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Abstract—Field-programmable gate arrays (FPGA’s) are now
widely used for the implementation of digital systems, and many
commercial architectures are available. Although the literature
and data books contain detailed descriptions of these archi-
tectures, there is very little information on how the high-level
architecture was chosen, and no information on the circuit-
level or physical design of the devices. This paper describes the
high-level architectural design of a static-random-access memory
programmable FPGA. A forthcoming Part II will address the
circuit design issues through to the physical layout. The logic
block and routing architecture of the FPGA was determined
through experimentation with benchmark circuits and custom-
built computer-aided design tools. The resulting logic block is an
asymmetric tree of four-input lookup tables that are hard-wired
together and a segmented routing architecture with a carefully
chosen segment length distribution.

Index Terms—Field-programmable gate arrays, FPGA archi-
tecture, SRAM programmable.

I. INTRODUCTION

FIELD-PROGRAMMABLE gate array (FPGA) technol-
ogy permits the design of many different complex digital

circuits using a single off-the-shelf device [1]. The time-to-
market pressures and low financial risk has made FPGA’s
and complex programmable logic devices (CPLD’s) an in-
creasingly popular vehicle for prototyping and, in many cases,
actual production. There are many different architectures now
available from over 15 silicon vendors. Although the data-
books and related literature usually describe the architecture in
detail, there is little information onhow the architecture was
chosen and no information on the circuit-level or physical-
layout level of the design. The contribution of this paper
is to describe how a suitable architecture was chosen for a
static random-access memory (SRAM) programmable FPGA.
A forthcoming paper [2] examines the circuit and layout issues
encountered when implementing that FPGA. Our primary goal
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here is to produce a high-speed architecture and circuit with
a reasonable logic density.

FPGA’s were first introduced in 1986 by Xilinx Inc., San
Jose, CA, using a memory-based programming technology
[3]. Since then, there have been many new commercial archi-
tectures [4]–[8] and several new programming technologies,
including two types of antifuse [9]–[11] and floating-gate
transistors, which are ultraviolet (UV) and electrically erasable
[12]–[14].

A few noncommercial FPGA architectures have been re-
ported for which the design details are more readily available.
The Triptych FPGA [15], [16] matches the physical structure
of the routing architecture to the fanin/fanout nature of the
structure of digital logic by using short connections to the near-
est neighbors. Segmented routing channels are used between
the columns to provide for nets with fanout greater than one.
No discussion is given about how the segmentation length
distribution was selected. This routing architecture does not
allow the arbitrary point-to-point routing available in general
FPGA structures. The logic block implements logical functions
using a multiplexer-based three-input lookup table followed
by a master-slave D-latch and can also be used for routing.
Initial results show potential implementation efficiencies in
terms of area using this structure. The Montage FPGA [17],
[16] is a version of the Triptych architecture, which is modified
to support asynchronous circuits and interfacing separately
clocked synchronous circuits. This is achieved by the addition
of an arbiter unit and a clocking scheme that allows two
possible clocks or makes the latches transparent.

Earlier work at the University of Toronto, Toronto, Ont.,
Canada, resulted in the implementation of an architecture
(UTFPGA1) using three cascaded four-input logic blocks
and segmented routing [18]. UTFPGA1 used information
from previous architectural studies, but there was very little
transistor-level optimization (for speed), and little time was
spent on layout optimization. This was a first attempt that
provided some insight into the problems faced in the design
and layout of an FPGA. An earlier version of the work
presented here appeared in [19].

Modern trends in computer architecture have shown the
importance of considering both the compiler technology and
the hardware technology at the same time, when designing
for high performance [20]. This is also true in the design
of an FPGA, where it is important that the computer-aided
design (CAD) tools collaborate with the architecture of the
FPGA. At the University of Toronto, we have developed
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(a) (b) (c)

Fig. 1. Hard-wired connections and logic blocks. (a) Network of basic blocks. (b) Hard-wired connections and logic blocks. (c) Faster HLB network.

a number of custom CAD tools that have been used to
perform experimentalarchitectural studies. In this paper, we
will describe two important architectural innovations that lead
to higher speed FPGA’s and influenced the architecture of
our second-generation FPGA. In the forthcoming Part II [2],
we will also introduce a novel layout style for FPGA’s that
builds the basic tile using a set of identical minitiles and
customization by the addition of vias. This allows us to still
achieve reasonable density while significantly reducing the
time spent doing custom layout. These features have all been
implemented in our test chip, calledLogic that’sErasable and
Greatly Optimized (LEGO).

In Section II, we show how various hard-wired interconnect
topologies between lookup tables can form larger logic blocks
and influence delay and how to select an appropriate topology.
In Section III, the routing architecture is derived and we show
that longer dedicated wire lengths in the routing architecture
are beneficial. Section IV provides a summary of our results
and some conclusions.

II. L OGIC BLOCK ARCHITECTURE

The speed and density gap between FPGA’s and mask-
programmable gate arrays (MPGA’s) is mostly due to the
routing structures used to connect logic components in each
technology. In MPGA’s, the logic elements are connected
with mask-programmed metal wires. In FPGA’s, logic block
pins are connected using field-programmable switches. Re-
gardless of the type of programmable switch used in the
FPGA (e.g., SRAM controlled pass transistors [4] or antifuses
[21], or floating-gate-based switching [14]), the capacitance,
resistance, and size of programmable connections makes them
much slower and larger than a simple metal wire.

One way to improve the speed and density of FPGA’s is
to replace some of the programmable connections between
basic logic blocks with hard-wired connections, which are
simple metal wires [22]. By using hard-wired links to construct
more coarse-grained logic blocks [called hard-wired logic
blocks (HLB’s)] from several basic blocks, the delay and size
of circuits can be reduced. For example, Fig. 1(a) shows a
network of basic blocks with five programmable connections
in the routing along the critical path (which we define as the
combinational path with the largest number of logic levels)
from block 1 to block 5 and nine programmable connections
in total. Suppose that three of the basic blocks are hard-wired

together to create an HLB with a fast three-block path, as
shown in Fig. 1(b). The resulting circuit in Fig. 1(c) has only
two slow programmable links instead of five along the critical
path. This is a sizable reduction in routing delay. Also, the
total number of programmable connections has been reduced
from 9 to 4 and this may lead to a reduction in routing area.

A. The HLB Design Space

Given this general notion of HLB’s, it is clear that there are
many possible ways to implement it. Assuming that there is
only one type of basic block that is connected in a given HLB,
the choices lie in the topology of the interconnection between
the blocks and size of the basic block itself.

Each choice will provide different delay and area for a given
circuit. In general, the more hard-wired links in an HLB,
the faster the circuits implemented using that logic block.
However, a greater number of hard-wired connections provide
less connection flexibility and may lead to lower density
because basic blocks are wasted. In this section, we give a
brief description of the experiments performed to determine a
good choice for the HLB topology. We omit the work done to
determine the choice of the basic block, which the interested
reader can find in [23], along with a more detailed description
of these experiments.

The basic block we choose to work with is the four-input
lookup table (4-LUT), as previous studies have indicated that
this is a reasonable choice for both speed and density [24]–[28]
and as such has been adopted by several commercial vendors
[4]–[6].

We restricted the choice of topology to be a tree, as circuits
often are treelike in nature. Fig. 2 illustrates several of the
topologies that were investigated. The naming convention of
these structures is as follows: it begins with the letter “L,”
then the height of the HLB (in basic blocks), then a dash
(“–”) followed by a listing of sizes of the subtrees from a
preorder traversal of the canonical HLB tree. Each subtree
size is separated by a dot (“.”) with the restriction that leaf
inputs and single-LUT subtrees are not listed.

In addition to the HLB topologies illustrated in Fig. 2,
all possible tree topologies with nine or fewer 4-LUT’s and
three or fewer LUT levels were explored. Initial experiments
indicated that although HLB’s with more than nine 4-LUT’s
provide greater speedups, they require too much area to be
considered practical.



CHOW et al.: DESIGN OF SRAM-BASED FPGA—PART I: ARCHITECTURE 193

TABLE I
SPEED AND AREA OF HLB’ S-BASED FPGA’S, SPEED-OPTIMIZED CIRCUITS

An important architectural assumption is that each HLB
has a buffer on the output of each LUT basic block that is
accessible to the programmable routing. This direct access has
two important advantages: delay is reduced because an output
can be accessed without propagating it through downstream
logic blocks and density is increased because unrelated pieces
of logic can be packed together in a multioutput HLB.

The goal of the experiments described below is to select
from among the many possible hard-wired 4-LUT architec-
tures one that produces high system speeds at a reasonable
cost in area.

B. Experimental Method

To evaluate the HLB topologies, a set of 15 benchmark
combinational circuits from the Microelectronics Centre of
North Carolina (MCNC) suite1 were each “implemented” as a
set of FPGA’s with each HLB topology. The area and delay
of each implemented circuit is then calculated using area and
delay models, and the results are averaged over all circuits
for each HLB topology. By “implementation,” we mean that
each circuit is processed through a suite of CAD tools that
take it from the logic level (equations) through to the physical
placement upon the hypothetical FPGA and the global routing
on that FPGA. Note that a custom logic synthesis tool, called
TEMPT, was developed to allow synthesis into the hard-wired
structures [29].

The focus of this paper is not the details of these exper-
iments, but the results. As such, the description of the area
and delay models and the CAD tools needed to provide the
implementation are omitted, but can be found in [23]. The
only detail necessary for the discussion below is the fact that
the CAD implementation stream has two modes: one in which
the resulting FPGA circuit is optimized for speed (sometimes
at great cost in area) and the other in which the circuit is
optimized for area at the cost of some speed. Our method of
selecting an appropriate logic block for LEGO is to inspect
the results of both experiments using both optimizations and
to deduce a reasonable compromise.

1MCNC, “Logic synthesis and optimization benchmarks user guide, Version
3.0,” Jan. 1991.

C. Experimental Results

Table I provides the summarized results of the implementa-
tion of the benchmark circuits for those HLB topologies that
appear the most promising. Table I gives the highest speed
(lowest critical path delay) topologies for eachsizeof HLB,
where size is measured by the number of 4-LUT’s in the HLB,
when the circuits are optimized for both speed and area.

The first column of Table I lists the number of 4-LUT’s
in the HLB. If there are two rows for a given number of
4-LUT’s, the second entry is an alternative HLB that shows
a slower speed, but at a lower area cost. The second column
gives the label of the HLB topology, as described above. The
third and fifth columns give the normalized speedup of the
HLB with respect to L1 (a 4-LUT FPGA with no hard-wired
links), for the speed and area-optimized implementations. The
speed is calculated as the geometric average of the inverse of
the critical path delay for each circuit. It is then normalized
with respect to L1. The fourth and sixth columns of Table I
give the normalized area, with respect to L1, for both the
speed and area cases. The unnormalized absolute values for
speed and area are given in the L1 row, assuming a 1.2-m
complimentary metal–oxide–semiconductor (CMOS) process.
Absolute areas come from actual layouts of cells used in an
area model. Absolute times come from a delay model, which
incorporates delay data derived from the simulation of the cell
layouts.

The speed-optimized results show that the hard-wired links
can increase system speed from 14% up to 50% compared
to a flat nonhard-wired 4-LUT when the circuits are speed
optimized. However, the area cost of this speed is an increase
of 19%–70% in circuit size. Some of this increase is caused by
wasteful logic synthesis tools that sacrifice area for speed, but
it also comes from the fundamental speed-area tradeoff with
hard-wired links, as discussed above.

The area-optimized results show that several topologies are
actually more area efficient than the flat four-input lookup
table. All topologies provide a gain in speed, although less
than that of the speed optimized case.

Our criteria in choosing a block is to select one that gives
a good combination of speed and good density. From Table I,
we reject those blocks that have too high an area penalty: those
in the last four rows. Of the remaining blocks, L3-5.2, L2-5,
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Fig. 2. Example of some of the tree topologies investigated.

Fig. 3. Segmented routing architecture.

L3-4.2, and L2-4 provide the best speed up. However, the L3-
4.2 block proved superior to the others in the area-optimized
case, and so it was selected. Of note is that this block provided
the best logic density overall, while also providing significant
speed up. The L3-4.2 HLB is illustrated in Fig. 2.

It is tempting to use programmable multiplexers in place of
the hard-wired connections to allow either the direct link or
to access an input. We do not consider their use in this study
for two reasons: first, we are interested in finding the fastest
topologies and the multiplexers do not improve the speed,
secondly, each extra input to the logic block is expensive
in terms of area and part of the purpose of the hard-wired
connection is to save that area.

III. ROUTING ARCHITECTURE

The FPGA routing architecture is the most important deter-
mining factor of system speed and logic density because the
programmable switches, which are pass transistors driven by
SRAM cells, have significant resistance and capacitance and
require large area. The routing architecture is the manner in
which wire segments and switches are organized.

In the original Xilinx 2000 and 3000 architectures [3], [30]
a very simple architecture was employed: most wire segments
spanned only the length (or width) of one logic block and
had switches at each end. One way to improve the speed of
connections that travel long distances is to provide segments
that span multiple logic blocks without being switched, as
illustrated in Fig. 3. In this way, a segment with appropriate
length for a connection can be selected, which results in less
resistance along the path. The general notion of segmented
routing was first introduced in [9].

A key architectural question is the determination of the
number of segments of each length, called thesegmentation
length distribution.The greater number of longer segments, the
greater the likelihood that long and otherwise time-consuming
connections will be routed with fewer series switches, resulting
in a faster circuit. An excessive number of longer segments,
however, will mean that some of the long segments will have
to be used for short connections, resulting in the waste of part
of the segment. This waste leads to a decrease in logic density.
Thus, it is important to find a segmentation distribution that
improves speed, but does not waste too much area.

There is a second important architectural feature of seg-
mented routing architectures besides the distribution: a seg-
ment is called internallypopulatedif it is possible to make
connections from the middle of a segment to logic blocks or
other routing segments. The advantage of unpopulated seg-
ments is that it has less parasitic switch capacitance connected
to the segment, which makes it faster. The disadvantage is that
the reduction in routing flexibility (without population there
cannot be internal fanout) may result in the need for more
tracks and, thus, a loss of logic density.

In this section, we briefly summarize a study on segmented
routing architecture distribution and population that was used
as the basis for decisions on the routing architecture for
LEGO. The basic approach was experimental, similar to the
one described in the previous section: several benchmark
circuits are “implemented” as FPGA’s, each with a different
segmentation distribution. These experiments required several
CAD tools, including a detailed router specifically designed for
FPGA’s [31]. The number of tracks needed to complete the
route using segments of only length one is called the minimum.
When the channel includes segments of other lengths, the
number of tracks required above the minimum is measured.

A. Definitions and Experimental Method

Fig. 4 illustrates the broad architectural features of the
LEGO FPGA. Thelogic block(L) has pins that are connected
to routing channels in a structure called aconnection block(C).
Theswitch block(S) provides connectivity among its attached
channels. A channel consists of C and S blocks. Each channel
contains routing tracks. We assume that each track consists
of only one type of segment length. We will consider only
segments of length one, two, and three, which will be referred
to as 1-, 2-, and 3-segments.

Let be the fraction of the tracks that contain
1-segments. Similarly, and are the fractions for 2- and
3-segments so that .

Concerning the issue of the internal population of the
segments, we divide it into two parts: whether or not the
connection blocks internal to the segment (i.e., those not
at its ends) should be populated and whether or not the
internal switch blocks should be populated. The following
notation indicates the level of population: indicates that
all unpopulatable connection blocks are unpopulated, while

means that they are populated. Similarly, for switch
block population, we use and . Thus, there are
four combinations of population. Notice that for 2-segments,
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Fig. 4. Architectural definitions.

Fig. 5. Population comparison.

only the middle switch block can be depopulated and, for
3-segments, there are two switch blocks and one connection
block that can be depopulated.

B. Experimental Results and Decisions

The following experiments were performed: for all pos-
sible values of , , and , using all four population
combinations, the number of excess tracks needed over the
minimum (for ) were measured and averaged for five
benchmark circuits. We addressed the questions of population
and distribution using these experiments. Note that the logic
block used in these experiments was a single 4-input LUT,
with a flip-flop. While this was not the block chosen for
LEGO, we believe the general results discussed below will
hold for most logic blocks.

1) Population of Segments:The first question we address
is that of population of the S and C blocks. Fig. 5 is a plot,
for , of the average number of excess tracks versus

for the five circuits. The four curves are the different

TABLE II
AVERAGE EXCESS TRACKS FOR ALL DISTRIBUTIONS, POPULATION CBuSBp.

ABSOLUTE AVERAGE NUMBER OF TRACKS = 12, STANDARD DEVIATION = 2:2

combinations of population for the switch and connection
block. Notice that as decreases from one, increases
from zero ( ). Since this provides a greater
number of longer segments with lower flexibility, we expect
the number of tracks needed to successfully route will increase,
and this is borne out in the figure.

The data show that both cases in which the switch block
is unpopulated (the upper two curves) result in significantly
more excess tracks. For this reason we decided to populate
the switch block in LEGO. On the other hand, the bottom two
curves (with the switch block populated) illustrate that only a
minor increase in tracks is experienced when the connection
block is depopulated. Since there is an advantage in speed for
depopulation (less capacitance on the track), we decided to
depopulate the connection block in LEGO.

2) Segmentation Distribution:Table II gives the average
number of excess tracks for many possible values of, ,
and . Note that, since , there are only
two independent variables, which we chose asand in
the table. The rows vary and the columns vary . This
table is for architectures with both the C blocks unpopulated
and the S blocks populated, as discussed above.

Table II illustrates that, even with 80% length (three seg-
ments) that only about four extra tracks on average are
required. (The minimum number of absolute tracks required
for the five circuits ranged from 9 to 15.) We decided that
we were willing to tolerate only about one extra track per
channel above the minimum so that the area cost of the higher
speed tracks would be small. Thus, architectures within
the range of 0.0–0.6 and in the range of 0.1–0.4 (those
shown in boxes in Table II) would reflect such a choice. The
faster architectures are those with higher values of.

In Part II [2], we give the reasons that lead to the choice
of 16 tracks per channel in LEGO. For the segmentation
distribution, there is an additional constraint that arises from
the one-tile style of layout that was used: there must be an
even number of 2-segment tracks and the number of 3-segment
tracks must be a multiple of three. Taking this constraint and
the above distribution into account, the following segmenta-
tion distribution was used in LEGO: nine of the 16 tracks
are 1-segments, four tracks are 2-segments, and three are
3-segments. This corresponds to a segmentation distribution
in which , , and , which fits
within the architectural range indicated above.
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IV. CONCLUSIONS

We have described the high-level architectural decisions
used to select the logic block and routing architecture for
the design of a high-performance FPGA. We developed the
architecture using an experimental process in which custom-
built CAD tools are used to implement benchmark circuits on
candidate architectures. This method has the danger that the
tools may have unfair algorithmic biases toward certain ar-
chitectures, resulting in “incorrect” architectural decisions. We
have made an honest effort, however, to use the highest quality
algorithms possible. This method is the only practical way of
dealing with the enormous complexity of FPGA architecture
development because theoretical analysis can never account
for all of the conflicting constraints that must be considered in
a real design. In addition, this kind of approach produces an
architecture that is tuned to the capabilities of the tools, which
is key to the success of an FPGA.

The architecture will be a symmetric array of the L3-4.2
HLB logic blocks with a segmented routing architecture
employing the distribution and population described in
Section III. Fig. 4 illustrates such an array. An FPGA with
these characteristics was designed and fabricated. The circuit
and layout issues are described in the forthcoming Part II [2].

As technology continues to scale, the area of the logic will
decrease, but the relative effect of the delays due to wiring
will increase. This will create further demands on the routing
architecture, especially as the amount of logic available on
a single FPGA will also increase, resulting in larger systems
being built. Architecturally, there will continue to be a need
for innovation in new logic and routing structures, and any
new studies must always match the capabilities of the design
and implementation tools to the architecture.

It is particularly important that a good set of benchmark
circuits be available, especially to the academic community.
With the trend toward larger systems-on-a-chip, studies like
ours can only have merit when they use circuits that reflect
this trend. We hope that the community will work toward
improving the publicly available benchmark suites such as the
one provided by MCNC.1 It is essential that the industrial com-
munity participate in this effort as they possess such circuits
and stand to gain the most from the research that uses them.

In the future, we will explore other aspects in architecture
and design, including the incorporation of large blocks of
memory, more complex routing structures for high-speed
interconnect, and the global distribution of routing tracks.
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