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ABSTRACT

There is a need to design large database systems that are not rigid in
their choice of algorithms and are responsive to faults/failures and perfor­
mance degradation. To attack this challenge, we fonnalize and experiment
with design principles that allow the implementation of an adaptable dis­
tributed system. By adaptable, we imply that systems can be reconfigured
at run-time based on perfonnance and continuity of operations require­
ments and load conditions. Our research focus is on algorithms for con­
currency control, resiliency to site failures, network partitioning, and
failure of communication systems. The strategies for dynamic
reconfiguration of the software algorithms and determining their impact
are being studied both theoretically and via experiments on a prototype
system called RAID being developed at Purdue. We describe a layered
design for a dislributed operating system with dislributed protocols that
can be modified -- or even completely changed -- while the system is run­
ning. This capability will be a help in tuning the system to improve its
perfonnance and reliability. In addition, the increased flexibility of this
design makes it suitable for diverse applications. and capable of incor­
porating new distributed systems technology as it becomes available,
unlike existing systems.

1. Introduction

Current distributed systems provide a rigid choice of algorithms for software imple­
mentation. The design decisions are based on criteria such as computational complexity,
simulations under certain assumptions, or at best limited empirical evidence. The desired

life cycle of a system is at least several years. During such time new applications surface
and dislributed systems technology advances, making the earlier design choices less
valid. In addition during a small period of time (within a 24 hour period) a variety of load

mixes, response time requirements and reliability requirements are encountered. Dif­

ferent concurrency control and recovery algorithms are suitable for different load, perfor­
mance, and reliability requirements [Bhar 84]. Only an adaptable dislributed system can

t This re5e.arch is supported in part by the U.S. Departmtnl ofTmmportalion and Sperry CoipOntlion.
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meet the various application needs in the short-term, and take advantage of advances in
technology over the years. Such a system will adapt to its environment during execution,

and eliminate the overhead of redesigning the complete system because of outdated
design choices.

For instance, distributed systems which provide some method of handling the net­

work partition problem [Davi 84], use a method based on one of two major approaches.
The conservative approach relies on careful protocols that ensure that all changes that
happen in any partition maintain consistency across all partitions [Mino 82]. In contrast,
the optimistic method pennits inconsistency during the partition, and includes a merge
phase during which all of the sites in the complete network again agree on a consistent
database state [Davi 84]. In systems which have heavy access to shared data items the

conservative approach is based on the reasonable assumption that the work required to
merge partitions that have become inconsistent would be greater than the savings
achieved through the higher concurrency possible during the partition. On the other hand

in many systems it is reasonable to assume that most of the data items in different parti­
tions can be safely accessed simultaneously. This is true, for instance, for traditional
time-shared file systems such as UNIX. Then when the partitions are merged, any

activity which did violate the consistency requirements of the system as a whole can be
rolled back or compensated [Bhar 82b]. Different applications require different solutions
to this problem, but few current systems offer more than one alternative.

Another example is concurrency control. The degree of concurrency provided by a
system is affected by the algorithm which is implemented. Unfortunately, these algo­
rithms use different data structures and even have different infonnation requirements. So
a system built with one concurrency control approach is likely to require significant
effort to convert to a different method. We consider this example again in section 4.2.2.

The selection of the basic protocols is made early in the design phase of a system.
Unfortunately, this selection detennines the applications for which a new system is suit­
able long before that system is ready for applications. This severely restricts the useful­

ness of the completed system.

Our solution to this problem has two major thrusts. First, each of the major sub­
systems will be parameterized to permit tuning or even replacement while the system is

running. For example, the partition control protocol in our design uses a conservative
approach when rollbacks would be expensive, and an optimistic approach when the pro­

bability of cyclic conflicts is low. Second, we work to restrict the possible communica­
tion between the protocols by designing our system in layers with clearly defined com­

munication paths between the layers. This allows new protocols to fit into our system
without disturbing protocols on other levels.

In this paper we discuss the ideas of layering, algorithm replacement, and real-time
adaptation. Section 2.1 describes our layering scheme, and section 2.2 contains several

examples of real-time adaptation. Section 3 discusses ways in which the ability to
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change algorithms in response to circumstances can be used. to improve the performance
and reliability of a distributed system. Section 4 describes the RAID experimental distri­
buted system which we are using to test our ideas. Finally, section 5 suggests future
work towards building adaptable distributed. systems and section 6 is the conclusion.

2. Adaptability

We identify two main principles for our research. First, we view the system as con­
sisting of layers with clearly defined communication paths between the layers. This
allows introduction of new protocols at different levels without affecting the subsystems

at other levels. The second principle involves switching from one class of algorithm to
another class. We research both of these ideas, and consider several examples of their
application in this section.

2.1. Layering

In this section we describe our preliminary layering scheme. This discussion is
meant to provide a framework within which to discuss the rest of the system. To keep
our design flexible we suggest a class of layering schemes that support the functionality
needed for our system. We will concentrate on a particular layering within this class that
is especially suitable for adaptability. However, any layering scheme from the class
would be acceptable. Our scheme is quite similar to existing layered operating systems
[Tane 72] except that we de-emphasize traditionally important areas such as the I/O and
memory management sub-systems in favor of the support which we offer for distributed
systems.

Our layering scheme is depicted in figures 1, 2, and 3. Figure 1 provides abbrevia­
tions which are used in the diagrams. Figure 2 is a dependency graph which shows the
interaction between the layers. The fundamental requirement for a layered system is that
inner layers must not depend on features provided by ourer layers. Our dependency graph
encodes this relationship with directed dependency edges. For instance, the directed
edge from the RPC layer to the CO layer means that our remote procedure call mechan­
ism will use primitives from the basic communications layer, and must be above it in the
eventual layering scheme. This dependency graph depicts the rules that determine the
class of layering schemes that are most accommodating to our ideas. The dependencies
involving the LIO, LMM, and UMM layers are standard to layered operating systems.
Our upper level I/O system (liO) is responsible for logging I/O requests from transac­
tions to provide undo/redo capabilities for atomicity and reliability. Thus it must be
below the transaction level (TR) and above the stable storage level (SS). Remote pro­
cedure call (RPC) clearly must use the communications system (CO). TR must also use
the CO, and will need UIO and SS in addition. Finally, the partition contrallayer (PC)
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requires CO, and provides the error-free virtual network on which TR is built.

Figure 3 is a possible layering based on these dependencies. This layout has many
characteristics that we feel are important in the design of an adaptable distributed system,
but we stress that it is only one of several possible. In the next few subsections we
explain the choices that we have made in constructing this diagram. In cases in which

other alternatives seem almost as attractive as the one which we chose. we briefly defend
our choice and suggest situations in which the alternatives would be preferred. In section
4.2.1 we relate these layering ideas to the RAID distributed system.

2.1.1. Transactions

The transaction concept has proven itself as the correct model for reliable distri­
buted processes [Gray 79], so we concentrate on providing support for distributed nested
transactions at the lowest possible level. From the second diagram it can be seen that
remote procedure calls, for instance, can be executed within transactions, and are subject

to the rules of commit and abort. Since transactions must be reliable through site and
network failures. the protocols for coping with site failure and partition are below the
transaction level. It should be noted that these failures will be handled transparently with
respect to outer layers. Thus, the transaction level can be written to run on a errorless
virtual network of failure·free sites.

2.1.2. Communication

The communications layers provide services ranging from a basic message passing
facility on which the distributed system is built to a remote procedure call mechanism.
The most important part of this system is a reliable datagram service, which guarantees

that either the datagram is sent correctly or that an error indication is returned. The
choice of datagrams as the basic unit of communication rather than a higher level service
such as virtual circuit [Tane81] is based on the fact that most system level communica­

tion in a distributed system consists of discrete packets of data. The advantages of
higher-level communication are not needed for this sort of communication.

However, users will often wish for higher level services, so we provide a reliable
remote procedure call (RPC) mechanism for most user~level interprocess communication

[Shri 82]. RPC has become an accepted mechanism for IPC, and has several major

advantages as a method for building a reliable system. Most notably, the semantics of
rolling back a datagram message that has been sent or received are difficult to define and
hard to implement. On the other hand, the atomicity requirements for RPC can be pro­
vided easily by a sub-transaction of the transaction attempting the RPC [Lisk 83].

Finally, a broadcast capability is provided to make distributed commitment proto­

cols easier and more efficient. The broadcast routines use hardware broadcast if it is
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provided by the network. Otherwise, a system-level simulation is still more efficient than
a user-level simulation.

This three part approach satisfies the necessity for efficiency in system communica­

tion, without sacrificing convenience for the programmer. The system designer has both

point-ta-point and broadcast datagrarns while the user-level programmer can make use of
the RPC abstraction.

2.1.3. Input/Output Systems

The three major I/O systems are the lower I/O system, the upper I/O system, and the

stable storage system. The lower level I/O is the support needed by the virtual memory

management system. For the most part, this consists of simple calls for reading and writ­

ing raw data. The stable storage system provides I/O facilities suitable for use as a log

[Lamp 78]. Because a log is intended to improve the reliability of the system as a whole,

it is essential that the log itself be more reliable than the rest of the system. This level is

intended to be hidden from users of the system, but is used by upper levels to provide

recoverable YO. Finally, the upper level YO routines provide the YO interface seen by
applications programmers. In particular, this level offers a reliable read/write protocol

permitting replication and providing location independence [ref-replicated]. Section

2.3.2 offers more detail on the upper level I/O protocol.

2.1.4. Memory Management

Memory management is not a primary focus of our current work. Certainly the

work that is being done in the area of distributed memory management [LLHS 85] is

important, but in order to make our research applicable to current distributed systems we

have chosen to use more standard methods. In particular, our memory management

software consists of separate units at each site which have no interaction with one

another. As shown in the diagrams, we provide for virtual memory management since

that is an important pan of modem systems. However, memory management is safely

below the network level, and is presumed to be implemented in a standard manner [Denn

70].

2.2. Algorithm Replacement
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2.2.1. Concurrency Control

The concurrency control system is one of the most important candidates for parame­
terization. The hierarchy among the classes of algorithms for distributed concurrency
control is shown in Figure 4 and was developed in [Hua 82]. Each of the rectangles
represents a set of histories that is accepted by a particular class of concurrency control
algorithms. The containment relationship between different classes induces a partial
order of concurrency control classes. At the top is the NP-complete class SR that con~

tains transaction histories that preserves database consistency. At the bottom is the trivial
class that allows only serial histories, but can be decided in constant time. Practical algo­
rithms such as two-phase locking and those based on timestamp mechanisms fall some­
where between these extremes. Here the tradeoff is between the efficiency of the algo­
rithm and the degree of concurrency that it permits. In section 3.1 we list some of the
parameters that determine which concurrency control algorithm is best suited for an
application.

2.2.1.1. Concurrency Control Adaptability

The goal of changing concurrency control methods while the system is running can

be easily achieved. Simply stop entering new transactions into the system, wait until all
transactions are completed. and start allowing transactions to enter the system again.
This solution has two flaws that make it unacceptable. First of all, the concurrency of the
system during the conversion will be dramatically lowered. Second, the conversion can­
not begin until all transactions that were running when the conversion decision was made
have completed. In the presence of long transactions, this delay will be unacceptable.

For these reasons, we are working on ways in which concurrency controllers can be
switched without fust stopping all transaction processing. The primary difficulty with this

approach is that different concurrency control methods use quite different data structures.
We are working on two solutions to this problem. The most obvious is to try to find a

general data structure that permits efficient concurrency control for all methods. In sec­

tion 4.2.2 we describe a data structure that supports all locking and timestamp con­
currency control methods without modification. The second approach is to find efficient

ways to conven between the data structures needed for the various methods efficiently.
For instance, we are looking at ways to convert a lock table to approximate timestamp
infonnation quickly. Along with either of these approaches we need a protocol to allow

limited transaction processing while the concurrency control method is being changed.

2.2.2. Partition Control

When a communication system failure occurs, two or more sets of operational sites

may partition and find themselves unable to send updates to replicated copies. Since
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availability of the latest values of the database items and the continuation of the transac­

tion processing cannot be prohibited. a variety of protocols [Bhar84, Davi84. Bhar86]
have been suggested.

As an example. the token-based scheme [Mino82] can be used to identify the copy
of each database item that can be accessed during a network partition. The tokens can be

stationary (assigned to a unique copy) or be moved from one copy to another based on
the system's requirements. There is a certain amount of overhead in managing the
tokens that can be lost in the worst case.

Another protocol for dealing with network partitions is to allow the database items

in the partition with the majority of sites to be accessed by transactions. This protocol
blocks all transactions in the partitions with the minority of sites and in the worst case
may block all transactions if no partitions has a majority.

As a third alternative, all partitions can process optimistically (hoping few roll­

backs) all transactions but only semi-commit (transactions can be rolled back) the results
and ensure consistency when partitions merge [Bhar82b].

Either of these alternatives are appropriate under different conditions. If the dura­

tion of network partition is small and the probability of cyclic conflicts is low, the third
alternative can perfonn very well and increase throughput and response time. In addi­
tion, it is resilient to multiple failure, of partitions themselves. One can also switch from

this protocol to the protocols based on majority of sites or the token approach. They may
be necessary for some real-time constraints or priorities of sites or certain database items.

Another dimension of flexibility arises when the network partitions merge. In the
token approach, no additional work is required. In the majority site approach, the sites
blocked out from any processing need to be integrated [Bhar86] with active sites. In the

optimistic approach, the transaction processing in different partitions need to be serial­
ized. This can be done by merging various dynamic conflict graphs (DCG) [Bhar82] and
maintaining acyclic property. This task itself can be done in several ways. Two of them
are listed as follows:

a) Combine all DCG's and check for acyclicity. This idea is too optimistic. The
rollback of transaction may always be needed and to minimize the rollback in
NP-complete [Davi84].

b) Assign a weight to each transaction in each DCa. Consider the nCGm with
maximum weight. Immediately commit all transactions in nCGm. Select tran­

sactions from other DCG's that do not ·create cycle with DCGm and commit
them. Abort the cycle producing transaction.

Once again the choice depends on the reliability, perfonnance. and other require­
ments of the system. But the system design should permit adaptability to any variation of

protocols during partitions and when the merging of partitions takes place. This can be
achieved if comprehensive data structures are used for the bookkeeping during regular
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processing and certain conditions are maintained when the switching from one class of
protocols to another occurs.

2.2.3. ReadIWrite Voting

Distributed systems with replicated data must use a protocol that ensures that
updates are observed consistently by all transactions. Many systems use one of the
read/write voting protocols categorized by Gifford [Gift 79]. Essentially, each of these
protocols chooses some number Ct, and requires that a successful read must read at least a

sites, and a successful write must write at least n-a sites, where n is the total number of
sites in the system. These protocols range from the popular methods like read one/write
all to special weighted voting methods for unusual situations. Many variations of these
protocols have been employed in actual systems. However, almost any single choice is
easy to criticize for some applications. Therefore, our upper level I/O system, the

read/write system, will be parameterized to allow it to change dynamically among vari­
ous of these protocols while the system is running. During periods with many more reads
than writes such as overnight system consistency verification the system could use read

one/write all, but during periods with more writes than reads such as restoring the data­
base to an earlier state from a backup tape the system could use read all/write one. Of
course, most of the time the mix of reads and writes would dictate a compromise between
the two methods. Selecting the correct protocol is a complex task.

There are many other examples of ways in which a distributed system could be
parameterized. Good candidates include the choice between centralized and decentral­
ized distributed commitment protocols and the site recovery algorithm. Choosing the
correct parameters and fitting them into the system is an important question.

3. Real-Time Adaptation

One of the goals in designing a system is to be able to adapt to changing cir­
cumstances as they occur. In the previous section we discussed ways in which the pieces

of such a distributed system could be changed. Now we consider the problem of decid~

ing which combination of the available choices would be best for the operation of the

system.

3.1. Parameters

In order to choose the proper components at "a given time certain infonnation about
the activities in the system must be gathered. Each of the parts of our distributed system
will be responsible for gathering infonnation about its operation and supplying that infor­
mation to a monitor process that will make these critical decisions. The following

parameters are among those that are known to be important [Bhar 84].
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multiprogramming level: the number of ttansactions active at any given time

arrival rate: the speed at which transactions are queuing to enter the system

response time: the average real time to completion of a transaction

CC overhead: the average amount of time that a concurrency control method takes

to make the commit/abort decision for one transaction

rollback cost: the cost of rolling back a transaction that must be aborted versus the
cost of blocking transactions from running

transaction conflict: a measure of the amount that transactions compete for access to
database items

update/read-only: the ratio of transactions that make database updates to those that
only read

reads/writes: the ratio of the average number of reads made by a transaction to the
average number of writes

transaction size: the average computing resources required for a single transaction

deadline: are there some transactions that have real-time constraints?

semantics: are there special application-specific semantics that affect the con­
currency control decision?

The relationship between individual members of this group of parameters and indi­
vidual concurrency control algorithms is documented [Bhar 82]. However, the interac­

tions between various parameters is complex and difficult to analyze. Providing the
capability for a system operator to tune the system based on a complete set of perfor­

mance parameters is certainly an advantage over current systems, but some fonn of
automatic adaptation would be desirable.

3.2. Expert System

Unfortunately, the relationships between these parameters are difficult to model pre~
cisely. Experts who have researched the problem have a good understanding of the fac­

tors influencing these decisions, but are not able to provide analytic models to solve the
problem. An expert system would be a good tool for controlling the adaptation strategy.
This expert system would maintain a knowledge base consisting of a group of parameters

affecting adaptation, with deduction rules based on the known relationships between the

parameters. It will receive data from each of the components of the system periodically,
make decisions about the preferred state of the system, and communicate those decisions

to the components that should reconfigure or swit~h protocols. The knowledge-base will
grow based on the past experience of the expert system.

The statement of this problem is easy enough, but it has some hidden complexity.
For instance, one of the parameters which such a system would have to modify is the fre­

quency of data collection and the amount of information that is collected to make the
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decision! During periods of gradual change, hysteresis should be high which indicates
that infrequent examination of the status would be enough. On the other hand, when
changes are occurring rapidly it might be worth the overhead of collecting the data more

frequently to ensure that a good protocol is in use at all times. It is a demonstration of
Heisenberg's Principle that the closer we monitor the system the more we impact its per­
fannance.

Figure 5 is a schematic diagram showing the components of our expert system and

its relationship to the rest of the system. The goals for this system are developing an
appropriate set of parameters for monitoring system performance, and creating an set of
inference rules that contains the important relationships between these parameters and
the various algorithms.

4. Experimental Effort

RAID is an experimental system being developed on VAXen running the UNIX
operating systems in order to investigate the principles necessary to build a high perfor­
mance, reliable, and adaptable distributed database system. Since a variety of system
control functions are needed to increase the integrity, concurrency, and reliability of a
distributed database system, this effort focuses on the experimental study of the princi~

pIes that allow the dynamic selection of these algorithms and the reconfiguration of the
system.

4.1. Experimental Prototype· RAID

Currently there are six major subsystems in RAID: Parser (PAR), Access Manager
(AM), Action Driver (ACT), Auditor (LOG/DIFF), Atomicity Controller (AC), Con­
currency Controller (CC). The relationships between these subsystems is depicted in

figure 6. PAR accepts transactions expressed in a relational calculus (INGRES-QUEL
type) language and produces read/write actions. These actions are processed by ACT

which communicates with AM for I/O and AC for commitment of transactions across the
distributed system. AC validates transactions for local serializability with Cc. Before

posting the updates in the database, ACT goes through the auditor that can use either a
log or a differential-file based system. All sites in the system contain all six subsystems

and can process local transactions independently and global transactions via the com­
munication system that ties all the ACs together. This communication system is based
on the datagram service provided by the network level.

4.2. Status and Project Plans

Currently the system provides two choices for the auditorlback up system and six
choices for concurrency controller. The switching from one choice to another is done

statically. Our major goals are to permit the dynamic re-configuration described in this
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paper, and to implement alternate choices for the other sub-systems. Effort is under way
to implement a system to deal with site failures and network partitions.

4.2.1. RAID Layering

The RAID system existed before our layering ideas, so in many respects it will have
to be changed to fit them. RAID will be a tool for testing various layering schemes for
ease of implementation and functionality. To date we use the memory management and
lower level VO (LMM, LIO, and UMM) of the UNIX system [Thorn 78]. We have
implemented an easy to use datagram service on top of TCP/IP UDP datagrams [Post
81]. Transactions (TR) run on top of this layer, using only the upper level I/O, upper
level memory management, and communication services of the lower levels. This part of
the system fits the layering scheme of figure 3 perfectly.

We have not implemented the partition control (PC), stable storage (88), or remote
procedure call (RPC) layers. Partition control must be implemented transparently with
respect to the transaction layer. The transaction layer currently stores its log files on

ordinary disk files. When the stable storage system is complete it should be used for log
files. Finally, remote procedure call will be built on top of the transaction level, provid­
ing users with reliable inter-process communication.

4.2.2. Concurrency Control Implementation

Our first attempt at designing an adaptable concurrency controller has been to
design a data structure that supports any locking or time-stamp based concurrency con­

trol method. This seems like a hard problem, especially with the need for efficiency.
Our solution starts by simplifying the problem. Recently, researchers have discovered a
special class of optimistic concurrency control algorithms that keep enough state infor­
mation about each completed transaction to decide whether it can commit [Bhar 82].

Then the actual decision can be delayed until a more appropriate time, allowing for
improved concurrency. The implementation of these optimistic protocols has suggested
a new method, which we call validation for implementing the usual conservative con­

currency control algorithms. Essentially, the idea is to permit all transactions to run to

completion without enforcing any restriction on .database access. Then as the transac­
tions complete, their history is examined. to see if it satisfies a panicular concurrency

control method. Thus, the validation approach to two-phase locking is to determine after
a transaction has run whether there is any assignment of locks that would satisfy the nor­

mal two-phase locking requirement and still allow the transaction to run as it did. If
there is such an assignment, the transaction is committed; otherwise it must be aborted.

The data structure that we use is shown in figure 7. The transaction history consists

of transactions TI through T4. Each transaction has a number of atomic read or write
actions, each of which accesses one database item. These transactions have already been

committed but must still be kept in the history because some transaction that was running
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concurrently with them has not yet completed. They will be removed from the history
when all the transactions that were running concurrently with them have completed.
When ttansaction T5 completes it must be validated with this history. Figure 8 contains

the validation routine for simple locking in which a read or write locks an item until the
transaction completes. We also use as an example the timestamp validation routine in

which a transaction commits only if every item that it updates does not change between
the read and write actions. T5 will be committed under either of these algorithms. The
history including T1 through T4 and T6 is not serializable, and must be aborted by any
correct concurrency control method. T7 will also be aborted by the simple locking algo­
rithm. but can be committed under time-stamping.

The advantage of using this approach is that it keeps enough information about exe­
cuting transactions to allow a variety of concurrency control methods to be applied.
When other events suggest that a new concurrency control method should be used, the
current one can be replaced without converting any data structures. This allows both
rapid conversion and efficient execution.

The correctness of most concurrency control methods depends on having all tran­

sactions that run concurrently follow the same method. This suggests that we must stop
entering new transactions into the system until all the currently running transactions are

completed, apply the validation method to all of them, and then start up the system again
with a new concurrency control method. This approach is shown in figure 9, where
method A is being changed to method B. IT the concurrency control methods A and B
have no overlap, this is the best that can be done. However, as shown in figure 4, many
of the methods overlap substantially. In'the example of figure 10, in order to convert
from A to B we need only force the concurrently executing transactions to be acceptable
to B, rather than to be completely halted. Thus, if we can force the current history to be
in the intersection of A and B, it is safe to switch methods. Fortunately, with the valida­
tion method this is easy to do. For each transaction that completes, we run the validation

routines for both A and B, and only allow the transaction to commit if both routines per­
mit commitment. Then after all of the transactions that were started while method A was
in place are out of the system, method B may be run alone.

4.2.3. Parameterization

As described in the previous section it is possible to parameterize the concurrency

control system. In the near future, we plan to parameterize the following subsystems and
experiment with them:

atomicity controller: We will implement several commit/termination protocols.

partition control: At least two different site failure and network partitioning algo­
rithms will be implemented.

I/O system: The I/O system will be parameterized using the scheme of section 2.1.3.
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We are also studying the principles of switching from one algorithm to another for
different subsystems at run-time. The switching criteria will be based on a variety of
parameters such as multiprogramming level, degree of conflict, mix of transaction size
and type (read-only versus update), available semantics and real-time requirements,
workload (arrival rate. overheads, response time) and so on. We are beginning the design
of an expert system that will automatically reconfigure the system to changing environ­

mental conditions while it is running.

5. Further Work

An important area for further research is to develop ways in which other distributed
systems algorithms can be parameterized. Along with this research, more infonnation
will be needed about the effects of various parameters on the algorithms. Of particular
importance are performance results which describe the effect of changes in one subsys­
tem on other subsystems. For instance, the choice of a concurrency controller is almost

certain to impact the choice of a commit or partition control protocol. Certain algorithms
for different subsystems cooperate efficiently. as an example, the optimistic method for
concurrency control is compatible with a similar protocol for the network partition prob­

lem.

In fact, our goal of designing an expert system to help manage the choice of algo­
rithms based on various infonnation about the system meshes well with this research

need. Such an expert system would be in a good position to record observations about
the effects that its choices made on later system peIformance. We hope to have a meta­
expert-system that modified its behavior based on data collected in this way.

This work may influence future designers of distributed algorithms to generalize
their algorithms so that they can be used to maximum benefit in an adaptable system.
For instance. the multi-dimensional timestamp concurrency control method [Leu 86] can

be parameterized to permit different types of concurrency.

6. Conclusion

Distributed systems contribute towards building highly reliable and available sys­

tems. Unfortunately, the state of the art of building a distributed system is to select an ad
hoc set of protocols based on a particular application, and then to build the system from

the ground up. This is very wasteful. especially in view of the fact that many distributed

algorithms are closely related, sharing the same data structures and similar subroutines.
I

Further, this approach tends to decrease the reliability that makes disttibuted systems so

attractive in the first place.

Our disttibuted system design h!1~ pieces which are interchangeable to a large
. I

degree. In particular, we have specified the relationships between pieces of our design in

a layered fashion, so that new or different algorithms can be integrated with minimum
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effort. In addition, we are designing the protocols that are used in the system so that they
can be modified or tuned while the system is running. This tuning can be done by a
well-trained operator through a user interface, or automatically by an expert system
front-end.

This type of design has not been possible until recently, because not enough was

known about the form that distributed protocols would take and performance data were
not available. But now, with many concrete ideas, we feel that a careful design can allow
for the desirable flexibility.
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stable storage: special I/O for log, backup info
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low level memory management: simple physical memory services

upper level memory management: virtual memory, if desiredj buffer
pools

communication: semi-reliable datagrams (at most once?) i broadcast

low-level I/O: interface to hardware I/O

upper-level I/O: read/write protocol, permitting replication and pro­
viding location independencej includes logging

transactions management: BeginTrans, EndTrans, and Abort verbs;
provides concurrency controlj must have 'hooks' in read/write system
calls

remote procedure call support: reliable RPC

partition control: provides virtual fail-proof network to upper layers
(also handles site failure/recovery)
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Figure 3: Possible layering, based on dependency graph.
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Figure 7: Example of general data slructure for implementing timestamp/locking concllITency control pro­
tocols. Tl through T4 arc a sample history of committed transactions. T5 is able to commit, and would be
added to the history. T6 cannOl be serialized with Tl wough T5 and would be aborted. 17 would be
aborted by a standard locking protocol, bUl is serializable with T1 !hrough T5 and would be committed by
some timestamp based proLocols.



Explanation: New transaction N is anempting La com mil. 0 is an old transaction against which N must
be validated. O.A[D] refers to an access A (read/wriLC) to data item 0 by transaction O. The simple
locking prolocolllIat we use here works by assigning a lock La a transaction when il firsl reads or wrileS a
data ilern. All of its locks are released when il complctes.

FOR each 0: a lIansaction from the current history DO
FOR each O.A[D] in O's action list DO

FOR each N.A[D] in N's acLion list DO
IF timeslalTlp(O.A[D)) :;:; limestamp(N.A[D)) AND

limestamp(O's completion);;:: Limestamp(N.A[D]) THEN
ABORT transaction N

PI
OD

OD
OD

Complexity
p = number of actions in [his IJansaction
N = number of transaeLions in hiSlOry
A = set of active transactions willI time overlap with the new transaction
mi = number of actions in T; for I:;:;i '5N

O(p'Lm, +N)
T,eA

and uses space
N

O('Lm, + pl·
i=l

If the action lisls arc likely La be large, performance can be improved by using a more sophisticated dic­
tionary data slruclure such as a binary lIee. Sinec action lisls are likely to havc high locality of reference,
heuristics such as the move-La-front or transpose rules may be worthwhile.

Figure 8: An algorithm for enforcing simple locking as a validaLion prolocol. In this algorithm a new
transaction must nOl have violated any locks thal would have been held by transactions in the existing his­
tory.
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