the size of the networb

Reliability and simplicity are two other key features of the Routing Service.

LAcoossion For 7]
NTIS 0.1&IJDTIC TAU$

J,.: t i f I c t I

..Dist r ibi-.t io

Avel1> ,jtv Codes

Di,:t

39UerITY CLAhUICATIOU OF T1IS PAOEEUM Die DigWu9

The Design of a Routing Service
for.

Campus-Wide Internet Transport

Vineet Singh

August 1981

0 Massachusetts Institute of Technology 1981

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under

contract number N00014-75-C-0661.

4! Massachusetts Institute of Technology

Laboratory for Computer Science
Cambridge, Massachusetts 02139

---d,-.

The Design of a Routing Service
for

Campus-Wide Internet Transport

by

Vineet Singh

Submitted to the
Department of Electrical Engineering and Computer Science

on August 26, 1981 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

A campus-wide network requires many subnetworks connected by gateways and it
has a relatively loose administration. Modularization of network implementation is

important in this environment to make efficient use of ever-improving technologies
and protocols. The need for modularization makes it desirable to separate a routing
and target identification scheme from gateway implementation-a facility that source
routing provides. Moreover, removing routing and target identification
responsibilities from the gateways leads to their simplicity and, therefore, a better

chance that gateways will not be bottlenecks in the high-bandwidth network. This
thesis focuses on the design of a Routing Service to support source routing in the
campus environment.

The Routing Service is designed to find paths from a requester's attachment point to
a node specified by the requester. The Routing Service accepts hints from the

requester about the destination node's location in the network to limit the search
involved. The Routing Service also provides user-control of paths and diagnosis for
faulty paths. The design of the Routing Service places strong emphasis on
scaleability with respect to the size of the network. Reliability and simplicity are two
other key features of the Routing Service.

Key Words: computer networks, routing, servers

1

Acknowledgments

I am indebted to Professor Jerry Saltzer for his constant encouragement and for the

numerous enlightening discussions that I was privileged to have with him. I would

also like to thank all the members of the Laboratory for Computer Science, especially

the CSR people, for providing an environment that was both friendly and conducive

to research. Finally, I would like to thank Kathy Wood for painstakingly proofreading

the entire manuscript several times and for typing most of this thesis at whirlwind

speeds. (I figure in the list of the ten worst typists of the decade.)

2

" -' , : LI,

To my Mother and my Father

3

a -

Table of Contents

Chapter One: Introduction 8

1.1 Goals 10

1.2 Related Work 10

1.3 Outline of Thesis 12

Chapter Two: The Requirements for a Routing Service 14

2.1 The campus environment 14

2.1.1 Allows installation of low-cost, high-bandwidth transmission 14

medium

2.1.2 Local network technologies will not work 15

2.1.3 Diverse technologies and protocols likely 15

2.1.4 Technologies in a state of flux 17

2.1.5 Special uses of gateways 17

2.2 Source Routing for a Campus-Wide Network 17

2.2.1 How does internet routing work 18

2.2.2 The mechanics of Source Routing 18

2.2.3 Where do routes come from? 19

2.2.4 The advantages of Source Routing 20

2.3 What exactly does a Routing Service do? 21

2.3.1 Confusion over names, addresses, and routes 21

2.3.2 The four important network entities 22

2.3.3 Naming requirements in terms of bindings 22

2.3.4 The function of a conventional Routing Service 23

2.3.5 A slightly different Routing Service 23

2.4 The basic requirements for a Routing Service 23

2.4.1 The Routing Service has to work in a distributed environment 24

2.4.2 The Routing Service should be reliable 24

2.4.3 The Routing Service should be reasonably fast 25

2.4.4 The Routing Service should require minimal support from the 26
rest of the system"

2.4.5 The Routing Service should scale gracefully for larger networks 26

2.4.6 The Routing Service should maintain a good user interface 29

2.5 Some additional requirements 29

2.5.1 Towards a flexible meaning for network attachment point names 30

2.5.2 Hierarchies to combat problems of scale 30

2.5.3 Problems.... 31

4

2.6 A more flexible approach to Routing 33

Chapter Three: The Routing Service 35

3.1 The Configuration of the Campus-wide Network 35
3.2 An Implementation of Source Routing 40

3.3 What kind of routes should the Routing Service compute? 42

3.4 Finding the topology of the Campus-wide Network 43

3.4.1 Eleven special features required for topology-finding 44

3.4.2 A crude description of the algorithm 51

3.4.2.1 The operation of a level-1 Routing Server 52

3.4.2.2 The operation of a level-i Routing Server 54

3.4.3 The full algorithm for finding the topology of the network 56

3.4.3.1 The level-1 topology-finding algorithm 57

3.4.3.2 How does the level-I topology-finding algorithm work? 59

3.4.3.3 The level-i topology-finding algorithm 61
3.4.3.4 How does the level-i topology-finding algorithm work? 64

3.5 Computing routes in the campus-wide network 65
3.6 Answering queries about routes 67

3.6.1 Specification of hierarchical addresses 67

3.6.2 Some special features required for answering queries 69
3.6.3 How are routes looked up? 70

3.7 Changing the configuration of the network 79
3.8 User control of paths 84
3.9 Responding to faults in the campus-wide network 86

3.9.1 Special features required for responding to faults 86

3.9.2 The procedure forfinding alternative paths 87

3.10 Congestion control 89

Chapter Four: Evaluation 93

4.1 The Routing Service has to work in a distributed environment 93
4.2 The Routing Service should be reliable 94

4.3 The Routing Service should be reasonably fast .94
4.4 The Routing Service should require minimal support from the rest of the 95

system (especially gateways)
4.5 The Routing Service should scale gracefully for larger networks 95

4.6 The Routing Service should have a good user interface 97
4.7 The Routing Service should face up to changing network 98

configurations
4.8 The Routing Service should face up to mobile hosts 98

4.9 The Routing Service should face up to artificial partitioning 99
4.10 The Routing Service should face up to multi-homing 99

4.11 The Routing Service should face up to shared access 100

5

4.12 Summary 100

Chapter Five: Conclusions 102

5.1 Summary of Routing Service Design 102

5.2 Future Wo-k 104

6

Table of Figures

Figure 2-1: A typical campus-wide network 16

Figure 2-2: The campus-wide network partitioned into ten parts 28

Figure 3-1: A level-1 region 37

Figure 3-2: A level-i region 38

Figure 3-3: The internet source route field 41

Figure 3-4: A level-j region 73
Figure 3-5: Adding or taking away a level-(i - 1) region 79

Figure 3-6: Splitting up a level-i region 81

Figure 3-7: Increasing or decreasing a level-i region 82

Figure 3-8: Merging two level-i regions 83
Figure 4-1: The special features supported by nodes 96

Figure 4-2: The special features supported by gateways 96

Figure 4-3: The user interface 97

7

Chapter One

Introduction

Computer communications networks are beginning to play an increasingly important

role in society. A major motivation for networking is the need to share resources

related to communication facilities, computing facilities, and information. Going by

present trends it is expected that, in the not too distant future, almost everyone in

society will have access to some sort of computer-based network to cater to his

communication, computing, and information needs. Present and envisioned

applications of these networks include such diverse fields as electronic mail, office

automation, health care, computerized commerce and management systems, military

applications, news, and education. In fact, information processing is expected to be

the backbone of future societies. Current projections indicate that more than half of

the U.S. economy will be based on activities related to information processing by the

year 2000.

Pioneering work in the area of computer networks was initiated by the design of the

ARPANET. Since then, the field of networking has grown to the level where it is now

a major preoccupation of scientific and technological endeavors. Research in the

area has indicated that different types of networks or network architectures are

suitable for different sets of applications. For example, radically different network

characteristics are suitable for a long-haul network like the ARPANET, a packet radio

network like the PRNET, and a local area network like the ETHERNET. Similarly, a

campus environment, with its special characteristics, has its own set of requirements

for a data communication network.

A campus-wide network will extend beyond a single building, but it permits low cost,

high-bandwidth transmission media to be installed because the network exitts within

8

_.. ..___i ma -

_. JI

a biw gle cohesive political and administrative organization. Within a campus, several

thousand nodes (i.e., data sources and data sinks) will require interconnection.

Since local area network technologies like the ETHERNET can only support tens

through hundreds of nodes and can extend for only thot'sands of meters, these

t.- hnologies are not sufficient to support a campus-wide network. It is expected that

a campus-wide network will consist of a number of local networks, interconnected by

gateways with a group of nodes being attached to each local network.

To maintain high-bandwidth communication spanning one or more gateways, it is

necessary for the gateways to be fast; otherwise, the gateways will be communication

bottlenecks in the campus-wide network.

Another key feature of the campus environment is the diversity of communication

technologies and protocols likely. Also, since these technologies and protocols are

constantly improving, the network should be designed to evolve with them.

Modularity of network functions is crucial to achieve the objective of adaptability to

new network characteristics.

A combination of the need for simpler gateways and the need to modularize network

functions is the major motivation for using source routing in the campus-

environment. Source routing allows target identification and routing decisions to be

removed from the responsibility otherwise assigned to gateways. This redistribution

of responsibilities, in one stroke, accomplishes the aim of simpler gateways and

modularity (to the extent that target identification and routing schemes need not be

tied with gateway implementation).

For source routing to be successful, one cannot allow target identification and

routing responsibilities to fall on individual nodes. Target identification and routing

for the entire network, or even for the subset of the network a node may be interested

in, may be too complex for simple nodes (like microprocessors) to undertake. A

more reasonable approach is for network-wide services to cater to the target

9

identification and routing needs of network users. A network-wide service also leads

to economy of scale through sharing. Forcing each node to implement the service

within itself may, on the other "hand, lead to a lot of redundant processing. The

purpose of this thesis is to design a network-wide service to cater to the need for

routing information.

1.1 Goals

The Routing Service described in this thesis was designed keeping certain goals in

mind. A short description of each major design goal is given below. First, since

messages in a computer network contribute significant delays (even in a high-

bandwidth network), it is desirable to minimize the delay due to mespages required

for the correct functioning of the service. Second, the Routing Service should be

reliable-robust in the face of arbitrary changes in the network. Third, the service

should be reasonably fast-fast enough to avoid being a bottleneck. Fourth, the

service should avoid any unnecessary dependencies between its functioning and

other network functions. Fifth, the service should scale gracefully for larger

networks. Sixth, the routing server should maintain as good a user interface as

possible, keeping the other goals in mind. Additional goals ensure that the Routing

Service faces up to changing network configurations1 , mobile hosts, artificial

partitioning, multi-homing, and shared access.

1.2 Related Work

Telephone systems until two decades ago used source routing to connect a dialing

line to the dialed line. Dial pulses would be' followed to physically connect

appropriate switching devices to complete the connection (i.e., the numbers dialed

were used to select an appropriate route through the switching network). In fact, a

1This refers to the hierarchical configuration of the network that is used to make the service

scaleable. The configuration is subject to change.

10

pr, .2!ive sort of "Routing Service" was also in existence. If a given number routed a

call from the east coast to the west coast via Chicago and the operator had reason to

suspect that the connection to Chicago was faulty, then the operator might try

another number that would route the call via Detroit instead of Chicago. In the

campus-wide network, the switching devices correspond to gateways, the telephone

numbers correspond to a source route, and the operator corresponds to the Routing

Service. Clearly, there is a limit to which the analogy can be pursued, mainly

because the "Routing Service" in the telephone system context was human whereas

the Routing Service in the campus-wide network runs on computers.

Source routing has also been used in the ARPA packet radio network (or PRNET)

[10). Packet radio technology enables packet switching, which has been used for

point-to-point communication lines, to be applied to broadcast radio also. The

development of packet radio technology was directly motivated by the need to

provide a communication network for terminals and computers in motion.

Broadcasting is a natural way to avoid the need to control rapidly changing routes.

PRNET also offer4 point-to-point routing that can be used when routes are not.

expected to change very rapidly; source routing is used to support this point-to-point

communication.

There are two main differences between routing as implemented in the PRNET and

as it will be implemented in the campus-wide network with a Routing Service. The

first difference relates to the methods used for collecting topology information. A

station in the PRNET is the entity that collects topology information and computes

routes; there may be several stations in the PRNET. Each packet radio in the network

periodically announces its existence by transmitting to each station its PR neighbor

table. A PR neighbor table for a packet radio typically contains information on which

other packet radios can be heard along with information about the quality of the

links. In the campus-wide network, a similar approach would imply that nodes and

gateways in the network periodically send topology information to the Routing

Service. Since gateway simplicity is one of the major motivations of using source

11

routing with a Routing Service, even this function has been removed from gateways

(and nodes). The Routing Service in the campus-wide network assumes the

responsibility itself of contacting nodes and gateways to gather topology data.

The second major difference between the point-to-point routing strategies of the

PRNET and the campus-wide network concerns scaleability. The PRNET point-to-

point routing strategy is not designed to scale gracefully for large networks. Each

station has to be aware of all operational packet radios in the net and each station

must also compute all routes. The Routing Service for the campus-wide network, on

the other hand, is designed so that it actually consists of a hierarchical structure of

several Routing Servers. Any given Routing Server has only to gather a limited

amount of topology information and compute a limited number of routes. A number

of Routing Servers may have to cooperate to find a given route. The hierarchical

structure of Routing Servers is designed to scale very gracefully as the network size

increases.

1.3 Outline of Thesis

This thesis is only a paper design of a Routing Service-no implementation has been

attempted. The lack of an implementation is partially compensated by a

comprehensive evaluation of the paper design.

Chap. 2 describes the campus environment and the suitability of source routing for

campus-wide internet transport. The function of a Routing Service is explained and a

set of requirements laid down for the design of the Routing Service. Chap. 3 begins

by addressing questions about the configuration of the campus-wide network, an

implementation of source routini, and the kind of routes to be computed. Next, each

function of the Routing Service is described together with the method used by the

Routing Service to achieve it. Chap. 4 evaluates the design of the Routing Service.

Each requirement from Chap. 2 is examined in turn to see how it influenced the

12

_KI
.<

des!.jn. Finally, Chap. 5 gives a summary of the Routing Service design and the

areas for further Improvement and research.

13

Chapter Two

The Requirements for a Routing Service

Before the requirements for a Routing Service can be discussed, it is necessary to

look at some of the important properties of a campus environment and to look at an

appropriate mechanism to support internet routing.

Section 2.1 describes the campus environment in order to gain some insight into the

choice for an internet routing mechanism. Section 2.2 explains why source routing is

a good idea in a campus environment. Section 2.3 describes the function of a

Routing Service and section 2.4 lays down some basic requirements for a Routing

Servic.. Finally, section 2.5 looks at some advanced problems that will be

encountered in a large, multi-network system and section 2.6 advocates a more

flexible approach that should be taken to solve these problems.

2.1 The campus environment

The campus environment has been characterized in considerable detail in [18]. A

network in a campus environment will typically span several buildings and will not be

subject to a strong central administration. The properties that characterize a

campus.wide network could equally well apply to a network at a corporate site, a

government complex, etc.

2.1.1 Allows Installation of low-cost, high-bandwidth transmission medium

The key property of a campus-wide network is that although the network is loosely

administered, it does lie completely within the domain of one political body. This

property, along with the limited geographical extent of a campus-wide network,

14

permits installation of a low cost, high-bandwidth communications medium

throughout the network. This is in contrast with a long-haul network like the

ARPANET that must resort to transmission over a common carrier.

2.1.2 Local network technologies will not work

A campus-wide network is expected to have several thousand nodes and, therefore,

local interconnection strategies like [13,14, 4, 23, 7, 24], which can support only tens

through hundreds of data node interconnections, are not feasible solutions.

Moreover, the geographic scope of local networks is limited to a restricted area such

as a building or a cluster of buildings. Hence, a local network cannot cover a very

large campus. A campus network will have several different local networks

connected together by gateways. See Fig. 2-1 for a view of a typical campus-wide

network. The part that is enclosed by dotted lines is the campus-wide network. An

actual campus-wide network will, of course, have many more local networks. Ring

Net, Ethernet, Chaos Net, and Cambridge Digital Communication Ring are the names

of local network technologies; ARPANET, TELENET, and TYMNET are the names of

long-haul networks.

2.1.3 Diverse technologies and protocols likely

As mentioned before, the network will have a loose administration. This, along with

the fact that there is an extremely diverse range of technologies available in the

computer communications world today, will ensure a similar diversity to be reflected

in the campus network. In fact, the protocols used in a campus network are likely to

be just as diverse. The reason for this diversity is that there is no consensus yet in

the protocol community on hov, protocols should be layered and how the various

functions should be divided. However, there is also likely to be a push towards

commonality in the campus-wide network despite pressures leading to diversity. The

reason for this push towards commonality is the desire to facilitate communications

between any two nodes in the campus-wide network.

15

-.i
A. I q

TYMNET

Gateway--------------

Gateway Chaos Net

EhrNtCambridge DigitalI

I Communication Ring

L -JGateway------------Gateway-
FARPANET TELENET

Figure 2 -1: A typical campus-wide network

16

Due to the diversity likely in a campus-wide network, it is a good idea to provide, at

the lowest layer possible, a campus-wide protocol that unifies all the diverse

protocols below it and provides a uniform interface to all the higher levels of protocol.

2.1.4 Technologies in a state of flux

Not only is there a diversity of communications technologies and protocols, these

technologies and protocols are also in a state of flux 4 - ;v. a campus-wide network

should be able to evolve with these ever-chanc.4o "b. -';i,gies and make the best

possible use of them with a minimal amount o eio;. *i ;-xhieve this, it is necessary

to limit the effect of any local changes (i.e., to mr:,t=2ea:h function performed in

a campus interconnection strategy). One coitciusion of ,his line of thinking is that the

routing function should be completely liberalo from the addressing involved in a

campus-wide network.

2.1.5 Special uses of gateways

There are a couple of other observations to be made about gateways in a campus-

wide network. The first is that some gateways will be administered with central

planning and some will exist only for the private use of some users. The second

observation is that there may be gateways attached to public data networks like

ARPANET, TYMNET, TELENET, etc. The external network can be merely used as a

link between two parts of the campus-wide network or it can be used to set up

connections between nodes in the campus-wide network and nodes in the external

network.

2.2 Source Routing for a Campus-Wide Network

This section first describes how internet routing works in general and then goes on to

describe the mechanics of source routing. Finally, this section also discusses some

advntages of source routing in a campus environment.

17

.

I

2.2.1 How does Internet routing work

Source routing has been proposed in [18] as the mechanism to support internet

transport. Source routing among subnetworks takes place at a low level in the

hierarchy of network protocols. It makes use of the local transport layer that is below

it in the hierarchy. The local transport layer is used to transport packets over local

networks such as the Ethernet or the Ring network. Packets that have to be sent

over more than one local network have an internet target identifier attached at the

front of the packet. All the gateways along the way will refer to the target identifier

(and will perhaps look up some routing tables) to determine the next part of the route.

The target identifier can be of different types. It can be an unstructured unique

identifier. In this case, every node on campus has a unique identifier as its target

identifier. Every gateway has in its possession a routing table that contains

information on the next part of the route for packets bound for every destination in

the network. This approach is also called "step-by.step routing" or "hop-by-hop

routing" because each gateway decides the next "step" or "hop" in the path.

Another approach is to treat the target identifier as a hierarchical address. One

possibility is to have two fields in the hierarchical address-one for the subnetwork to

which the node is attached, and one for the node itself. Now, every routing table only

contains information on the next "step" or "hop" towards every possible subnetwork

in the network. The main attraction of this scheme is that the table size is reduced.

Hierarchical addresses (for target identifiers) with more fields lead to even shorter

tables.

2.2.2 The mechanics of Source Routing

The approach that source routing takes is one in which the target identifier is

replaced by a variable-length string of local transport addresses. When the packet

first leaves the source node, the first local transport address (if not the destination

address itself) is treated as the address to the first gateway on the path. The second

18

.7

local transport address is used as the address on the next local network to which the

packet should be sent and so on. The rest of the variable-length string gets

interpreted similarly along the path until the packet eventually reaches its destination.

The important thing to notice is that the routing tables needed by gateways in

previous schemes just vanish. The gateways are "commanded" by the appropriate

part of the variable-length target identifier to choose the correct next step. Target

identification decisions are no longer made at gateways. Therefore, the gateways

can now be extremely simple and it is less likely that they will be bottlenecks in a

high-bandwidth campus-wide network. One implementation of source routing that

dynamically constructs reverse routes is described in [18].

2.2.3 Where do routes come from?

The next logical question to ask is, "Where do routes come from?" It was explained

before that the source node places a variable-length string or source route in front of

internet packets but it has not been described yet where the source route comes

from. There are two ways of solving this problem. The first way is to have every node

in the network compute the routes to every other node in the network. This would be

a crushing load on small nodes and it is not required. The second way is for each

node to know how to contact some place in the network that knows the routes. Once

a route has been found, it can be encached and used until it no longer works or until

a better route is found.

This situation calls for a Routing Service in the network. Using a network service for

routing to be shared by each node in the network brings the benefit of economy of

scale. It will be the function of the service to maintain an internal representation of

the network and to act as an identity resolver and a routing information dispenser.

19

2.2.4 The advantages of Source Routing

The advantages of using source routing in a campus environment are described

below.

1. The main advantage is that it provides an opportunity to separate target
identification and routing. One consequence of this is that gateways are

a lot simpler. Also, the modularization of network function provided by
source routing is a big asset in itself. It allows gateways to be
implemented without having to fix any network-wide target identification.
Therefore, Source Routing allows the coexistence of several different
experimental roving policies with different target identification schemes.
Also, since target identification is no longer associated with an internet
packet's route, paths can lead anywhere. They can traverse "external"
networks or they may traverse a "virtual path" inside a node to identify a
"socket" or a particular "process".

2. Another important observation about a source routing strategy is that it
allows a source to precisely control the path that a packet is going to
take. This control can help in several ways.

a. Trouble location: If a path is faulty but it is not known which part
of the path is the culprit, it is easy to pin down the blame with a
source routing scheme. A test packet can be sent up to some part
of the route and then back. If this is done several times, each time
with a different chunk of the route, the part of the route at fault can
be pinpointed.

b. Class-of-service implementation: An internet connection can
have several properties of interest to the end users-error rate,

transport delay, bandwidth, security rating, etc. It is possible to
choose a route with the properties desired if the Routing Service is
sophisticated enough.

c. Policy implementation: Again, the precise control of routes
implies that certain routes may be selectively used and some policy

can be enforced to decide when they are used.

d. FIFO streams: If it is assumed that packets are routed by
gateways in the order in which they arrive there, then packets
reach the destination in the order in which they left the source

(unless of course, some do not reach at all due to some reason).

This property means that FIFO streams can now be easily

20

implemented.

e. The precise control on routes helps in several other ways
described in [18]. Looping of packets is no longer a problem;
fragmentation/reassembly strategies are easily implementable,

and multi-homing is less of a problem at least for gateways
(because the Routing Service can take care of it).

3. Another important property of source routing is that since a source route
is a variable-length string of local transport addresses, it can be spliced
together from several different parts. Each part can be computed
separately, perhaps by servers that only know part of the topology of the
network.

2.3 What exactly does a Routing Service do?

There is still a lot of confusion as to what names, addresses, and routes are

supposed to mean in a network. One convenient way to look at some network

functions, including the function of a Routing Service, is to view them as name

resolution functions. This section describes the function of a network Routing

Service as one of several name resolutions required to be able to set up a connection

with a network service. •

2.3.1 Confusion over names, addresses, and routes

Shoch [20] attempted to give clear and concise definitions of names, addresses, and

routes. However, there is still a lot of confusion about the exact meanings of these

terms. Saltzer (191 tries to explain in his paper how most of the confusion is

generated by tight associations between network objects and the common ways of

referring to them.

Shoch defined a name as something that identifies what you want, an address as

something that identifies where it is, and a route as something that tells you how to

get there.

21

66_-

2.3.2 The four important network entities

Saltzer's terminology will be followed here. According to Saltzer, there are basically

four important network objects.

1. Services and Users: These services are functions available on the
network and the users are the clients that use the services.

2. Nodes: Nodes are computers that can run a service or run user

programs.

3. Network attachment points: These are the electrical connectors of a
network. Nodes are attached to the network through network

attachment points.

4. Paths: Paths are the routes between network attachment points. A path
is given in terms of the nodes and communication links (or gateways) on

the way from one network attachment point to another.

2.3.3 Naming requirements in terms of bindings

Each ot the network objects mentioned before can have a name. The bindings

possible among these four types of objects are listed below.

1. A service can be run at several different nodes and has an identity

independent of the node.

2. A node may be connected to several network attachment points and has
an identity independent of the network attachment points to which it is

connected.

3. A network attachment point can have several paths from it to another
network attachment point and both have identities independent of the

paths between them.

Therefore, the bindings that must be made in order to send a message to a service

are:

1. Finding a node on which the service is running,

2. Finding a network attachment point for the node, and

22

3. Finding a path from the source network attachment point to this

attachment point.

2.3.4 The function of a conventional Routing Service

The service that performs the name resolution described in the third part above is

normally referred to as the Routing Service. The first two bindings are done by a

service name resolution service and a node name location service respectively.

Since there are several choices at each level of name resolution, it may be necessary

to backtrack and choose a different binding at a previous level if it is found useful in

certain circumstances.

2.3.5 A slightly different Routing Service

The Routing Service described in this thesis will be somewhat different in function

from one that only identifies paths leading from the network attachment point of the

requester to anotherspecified network attachment point. The Routing Service will.

now attempt to identify a path from the requester's attachment point to a node

specified by the requester. However, the Routing Service will accept hints from the

requester about the network attachment points to which the destination node may be

connected. (A node name location service (or name server) may be used to find the

names of the network attachment points to which a node is connected.)

Some of the basic requirements that a Routing Service, which performs the function

described above, should satisfy are described below.

2.4 The basic requirements for a Routing Service

Some basic requirements for a Routing Service in a campus environment are

described below.

23

2.4.1 The Routing Service has to work in a distributed environment

All nodes in the network are pretty much autonomous and independent entities and

they communicate with each other by sending messages over the network to which

they are connected. This structure must be reflected in the design of the Routing

Service. Although a campus wide network is expected to have a lot of inexpensive

bandwidth, sending messages over the network can still be quite expensive in terms

of the amount of time taken for a message to travel from one end of the network to

another. The number of messages that a Routing Service must send and receive for

it to function properly should be kept low especially when this directly affects the time

that it takes to respond to users.

Although local network routing and long-haul network routing also operate in a

distributed environment, significant design differences can arise because bandwidth

in the campus environment is a more scarce commodity than in the local network

case and a less scarce commodity than in the long-haul network case.

2.4.2 The Routing Service should be reliable

This requirement might be partially met by keeping the Routing Service as simple as

possible. Therefore, in the design of the Service an effort will be made to keep the

"extras" out. If at all any "extras" are retained, they will be those that will be

extremely hard to incorporate in the design once the Routing Service is implemented.

Those "extras" whose design would require an effort quite orthogonal to the current

design effort are most likely to be discarded. Simplicity in the design of the Routing

Service is also likely to effect an improvement in maintenance cost, recovery time,

trouble location, and so on.

Reliability of the Routing Service also means that it should stand up to any changes

in the network topology or its connectivity. Reliability is a necessary requirement

even in the local network and long haul case but the kinds of changes possible and

their frequency are different in the campus environment. These changes are listed

24

below.

1. A gateway, subnetwork, or node breaks down or comes up again.

2. A new node is installed or removed from the network.

3. A new gateway or subnetwork is installed or removed from the network.

Therefore, routes should not be established only once at the time of network

installation but rather the Routing Service should be capable of updating routes

based on new information. However, it is entirely plausible that some changes may

be such rare events that it might be wiser to just restart the Routing Service instead

of building into it the ability to respond sensibly when such a change does occur. For

example, a new gateway or subnetwork is not likely to be installed every day and,

therefore, it is is not at all necessary for the Routing Service to be incrementally

responsive to such changes.

2.4.3 The Routing Service should be reasonably fast

It was mentioned before that one of the advantages of Source Routing is that it

makes gateways almost trivially simple. This simplicity might help to make good use

of the cheap and abundant bandwidth available. If Routing Service were inordinately

slow, it would wipe out all the advantages of trying to speed up routing through

gateways. In fact, this brings up another point. In the design process, the option will

exist at several stages to make the Routing Service vary in sophistication along

various axes, e.g. the information gathered by the Routing Service may range from

just topology or connectivity information to detailed class of service information

about the traffic, gateways, subnets, etc. Another option that can be exercised is the

amount of computation required to compute "good", "better", or "best" routes. In

all these cases, it should be remembered that the philosophy behind a campus

environment and a long haul environment (like the ARPANET) is most drastically

affected by the fact that in the first case there is lot of bandwidth to utilize and in the

second case bandwidth is a critical resource. Therefore, there is no need to squeeze

25

II

out the last ounce of bandwidth in the campus environment. The Routing Service

can afford to be sub-optimal in conserving bandwidth if in the process we have

bought ourselves simplicity, or we have decreased the time that it takes the Routing

Service to process queries. To sum up this requirement, the Routing Service should

be designed so as not to be a bottleneck in the campus environment.

2.4.4 The Routing Service should require minimal support from the rest of

the system

This requirement is mainly to ensure that the opportunity to modularize the routing

function is taken advantage of. As mentioned before, target identification and

routing can be separately performed in the campus environment. However, it must

also be ensured that no built-in dependencies creep into the design of the Routing

Service. Moreover, trouble location and recovery are facilitated by keeping the

dependencies low. Distributed systems, in general, have a potential for being more

reliable than other systems based'on central processors. Making the Routing Service

self-supportive to as great an extent as possible will go a long way towards making

the Service robust and modular.

2.4.5 The Routing Service should scale gracefully for larger networks

A serious attempt should be made to provide scaleability in performance (in terms of

response time, reliability, etc.) for the Routing Service.

It is claimed that distributed systems are intrinsically more reliable than centralized

systems. This claim is only justified if the system is designed to exploit the existing

potential. If, for example, the system is designed to scale gracefully, redundancy can

be used to make the system more reliable.

It is entirely plausible that the campus-wide network may grow much too large for one

Routing Service to handle efficiently. One approach to this problem is to partition the

network into smaller units that single Routing Servers can handle. There may be

26

other good reasons, in fact, for the network to be partitioned into several smaller

units. Much like telephone zones, it is likely that there will be zones consisting of

several adjacent subnets where most of the traffic originating in those zones will be

directed to nodes within the respective zones. It is quite wasteful in this situation to

force the Routing Server in one such zone to maintain information on all the nodes in

the network. It is also not wise to compute routes to all the nodes in the network if,

for example, 98% of the routes to nodes outside a zone are not used at all. There is

another scenario in which it makes good sense to partition the network into smaller

units. Consider the case of two large campus-wide networks-one in M.I.T. and

another in Harvard--connected together by exactly one gateway. It clearly does not

make sense to require the Routing Service in M.I.T.'s campus-wide network to know

about the Harvard network in any intricate detail if all the messages from the MIT

network are going to go through a single gateway connecting the two networks

anyway. Moreover, the Harvard administration may not want outsiders to know about

the innards of their network. Now that a good case for partitioning the network has

been constructed, how can the system actually function with a different Routing

Server for each region?

Fig. 2-2 shows a network partitioned into ten different regions. Each region consists

of a number of subnetworks. Different regions are connected by any number of

gateways. It is useful to consider the general case of a network in which some region

is isolated from the rest of the system. The network may be designed to be

completely connected but failures may cause regions to be isolated temporarily.

Also, assume that each region is administered separately by a Routing Server and

that the ten regions are administered by one higher level Routing Server. The

Routing Server for region 5, for example, will only compute routes from nodes within

5 to any other node in 5 and the higher level Routing Server will only compute routes

in terms of the smaller regions that make up the network. The higher level Routing

Server may decide, for instance, that all routes from attachment points in region 4 to

other attachment points in region 3 should go from region 4 to region 5 and then to

region 3.

27

- 9i

1 2 3

4 5
4

6
9 10

7 8

Figure 2-2: The campus-wide network partitioned into ten parts

Now, consider one way to handle routing queries in such a system. Suppose a node

(call it 'abcd') connected to an attachment point in region 5 wants to communicate

with a node (call it 'efgh') that is connected to an attachment point in region 7. The

first node (i.e., the source node) will query its Routing Server to find out the route to

'efgh'. (The query should include the network attachment point name of 'efgh' 2. The

network attachment point name of node 'efgh' should have enough information in it

to let the Routing Server know that the attachment point lies in region 7. For

example, the attachment point name could be hierarchical.) Since the network

attachment point to which 'efgh' is attached does not belong to region 5, the Routing

Server of region 5 will pass on the routing query to the higher level Routing Server.

The higher level Routing Server may then decide that the best route from region 5 to

2As explained before, a name server is invoked to map node names to network attachmert point

names.

28

region 7 should go via region 6. The higher level Routing Server will also ask the

Routing Servers of regions 5, 6, and 7 to construct the parts of the routes that pass

through their territory. After the complete route has been assembled by the higher

level Routing Server, it will pass the route to the Routing Server of region 5, which, in

turn, will pass it on to the node that originated the query. The problem is to

coordinate the whole process so that it works in all situations and also to generalize it

to the case where there may be several levels of Routing Servers.

2.4.6 The Routing Service should maintain a good user Interface

As far as possible, the Routing Service should pamper the user. For example,

suppose that the Routing Service maintains class-of-service information about

subnets and gateways. The user should be able to inspect the class-of-service

information about the gateways and subnets on any route. If, for example, the user

wanted to get a route that did not pass through a certain gateway because its class-

of-service information did not meet the user's requirement, it should be possible to

do so.

However, having a good user interface will only be a secondary objective. This

requirement will lose out it it conflicts with the requirement of reliability or of the

Routing Service being fast, etc.

2.5 Some additional requirements

Some very basic requirements for a Routing Service were described in the previous

section. There are some additional requirements for a Routing Service that arise

mostly from concerns about large networks.

29

2.5.1 Towards a flexible meaning for network attachment point names

To allow for any communication in a computer network, one must be able to name

the nodes of interest and their network attachment points before being able to find

routes to them. This is usually not a problem in a small computer network where it is

possible to keep track of remote nodes fairly easily. For example, if communication is

restricted to a local network over which the normal way of sending messages is by

broadcast [4, 131, then only unique identifiers need to be used as names for nodes;

no names are required for network attachment points unless one node can be

attached at two different points on the same local network. It is not necessary to

know the connection point of any node and packets can be sent with the unique

identifier of the destination node at their front. As the packet goes by each node in

the local network, the destination node (i.e., the node whose unique identifier

matches the destination unique identifier of the packet) picks up the packet. Things

are a little more complicated as the size of the system increases. It is not as easy for

each user or application program to know about the complete system configuration.

Moreover, if nodes are allowed to be mobile and the configuration of the system is

flexible, it is difficult to know the exact name of the network attachment point of a

destination node. This, situation demands a more flexible meaning for names of

network attachment points in the network.

2.5.2 Hierarchies to combat problems of scale

Hierarchical methods are used all the time to keep problems associated with large

systems manageable. The essential idea is that if the number of attachment points

grows very large, it becomes useful to divide the attachment points up into several

regions to simplify naming of network attachment points. There is a server in each

region to take care of routing within that region. Each network attachment point now

has a hierarchical name that consists of the identifier of the region that it belongs to

and the identifier of the node within the region. Routes will now have to be computed

from region to region and within regions. It is no longer necessary to compute routes

30

boom a

between every pair of network attachment points. The same approach can, of

course, be applied recursively and there will then be several levels in the hierarchy.

There are two main motivations for using hierarchical names for network attachment

points. The first is that routing becomes a lot simpler. The second reason is that with

hierarchical names, the authority for assigning or acquiring names can be

distributed.

2.5.3 Problems....

Some of the problems associated with using a strict hierarchy for network attachment

point names are described below3 .

One of the most obvious problems is that routes are less optimal when a hierarchy is

used. This may happen because one or more levels of detail are skipped over while

computing routes that span more than one region. The other problems are described

below:

1. Changing Network Configurations: A large network will be broken
up into several regions on the basis of expected and observed traffic
patterns. Regions are chosen so that most of the traffic originating from
them is directed to attachment points within the same region. This is
done because inter-region communications is more costly than intra-
region communication. Another reason for choosing regions may be for
administrative reasons. Due to a change in any one of the reasons
mentioned above, it may be necessary to change the hierarchy of
attachment points. Yet another reason for changing configurations may

arise if a region grows too large or too small due to a lot of nodes being
moved in or moved out. It may then be necessary to either split up a
region that has grown too large or it may be necessary to merge together

two adjacent small regions. For all the reasons cited above, it is not

advisable to fix a hierarchy for the network once and for all.

2. Mobile Hosts: It is possible that a node may be moved from Its current
attachment point and attached at some other point in the network. In this

3 [21 1 also discusses some routing problems associated with large, multi-network systems

31

l ~ ~ - ... ------- '

case, it is necessary to ensure that the nodes preserve their identity after
the change in connection points. In a strict hierarchy, the mobile host
has to inform all other nodes in the network interested in it about the

transfer and all ongoing computations must be able to change the

hierarchical address of the mobile host they refer to.

3. Artificial Partitioning: It is possible to envisage a situation in which

the route to the server of a region may not work due to a faulty gateway.

Therefore, it may not be possible to communicate from outside with any

of the nodes in the region although routes may actually exist to some of
the nodes. This is a case of partitioning being artificially forced on the
network.

4. Multihoming: A node may be connected to more than one place in the

network. These connection points may be in different regions of the
hierarchical network and, therefore, different routes exist to these
various connection points from other parts of the network. There are two

ways to handle the problem of a source node desiring to find the best

route to a destination node that is connected to more than place. The

first way is for the network routing service to be smart enough to figure
out the best way given one of the hierarchical addresses of the

destination or maybe the unique identifier of the destination. The other
way is for the source to be aware of the different connection points, to

ask for the paths to all these, and to then choose among the paths

available. The first calls for a sophisticated network service and the

second for a sophisticated source node.

In fact, this brings up another way in which a source may not be able to

communicate with a destination, although a path to the destination may

exist. This can happen if the destination has several connection points
but all the paths (to the connection points of the destination), that the

source knows about, are-down.

5. Shared Access: It is possible that two or more nodes may share a

single connection point in the network. This is possible if there is a
shortage of connection points. Another reason may be that the nodes

involved would rather share the cost of the network interface than have

complete access to the network. This may be especially true of small
computers. In a strict hierarchy, both of them will have the same network
hierarchical address and there will be a lot of confusion when a message
gets sent to the shared connection point.

32

I

2.6 A more flexible approach to Routing

The problems described al ve require special attention by a Routing Service. One

approach to attack the issues raised is described below.

Firstly, it was emphasized while discussing mobile hosts, shared and changing

configuration access, that it is important to preserve the identity of a node if it shares

its attachment point with other nodes or if the attachment point for the node either

changes or even just changes its name. One way to solve this problem is to assign a

unique identifier to every node and to have every internet message contain the

unique identifier of the destination node, perhaps as part of the source route of the

message. Now, the unique identifier of every message sent to any attachment point

can be checked against the unique identifiers of the nodes currently attached to the

connection point.

However, this still does not solve the problem of mobile hosts completely. It is not

possible under many circumstances to know the complete hierarchical name of the

attachment point of a node. The Routing Service should be able to do some kind of a

search for the destination node in the network. However, it may be impractical to

search the entire network. The Routing Service should, therefore, be able to accept

hints (from the node requesting the information) to limit the scope of the search.

In fact, the procedure described above is one way of solving the multi-homing

problem, too. If a search is made for some destination node, several attachment

points for the same node may show up and the best.among them can be chosen.

As for the case of.artificial partitioning mentioned before, one can either provide

alternative routes to servers or actually have redundant servers for each region.

There is another way in which partitioning may be forced on the network although a

path may exist between the two supposedly "partitioned" parts. This can happen if

no path exists between two attachment points in the same region but a path may exist

33

• -_-...... _ L. ...J

if the path from the source goes outside the region and comes in again to a part of

the region from which the destination may be reached. This is solved by using a

backup and retry scheme. Help has to be asked of the Server of the region that is

hierarchically one level above the region in which the source and destination exist.

This chapter has concenti ited on laying down a set of basic requirements for a

Routing Service and on developing a general approach to solve some more

advanced problems. The next chapter delves into more details about the Routing

Service.

34

Chapter Three

The Routing Service

This chapter describes the design of a Routing Service in detail. Before describing

the details of the design, it is necessary to explain how the campus-wide network is

configured. It is also necessary to describe a particular implementation of source

routing and to decide what kind of routes should be computed by the Routing

Service. These preliminaries are taken care of in the first three sections. After that,

Sec. 3.4 describes the topology-finding algorithm of the Routing Service. Sec. 3.5

deals with the algorithms that are used to compute paths in the network and Sec. 3.6

lays out the procedure for asking the Routing Service for routing information. Sec.

3.7 discusses the types of changes in configuration that are useful in a campus-wide

network. The next three sections describe strategies for user control of paths, for

responding to faults in the network, and for congestion control.

3.1 The Configuration of the Campus-wide Network

As discussed in Chapter 2, a hierarchical approach will be taken to break down the

problems of routing for large networks into manageable sub-units. The configuration

of the network is described below.

The campus-wide network will be essentially a large number of local networks (or

subnetworks) connected together by gateways. The lowest level of the hierarchy will

consist of a number of adjacent subnetworks4 . This lowest level in the hierarchy will

be called a level-1 region. One such level-1 region is shown in Fig. 3-1. It is also a

4A subnetwork is adjacent to another if the two subnetworks are connccled together by at least one

gateway. A bunch of subnetworks are adjacent if one can find a path (that passes through gateways

and other subnetworks in the same region) between any two subnotworks in the region.

35

requirement that two different level-1 regions may not overlap and that the entire

network be divided into level-1 regions (i.e., every subnetwork will belong to one and

only one level-1 region).

In a similar manner, several adjacent level-1 regions may be grouped together to form

a level-2 region. If this depth in the hierarchy is deemed necessary, it is enforced

over the entire network. In other words, the entire level-1 space is divided into non-

overlapping level-2 regions.

In a completely recursive fashion, level-2 regions may be grouped into level-3 regions

and so on. Fig. 3-2 shows what a level-i region looks like in terms of level-(i - 1)

regions. The number of levels in the hierarchy will depend on the actual size of the

network and will increase or decrease with the size of the network.

Before going any further, it is necessary to emphasize that regions are chosen

primarily on the basis of the following two factors:

1. Regions are chosen so that traffic originating from the region is mostly
directed to attachment points within the region. The reason for doing
this, as mentioned earlier, is that routing decisions involving routes that
span more than one region are expensive. This will become apparent
when the Routing Service is described in detail.

2. Regions may be decided upon to respect administrative and political

boundaries. If regions are divided up this way, it is easier to assign
responsibilities for maintenance in the network.

Each region has a Routing Server associated w'th it. A Routing Server is said to be

level-i if it looks after a level-i region. A level-i Routing Server should know its place

in the hierarchy (i.e that it is level-i) and it should know how to communicate with all

the Routing Servers of level.(i - 1) below it in the hierarchy (unless i = 1) and with the

Routing Server above it in the hierarchy (if one in fact exists). A Routing Server for a

level-i region only computes routes between the level-(i - 1) regions that exist in the

level-i region. A level-1 Routing Server only computes routes between attachment

points that belong to the level-1 region.

36

i

Local Network

" Gateway Gateway

Figure 3-1: A level-1 region

37

Level-(i-1

Regiion

Regioe 3R:eglveiireio

Gateway

Gateway

Each region, local net, gateway, and node in the network has a unique identifier

associated with it. Every node and gateway remembers its own unique identifier.

The unique identifier of a subnetwork is remembered by the gateways on the

subnetwork. The unique identifier of a region is remembered by the gateways that

exist on its boundary.

The reason for assigning unique identifiers to nodes was discussed in Chapter 2 (i.e.,

to preserve the identity of a node if it shares its attachment point with other nodes or

if the attachment point for the node changes).

The reasons for assigning unique identifiers to subnetworks, gateways, and regions

are slightly different. There are essentially two reasons.

1. Since class-of-service information will be maintained for subnetworks,

gateways, and regions, it is necessary to be able to identify these
network entities easily and unambiguously.

2. Due to several reasons (flow control, user control of path, or temporary

malfunctioning) it may be necessary to find a path between two

attachment points in the network such that the path does not pass
through certain subnetworks, gateways, or regions. For this reason, too,
it is necessary to be able to point to each of these network entities easily
and unambiguously.

Attachment points in the network do not need to have unique identifiers assigned to

them. Attachment points may have identifiers that are unique only within the

subnetwork in which they exist5. In this thesis, attachment point names may be

sometimes referred to equivalently as locai transport addresses (or simply addresses)

of the nodes that are connected to the attachment points.

5There are a couple of exceptions. Nodes and gateways will each have a common broadcast address
as will be seen later.

39

3.2 An Implementation of Source Routing

To permit explicit discussion of the Routing Service, it is necessary to look at an

actual implementation of Source Routing. The implementation described here is

essentially the same as the one described in [18]. One of the features of this

implementation is that it dynamically constructs a reverse route. This feature has

been retained in the implementation because it is extensively used by the Routing

Service. The implementation is described below.

The internet source route field is shown in Fig. 3-3. It consists of two one-octet

numerical fields and a variable (but constant for the life time of the packet) number of

octets of route. The first field contains a count of the number of octets of route while

the second field points to the next unused octet of the route. The first field remains

constant for the life time of the packet but the second one is updated at each

gateway and also by the source node and the destination node.

Assume for now that every gateway connects exactly two subnetworks. The

operation of a gateway that gets a packet using the local transport protocol of the

incoming subnetwork and wants to send it out on some outgoing subnetwork is

described next. The gateway uses the second numerical field (which points to the

next unused octet of route) to find the next local transport address6. The assumption

here is that the gateway knows the number of octets required by a local transport

address of this subnetwork. This local transport address is placed in the local

transport address field for the outgoing subnetwork. Also, this local transport

address is replaced by the gateway's own local transport address (after reversing the

address octet by octet). The gateway then increments the second numerical field by

the number of octets it extracted from the route; and it uses the local transport

protocol to send itout on the outgoing subnetwork. This routing strategy assumes

that all paths are bi-directional and that all local transport addresses on a subnetwork

8Note that the local transport address of a node on some subnet is not the same as the name of the
node. Node names are unique identifiers but local transport names are unique only within local nets.

40

route length

start of next
local address

local address 1

local address 2

local address 3

local address n

Figure 3-3: The internet source route field

are of the same size. Also, the reverse route comes out upside down and will have to

be reversed before it can be used.

In case a gateway interconnects more than two subnetworks, it behaves as if it were

another subnetwork. The next local transport address 7 in the source route is used to

choose the outgoing subnetwork. Finally, to make it consistent and simple, even

gateways that interconnect just two subnetworks wili be made to go through this

7 Just as local transport addresses for nodes are not unique identifiers, this local transport address

should not be confused with the unique identifier that is associated with the subnet. Each gateway uses

some names to identify the different subnets to which it is connected. These names, which are treated

as local transport addreses on the conceptual subnetwork of the gateway, are unique only within the

conceptual network.

41

step.

The operation described above is repeated not only by each gateway but may be also

repeated inside the destination node to route the packet to the correct activity and

inside the source node to route the packet to the correct local network (since a node

may be connected to several local nets).

3.3 What kind of routes should the Routing Service compute?

The campus-wide network is characterized by high-bandwidth communication lines

that are available at a relatively low cost (compared to the communication links

available for a long-haul network like the ARPA network). It is, therefore, not

worthwhile to look for extremely sophisticated routing strategies that may use a lot of

computational resources to make the very best use of bandwidth. Since there is an

abundance of bandwidth, it suffices to use a routing strategy that computes shortest

hop paths. By choosing a shortest hop routing strategy, the cost of making the

complicated routing calculations required for long-haul networks like the ARPANET

will not be incurred.

By pursuing the line of reasoning given above a little further, one might argue that

routing calculations should be cut down even further by calculating any routes

whatever (i.e., routes that are not necessarily shortest in length). However, there are

at least two good reasons for finding shortest routes as contrasted with finding any

routes. The first argument in favor of using shortest routes is the reliability argument.

The smaller the number of subnets and gateways that a message has to pass

through, the better are the chances of it getting through intact to the other end (on

the average, at least). The second reason for using shortest paths and not any paths

whatever is as follows. If any paths whatever are used, then there will be more traffic

generated in the network due to each message (on the average) because the

roessage may have to go over a higher number of subnets and gateways as

compared to the case when shortest paths are used. Consequently, the number of

42

different messages per unit time that the network can sustain will be decreased,

which is a disadvantage.

If shortest hop paths are the paths that the Routing Service will compute, then the

only thing that needs to be monitored is the topology of the network and its

connectivity, both of which are subject to change. Traffic conditions on

communication links need not be monitored, as in the ARPANET, to make

sophisticated routing decisions. The Routing Service that is descri-,ed later in this

chapter has been designed keeping this in mind.

Given the structure of the campus-wide network in which various subnets are

connected by means of gateways, it is logical to define a path-length to be as many

hops as the number of gateways and subnets that it spans. Therefore, nodes on the

same network will be one hop away, nodes on different subnets connected by a

common gateway are three hops away and so on. There is another way to define

hops that is simpler although it may be less intuitive. The number of hops in a path

can be defined to be the number of gateways on the path. A little bit of thought will

show that shortest hop paths, which are computed by using either of the two

definitions, mean the same thing. (The reason for this is that the number of hops in a

path, using the first definition, is a monotonically increasing function of the number

of hops in the same path, using the second definition.) The second definition of path

length will be used in this thesis.

3.4 Finding the topology of the Campus-wide Network

Finding the topology of the network is the first task of the Routing Service. As

explained before, a hierarchical approach has been taken to split up the routing

problems into manageable units. For convenience of discussion, suppose that the

network is itself a level-n region, where n is some number greater than zero.

This section is organized as follows. First, some special features that are required for

43

the topology finding functions of the Routing Server have been explained. Next, a

very crude description of the topology finding operation of the Routing Server has

been given. This has been done to give the reader a higher level insight into the

algorithm before introducing a lot of details.

There are two ways to read this section. If the reader only wants to get a feel for the

algorithm, it is recommended that he should skim over the description of the special

features and then he should only read the crude description of the algorithm. On the

other hand, for the reader interested in more details, the following is recommended.

The reader should first skim over the description of the special features and the

crude description of the algorithm. Next, the reader should read the exact

algorithm-referring to the description of the special features, if necessary.

This thesis will not attempt to describe the details of coding the various messages

that are required for the operation of the Routing Service. Also, no attempt will be

made to describe in detail how the Routing Servers, the gateways, or the nodes

organize the storage- of state associated with the operation of the Routing Service

except where absolutely necessary.

3.4.1 Eleven special features required for topology-finding

1. Gateways respond to a commori local transport address: Every gateway
has a local transport address on each subnet that it is connected to. The

local transport address of the gateway on every subnet is unique over the

subnet. However, it is required that all gateways on a subnet also

respond to some other common local transport address. The common
address for gateways on a subnet may be different from the common
address for gateways on another subnet. The common address for

gateways will be used to broadcast messages to all gateways on a
subnet and it is for this reason that the the common local transport

address may be referred to equivalently as the broadcast address for

gateways.

2. Nodes respond to a common local transport address: Just as gateways
respond to a common address other than their regular local transpbrt

44

address, all nodes on a subnet respond to a common local transport

address other than their regular address. It is possible to make the

common address for nodes identical to the common address for
gateways on the same subnet. Software can then be used to

differentiate between broadcasts meant for nodes from those meant for
gateways. However, it will be assumed, for ease of discussion, that the

common address for nodes is different from the common address for

gateways on the same subnet.

3. Remote Broadcast message: Before describing this message, it is

necessary to explain the standard representation of a message in this

thesis. This standard representation is given below.

To-<destination>(<Type of message>, <parameter 1>, (parameter 2>,

(parameter 3>,... ,(parameter n>)

Here (destination> is the destination for this kind of packet. Examples of

(destination> are gateways, nodes, etc. In an actual message, of course,
this corresponds to the source route that is used to send the message to

the appropriate destinations (which are of the type given in the

(destination> field of the description).

<Type of message>, (parameter 1>, etc. are all fields that correspond, in

an actual message, to pieces of information that are coded into the
internet transport packet. The details of coding this information are not
of importance to this thesis.

If this type of message has a standard reply message associated with it, it

will look like this:

From-(destination>(<Type of message>, (parameter a>, (parameter b>,

From-<destination> corresponds, in an actual message, to a source route

that leads from the destination to the originator of the To-<destination>
message. (The dynamic reverse route construction strategy, which was

described earlier, is used to get the reverse route required above.)

(Type of message>, (parameter a>, etc. now correspond to pieces of

information that are coded into the internet transport packet that is used

for the reply.

Now, to get back to the original discussion, nothing has been said so far

45

'

about the mechanism that is used to send a packet over a local network

using the local transport protocol. Indeed, each local network will have
its own local transport protocol that may be different from any other local

transport protocol. However, one assumption must be made about the
local transport protocol. The assumption is that if there are several

attachment points on a subnet with the same local transport address and
if a packet having the common local transport address is delivered to the

subnet, then the packet will eventually be delivered to all the attachment

points on the subnet with the common local transport address.

The remote broadcast message looks like this:

To-gateway(Remote broadcast, destination, local transport address of

subnet, packet)

The "destination" field of the message can contain either "nodes" or

"gateways". This field essentially tells the recipient of the message
whether the packet included in the "packet" field should be broadcast to

all the gateways or all the nodes on the subnet identified in the "local
transport address"8 field. Suppose, for example, that the "destination"

field of the message says "nodes". The gateway will then place the
packet contained in the message on the appropriate subnet using the
correct local transport protocol (after putting the common address for
nodes on the subnet in the local transport address field of the packet).
The gateway will also be responsible for arranging the internet source
route field of the packet that it will send so that it looks as if the originator

of the packet is the same as the originator of the remote broadcast

message sent to the gateway.

4. Gateway Descriptor: Each gateway has a gateway descriptor associated
with it. The descriptor is essentially supposed to store information about
where the gateway belongs in the hierarchical configuration of the

network, the routes to the various Routing servers of interest, and the

class of service information about the gateway and the various regions
and local nets around it. To be more precise, a gateway descriptor

consists of. the following pieces of information:

a. The unique Identifier of the gateway.

b. The local transport addresses, on the conceptual subnet of the

8This local transport address is the address of the subnet on the conceptual subnet of the gateway.

46

.. ".

gateway, of the subnets that the gateway is connected to.

c. The local transport address on each subnet.

d. The class-of-service information on the gateway.

For each air of local networks connected to the gatewav:

e. The highest level of the gateway between the local networks. (If

both the local networks belong to the same level-i region then the
highest level of the gateway between them is taken, by convention,

to be 0. It should be noticed that if this highest level is i, then the
gateway is also a level-j gateway between the two local networks
for 0<j<i.)

For each local network connected to the aatewav

For each level reaion on that side

f. The unique identifier of the region.

g. The class-of-service information on the region.

h. The route to the Routing Server of the region9 .

It is not necessary for the gateway to have all this information at all times.

In fact, when the gateway first begins operation, it is only necessary for it

to know b, c, and e. The rest of the information gets filled in as part of

the operation of the Routing Seryice as will be seen later. Also, b, c, and

e have to be kept in some kind of stable storage because it is required

that this information be retained by the gateway even if it crashes and

comes up again.

5. Node descriptor: Each node has a node descriptor associated with it.
The node descriptor consists of the following pieces of information:

a. The unique identifier of the node.

b. The class-of-service information on the node.

9 For the level-O region (i.e., the local network), this is not applicable. Another exception to this rule is
that the a level-O gateway also contains information on the unique identifier of the level-1 region and the
route to the level-1 Routing Server.

47

c. The local network addresses of the attachment points to which it is

connected.

d. The unique identifiers of the local networks to which it is

connected.

Clearly, c and d change whenever a node is moved from one local
network to another. Information on c is acquired by the node when it is

connected to a new place in the network. The mechanism for learning d

dynamically will be described later.

6. What-is-your-descriptor? message: There are two variations on the

What-is-your-descriptor? message. The two variations are shown below:

a. To-gateway (What-is-your-descriptor?)

From-gateway (What-is-your-descriptor?, gateway descriptor)

The gateway descriptor here is the same as the standard one

described before.

b. To-node (What-is-your-descriptor?)

From-node (What-is-your-descriptor?, node descriptor)

This node descriptor is the same as the one described earlier.

7. Fill-in-your-descriptor message: This message appears as follows:

To-gateway (Fill-in-your-descriptor, <information pair 1>, <information

pair 2>,...)

The information pairs mentioned above consist of two parts

themselves- the first is the kind of information that must be filled In and

the second is the information itself.

A variation of this message also exists:

To-node <Fill-in-your-descriptor, <information pair a>, <information pair

b>, ...)

Sometimes, an originator of this message might want the gateway to pick

up the reverse route as one of the pieces of information to be filled In.

48

For example, a Routing Server level-i might want to fill in some gateway

descriptor that needs the route to the Routing Server. The Routing

Server might only know the route from itself to the gateway. In that case,

the information pair field corresponding to this route (from the gateway

to the Routing Server) may refer to the reverse route constructed by the

dynamic reverse route construction strategy.

8. Give-me-descriptors-of-gateways-at-the-edge-of-your-region message.

This message looks as follows:

To-Routing Server(Give-me-descriptor-of-gateways-at-the-edge-of-your-
region, hierarchical address of attachment point where I want routes

from, number of last update)

The reply to this message looks as follows:

From-Routing Server (Give-me-descriptor-of-gateways-at-the-edge-of-

your-region, <information changed?>, <information on gateways>)

The information that the Routing Server is asked to furnish concerns the

gateways that lie on the boundary of the region that the Routing Server
administers. This information involves not only the descriptors of the
gateways but also routes to the gateways from the point in the network
specified in the request. Each update by the Routing Server or
information about the gateways is numbered. Therefore, if the request

contains the latest update number, the repiy puts no in the "information
changed?" field and makes the "information on gateways" field blank. If,
however, the update number is different now, then the "information

changed?" field has yes in it and the "information on gateways" field is
filled with the appropriate information. The "information on gateways"

field, in fact, consists of the following sub-fields:

a. List of descriptors: This is a list of descriptors of the gateways on

the edge of the region.

b. List of routes to the gateways: This is a list of the routes to the

gateways mentioned in the "list of descriptors" field in the same
order. The routes are given from the attachment point whose
hierarchical address was specified in the request. The way to
specify a hierarchical address is described later in this thesis.

c. Number of this update: This field speL.tIfes the update number of

49

the information on the gateways sent back in this reauest.

9. Here-is-the-route-to-Routing Server-above-you message: This message

looks as follows:

To-Routing Server (Here-is-the-route-to-the-Routing Server-above-you,

route, unique identifier of Routing Server, list of unique identifiers of

Routing Servers above the one mentioned, list of Routes to Routing

Servers above the one mentioned from the originator of this message)

This message will be used by some Routing Server level-i (where i > 1)

and will be sent to one of the Routing Servers level-(i - 1) under the level-
i Routing Server. The route specified in the message may refer to the
reverse route that is normally constructed. Also, if the level-i Routing

Server has information (regarding unique identifiers and routes) on
Routing Servers above it in the hierarchy, then that information is sent,
too.

10. I-would-like-to-get-informati,)n-on-Routing Server level-i message: This

message looks as follows:

To-Routing Server (I-would-like-to-get-information- -n-Routing Server

level-i)

From-Routing Server(I-would-like-to-get-information-on-Routing Server

level-i, highest level j < i of Routing Servers for which I have information,
list of unique identifiers of Routing Services above me until level-j, list of
routes to Routing Servers above me until level-j)

All fields in this message type are self-explanatory. The routes to
Routing Servers are from the Routing Server to which the message was

directed.

11. What-is-the-route-from-me-to-you? message: This message looks as

follows:

To-Routing Server (What-is-the-route-from-me-to-you?, my hierarchical

address)

From-Routing Server (What-is-the-route-from-me-to-you?, route)

Clearly, the originator of the message must have a route to the Routing

Server to be able to send the message in the first place. However, the

50

__

% 1 " -- L -- ,-'--,r= ..
"J

.
- - L

route may not be a good one and it may go past several other attachment

points unnecessarily. The message described above may then be used

to find a relatively shorter route.

Assume for now that the Routing Server to which this query is directed is

capable of coming up with a route of the type specified. The exact
algorithm for finding this route or any other route, for that matter, will be

described later.

It should be noted that most of the messages described in this section had some kind

of reply associated with them. The replies to those messages also act as

acknowledgments for the messages themselves and, therefore, there is no need to

send explicit acknowledgments. There are two messages, however, which do not

have any replies associated with them-namely, the Fill-in-your-descriptor message

and the Here-is-the-route-to-Routing Server-above-you message. It may be

necessary to send explicit acknowledgments for these messages although none have

been mentioned in the description of these messages.

3.4.'. A crude description of the algorithm

One assumption of this algorithm is that a level-i Routing Server exists within the

level-i region that it serves or, to be more precise, the node on which the Routing

Server runs is connected to an attachment point within the level-i region that it

serves. This is not an unreasonable assumption considering that the main motivation

for dividing up the network into regions is to provide better service to each region. It

is, therefore, natural to place the Routing Server as close as possible to all the nodes

or Routing Servers below it in the hierarchy.

Another thing to notice is that level-i Routing Servers are a little different from level-i

Routing Servers, where i > 1. The reason is that level-1 Routing Servers do not

gather their topology information from lower level Routing Servers but instead

directly from the nodes and gateways in the level-1 region. The operation of a level-1

Routing Server will, therefore, be described first and then the operation of other

Routing Servers will be described.

51

Also, note that the operations that are described are actually repeated over and over

again. The frequency of the repetitions should be high enough so that changes get

noticed fairly quickly but the frequency should not be so high that the Routing

Service gets slowed down unduly by just this part of its responsibility.

3.4.2.1 The operation of a level-1 Routing Server

Assume that when a level-1 Routing Server first begins operation, it knows absolutely

nothing about the topology of the network. It will only be required that the Routing

Server should know that it is level-1 and also to know the unique identifier of the

region that it will serve1° . Now, it is known that the node on which the Routing Server

runs is attached to a point in the same level-1 region11 . The idea is that the Routing

Server should find out first about the nodes and gateways on the subnet on which it

exists and then expand its knowledge to nodes and gateways in neighboring subnets

until the boundary of the level-1 region is finally reached.

Therefore, to begin with, the Routing Server sends out a What-is-your-descriptor?

packet on its subnetwork directed to all the nodes there. This is done by putting the

common address for nodes in the local transport address field of the What-is-your-

descriptor? packet. Next, the Routing Server sends out a What-is-your-descriptor?

packet to all the gateways on its subnet. The replies that the Routing Server gets

back from nodes and gateways give it information on all the nodes and gateways on

the subnet (except those that are down temporarily 12).

The gateway descriptor that the Routing Server receives will inform it of other

subnets in the region that it has not explored yet. Using remote broadcasts, the

10In fact, the Routing Server need not even know this unique identifier. It can get a unique identifier

from some network-wide unique identifier dispensing service or some such means before proceeding.

11Assumption made earlier.

12There is no need to despair, however. Information on these will get collected in later iterations of

this algorithm.

52

Routing Server will put What-is-your-descriptor? messages for both gateways and

nodes on all subnets that it has not explored yet. Again, information from nodes and

gateways is collected and organized appropriately. As replies from gateways come

in, the Routing Server gets to know about other subnets in the region that it was not

aware of before. All such subnets are then explored until no more subnets are left

unexplored.

It should be noted that there may be several ways in which a subnet may be revealed

to the Routing Server (i.e., through different chains of gateways). However, a single

subnet needs to be explored just once through remote broadcasting What-is-your-

descriptor? messages (for nodes and gateways) on it. Discovering that each subnet

is explored just once is a responsibility of the Routing Server and it is possible

because each local network has a unique identifier that is part of the descriptors of

gateways that are connected to the subnet.

Another important observation concerns gateways that lie on the boundary of the

region and that are connected to several subnets. Clearly, one of the subnets to

which such a gateway is connected lies within the level-1 region (because the

Routing Server became aware of the gateway through a broadcast on some subnet).

Also, for the gateway to be on the boundary, one of the other subnets must be in

another level-1 region (i.e., the gateway must be level-1 between these two subnets).

The important thing is that the other subnets may be either within the level-1 region of

the Routing Server in question or they may be out of it. If they are within the region,

they must be explored (unless they have already been explored). The point is that a

gateway may be on the edge of a region and yet some of the subnets that it leads to

may be within the region and these should be explored as usual.

Also, note that it has not yet been described how the information collected from

nodes and gateways is organized. The purpose of describing the topology-finding

algorithm is only to convince the reader that the topology can be found (and

efficiently).

53

-Z

The next thing that will be described is the operation of a level-i Routing Server,

where i > 1. As explained earlier, the differences in the algorithms are due to the fact

that this Routing Server will get the topology information from Routing Servers below

it and not directly from nodes and gateways below it in the hierarchical configuration.

3.4.2.2 The operation of a level-i Routing Server

Just like a Routing Server level-i, a Routing Server level-i has no knowledge of the

topology when it first begins operation. All it knows is that it is a level-i Routing

Server and that it knows the unique identifier of the region. The idea here is to

contact all the Routing Servers of level-(i - 1) below the level-1 Routing Server in the

hierarchy and to gather information from them about the gateways of level-(i - 1) at

the edge of their regions.

To do this, the Routing Server of level-i must first contact the Routing Server of level-

(i - 1) in whose region it lies. This is done by first getting to the Routing Server level-i

(in whose region it lies) and working up to the Routing Server level-(i - 1). This, in

turn, is done by first sending a What-is-your-descriptor? packet to all the gateways on

the subnet on which the Routing Server level-i is located. Any one of the gateway

descriptors received in reply will give the level-i Routing Server the route to Routing

Server level-i and the unique identifier of the level-i region3. Next, the Routing

Server level-i sends an I-would-like-to-get-information-on-Routng-Server level-(i - 1)

message to the level-1 Routing Server 13 . The route to the Routing Server level-2 is

then computed by concatenating the route to the level-1 Routing Server with the

route from the level-1 Routing Server to the Routing Server level-2. An I-would-like-

to-get-intormation-on-Routing Server level-(i - 1) is then sent to the level-2 Routing

Server and so on until finally the route to the level-(i - 1) Routing Server is found. It

should be noted that short-cuts can be taken if some Routing Server in the chain up

13As will be seen later, a level-s Routing Server sends to each level-(s - 1) Routing Server below it the

route from the level-(s - 1) Routing Server to itself as part of its topology-finding algorithm. Therefore,
the level-I Routing Server is expected to have the route from it to the level-2 Routing Server above it.

54

shami

from the level-1 Routing Server to the level-(i - 3) Routing Server knows of more than

one Routiny Server above it. (This was explained in the I-would-like-to-get-

information-on Routing Server level-i message.)

This route that the Routing Server level-i now knows to reach Routing Server level-(i

- 1) may not be the best route because it will go by several other Routing Servers

along the sequence from Routing Server level-1 to Routing Server level-(i - 2). To get

a good route, the Routing Server level-i sends a What-is-the-route-from-me-to-you?

message to the Routing Server level-(i - 1). Using this route the Routing Server level-

i then sends a Here-is-the-route-to-Routing Server-above-you message to Routing

Server level-(i - 1) and it also sends a Give-me-descriptcns-of-gateways-at-the-edge-

of-your-region message to the same Routing Server level-(i - 1).

Now, the Routing Server level-i can, by inspection of the gateway descriptors

received from Routing Server level-(i - 1), find out the routes to the Routing Servers

of the level-(i - 1) regions lying beyond the level-(i - 1) region to which the level-i

Routing Server belongs but lying within the level-i region being considered. This is

done as follows. Each gateway on the boundary of the level-(i - 1) region to which

the level-i Routing Server belongs will have routes to the Routing Servers level-(i - 1)

lying beyond it. To get the route to any of those level-(i - 1) Routing Servers, the

Routing Server level-i has to merely concatenate the route from itself to the gateway

with the route from the gateway to the other level-(i - 1) Routing Server.

Using these routes to other level-(i - 1) Routing Servers (within the level-i region), the

level-i Routing Server can send Here-is-the-route-to-Routing Server-above-you and

Give-me-descriptors-of-gateways-at-the-edge-of-your-region message to the level-(i

- 1) Routing Servers. This can then be repeated for each level-(i - 1) region that lies

in the level-i region until all of the level-(i - 1) regions in the level-i regions have been

explored.

Again, the details of organizing the topology data will not be described now. For

55

present purposes, the claim is made that the level-i Routing Server will, at the end of

the topology finding operation described above, know about the connections of the

level-(i - 1) regions in the level-i regions and it will know the descriptors of the level-(i

- 1) gateways that connect the level-(i - 1) regions.

The way the algorithm has been described so far, a level-i Routing Server will get

information from a level-(i - 1) Routing Server below it only when the level-i Routing

Server sends a Give-me-descriptors-of-gateways-at-the-edge-ot-your-region

message. However, it might be useful to provide a feature whereby a level-(i - 1)

Routing Server could bring to the attention of the level-i Routing Server above it any

changes that might have occurred in the level-(i - 1) region since the last update that

was sent to the level-i Routing Server14 . In fact, one can go even further and make a

level-(i - 1) Routing Server always report to the levc -i Routing Server immediately

after an iteration of its topology-finding operation. These chan es can be reported to

the level-i Routing Server in the form of a reply to a Give-me-desciiptors-of-gateways-

at-the-edge-of-your-region message (even though, in fact, no such message may

have been sent).

This is the end of the crude description of the topology-finding algorithm. The rest of

this section gives a detailed description of the algorithm.

3.4.3 The full algorithm for finding the topology of the network

First, the algorithm that a level-1 Routing Server uses for topology-finding and an

informal explanation about how it works is given. This is followed by a similar

description for the algorithm that a level-i Routing Server uses for topology-finding

and by an informal argument for its correctness.

Note that we are only referring to changes in the level-(i - 1) region that the level-i Routing Server is

interested in.

56

3.4.3.1 The level-I topology-finding algorithm

The algorithm that will be described uses four different lists and a queue. All the lists

and the queue start out empty for each iteration of the topology-finding algorithm.

The lists are:

1. List of node descriptors

2. List of gateway descriptors

3. List of gateways on the boundary of the region: This list only contains the

unique identifiers of the gateways on the boundary.

4. List of local net descriptors: A local net descriptor will consist of the

following two items:

a. The unique identifier of the local net in question.

b. The unique identifiers of the gateways on the local net.

The queue that the algorithm uses will be called the exploration queue. Each item on

the queue will consist of the unique identifier of some local net and also the route to

the local net from the Routing Server.

The topology-finding algorithm is given below.

1. Put the local net to which the Routing Server is connected on the

exploration queue.

For each local net on the exoloration aueue do:

2. Send a What-is-your-descriptor? message to all the gateways on the
local net. Use the remote broadcast feature with "gateways" in the

"destination"' field and the contents of a regular What-is-your-
descriptor? message in the "packet" field of the remote broadcast
message. Send the remote broadcast message to the last gateway on
the path to the local net with an appropriate "local network address of
subnet" field.

3. Send a What-is-your-descriptor? message to all the nodes on the local

net by using the remote broadcast feature.

57

4. For each reolv from 2 do:

a. Check to see if the gateway descriptor contains the following

information:

. the unique identifier of the gateway

. the unique identifiers of the local networks to which the
gateway is connected

- the route to the Routing Server

If the unique identifier of the local net (currently being explored),
as contained in the descriptor, is different from the unique
identifier of the local net in the descriptor of the last gateway on
the path of the remote broadcast sent in step 2, then do the

following. Check the exploration queue to see if it cootains an

entry corresponding to a local net with the unique identifier that
the present gateway descriptor contains. If there is such an entry,
remove it from the exploration queue.

If any of the above pieces of information that are checked for in the

gateway descriptor are incorrect or missing, send a Fill-in-your-
descriptor message to the gateway to change the descriptor
suitably.

b. Add this new updated gateway descriptor to the list of gateway

descriptors for the region. If a descriptor for this gateway already
exists in the list, then it is replaced by this new descriptor.

c. If the gateway happens to be level-1 between the present local net
and some other local net to which it is connected, then add it to the
list of gateways on the boundary of this level-i region.

d. Add the local nets to which the gateway leads and that lie within
the same level-I region to the end of the exploration queue (unless
the local nets in question are already in the queue or unless there
is an entry for the local net in the list of local net descriptors).

5. For each reolv from 3 do:

a. Check the node descriptor to see if it has the following pieces of

58

_____ ____

information:

-the unique identifier of the node

-the unique identifier of the local net being explored

If either piece of information is missing 15, then send a Fill-in-your-
descriptor message to the node to complete it.16

b. Add this new updated node descriptor to the list of node
descriptors for the region. If it is already there, just replace the old
descriptor with the new one.

end of do

6. Complete the local net descriptor for the local net just explored and add
it to the list of local net descriptors for the region.

end of do

7. Send a reply to a Give-me-descriptors-of-gateways-at-the-edge-of-your-
region message to the Routing Server above this one (although no such
message may have been sent by the higher level Routing Server).

3.4.3.2 How does the level-1 topology-finding algorithm work?

No formal proof for the correctness of the algorithm will be given. However, some

less-than-obvious properties of the algorithm will be clarified.

The exploration queue is used to store leads to local nets that have not been

explored yet. The most important property of the exploration queue is that it

promotes a breadth-first search of the level-1 region as opposed to a depth-first

search (if depth is defined in terms of number of hops). This ensures that the local

151t might seem a little exotic to get a unique identifier for a node but this facility is provided to take

care of the rare circumstance when a node does not have its own unique identifier due to some reason.
Normally, every node is expected to come with its own unique identifier.

16The unique identifier for the local net that is given to the node is the same as the unique identifier
that the gateway descriptors wore given for this local net.

59

net zero hops away from the Routing Server (i.e., the local net on which the Route

Server resides) is searched first. Next, all local nets one hop away are searched and

then all local nets two hops away, and so on 17 . Therefore, the path that is used first

to get to a local net is the minimum-hop path from the Route Server. This is the

reason why the route from gateways to the Route Server is put in the gateway

descriptors as the local net is being explored. It is not necessary to wait for the

completion of the algorithm to find the shortest hop path from each gateway to the

Route Server.

An attempt has been made in the algorithm to explore all local nets only once. This is

the reason why a local net is not put in the exploration queue if it is already

somewhere in the queue or if it is in the list of local net descriptors. However, this

property may not always be true and sometimes a local net may be explored more

than once if care is not exercised. Consider the case of a local net that does not

have a unique identifier yet. Also, assume that the local net is connected by

gateways to two of the local nets that are about to be explored. Since the gateways

that lead to the local net in question will not have a unique identifier for it, the Routing

Server will get unique identifiers for the local net for each of the gateway descriptors

not knowing that it is for the same local net. Since the unique identifiers are different,

the local net will be placed on the exploration queue twice. The algorithm is,

however, smart enough to recover from this situation. When the local net is first

explored through one of the gateways that leads to it, the Routing Server will notice

that some other gateway has an inconsistent unique identifier for the same local net.

The exploration queue is scanned to check if there is an entry with the inconsistent

unique identifier. If there is, then it is removed from the exploration queue. Also, the

gateway descriptor for the gateway with the inconsistent unique identifier is

corrected accordingly, as usual.

There is another question that is worth dwelling on for a little while. Is the topology

17 In this context, "all local nets" refers to all local nets that lie in the level-I region being considered.

60

AMf

information really complete? The claim is that the topology data is complete. The

reason-to put it very intuitively-is that every lead to a local net is pursued (if it lies

within the same level-1 region) and, therefore, each local net in the region is

explored. Also, since all node descriptors and gateway descriptors on each local net

are collected, complete topology information for the level-1 region exists.

3.4.3.3 The level-i topology-finding algorithm

The topology-finding algorithm of a level-i Routing Server (where i > 1) uses three

different lists and a queue. All the lists in the queue start out empty for each iteration

of the topology-finding algorithm. The lists are:

1. List of gateway descriptors: The gateways in the list are all the gateways

at the edges of the various level.(i - 1) regions in the level-i region.

2. List of gateways on the boundary of the level-i region.

3. List of level-(i - 1) region descriptors: A level-(i - 1) region descriptor

consists of the following three items:

. The unique identifier of the level-(I - 1) region.

-The unique identifiers of the gateways on the boundary of the

level-(i - 1) region.

- The route to the Routing Server of the region.

The queue that the algorithm uses will be called the exploration queue. Each item on

the queue will consist of the unique identifier of some level-(i - 1) region and the

route to the Routing Server of the level-(i - 1) region.

The topology-finding algorithm is given below.

1. If the route to the level.(i - 1) Routing Server is known, then go to step 8,

else go to step 2.

2. Send a What-is-your-descriptor? message to all the gateways on the
local net to which the Routing Server is connected by putting the the

61

. ~ ~~~

r7
common local transport address for gateways in the local transport
address field of the packet.

3. Send an I-would-like-to-get-information-on-Routing Server level-(i - 1)
message to the level-1 Routing Server. (The route to the level-i Routing

Server is picked out from any of the gateway descriptors received as

replies to 2.)

4. Check to see if the reply to step 3 contains information on the route to
the level-(i - 1) Routing Server 18. If it does then the route to the level-(i -
1) Routing Server from the level-i Routing Server is constructed by
concatenating the route from the level-i Routing Server to the level-1

Routing Server with the route from the level-i Routing Server to the

level-(i - 1) Routing Server. Now, go to step 8.

On the other hand, if the highest level that the level-1 Routing Server
knows about = i < (i - 1), then construct the route to the level-j Routing

Server from the level-i Routing Server.

5. Send an I-would-like-to-get-information-on-Routing Server Ievel-(i - 1)
message to the level-j Routing Server.

6. Check to see if the reply to 3 contains information on the route to the
level-(i - 1) Routing Server. If it does then the route to the level-(i - 1)
Routing Server from the level-i Routing Server is constructed by
concatenating the route from the level-i Routing Server to the level-j
Routing Server with the route from the level-j Routing Server to the level-
(i - 1) Routing Server. Now, go to step 8.

Otherwise, construct the route to the highest level Routing Server
(known to the level-j Routing Server) and make i = the level of this
Routing Server. Now, go to step 7.

7. Send a What-is-the-route-from-me-to-you? message to the level-(i - 1)
Routing Server. (Note that the hierarchical address to the sender has to
be included in a What-is-the-route-from-me-to-you? message. The level-i

Routing Server knows the unique identifiers of the regions in which it

18A level-s Routing Server will always know the route from it to the level-(s + 1) Routing Server after
the level-(s + 1) Routing Server goes through the topology-finding algorithm. See step 11 to find out the
reason.

62

resides from level-0 to level-(i - 1)19. Only the information corresponding
to these fields is put in the hierarchical address (of the level-i Routing

Server) that is placed in the What-is-the-route-from-me-to-you? message.

8. Put the level-(i - 1) region in which the level-i region lies on the

exploration queue.

For each level-(i - 1) region on the exploration oueue do:

9. Send a Give-me-descriptors-of-gateways-at-the-edge-of-your-region

message to the Routing Server of the level-(i - 1) region. If this does not
work for some reason, then go to step 1.

10. For each aatewav descriptor in the relly to 9 do:

a. Check to see if the gateway descriptor contains information on the

unique identifier of the level-i region and the route to the level-i
Routing Server.

If the unique identifier of the level-(i - 1) region (currently being

explored), as contained in the descriptor, is different from the
Lnique identifier of the region, as contained in the entry for the
level-(i - 1) region in the exploration queue, then do the following.
Check the exploration queue to see if it contains an entry

corresponding to a level-(i - 1) region with the unique identifier
that the present gateway descriptor contains. If there is such an

entry, remove it from the exploration queue.

If any of the pieces of information checked for above is missing or

incorrect, send a Fill-in-your-descriptor message to the gateway to

update that information.

b. Add this new updated gateway descriptor to the list of gateway

descriptors for the region. If a descriptor for the gateway already

exists in the list, then it is replaced by this new descriptor.

c. If the gateway happens to be level-i between the present level-(i -
1) region and some other level.(i - 1) region to which it is

191t gets this information from the reply to 2 and the replies to the Iwould-like-to-get-information-on-

Routing Server level-(i - 1) messages that it sends out.

63

connected, then add it to the list of gateways on the boundary of

this level-i region.

d. Add the level-(i - 1) regions, which the gateway leads to and which
lie within the level-i region, to the end of the exploration queue

(unless the level-(i - 1) regions in question are already in the queue
or unless there is an entry for the level-(i - 1) region in the list of

level-(i - 1) region descriptors).

11. Send a Here-is-the-route-to-Routing Server-above-you message to the

level-(i - 1) Routing Server with the relevant information.

12. Complete the region descriptor for the level-(i - 1) region just explored

and add it to the list of level-(i - 1) region descriptors for the level-i

region.

end of do

13. Send a reply to a Give-me-descriptors-ot-gateways-at-the-edge-of-your-

region message to the Routing Server above this level-i Routing Server

(although no such request may have come from the higher level Routing

Server).

3.4.3.4 How does the level-I topology-finding algorithm work?

There are only a few differences between the topology-finding algorithm for a level-i

(i > 1) Routing Server and the topology-finding algorithm of a level-1 Routing Server.

Essentially, a level-(i - 1) region is treated just like a local net was treated before.

There are two important differences, however.

The first difference is that the gateway descriptors for a lower level region are not

collected by using remote broadcasts (as before) but by sending a Give-me-

descriptors-of-gateways-at-the-edge-of-your-region message to the lower level

Routing Server.

A second difference lies in the fact that now the level-i Routing Server has to find a

64

route to the Routing Server for the level-(i - 1) region, in which it resides, before any

topology information can be collected. This is done by getting the route to the level-1

Routing Server from a gateway on the same local net and then by sending a series of

I-would-like-to-get-information-on-Routing Server level-(i - 1) messages to higher

and higher level Routing Servers until the route to the level-(i - 1) Routing Server is

found. An optimization that allows the level-i Routing Server to avoid contacting all

Routing Servers in the sequence from the level-1 Routing Server up to the level-(i - 2)

Routing Server is tucked in.

Apart from these two major differences, this algorithm is basically the same as the

one for the level-1 Routing Server. Hence, the same correctness arguments apply.

3.5 Computing routes in the campus-wide network

It was mentioned in Sec. 3.3 that it is advantageous to use shortest hop paths in the

campus-wide environment. The Routing Service will, therefore, attempt to convert its

topology information into an equivalent graph ard then apply a shortest hop

algorithm to find shortest hop paths. inventing shortest hop path algorithms is not

the subject of this thesis; there are plenty available already. The shortest hop

algorithm described here is simpler than several well-known shortest path algorithms

that compute shortest paths in graphs with directed or variable-cost edges. For

example, Dijkstra's algorithm [1, 2, 8,16, 5] finds shortest paths in a directed graph

with no negative-cost (but variable) edges. The simplicity of the shortest hop

algorithm, which the Routing Service will use, arises from the fact that in this case all

paths are bi-directional and all hops are treated equivalently (i.e., no variable costs

are assigned to hops).

As mentioned before, the Routing Service has first to convert its topology information

into an equivalent graph before applying its shortest hop algorithm. A level-i (where i

is 1 or greater) Routing Server will treat each of the level-(i - 1) regions in its territory

as a node in the graph. Furthermore, each link between any two level-(i - 1) regions

65

will be treated as an edge in the graph. Therefore, one gateway in the region can

correspond to more than one edge in the graph. For example, if a gateway connects

three level-(i - 1) regions, then each level-(i - 1) region will correspond to a node in

the graph and the gateway will correspond to three edges- one between each pair

of nodes in the graph.

After constructing the graph for its region, a level-i Routing Server will apply a

shortest hop algorithm to find shortest hop paths between all pairs of nodes in the

graph. This, in turn, is done by first constructing shortest hop paths from one node

to all other nodes in the graph and then repeating the same algorithm for each other

node. The algorithm that finds shortest hop paths from one node to all other nodes is

described below. It essentially does a breadth-first search of the graph starting from

some source node and outputs the shortest hop routes (as well as the number of

hops in the routes) from the source node to the other nodes as it does the search.

The shortest hop algorithm will use a FIFO queue.

The shortest hop algorithm

1. Enqueue each edge from the edge list of the starting node, with # of

hops = 1 and path to the node set as this edge.

2. Dequeue first edge. Output node with its associated path and # of
hops. Also, insert the path in the table of shortest hop paths for the

region.

3. For the node in the previous step, check its edge list. For each node in

the edge list, do the following. If the node in the edge list has already
been output, then do nothing. If, on the other hand, the node has not
been output yet, then enqueue it with # of hops equal to one plus the #
of hops output in the last step. Also, the path to the node should be set
to the path output in the last step with this last edge added on at the end.

4. Repeat steps 2 and 3 till the queue is empty.

The algorithm described above only finds shortest paths from one node to all the

other nodes. The algorithm can be repeated # nodes times to find shortest hop

66

paths between all pairs of nodes.

The algorithm described so far has one flaw. If one edge is deleted, the whole

algorithm has to be repeated all over again. A complete repeat can be avoided by

finding a path between the nodes on the two sides of the deleted edge 2° . This path

can then be spliced into any path in place of the deleted edge. The resulting path

may not be a shortest hop path but the path will serve as a temporary measure until

shortest hop paths are computed again between all pairs of nodes. In fact, the same

principle can be used to find paths that do not go through certain specified nodes or

edges even if they may not have been deleted. In terms of the campus-wide network,

the previous technique is applicable to finding routes that avoid certain regions or

gateways. The technique will be used to implement user control of paths and to

respond to faults in the network as will be seen later.

3.6 Answering queries about routes

This section is organized as follows. A description will be given first of the

specification of hierarchical addresses. Next, some special features that are

necessary for users to ask the the Routing Service for routing information will be

explained. A description of the exact procedure to be employed by both users and

the Routing Service to process queries for routing information will follow.

3.6.1 Specification of hierarchical addresses

A great deal of flexibility has been provided in the way names of attachment points

can be specified. As explained before, these names are hierarchical.

20In fact, the algorithm described above can be used to do this if the source node is set to one of the

nodes on either side of the edge. There is another reasonable approach to this problem. It is possible to

use shortest path algorithms that require only an incremental calculation rather than a complete
recalculation of all shortest path routes for a single change in network topology, e.g. the new ARPANET

routing algorithm [12]

67

For a network of level-n, a completely specified hierarchical address for an

attachment point would look as follows:

UID /UID /.../UID /UID /LTA,
(n-i) (n-2) 1 0

where UID is the unique identifier of the level-(n - 1) region in which the
(n - 1)

attachment point lies, UID is the unique identifier of the level-(n - 2) region in(n - 2)

which it lies and so on. Similarly, UID is the unique identifier of the level-O regiono
(i.e., the local network) in which it lies, and LTA is the local transport address of the

attachment point on the local network.

However, a hierarchical address need not be completely specified as shown above.

A hierarchical address may have an implicit prefix. An implicit prefix can be used if

the higher level fields that are left out correspond to the higher level regions to which

the originator of the query belongs. For example, a hierarchical address might look

as follows:

UID /UID /.../UID /UID /LTA,
i (i-i1) 1 0

where i is less than (n - 1).

There is another variation on hierarchical addrm.,es. A hierarchical address may

have omitted components. This is used when the unique identifiers of some regions

are not known. Those fields that are unknown may be omitted. It is not allowed to

omit the highest level field of the hierarchical address after an implicit prefix. An

example of a hierarchical address with omitted components is as follows:

UID /UID //UID /...//UID /LTA.
i (i-1) (i-3) 0

In the example shown above, the unique identifiers of the level-(n - 3) and level-1

regions were not known and they were omitted. In fact, the example shown above

illustrates another feature; it is possible that a hierarchical address may have an

implicit prefix and omitted components at the same time.

68

3.6.2 Some special features required for answering queries

There are essentially two special messages required. The format for their description

is the same as before.

1. What-is-the-route-to-the-Routing Service? message:

To-gateway(What-is-the-route-to-the-Routing Service?)

From-gateway(What-is-the-route-to-.the-Routing Service?, route, unique

identifier of the local network)

The route that is returned in the reply is the route to the level-1 Routing
Server.

2. What-is-the-route-from-the-source-to-the-destination? message:

To- Routing Server(What-is-the-route-from-the-source-to-the-
destination?, hierarchical address of source, hierarchical address of
destination, unique identifier of destination)

From- Routing Server(What-is-the-route-f rom-the-source-to-the-

destination?, status of query, route, actual hierarchical address of
destination)

The hierarchical address of the source must be specified up to the level-

0 address only (i.e., only the local net field and the LTA field need to be
filled in).

The "status of query" field can say any of the following things: "Route

found", "No such destination found", or "No path to destination found".
Each possibility for the "status of query" field is self-explanatory. If a

route is found, then it is sent back in the "route" field of the reply. Also,
if the message to the Routing Server contains omitted components, and
the exact address (of the destination) is discovered by the Routing

Server, then 'it is returned in the "actual hierarchical address of the
destination" field of the reply.

At this point, it is reasonable to ask if it is plausible for a source node to
know the hierarchical address of the destination node. It is definitely not
plausible for each node to find the hierarchical address of all other nodes
by itself. However, it is possible for a source node to ask some node

69

name location service in the network to map a destination node name 21

into the hierarchical addresses of the attachment points to which the
destination node is connepted.

3.6.3 How are routes looked up?

To begin with, assume that a hierarchical address may have an implicit prefix but it

may not contain any omitted fields.

To make a routing query, a node must first know the route to the level-1 Routing

Server. This is accomplished by sending a What-is-the-route-to-the-Routing Service?

message to the gateways on the local net of the node22. The route that is sent back

by the gateways is the route from any node on the local net to the level-1 Routing

Server. (This information is retrieved by the gateway from its descriptor). Another

piece of information that is sent back is the unique identifier of the local net. This

information is required by the node when it makes a request to the Routing Server.

(The node may already have this information as part of its node descriptor if it has

been there long enough for the Routing Service to have updated the descriptor.)

The next thing that the node should do is send a What-is-the-route-from-the-source-

to-the-destination? message to the level-1 Routing Server. The only fields required in

the hierarchical address of the source are the unique identifier of the local net and

the LTA of the attachment point.

On receiving the request, the level-1 Routing Server checks the level-1 unique

identifier field of the destination hierarchical address. If the unique identifier is the

same as the unique identifier of the level-1 region of the Routing Server, then the

Routing Server looks up its routing tables to find the route from the source to the

21 This node name need not be the unique identifier that has been referred to before.

22 This is done by putting all zeros (the common address for gateways) in the local transport ddrees

field of the message.

70

- yr

destination. Three possibilities exist-a route is found to the destination, no such

destination is found, or no route is found to the destination (if the destination is found

to exist but no paths lead to it due to temporarily broken gateways or subnets).

Depending on the above three cases, the "status of query" field of the reply to the

What-is-the-route-from-the-source-to-the-destination? message is appropriately filled

in. If a route is found, then it is sent back in the reply. The field that contains the

actual destination address may be left blank for now.

When the Routing Server checks the level-1 field of the destination address, it is

possible that the level-1 field may not correspond to the level-1 region of the Routing

Server. In this case, the Routing Server checks higher level fields to see if they

correspond to the unique identifiers of any higher level Routing Server that it has

information on 23. For the first such field, as the Routing Server scans from the lower

level fields up to the higher level ones, the Routing Server does the following:

Suppose that the field in question Is the level-j field. It was explained before that if

the level-1 Routing Server has information on the level-j Routing Server above it, then

it also has information on all the levels of Routing Servers between it and the level-j.

Routing Server. The level-1 Routing Server will now send a What-is-the-route-from-

the-source-to-the-destination? message to the level-i Routing Server after filling in

the hierarchical address of the source up to the level-j field.

The response of the level-j Routing Server to a What-is-the-route-from-the-source-to-

the-destination? message is described next. The Routing Server will check to see if

the level-j field of the destination address matches the unique identifier of its level-j

region. Since the two match in this case, the Routing Server knows that both the

source and the destination lie in its level-j region and that there is no need to send the

message any further up the hierarchy.

23Having information on Routing Servers is understood, in this context, as knowing tho unique

identifier and the route to the Routing Server.

71

i

1o

The level-j Routing Server looks up its routing tables to find the route from the level-(j

- 1) region in which the source lies to the level-(j - 1) region in which the destination

lies. Consider the example in Fig. 3-4 of a level-j region. Assume that the source lies

in region F and the destination in region C. One possible route that the level-j Routing

Server could find in its routing tables is from region F to region D via gateway K and

then from region D to region C via gateway J. Once the level-j Route Server decides

on this route, then it has to send messages down to lower level Routing Servers to

construct the different pieces of the route. In the present case, the level-j Routing

Server will send What-is.the-route-from-the-source-to-the-destination? messages to

the level-tj - 1) Routing Server of region F (to find the route from the source to

gateway K), to the level-(- 1) Routing Server of region D (to find the route from

gateway K to gateway J), and to the level-(- 1) Routing Server of region C to find the

route from gateway J to the destination. After the replies from the Routing Servers of

regions F,D, and C are received they will be concatenated in the right order to

produce the complete route. Note that if (j - 1) > 1 (i.e., level-a - 1) is not the same as

level-i) then the Routing Servers of regions F,D, and C will have to send further

What-is-the-route-from-the-source-to-the-destination? messages to lower level

Routing Severs to find the routes asked of them.

After the complete route has been found by the level-I Routing Server, it is sent down

to the level-I Routing Server as the reply to the What-is-the-route-from-the-source-

to-the-destination? message that was sent by the level-1 Routing Server to the level-j

Routing Server. The route is, in turn, passed down by the level-i Routing Server to

the source as a reply to the What-is-the-route-from-the-source-to-the-destination?

message that was sent by the source to the level-1 Routing Server24 .

The description above relates to what happens if the level-1 Routing Server is able to

24 Note that it is possible to introduce an optimization here. The complete route can be sent down by

the level-j Routing Server directly to the level-1 Routing Server. The same can be done later for the
complete algorithm when there will be several different intermediate Routing Servers through which the
complete route will pass. However, this optimization will be omitted for ease of discussion.

72

Reion B

Fevgure1 3-4:A Ivelj rgio

73

recognize some field of the hierarchical address of the destination as corresponding

to some Routing Server that it has information on. If, however, no such field is

recognized, then the level-1 Routing Server sends a What-is-the-route-from-the-

source-to-the-destination? message to the level-k Routing Server (where k < (i + 1)

and is the highest number such that the level-1 Routing Server has information on

the level-k Routing Server). The level-k Routing Server now does what the level-1

Routing Server did before (i.e., it scans the hierarchical address of the destination up

from the level-(k + 1) field to the level-i field and sends a What-is-the-route-from-the-

source-to-the-destination? message to an appropriate Routing Server above it in the

hierarchy). The level-k Routing Server uses the same algorithm as the level-1

Routing Server did to decide which level Routing Server to send a What-is-the-route-

from-the-source-to-the-destination? message to.

The algorithm that is used by a level-j Routing Server to handle requests for routing

information is given below. It essentially puts down in algorithmic form what was

described above.

1. On getting a What-is-the-route-from-the-source-to-the-destination?
message, check the level-j field of the destination address. If the level-j
field does not exist (i.e., the destination address was only specified up to
the level-U - 1) field), then go to step 3, else go to step 2.

2. Check the level-I field of the destination to see if it matches with the
unique identifier of the level-I region. If it does, then go to step 3. If it
does not, then go to step 5.

3. Check the level-U - 1) field of the destination address to confirm that the
unique identifier corresponds to the unique identifier of one of the level-(
- 1) regions below it in the hierarchy. If it does not, then compose a reply
to the What-is-the-route-from-the-source-to-the-destination? message
(that was received earlier) by putting "No such destination found." in the
"status of query" field and then send it to the originator of the What-is-
the -route-from.the.source-to.the-destination? message.

However, if the level-U - 1) field corresponds to the unique identifier of
one of the level-(- 1) regions below it, then go to step 4.

74

4. If j =1, then look up the routing tables to find the route from the source to
the destination and send it to the originator of the What-is-the-route-
from-the-source-to-the-destination? message.

If j > 1, then find the route in terms of level- - 1) interconnections and
send appropriate What-is-the-route-from-the-source-to-the-destination?
messages to lower level Routing Servers. After receiving all replies,

concatenate the parts of the routes received in the right order to
construct the complete route. Send this route to the originator of the
What-is-the-route-from-the-source-to-the-destination? message. (If it
turns out that lower level Routing Servers send back "No such
destination found" or "No path to destination found" in the "status of
query" field of their replies, then do the same to the reply sent to the
originator of the What-is-the-route-trom-the-source-to-the-destination?

message.) Exit from the algorithm.

5. Look at the destination address and find the lowest k > j such that the
level-k field of the destination address corresponds to the unique
identifier of the level-k Routing Server that it knows about. If no such k is
found, then make k equal to the highest level of Routing Servers that it
has information on such that k < (i + 1), where i is the highest level
specified in the destination address. Send a What-is-the-route-from-the-
source-to-the-destination? message to the level-k Routing Server after
filling in the "actual hierarchical address of destination" field up to level
k. Get the reply to this What-is-the-route-from-the-source-to-the-
destination? message and pass it on to the originator of the What-is-the-
route-from-the-source-to-the-destination? message that was sent to the

level-j Routing Server. Exit from the algorithm.

Note that the algorithm described above works only if the hierarchical address of the

destination does not contain any omitted fields. The algorithm for handling routing

queries when the destination address may contain omitted fields is somewhat

different from the previous algorithm,

Consider the case of a level-j Routing Server that is asked to construct a route from a

source to a destination when the level-(j - 1) field of the destination address is

omitted. The level-j Routing Server handles this by sending an appropriate What-is-

the-route-from-the-source-to-the-destination? message (to find the route from some

place in the network to the destination) to each of the level-O - 1) Routing Servers

75

below it instead of to just one (which is what would happen if the level- - 1) field

were specified).

One way to look at this situation is that the Routing Server basically treats this case

as m different routing requests, where m is the number of level-(j - 1) Routing Servers

below it (one for each possible level-j - 1) field of the destination address). After all

the routing servers below it send their replies to the What-is-the-route-from-the-

source-to-the-destination? message, the level-i Routing Server constructs its own

reply to the What-is-the-route-from-the-source-to-the-destination? message that it

received.

If only one of the replies from the level- - 1) Routing Servers sent back a route to the

destination, then the level-j constructs its reply just as it would if it'had known all

along that the destination existed in that particular level-(- 1) region and if it had

sent a What-is-the-route-from-the-source-to-the-destination? message to only that

level-(i - 1) Routing server. Observe that due to multi-homing, more than one level-U

- 1) Routing Server may send back a route. In that case, the best (i.e., the one with

the shortest hops) is chosen.

Even if no level.(j - 1) Routing Server sends back a route to the destination, one or

more may say, "No path to destination found." In this case, any one of them can be

thought of as the place where the destination exists. The reply to the What-is-the-

route-from-the-source-to-the-destination? message that the level-j Routing Server

received earlier will now also say, "No path to destination found."

If none of the replies sent back either a route or said "No path to destination found",

then the reply that the level-j Routing Server sends back will say, "No such

destination found" in its "status of query field."

The modified algorithm for a level-j Routing Server is presented below:

1. On getting a What-is-the-route-from-the-source-to-the-destination?
message, check the level-j field of the destination address. If the level-i

76

field does not exist (i.e., the destination address was only specified up to

the level-(j - 1) field), then go to step 3, else go to step 2.

2. Check the level-j field of the destination to see if it matches with the
unique identifier of the level-j region. If it does, then go to step 3. If it
does not or if the field is omitted, then go to step 6.

3. Check the level-(j - 1) field of the destination address to confirm that the
unique identifier corresponds to the unique identifier of one of the level-(
- 1) regions below it in the hierarchy. If it does not, then compose a reply

to the What-is-the-route-from-the-source-to -the-destination? message
(that was received earlier) by putting "No such destination found." in the
"status of query" field and then send it to the originator of the What-is-

the-route-from-the-source-to-the-destination? message.

If the level-U - 1) field corresponds to the unique identifier of one of the
level-6 - 1) regions below it, then go to step 4.

If the level- - 1) field is omitted, then go to step 5.

4. If j = 1, then look up the routing tables to find the route from the source

to the destination and send it to the originator of the What-is-the-route-
from-the-source-to-the-destination? message.

If > 1, then find the route in terms of level-(- 1) interconnections and

send appropriate What-is-the-route-from-the-source-to-the-destination?
messages to lower level Routing Servers. After receiving all the replies,

concatenate the parts of the routes received in the right order to
construct the complete route. Send this route to the originator of the
What-is-the-route-from-the-source-to-the-destination? message. (If it
turns out that lower level Routing Servers sent back "No such
destination found" or "No path to destination found" in the "status of
query" field of their replies, then do the same to the reply sent to the
originator of the What-is-the-route-from-the-source-to-the-destination?
message.) Exit from the algorithm.

5. If i = 1, then this means that the level-O field or the local net field was

omitted. The level-1 Routing Server should use the unique identifier of
the destination to find the local net in which the destination exists and
then find the appropriate route.

If j > 1, then treat this case as if there were actually m different requests,

one for each of the m level-(- 1) Routing Servers below the level-j

77

I!

Routing Server. Therefore, send a What-is-the-route-from -the-source-to-
the-destination? message to each of the level-(j - 1) Routing Servers. It is
important that the level-j Routing Server should fill in the level- - 1) field

of each message with the unique identifier of the region to which the
What-is-the-route-from-the-source-to-the-destination? message is being

sent. After receiving all the replies, the, level-j Routing Server should put

together a reply to the What-is-the-route-from-the-source-to-the-

destination? that it received earlier.

If one or more of the replies contain, routes to the destination, then select

the best one (i.e., the one with the least hops) as the one to be used for
the reply to the What-is-the-route-trom-the-source -to-the-destination?
message that was sent to the evel-j Routing Server earlier.

If none of the replies contain a route to the destination, but one or more

say "No route to destination found", then send back the same
information in the reply to the What -is-the-route-ftrom-the-source-to-the-

destination? message that was sent to the level-i Routing Server earlier.

If none of the replies contain a route to the destination or say "No route

to destination found" (i.e., they all say "No such destination exists"),
then send the same information back in the reply to the What-is-the-
route-from-the-source-to-the-destination? message that was sent to the
level-j Routing Server earlier. Exit from the algorithm.

6. Look at the destiniation address and find the lowest k > j such that the

level-k field of the destination address corresponds to the unique
identifier of the level-k Routing Server that it knows about. If no such k is
found, then make k equal to the highest level of Routing Servers that it
has information on such that k < (i + 1), where i is the highest level

specified in the destination address. Send a What-is-the-route-from-the-
source-to-the-destination? message to the level-k Routing Server after
filling in the "actual hierarchical address of destination" field up to level-

k. Get the reply to this What-is-the-route-from-the-source-to-the-

destination? message and pass it on to the originator of the What-is-the-
route-ftrom-thb-source-to-the-destination? message that was sent to the
level-j Routing Server. Exitfrom the algorithm.

78

3.7 Changing the configuration of the network

There are essentially five different types of changes allowed in the configuration of

the network. They are described below along with the procedures that should be

used when they occur.

1. Adding or taking away a region from the network: Consider the case of a
level-(i - 1) region that is to be added to a level-i region. Fig. 3-5 shows
exactly such a case. 'R' stands for a level-(i - 1) region and 'GW' stands
for a gateway. As can be seen from the figure, the new level-(i - 1) region
that is to be added has to be connected to the level-i region through two
new gateways. To make this change in the configuration, both gateways
must be given their descriptors. Remember that a gateway descriptor
need only contain the following information when the gateway is first
initialized: the number of local nets that the gateway is connected to, the
local transport address on each subnet, and the highest level of the
gateway between each pair of local networks that it is connected to.

Level-i Region

R .R
GW

Figure 3-5: Adding or taking away a level-(i - 1) region

In the future, when the Routing Servers on either side of the gateway

execute their topology-finding algorithms, they will notice these

79

gateways and they will change their topology data base accordingly.
This will occur after the gateways get their descriptors.

However, it is not necessary to wait for the next iteration of the topology-

finding algorithm. The gateways can be made to repcrt their presence to

the Routing Service on their own initiative. Each new gateway can send

a What-is-the-route-to-the-Routing Server? message on each local net to
which it is connected. Through this message it can find the route to the
level-1 Routing Server on each side, and also the unique identifier of the
local net. The new gateways can then send replies to a What-is-your-

descriptor? message to each of the level-1 Routing Servers (although no
What-is-your-descriptor? messages were sent by the Routing Servers).

When the level-1 Routing Servers receive the messages from the

gateways, they will update their data bases accordingly and send Fill-in-

your-descriptor messages to the gateways, if necessary, to update their

descriptors. Next, the level-1 Routing Server will send replies to Give-
me-descriptors-of-gateways-at-the-edge-of-your-region messages to the
level-2 Routing Servers above them just as they would at the end of an

iteration of the topology-finding operation. This way the gateways will

make their presence known to the level-1 Routing Servers, which will, in
turn, inform the level-2 Routing Servers and so on. Information on the
new gateways will, therefore, percolate up the hierarchy of Routing

Servers.

If o,1 the other hand, the level-(i - 1) region shown outside the dotted line
was actually part of the old level-i region but is now to be removed from

it, then the following is done. The descriptors of the gateways are

changed accordingly and the gateways inform the level-1 Routing
Servers on either side about the. change by using a reply to the What-is-
your-descriptor? message. If it turns out that the gateways were only

being used to connect the level-(i - 1) region to the rest of the level-i
region and will not be needed now, the gateways still have to report to

the level-i Routing Servers on either side about the change. The

gateway descriptor that is sent to the Routing Servers will then say that
the gateway is not connected to any local networks. In fact, this is the
way any gateway informs the Routing Service that it is being removed
from the network.

2. Splitting up a level-i region into two level-i regions: Consider the

example illustrated in Fig. 3-6. As shown in the figure, two gateways
presently connect the regions that will later become full-fledged level-i

regions.

80

Level-i Region

IR

W.GWWL

R R [I GW RI$ R

Figure 3-6: Splitting up a level-i region

Both the gateways have to be taken down and given new descriptors.
After that, the gateways can either wait for the next iteration of the
topology-finding operation of the Routing Service or they can inform the
Routing Service of their presence themselves, as before.

It is necessary to take down both gateways before giving any of them a
new descriptor. If this is not done, a peculiar situation can arise.
Suppose that one of the gateways has got a new descriptor but the other
one has not. It is possible that an iteration of the topology-finding
algorithm may be completed between the times that the two gateway
descriptors are changed. This will result in the Routing Service getting
an inconsistent view of the network and it should be avoided.

3. Increasing one region and decreasing another: Consider the example
illustrated in Fig. 3-7. Gateways 'a','b', and 'c' are used to interconnect
the two level-i regions. However, gateway 'a' is the only one connected
to region 'h'.

The idea is to increase the level-i region (to the left) so that it also
contains the level-(i - 1) region 'h'. At the same time the level-i region to

81

Level-i Region Level-i Region

~o -Region GW

Figure 3-7: Increasing or decreasing a level-i region

the right should lose the level-(i - 1) region 'h'.

This is done by taking down gateway 'a' and all the gateways in the level-
region to the right that are connected to region 'h'. Next, all these

gateway descriptors are updated appropriately. These changes are
made known to the Routing Service in the same manner as before.

4. Merging two level-i regions: Consider the example illustrated in Fig. 3-8.
The idea, is to merge the two level-i regions shown into one level-i region.
At present, the two leveli regions are interconnected by exactly three
gateways: gateway 'a', gateway 'b' and gateway 'c'.

Here, again, each of the gateways is taken down and given a new
descriptor to reflect the change in configuration. The Routing Service is
informed exactly as before about the changes.

5. Removing, adding or modifying a gateway/node: It is possible that a
gateway may be removed, added, or merely have its descriptor modified
and yet not change the hierarchical configuration of the network.

Although this case clearly does not fit in with a list of the basic types of
changes in configuration, it has been included here because it is

82

New level-i Regon
Level-i Region Level-i Region

R L
I IjGI F L iII

Figure 3-8: Merging two level-i regions

handled in a very similar way.

Whatever change the gateway undergoes, its descriptor is changed
accordingly and the new gateway descriptor is reported to the Routing
Service in -the manner previously described.

Much like the changes that a gateway can undergo, a node may be
removed, added, or have its descriptor modified. The change in the
node descriptor may be due to the node being connected to a different
attachment point in the network. In any event, the node can either wait
for the Routing Service to collect topology information or it can report
the changes in its descriptor to its level-1 Routing Server immediately;
the latter will be done by sending replies to What-is-your-descriptor?
messages to the level-1 Routing Servers of all the local nets that it is
connected to-exactly as a gateway would report a change to the
Routing Service.

83

3.8 User control of paths

The description of the advantages of source routing in Chapter 2 mentioned that in a

source-routing environment it is possible to choose a route with a specified class-of-

service standard. It is time to admit now that although that was a theoretical

possibility, implementation of a class-of-service feature is a very difficult task.

To begin with, it is far from easy to collect the class-of-service information on

gateways and regions. Consider the wide range of properties of paths that users may

be interested in-error rate, transport delay, bandwidth, security rating, etc.. To

measure some of these requires sophisticated procedures and takes us beyond the

design of a Routing Service. It is for this reason that gateway descriptors and node

descriptors contain class-of-service information but it has not been described where

they get their information. The reason that class-of-service was introduced at all in

gateway and node descriptors was so that future designers or implementors of a

Routing Service would have a handle to work with if they decided to incorporate a

class-of-service feature.

Not only is it not easy to collect class-of-service information, it is extremely difficult to

have the Routing Service automatically select a path to meet certain class-of-service

standards. It is relatively easy for the Routing Service to check for certain class-of-

service properties that each hop in a path should satisfy, e.g. bandwidth. However,

there is no easy way out if the class-of-service rating of a path depends on some kind

of aggregate of the rating for each link in the path. For example,

The error rate over a path = 1 - (1 - error rate)*(1 - error rate 2)*...*(1 - error rate),1 2 n

where error rate is the error rate (expressed as a fraction of one) of the ith link in a

path. Similarly, the transport delay of a path is the sum of the transport delays over

its various parts. As can be seen, the class-of-service rating of a path for various

properties can be a radically different function of the rating for each different link in

the path. Also, it is not clear exactly which subset (or superset) of these properties Is

84

p

useful under which circumstances. The Routing Service has, therefore, not been

endowed with the ability to select a path given some class-of-service standards

(specified by the user). Instead, a more restricted but general way for the user to

exercise control over paths has been provided. There is a way for the user to ask for

a path (from it to some destination) that does not pass through certain specified

gateways and regions.

User control of paths requires a special feature of the Routing Service-a message.

The message is a variation on the What-is-the-route-from-the-source-to-the-

destination? message. The special message looks like this:

To-Routing Server(What-is-the-route-from-the-source-to-the-destination-avoiding-

the-following-gateways-and-regions?, list of unique identifiers of gateways to be

avoided, list of unique identifiers of regions to be avoided, hierarchical address of

source, hierarchical address of destination, unique identifier of destination)

From-Routing Server (What-is-the-source-to-the-destination -avoiding -the-following-

gateways-and-regions?, status of query, route, actual hierarchical address of

destination)

In fact, the regular What-is-the-route-from-the-source-to-the-destination? message

can be thought of as a special case of the message given above with the list of

unique identifiers of gateways to be avoided and the list of unique identifiers of

regions to be avoided left empty.

The message described above is utilized by the user to send a query to the level-1

Routing Server. It is also employed by the Routing Servers for internal

communication just as with the What-is-the-route-from-the-source-to-the-

destination? message. Sec. 3.5 has already described how routes are computed to

avoid certain parts of a network.

85

3.9 Responding to faults in the campus-wide network

As explained in Sec. 3.4, the Routing Service periodically checks on the topology of

the network. While doing that, it also picks up any temporary changes in the

topology caused by broken gateways or subnets. If the frequency with which the

Routing Service updates its topology is high enough, there is really no need for any

other mechanism for the Routing Service to detect faults and find alternative paths, if

necessary.

However, if there is a considerable delay between topology updates, then it is useful

to provide a feature whereby entities in the network that notice broken gateways or

subnets can report the same to the Routing Service. Therefore, faults in the network

can be noticed faster and alternative routes can be found, if necessary, without

waiting for another topology update.

In fact, in the previous section, the means for a user to find paths that do not go

through certain specified gateways and regions have already been provided.

However, this does not provide a convenient way for a user to find an alternative path

if he finds that a path he is trying to use does not work. Before he can ask the

Routing Service to find another path, he must pinpoint the fault. This may be beyond

the capability of some users. A better way would be to have the source merely report

a bad path to the Routing Server and.let the Routing Server find a path that avoids

the faulty part of the route. This solution to the problem requires some special

features, too, and they have -been described next. After describing the special

features, the way these special features can be used to detect faults and to find

alternative routes will be described.

3.9.1 Special features required for responding to faults

There are essentially three messages required to support fault-finding. They are

described below.

1. Path-does-not-work message:

86

1:

To- level-1 Routing Server(Path-does-not-work, path, hierarchical

address of source, hierarchical address of destination, unique identifier

of destination)

From- level-1 Routing Server(Path-does-not-work, path)

The path that the Routing Server returns will be a path to the destination

but one that does not go through the faulty part of the previous path.

2. Return-packet message:

To-gateway/node(Return-packet, test packet)

From-gateway/node(Return -packet, test packet)

If a gateway/node is sent the above message, then it merely sends back

the test packet to the originator of the message. This will be used to test

out the path from the originator of the message up to the gateway/node.

3. Give-me-the-unique identifier-of-a-gateway message:

To- level-1 Routing Server(Give-me-the-unique identifier-of-a-gateway,

hierarchical address of gateway)

From- level-1 Routing Server(Give-me-the-unique identifier-of-a-

gateway, unique identifier of gateway)

Only the LTA field and the level-O field of the hierarchical address of the
gateway needs to be specified. The level-1 Routing Server will use that
information to find the unique identifier of the gateway by looking up its
topology data base.

3.9.2 The procedure for finding alternative paths

When a user suspects that a path does not work, he should do the following to find

another working path to the same destination. He should first send a Path-does-not-

work message to his level-1 Routing Server complaining about the faulty path. It is

the duty of the Routing Server now to carry out diagnostic tests on the faulty path to

pinpoint the first fault in the path (which may be either a broken gateway or a broken

subnet). This is done by using the Return-packet message repeatedly. Return-

87

packet messages can be sent down the suspect path to increasing distances until the

last subnet or gateway to which a Return-packet message is sent does not reply.

Note that lack of response to a Return-packet message, in this case, makes the last

step in the path suspect, but in an unreliable network packets can get lost anywhere.

The correct protocol is repeatedly to send alternate Return-packet messages to the

last step and the next-to-last step until the probability that a failure elsewhere

produces the same result is low enough to ignore. The same technique will be used

to resolve any other negative inference problems that arise while the faulty

gateway/subnet is being located.

Moreover, lack of response from the last gateway (call it gateway x) in the path may

imply either that the last gateway is faulty or that the last subnet (over which the

packet travelled to gat to the last gateway) is faulty. Therefore, the Routing Server

will attempt to find out the operational status of the subnet in question. The Routing

Server will remote broadcast a Return-packet message for gateways on the last

subnet. If a reply is received, then the subnet will be assumed to be operational and

the fault in the original path will be attributed to gateway x. If a reply is not received,

it can imply one of three things; the last subnet does not have any other gateways

besides the one used to remote broadcast on the subnet and gateway x, any other

gateways that it does have are faulty25 , or the subnet is faulty. In any event, the

subnet cannot be used by an alternative path and, therefore, it is reasonable to

attribute the fault in the original path to this subnet. Also, note that although the fault

may be attributed to the subnet, gateway x or, in fact, any other gateway or subnet

later in the original path may be faulty. The faults will, however, get located in later

invocations of the algorithm if the alternative paths.produced by the Routing Service

slill go through the faulty gateways or subnets.

251f there were an alternative path going through the subnet, there would be another working gateway

on the subnet.

88

Now, if the probable fault lies in a subnet, then a What-is-your-descriptor? message

can be sent to the gateway that was used to get onto the subnet in the first place.

The level-1 Routing Server that is carrying out the diagnosis can then find out the

unique identifier of the local net by inspecting the contents of the gateway descriptor.

On the other hand, if the probable fault lies in a gateway, then again a What-is-your-

descriptor? message can be sent to the gateway that comes immediately before the

suspect gateway on the faulty path. The level-1 Routing Server can then inspect the

contents of the gateway descriptor and find a route to the level-1 Routing Server of

the local net on which the last two gateways lie. The Routing Server carrying out the

diagnosis can then send a Give-me-the-unique identifier-of-a-gateway message to

the other Routing Server and find out the unique identifier of the suspect gateway.

After the Routing Server carrying out the diagnosis pinpoints the gateway or subnet

that is creating problems on the faulty path, then it can use the What-is-the-route-

from-the-source-to-the-destination-a voiding-the-tollowing-gateways-and-regions?

message to ask higher-level Routing Servers to help it find a path that does not go

through the faulty gateway or subnet. Note that it is possible that the destination may

lie in the same level-1 region as the source and the level-1 Routing Server may not

have to go up the hierarchy of Routing Servers to find the alternative path. Moreover,

if the fault is pinned down to the last subnet in the original path (i.e., the one to which

the destination node is attached), then clearly no alternative paths can be found to

the destination; the Routing. Server need not use the What-is-the-route-from-the-

source-to-the-destination-avoid;ng-the-following-gateways-and-regions? message to

try to find an alternative path.

3.10 Congestion control

Congestion control is still a topic of current research and several possible

approaches to tackle congestion control are described in the literature [15]. Before

ending the discussion on the design of the Routing Service, it is necessary to point

89

out that in a source routing environment with a centralized computation of routes,

there exists an opportunity to attack the problem of congestion control in yet another

way.

Since source routing provides complete control over paths, it is possible to find

routes that do not pass through certain parts of the network. The section on user

control of paths and the section on fault-finding described ways of computing such

paths. A similar thing is possible with cohgestion control. If congested parts of the

network can be pinpointed, then the Routing Service may be asked to find routes not

going through the congested areas. However, it is not clear that such a feature is

useful. The first reason to suspect that it may not be very helpful is due to the nature

of a campus-wide network. Since all communication links are going to be relatively

high-bandwidth (relative to a long-haul net), it is likely that congestion will take place

one instant and go away shortly after. In other words, congestion i. -'t likely to be a

long-term problem in any part of the campus-wide net. If congestion only occurs in

short bursts, then it is likely that by the time a Routing Service finds an alternative

route, the problem may have disappeared.

Another reason to doubt the usefulness of the congestion control feature that has

been described is as follows. Since traffic generated in a campus-wide network by

any single node is likely to be in short bursts (unlike the traffic generated by a node in

a long-haul network over a virtual circuit), and since gateways are simple and fast in

a source-routing environment, it is unlikely that a given gateway will receive traffic

from more than one source at a given instant. Therefore, if a gateway does get

congested, it is more than likely due to traffic from just one source. It may not be

wise to find an alternative path for the traffic from that source because the traffic will

probably overload any new gateway put in the path. In such a situation, in fact,

cutting down on the traffic generated by the source or sending alternate packets on

different routes may be better than having the Routing Service find an alternative

route to send all packets on.

90

One instance when the congestion control feature mentioned above is likely to be

useful is when the congested gateway happens to be one of the low-bandwidth

gateways that connect the campus-wide network with the long-haul networks. These

low-bandwidth gateways are likely to remain congested for a longer time once they

do get congested as compared to the other high-bandwidth gateways in the campus-

wide network.

Even for low-bandwidth gateways, it is not clear that the congestion-control feature

described above is a good way to tackle the problem. In a similar method of

congestion-control for hop-by-hop routing, one would expect all alternative routes

not passing through the congested area to be used before another solution to the

congestion-control (such as source-quenching) is used. However, the congestion-

control feature mentioned above merely finds any random path not passing through

the congested area and makes no special effort to try out all possible alternatives for

paths that do not pass through the congested area. It is, therefore, not easy to figure

out when the congestion control feature mentioned should be abandoned in favor of

some other congestion control feature.

There are a few other observations that should be made about the difficulty of using

routing decisions as a mechanism to combat congestion control. The observations

are listed below.

- "to the extent that the initial route selected for a packet was the best one,

any other route is likely to consume more network resources" (15];

- "if congestion is due to a persistent cause, diverting traffic onto more

routes only delays the cure and is likely to spread the conge!3tion" [15];

FIFO strategies are easy to implement in a source routing environment

(see Chap. 2) but frequent routing changes wipe out the advantage. The
constraint of sequential delivery conflicts with frequent routing changes,
because more packets arrive out of order at the destination.

Since it is not clear that finding paths that avoid congested areas is a good way to

tackle the problem of congestion, such a feature has not been incorporated into the

91

Routing Service. Higher-level protocols between the source node and the

destination node can still be used as usual to control the traffic sent from the source

to the destination for any prolonged exchange between the two nodes.

This chapter has described in detail the design of a Routing Service for campus-wide

internet transport. The next chapter will evaluate this design to see how well it meets

the requirements set out in Chap. 2.

92

A AMI 715 MASSACHUSIETTS INST OF TECH CIMSINZ LAS FOR COW'JTE-ETC F/6 9/1
Tl. DESIGNi OF A ROUTING SERVICE FOR CAWIJS-WIDE INTERNET TRANSP--CTC (U)
JDAN SE V SINS44 NOOOI-75-C-OGh1

UNCLASSIFIED MIT/LCS/TR-2TO N

2

11111 ----- "5 2 2.51n

.

1.8
111 I. 3 IIIIO

IIIIL25 11_---I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANI;ABOS 1963 A

Chapter Four

Evaluation

This chapter will evaluate the design of the Routing Service to see how well it meets

the requirements of Chap. 2. Each of the'eleven requirements has been examined in

turn below to see how it affected design considerations.

4.1 The Routing Service has to work in a distributed environment

While discussing this requirement, it was emphasized that the number of messages

required by the Routing Service must be kept low especially if it affects the response

time to users. It is due to this requirement that the level-i topology-finding algorithm

ensures that each level-(i - 1) region is visited only once in each iteration. Also, the

algorithm for answering queries was designed so that the delay due to messages in

answering a query is proportional to the hierarchical configuration of the network in

the worst case; this claim is defended below. The delay due to message passing for

answering the query is composed of the following:

1. The time taken for the query to reach the lowest level Routing Server
(call it Routing Server 'a') which contains both the source and the

destination in its region,

2. The time taken for the query to percolate down to all the level-1 Routing

Servers on the path from the source to the destination,

3. The time taken by the lower level Routing Servers to send up the replies
to Routing Server 'a', and

4. The time taken for the complete route to be sent down by Routing Server
'a' to the originator of the query via all the intermediate Routing Servers.

Note that although several different messages can be sent down from level-i Routing

93

-t L

Servers to level-(i - 1) Routing Servers in 2 and, similarly, although several different

messages can be sent up from level-(i - 1) Routing Servers to level-i Routing Servers

in 3, these are all done in parailel. Clearly, the serial delay involved in all the four

times listed above is only proportional to the level of Routing Server 'a'. Therefore,

the total serial delay due to message passing in answering the query is proportional

to the level of Routing Server 'a', which, in the worst case, is the height of the

hierarchical configuration of the network.

4.2 The Routing Service should be reliable

This implies that the Routing Service should be robust in the face of arbitrary

changes in the topology or connectivity of the network. The topology-finding

algorithms of the Routing Service were designed to pick up all changes in the

topology or connectivity of the network. Moreover, since gateway and node-related

changes are likely to be more frequent than other changes, a mechanism was

devised to allow such changes to be reported to the Routing Service immediately.

A secondary issue connected to the reliability of the Service is the introduction of

"extras" or "frills" into the Routing Service design. It was mentioned before that

reliability is enhanced by keeping the design simple and free of "extras" that could

be incorporated later. It was partly due to this concern that congestion control and

class-of-service features were dropped from t' design.

4.3 The Routing Service should be reasonably fast

As mentioned before, a hierarchical approach was.taken to routing problems mainly

to ensure faster service. With the hierarchical approach, no single Routing Server

needs to have complete global knowledge of the network.

The Routing Service was also sought to be made simpler by choosing shortest hop

routes as the kind of routes to be computed. Compared to sophisticated routing

94

strategies like the one used in the ARPANET, the Routing Service here spends much

less effort on gathering information about the network and on computing routes.

4.4 The Routing Service should require minimal support from the rest

of the system (especially gateways)

While describing the design of the Routing Service in Chap. 3, a lot of special

features were described. The special features were used by the Routing Service in

carrying out its various tasks. Fig. 4-1 contains a list of all the special features that

have to be supported by nodes and Fig. 4-2 contains a list of all the special features

that have to be supported by gateways.

The demands made on nodes and gateways to support these special features is

minimal. Recall that one of the major motivations of using source routing and a

Routing Service (to support source routing) is to make the gateways simple. A

proper design of the Routing Service has ensured that gateways are kept simple.

4.5 The Routing Service should scale gracefully for larger networks

The three major tasks of the Routing Service are topology-finding, computation of

shortest hop routes, and answering queries. The algorithms that were designed to

perform the tasks mentioned should scale gracefully as the size of the network

increases. Each of these functions of the Routing Service will be examined in turn

below to see how well they scale with network size.

Topology-finding is accomplished by letting each level-i Routing Server find the

topology of its level.i region in terms of interconnections of level-(i - 1) regions.

Clearly, the size of the network will affect the nur Routing Servers in the

network but the cost of the topology-finding algorithm of at., 3vel-i Routing Server is

only dependent on the number of level-(i - 1) regions and gateways in the level-i

region.

95

1. Nodes respond to a common local transport address

2. Node descriptor

3. What-is-your-descriptor message

4. Fill-in-your-descriptor message

5. Return-packet message

Figure 4-1: The special features supported by nodes

1. Gateways respond to a common local transport address

2. Remote broadcast

3. Gateway descriptor

4. What-is-your-descriptor message

5. Fill-in-your-descriptor message

6. What-is-the-route-to-the-Routing-Service message

7. Return-packet message

Figure 4-2: The special features supported by gateways

The previous argument holds for the computation of routes, too. A level-i Routing

Server only computes routes between the level-(i - 1) Routing Servers in the level-i

region. The cost of computing routes, for any Routing Server, is not dependent on

the size of the complete campus-wide network.

Of course, one pays a price for using a hierarchical approach to routing. One of the

disadvantages is that now it is more complicated to look up a route. A route may

have to be constructed now from pieces of information gathered from several

different Routing Servers. Answering queries about routes is, in fact, one of the

96

4.Y

major tasks of the Routing Service.

Care was taken in the design of the algorithm for answering queries to ensure that

the time taken for this function does not blow up as the size of the network increases.

As explained before in this chapter, the serial delay due to message passing for

answering any query is only proportional to the height of the hierarchical

configuration, in the worst case. If each level-i region in the network has the same

number of level-(i - 1) regions in it, then the height of the hierarchical configuration

only grows as log of the number of subnets in the campus-wide network.

4.6 The Routing Service should have a good user interface

While describing this requirement, it was mentioned that this requirement would lose

out if it conflicted with any of the requirements discussed above. There are various

messages that a user can invoke to interact with the Routing Service. These

messages are listed in Fig. 4-3. As can be seen from the list, the user interface

consists only of messages required to support a very austere Routing Service (i.e., no

exotic features have been introduced in the user interface).

1. What-is-the-route-to-the-Routing Service? message

2. What-is-the-route-from-the-source-to-the-destination? message

3. What-is-the-route-from-the-source-to-the-destination-avoiding-the-

following-gateways-and-regions? message

4. Path-does-not-work message

Figure 4-3: The user Interface

A feature that would enable users to ask for routes that satisfy certain class-of-

service standards was dropped because the area is not well understood yet.

97

4.7 The Routing Service should face up to changing network

configu rations

In Chap. 3, various ways of changing the network configuration were described. The

basic types of changes were:

1. Adding or taking away a region from the network,

2. Splitting up a level-i region into two level-i regions,

3. Increasing one region and decreasing another,

4. Merging two level-i regions, and

5. Removing, adding or modifying a gateway/node.

All other reasonable changes in the network configuration can easily be broken

down into the basic types of chaiges.

4.8 The Routing Service should face up to mobile hosts

The effect of mobile hosts is that knowing the exact hierarchical address of a node

may be difficult. However, if the node is likely to be in a part of the network that can

be specified by a hierarchical address with omitted components, then the same

hierarchical address can be used to make a query. The Routing Service ensures that

a route will be found to the node if the node exists in the specified area. A guarantee

for locating the node in the specified part of the network does not carry with it a

guarantee of good response time from the Routing Service. If the hierarchical

address specified has too many omitted components for the Routing Service to

handle efficiently, the query may even be assigned to some background handler for

queries.

98

L_ Li-

4.9 The Routing Service should face up to artificial partitioning

It may be possible to avoid most cases of artificial partitioning by introducing multiple

routes and redundant Routing Servers. Although multiple routes and redundant

Servers do not exist in the design right now, It is straightforward to incorporate them

Into the design.

There is one class of artificial partitioning problems for which a different approach Is

needed. Consider the case when no path exists between two attachment points in

the same region but a path may exist if the path from the source goes outside the

region and comes in again to a part of the region from which the destination can be

reached. One way to approach this is for the Routing Server of the region to ask the

Routing Server above it (in the hierarchy) for a path between two appropriate points

at the edge of the partitioned region such that the path avoids the partitioned region;

the What-is-the-route-from-the-source-to-the-destination-avoiding-thefollowing-

gateways-and-regions? message can be used for this purpose.

4.10 The Routing Service should face up to multi-homing

Multi-homing can mean that several shortest hop paths exist to a destination node

(one to each attachment point to which the destination node is connected). If some

or all of the attachment points of the destination node lie in a part of the network that

can be specified by a hierarchical address with omitted components, then it Is

straight forward to find the shortest hop path to the attachment points of the node

that lie in the specified part.

The algorithm for answering queries ensures that if several shortest-hop paths exist

to a destination node, then the shortest path among the possible paths is chosen.

This approach clearly does not solve the problem of multi-homing completely

because it does not work very well if the destination node is connected to attachment

99

points that are very far apart in the hierarchical configuration of the network 2e.

4.11 The Routing Service should face up to shared access

It was mentioned while describing the operation of a gateway in a source routing

environment that the algorithm executed by a gateway to route packets may be

repeated inside the destination node to route packets to the correct activity. In fact,

the same algorithm can also be used inside a shared network Interface to route

packets to the correct node. Of course, an extra field will be required in the source

route of the packets for the network interface to be able to send packets to the

correct nodes. A possibility is that this extra field could, by convention, be the unique

identifier of the destination node.

4.12 Summary

The design of the Routing Service was most strongly affected by the requirement for

scaleability. A hierarchical organization of Routing Servers was used and algorithms

for topology-finding, computations of routes, and for answering queries were

designed to fit in with the hierarchical structure. One effect of the hierarchical

structure is that a faulty Routing Server affects only route finding for routes passing

through the region of the faulty server. The Routing Service was designed to be

reasonably fast to avoid the possibility of the Routing Service being a bottleneck in

the network. The other key features of the Routing Service are simplicity and

reliability. Reliability In a general sense means that the Routing Service should be

able to face up to any event. Therefore, the service has been designed to work in the

face of arbitrary changes In the topology of the network or its connectivity and also to

26"Far apart" should be taken to mean that if a single hierarchical address were used to specify a
part of the network which included all the attachment points, then the address would need to have a lot
of omitted components.

100

*~~ ------- --- Y- - -

efficiently respond to changing network configurations, mobile hosts, artificial

partitioning, multi-homing, and shared access.

101

......

Chapter Five

Conclusions

This chapter summarizes the design goals for the Routing Service and presents the

salient features of the design itself. The chapter also discusses areas for further

improvement and research.

5.1 Summary of Routing Service Design

The original motivation of this thesis was clear and compelling-to simplify gateways

and to aid modularity by separation of target identification and routing decisions from

gateway implementation. Source routing seemed to provide the magic answer for

the need described above. However, source routing by itself does not amount to

much without a network service to provide routing information.

Several goals were laid down for the Routing Service itself. To begin with, the

service should be reliable and it should be fast enough to avoid being a bottleneck in

the system. Reliability, in a general sense, covers not only the changes in topology

and connectivity but also the ability to deal with changing network configurations,

mobile hosts, artificial partitioning, multi-homing, and shared access. Note that in a

few cases the efficiency of the Routing Service was as much or more of a concern

than reliability. For example, the Routing Service was designed to be efficient in the

fact of mobile hosts-the service was not designed to just survive in the face of

mobile hosts. Scaleability, or efficiency in the face of networks increasing or

decreasing in size, was also a major design goal.

A hierarchical configuration was chosen for the campus-wide network to address the

problem of scaleability. Also, an implementation of source routing that computes

102

reverse routes was chosen to facilitate discussion of the design in concrete terms.

Moreover, it was decided that computing shortest hop routes was sufficient in the

high-bandwidth campus environment--more sophisticated routes are not needed.

The actual design of the Routing Service was split up into seven parts. The first three

pirts are the backbone of the Routing Service. They deal with topology finding,

t.omputing routes, and answering queries about routes, Algorithms were described

for each of the three basic functions. The topology-finding algorithm was described

with two variations-one for a level-1 27 Routing Server and one for any other level

Routing Server. The topology-finding algorithm was designed to be efficient and also

reliable (to cope with any arbitrary topology and connectivity). The algorithms for

computing routes was designed to compute shortest hop routes. The algorithm for

answering queries was designed to be efficient in the face of various anticipated

situations. First, since a number of Routing Servers had to cooperate to produce a

route, care was taken to ensure that the time taken to produce a route was not unduly

long. Second, the service was designed to be efficient to the extent possible in

finding routes to mobile or multi-homed hosts. The algorithm for answering queries

was also designed to be flexible enough to find routes when the hierarchical address

of the destination is not completed specified.

Apart from the three basic functions of the Routing Service, four other facilities were

incorporated into the design. First, several useful ways of changing the configuration

of the network were described. Second, user control of paths was provided to an

extent by allowing users to specify parts of the network to be avoided by a certain

route. Third, the service was geared to diagnose faults in faulty routes and compute

alternative routes. Four, it was suggested that congestion control could be provided

by using global infQrmation about the network to compute appropriate routes.

The design of the Routing Service was evaluated in Chap. 4. The evaluation

2 7 Level-1 is the lowest level in the hierarchy.

103

~1-1

concluded that the goals set out in Chap. 2 were essentially met by the proposed

design.

5.2 Future Work

This thesis has been a paper design of a Routing Service for campus-wide internet

transport. An implementation of the Routing Service should be attempted as soon as

possible to verify the essential correctness of the design. To make the

implementation completely convincing, its performance should be monitored under

normal as well as stressful conditions. Even if a Routing Service with all its

functionality cannot be implemented (because a full-scale campus-wide net does not

exist yet), a stripped down version should be implemented. If this approach is taken,

it will be easy to build a complete Routing Service when the campus-wide network

comes into existence.

There are several useful features that can be added to the Routing Service. Recall

that a class-of-service feature was dropped from the current design because the

related area is not well understood yet. Further investigation should be done on how

to enable the Routing Service automatically to select paths to meet certain class-of-

service standards specified by users.

The Routing Service presented in this thesis gives routes to users only when asked

for them. These routes are expected to be cached and used until the user discovers

that they do not work any more, or suspects that a better route may exist, or if the

user loses the route for some reason. In either of the previous cases, the user has to

ask the Routing Service for a new route. In some circumstances when the Routing

Service discovers a better route between two points in the network, it might be more

efficient for the Routing Service to directly send the route to its expected users

(instead of waiting for a query). For the scheme to work well, however, it might be

necessary for the Routing Service to be able to force routes into the caches of users.

In fact, it is even acceptable to provide the Routing Service with a mechanism to

104

invalidate entries in user caches for routes; .users could then ask for new routes for

the invalidated entries when the need arises. This second mechanism is being

suggested because it is possible that it may be easier to implement than a

mechanism to force entries into user caches. Therefore, a mechanism to force

routes into caches or a mechanism to invalid&te entries in caches should be worked

out.

One of the major problems of using routing decisions as a mechanism to spread

traffic and optimize network usage is that in most networks only local information is

available. Intuitively, it seems far-fetched to be able to achieve a network-wide

optimization based only on local information. In fact, a recent study [9] indicates that

flow-control power28 is non-decentralizable. The study lends further credence to the

idea that some sort of global information is required to tackle congestion control or

flow control meaningfully. Since the Routing Service for the campus-wide network is

in a position to choose routes based on global information, it may be possible to

implement useful routing strategies for flow control or congestion control. Therefore,

this area is open to a lot of interesting research.

Various ways of changing the hierarchical structure of the network were described in

Chap. 3. It is conceivable that global information could be used by the Routing

Service automatically to reconfigure the network based on network optimization

criteria. Automatic reconfiguration of the network is yet another area worth

exploring.

28Power is defined as the ratio of total throughput to average delay.

105

I -- - - - - - - 4'.

Bibliography

~[1]

Aho, A.V., Hopcroft, J.E., and UlIman, J.D.
The design and analysis of computer algorithms.

Addison-Wesley, 1974, chapter 5.10.

[2]
Baase, S.

Computer algorithms.

Addison-Wesley, 1978, chapter 3.3.

[31
Boggs, D.R., Shoch, J.F., and Taft, E.A.
Pup: An Internetwork Architecture.

IEEE Transactions on Communications (COM-28, 4):612-623, April, 1980.

[4]
Clark, D.D., Pogran, K.T., and Reed, D.P.
An Introduction to Local Area Networks.
In Proceedings of IEEE, pages 1497-1517. IEEE, November, 1978.

[5]
Even, S.
Graph Algorithms.

Computer Science Press, 1979, chapter 1.5.

[6]
Friedman, D.U.
Communication Complexity of Distributed Shortest Path Algorithms.
Master's thesis, Massachusetts Institute of Technology, Department of

Electrical Engineering, Cambridge, Massachusetts, December, 1979.

[7]
Hopkins, G.T.
Multimode Communications on the MITRENET.
In Proceedings of the Local Area Communications Network Symposium,

pages 169-177. MITRE Corporation, Bedford, Massachusetts, May, 1979.

[8]
Horowitz, E. and Sahni, S.
Fundamentals of Data Structures.

Computer Science Press, 1978, chapter 4.7.

106

[9]
Jaffe, J.M.
Flow Control Power is Non-decentralizable.
Technical Report RC 8343 (#36291), IBM T.J. Watson Research Center

Yorktown Heights, NY 10598, March, 1980.
Submitted for publication

[101
Kahn, R.E., Gronemeyer, S.A., Burchfiel, J., Kunzelman, R.C.
Advances in Packet Radio Techno!ogy.
In Proceedings of the IEEE, Vol. 66, No. 11, pages 1468-1496. IEEE,

November, 1978.

[111

McQuillan, J.M.
Routing Algorithms for Computer Networks--A Survey.
In Proceedings of the National Telecommunications Conference, pages 28:1-

6. ,1977.

[12]
McQuillan, J.M., Richer, I., and Rosen, E.C.
The New Routing Algorithm for the ARPANET.
IEEE Transactions on Communications (COM-28, 5), May, 1980.

[13]
Metcalfe, R.M., and Boggs, D.R.
Ethernet: Distributed Packet Switching for Local Computer Networks.
Communications of the ACM (19, 7):395-404, July, 1976.

[14]

Okuda, N., and Kunikyo, T.
Ring Century Bus: An Experimental High Speed Channel for Computer

Communications.
In Proceedings of the Fourth International Conference on Computer

Communications, pages 161.166. , September, 1978.

[151
Pouzin, L.
Methods, Tools, and Observations on Flow Control in Packet-Switched Data

Networks.
IEEE Transactions on Communications (COM-29, 4), April, 1981.

107

.----------------- --- i

[16]
Reingold, E.M., Nievergelt, J., and Deo, N.

Combinatorial algorithms.: theory and practice.

Prentice-Hall, 1977, chapter 8.2.6.

[17]
Rudin, H.

On Routing and Delta Routing: A Taxonomy and Performance Comparison of

Techniques for Packet-Switched Networks.

IEEE Transactions on Communications (COM-24, 1):43-59, January, 1976.

[18]

Saltzer, J.H.

Source Routing for Campus-wide Internet Transport.

In Proceedings of the IFIP Working group 6.4 Workshop on Local Area

Networks in Zurich. IFIP, August, 1980.

Yet to be published

[191

Saltzer, J.H.
On Names in Networks-A Systems Perspective.

Technical Report, Massachusetts Institute of Technology, Laboratory for

Computer Science, March, 1981.

Paper in preparation

[20]
Shoch, J.F.

Inter-Network Naming, Addressing, and Routing.

In Proceedings of COMPCON, pages 72-79. IEEE, Fall, 1978.

[21]

Sunshine, C.A.
Addressing Problems in Multi-Network Systems.

Technical Report DARPA Internet Experiment Note 178, University of

Southern California, Information Sciences Institute, April, 1981.

Unpublished, available from SRI International, Menlo Park, CA

[22]
Svobodova, L., Liskov, B., and Clark, D.D.

Distributed Computer Systems: Structure and Semantics.

Technical Report TR-21 5, Massachusetts Institute of Technology, Laboratory

for Computer Science, March, 1979.

108

[23]
Thornton, J.E., Christensen, G.S., and Jones, P.D.
A New Approach to Network Storage Management.
Computer Design :81-85, November, 1975.

[24)
Wilkes, MNV., and Wheeler, D.J.
The Cambridge Digital Communication Ring.
In Proceedings of the Local Area Communications Network Symposium,

pages 47-61. MITRE Corporation, Bedford, Massachusetts, May, 1979.

109 _____ _

OFFICIAL DISTRIBUTION LIST

Director 2 copies

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research 3 copies

800 North Quincy Street
Arlington, Virginia 22217
Attention: Marvin Denicoff, Code 437

Office of Naval kesearch 1 copy
Resident Representative

Massachusetts Institute of Technology
Building E19-628
Cambridge, Mass. 02139

Attention: A. Forrester

Director 6 copies
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center 12 copies

Cameron Station
Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

National Science Foundation 2 copies
Office of Computing Activities

1800 G Street, N.W.
Washington, D.C. 20550
Attention: Thomas Keenan, Program Director

TLMEI

