
The Design of an EDF-scheduled Resource-sharing Open Environment∗

Nathan Fisher Marko Bertogna Sanjoy Baruah

Abstract

We study the problem of executing a collection of independently designed and validated task systems upon a common
platform comprised of a preemptive processor and additional shared resources. We present an abstract formulation of the
problem and identify the major issues that must be addressed in order to solve this problem. We present (and prove the
correctness of) algorithms that address these issues, and thereby obtain a design for an open real-time environment.

Keywords: Open environments; Resource-sharing systems; Sporadic tasks; Critical sections; Earliest Deadline First; Stack
Resource Policy.

1 Introduction

The design and implementation of open real-time environments [16] is currently one of the more active re-
search areas in the discipline of real-time computing. Such open environments aim to offer support for real-time
multiprogramming: they permit multiple independently developed and validated real-time applications to execute
concurrently upon a shared platform. That is, if an application is validated to meet its timing constraints when
executing in isolation, then an open environment that accepts (or admits, through a process of admission control)
this application guarantees that it will continue to meet its timing constraints upon the shared platform. The open
environment has a run-time scheduler which arbitrates access to the platform among the various applications; each
application has its own local scheduler for deciding which of its competing jobs executes each time the application
is selected for execution by the “higher level” scheduler. (In recognition of this two-level scheduling hierarchy,
such open environments are also often referred to as “hierarchical” real-time environments.)

In order to provide support for such real-time multiprogramming, open environments have typically found it
necessary to place restrictions upon the structures of the individual applications. The first generation of such
open platforms (see, e.g., [25, 18, 10, 33, 17, 13] – this list is by no means exhaustive) assumed either that each
application is comprised of a finite collection of independent preemptive periodic (Liu and Layland) tasks [24],
or that each application’s schedule is statically precomputed and run-time scheduling is done via table look-
up. Furthermore, these open environments focused primarily upon the scheduling of a single (fully preemptive)
processor, ignoring the fact that run-time platforms typically include additional resources that may not be fully
preemptable. The few [31, 15, 12] that do allow for such additional shared resources typically make further
simplifying assumptions on the task model, e.g., by assuming that the computational demands of each application
may be aggregated and represented as a single periodic task, excluding the possibility to address hierarchical
systems.

More recently, researchers have begun working upon the second generation of open environments that are
∗This research has been supported in part by the National Science Foundation (Grant Nos. CCR-0309825, CNS-0408996 and CCF-

0541056).
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capable of operating upon more complex platforms. Two recent publications [14, 9] propose designs for open
environments that allow for sharing other resources in addition to the preemptive processor. Both designs assume
that each individual application may be characterized as a collection of sporadic tasks [26, 8], distinguishing
between shared resources that are local to an application (i.e., only shared within the application) and global (i.e.,
may be shared among different applications). However, both approaches propose that global resources be executed
non-preemptively only, potentially causing intolerable blocking among and inside the applications.

In this paper, we describe our design of such a second-generation open environment upon a computing platform
comprised of a single preemptive processor and additional shared resources. We assume that each application can
be modeled as a collection of preemptive jobs which may access shared resources within critical sections. (Such
jobs may be generated by, for example, periodic and sporadic tasks.) We require that each such application be
scheduled using some local scheduling algorithm, with resource contention arbitrated using some strategy such
as the Stack Resource Policy (SRP). We describe what kinds of analysis such applications must be subject to and
what properties these applications must satisfy, in order for us to be able to guarantee that they will meet their
deadlines in the open environment.

The remainder of this paper is organized as follows. The rationale and design of our open environment is
described in Sections 2 and 3. In Section 2, we provide a high-level overview of our design, and detail the
manner in which we expect individual applications to be characterized — this characterization represents the
interface specification between the open environment and individual applications running on it — and in Section 3,
we present the scheduling and admission-control algorithms used by our open environment. In Section 4, we
discuss the different applications that may be scheduled by our open environment. In Section 5, we relate our
open environment framework to other previously-proposed frameworks. In Section 6, we discuss in more detail
how applications that use global shared resources may be scheduled locally using EDF with the Stack Resource
Policy [3].

2 System Model

In an open environment, there is a shared processing platform upon which several independent applications
A1, . . . , Aq execute. We also assume that the shared processing platform is comprised of a single preemptive
processor (without loss of generality, we will assume that this processor has unit computing capacity), and m
additional (global) shared resources which may be shared among the different applications. Each application may
have additional “local” shared logical resources that are shared between different jobs within the application itself
– the presence of these local shared resources is not relevant to the design and analysis of the open environment.
We will distinguish between:

• a unique system-level scheduler (or global scheduler), which is responsible for scheduling all admitted
applications on the shared processor;

• one or more application-level schedulers (or local schedulers), that decide how to schedule the jobs of an
application.

An interface must be specified between each application and the open environment. The goal of this interface
specification is to abstract out and encapsulate the salient features of the application’s resource requirements.
The open environment uses this information during admission control, to determine whether the application can
be supported concurrently with other already admitted applications; for admitted applications, this information is
also used by the open environment during run-time to make scheduling decisions. If an application is admitted, the
interface represents its “contract” with the open environment, which may use this information to enforce (”police”)
the application’s run-time behavior. As long as the application behaves as specified by its interface, it is guaranteed
to meet its timing constraints; if it violates its interface, it may be penalized while other applications are isolated

2



from the effects of this misbehavior. We require that the interface for each application Ak be characterized by
three parameters:

• A virtual processor (VP) speed αk;

• A jitter tolerance ∆k; and

• For each global shared resource R`, a resource-holding time Hk(R`).

The intended interpretation of these interface parameters is as follows: all jobs of the application will complete at
least ∆k time units before their deadlines if executing upon a dedicated processor of computing capacity αk, and
will lock resource R` for no more than Hk time-units at a time during such execution.

We now provide a brief overview of the application interface parameters. Section 6 provides a more in depth
discussion of the resource hold time parameter.

VP speed αk. Since each application Ak is assumed validated upon a slower virtual processor, this parameter is
essentially the computing capacity of the slower processor upon which the application was validated.

Jitter tolerance ∆k. Given a processor with computing capacity αk upon which an application Ak is validated,
this is the minimum distance between finishing time and deadline among all jobs composing the application. In
other words, ∆k is the maximum release delay that all jobs can experience without missing any deadline.

At first glance, this characterization may seem like a severe restriction, in the sense that one will be required to
“waste” a significant fraction of the VP’s computing capacity in order to meet this requirement. However, this is
not necessarily correct. Consider the following simple (contrived) example. Let us represent a sporadic task [26, 8]
by a 3-tuple: (WCET, relative deadline, period). Consider the example application comprised of the two sporadic
tasks {(1, 4, 4), (1, 6, 4)} to be validated upon a dedicated processor of computing capacity one-half. The task set
fully utilizes the VP. However, we could schedule this application such that all jobs always complete two time
units before their deadlines. That is, this application can be characterized by the pair of parameters αk = 1

2 and
∆k = 2.

Observe that there is a trade-off between the VP speed parameter αk and the timeliness constraint ∆k —
increasing αk (executing an application on a faster VP) may cause an increase in the value of ∆k. Equivalently,
a lower αk may result in a tighter jitter tolerance, with some job finishing close to its deadline. However, this
relationship between αk and ∆k is not linear nor straightforward – by careful analysis of specific systems, a
significant increase in ∆k may sometimes be obtained for a relatively small increase in αk.

Our characterization of an application’s processor demands by the parameters αk and ∆k is identical to the
bounded-delay resource partition characterization of Feng and Mok [25, 18, 17] with the exception of the Hk(R`)
parameter.

Resource holding times Hk(R`). For open environments which choose to execute all global resources non-
preemptively (such as the designs proposed in [14, 9]), Hk(R`) is simply the worst-case execution time upon
the VP of the longest critical section holding global resource R`. We have recently [19, 11] derived algorithms
for computing resource holding times when more general resource-access strategies such as the Stack Resource
Policy (SRP) [3] and the Priority Ceiling Protocol (PCP) [32, 30] are instead used to arbitrate access to these global
resources; in [19, 11], we also discuss the issue of designing the specific application systems such that the resource
holding times are decreased without compromising feasibility. We believe that our sophisticated consideration of
global shared resources – their abstraction by the Hk parameters in the interface, and the use we make of this
information – is one of our major contributions, and serves to distinguish our work from other projects addressing
similar topics. Our approach toward resource holding times is discussed in greater detail in Section 6.
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Figure 1. State transition diagram. The labels on the nodes and edges denote the name by which the
respective states and transitions are referred to in this paper.

3 Algorithms

In this section, we present the algorithms used by our open environment to make admission-control and schedul-
ing decisions. We assume that each application is characterized by the interface parameters described in Section 2
above. When a new application wishes to execute, it presents its interface to the admission control algorithm,
which determines, based upon the interface parameter of this and previously-admitted applications, whether to
admit this application or not. If admitted, each application is executed through a dedicated server. At each instant
during run-time, the (system-level) scheduling algorithm decides which server (ie. application) gets to run. If an
application violates the contract implicit in its interface, an enforcement algorithm polices the application – such
policing may affect the performance of the misbehaving application, but should not compromise the behavior of
other applications.

We first describe the global scheduling algorithm used by our open environment, in Section 3.1. A description
and proof of correctness of our admission control algorithm follows (in Section 3.2). The local schedulers that
may be used by the individual applications will be addressed in Section 4.

3.1 System-level Scheduler

Our scheduling algorithm is essentially an application of the Constant Bandwidth Server (CBS) of Abeni and
Buttazzo [1], enhanced to allow for the sharing of non-preemptable serially reusable resources and for the concur-
rent execution of different applications in an open environment. In the remaining of the paper we will refer to this
server with the acronym BROE: Bounded-delay Resource Open Environment.

CBS-like servers have an associated period Pk, reflecting the time-interval at which budget replenishment tends
to occur. For a BROE server, the value assigned to Pk is as follows:

Pk ←
∆k

2(1− αk)
. (1)

In addition, each server maintains three variables: a deadline Dk, a virtual time Vk, and a reactivation time Zk.
Since each application has a dedicated server, we will not make any distinction between server and application
parameters. At each instant during run-time, each server assigns a state to the admitted application. There are four
possible states (see Figure 1). Let us define an application to be backlogged at a given time-instant if it has any
active jobs awaiting execution at that instant, and non-backlogged otherwise.
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• Each non-backlogged application is in either the inactive or non-Contending states. If an application has
executed for more than its “fair share,” then it is non-contending; else, it is inactive.

• Each backlogged application is in either the contending or suspended state1. While contending, it is eligible
to execute; executing for more than it is eligible to results in its being suspended.

These variables are updated by BROE according to the following rules (i)–(vii) (let tcur denote the current time).

(i) Initially, each application is in the inactive state. If application Ak wishes to contend for execution at time-instant tcur
then it transits to the contending state (transition (1) in Figure 1). This transition is accompanied by the following
actions:

Dk ← tcur + Pk

Vk, Zk ← tcur

(ii) At each instant, the system-level scheduling algorithm selects for execution some application Ak in the contending
state – the specific manner in which this selection is made is discussed in Section 3.1.1 below. Hence, observe that only
applications in the contending state are eligible to execute.

(iii) The virtual time of an executing application Ak is incremented by the corresponding server at a rate 1/αk:

d

dt
Vk =

{
1/αk, while Ak is executing
0, the rest of the time

(iv) If the virtual time Vk of the executing application Ak becomes equal to Dk, then application Ak undergoes transition
(2) to the suspended state. This transition is accompanied by the following actions:

Zk ← Dk

Dk ← Dk + Pk

(v) An application Ak that is in the suspended state necessarily satisfies Zk ≥ tcur. As the current time tcur increases,
it eventually becomes the case that Zk = tcur. At that instant, application Ak transits back to the contending state
(transition (3)).
Observe that an application may take transition (3) instantaneously after taking transition (2) – this would happen if the
application were to have its virtual time become equal to its deadline at precisely the time-instant equal to its deadline.

(vi) An application Ak which no longer desires to contend for execution (i.e. the application is no longer backlogged)
transits to the non-contending state (transition (4)), and remains there as long as Vk exceeds the current time. When
tcur ≥ Vk for some such application Ak in the non-contending state, Ak transitions back to the inactive state (transition
(5)); on the other hand, if an application Ak desires to once again contend for execution (note tcur < Vk, otherwise it
would be in the inactive state), it transits to the suspended state (transition (6)). Transition (6) is accompanied by the
following actions:

Zk ← Vk

Dk ← Vk + Pk

Observe that an application may take transition (5) instantaneously after taking transition (4) – this would happen if the
application were to have its virtual time be no larger than the current time at the instant that it takes transition (4).

(vii) An application that wishes to gain access to global access R` must perform a budget check (i.e. is there enough
execution budget to complete execution of the resource prior to Dk?). If αk(Dk − Vk) < Hk(R`) there is insufficient
budget left to complete access to resource R` by Dk. In this case, transition (7) is undertaken by an executing application

1Note that there is no analog of the suspended state in the original definition of CBS [1].
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immediately prior to entering an outermost critical section locking a global resource2 R`. This transition is accompanied
by the following actions:

Zk ← max(tcur, Vk)
Dk ← Vk + Pk

If there is sufficient budget, the server is granted access to resource R`.

Rules (i) to (vi) basically describe a bounded-delay version of the Constant Bandwidth Server, ie. a CBS in
which the maximum service delay experienced by an application Ak is bounded by ∆k. A similar server has been
used in [22]. The only difference from a straightforward implementation of a bounded-delay CBS is the deadline
update of rule (vi) associated to transition (6) (which has been introduced in order to guarantee that when an
application resumes execution, its relative deadline is equal to the server period) and the addition of rule (vii).

Rule (vii) has been added to deal with the problem of budget exhaustion when a shared resource is locked. This
problem, previously described in [12] and [14], arises when an application accesses a shared resource and runs out
of budget (ie. is suspended after taking Transition (2)) before being able to unlock the resource. This would cause
intolerable blocking to other applications waiting for the same lock. If there is insufficient current budget, taking
transition (7) right before an application Ak locks a critical section ensures that when Ak goes to the contending
state (through transition (3)), it will have Dk − Vk = Pk. This guarantees that Ak will receive (αkPk) units of
execution prior to needing to be suspended (through transition (2)). Thus, ensuring that the WCET of each critical
section of Ak is no more than αkPk is sufficient to guarantee that Ak experiences no deadline-postponement within
any critical section. Our admission control algorithm (Section 3.2) does in fact ensure that

Hk(R`) ≤ αkPk (2)

for all applications Ak and all resources R`; hence, no lock-holding application experiences deadline postpone-
ment.

At first glance, requiring that applications satisfy Condition 2 may seem to be a severe limitation of our frame-
work. But this restriction appears to be unavoidable if CBS-like approaches are used as the system-level sched-
uler: in essence, this restriction arises from a requirement that an application not get suspended (due to having
exhausted its current execution capacity) whilst holding a resource lock. To our knowledge, all lock-based multi-
level scheduling frameworks impose this restriction explicitly (e.g. [12]) or implicitly, by allowing lock-holding
applications to continue executing non-preemptively even when their current execution capacities are exhausted
(e.g., [9, 14]).

3.1.1 Making scheduling decisions

We now describe how our scheduling algorithm determines which BROE server (i.e., which of the applications
currently in the contending state) to select for execution at each instant in time.

In brief, we implement EDF among the various contending applications, with the application deadlines (the
Dk’s) being the deadlines under comparison. Access to the global shared resources is arbitrated using SRP3.

In greater detail:

1. Each global resource R` is assigned a ceiling Π(R`) which is equal to the minimum value from among all the period
parameters Pk of Ak that use this resource. Initially, Π(R`) ← ∞ for all the resources. When an application Ak is
admitted that uses global resource R`, Π(R`) ← min(Π(R`), Pk); Π(R`) must subsequently be recomputed when
such an application leaves the environment.

2Each application may have additional resources that are local in the sense that are not shared outside the application. Attempting to
lock such a resource does not trigger transition (7).

3Recall that in our scheduling scheme, deadline postponement cannot occur for an application while it is in a critical section — this
property is essential to our being able to apply SRP for arbitrating access to shared resources.
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2. At each instant, there is a system ceiling which is equal to the minimum ceiling of any resource that is locked at that
instant.

3. At the instant that an application Ak becomes the earliest-deadline one that is in the contending state, it is selected for
execution if and only if its period parameter Pk is strictly less than the system ceiling at that instant. Else, it is blocked
while the currently-executing application continues to execute.

As stated above, this is essentially an implementation of EDF+SRP among the applications. The SRP requires
that the relative deadline of a job locking a resource be known beforehand; that is why our algorithm requires that
deadline postponement not occur while an application has locked a resource.

3.2 Admission control
The admission control algorithm checks for three things:

1. As stated in Section 3.1 above, we require that each application Ak have all its resource holding times (the Hk(R`)’s)
be ≤ αkPk – any application Ak whose interface does not satisfy this condition is summarily rejected. If the appli-
cation is rejected, the designer may attempt to increase the αk parameter and resubmit the application; increasing αk

will simultaneously increase αkPk while decreasing the Hk(R`)’s.

2. The sum of the VP speeds – the αi parameters – of all admitted tasks may not exceed the computing capacity of the
shared processor (assumed to be equal to one). Hence Ak is rejected if admitting it would cause the sum of the αi

parameters of all admitted applications to exceed one.

3. Finally, the effect of inter-application blocking must be considered – can such blocking cause any server to miss a
deadline? A server-deadline miss occurs when tcur ≥ Dk and Vk < Dk. The issue of inter-application blocking is
discussed in the remainder of this section.

Admission control and feasibility – the ability to meet all deadlines – are two sides of the same coin. As stated
above, our system-level scheduling algorithm is essentially EDF, with access to shared resources arbitrated by the
SRP. Hence, the admission control algorithm needs to ensure that all the admitted applications together are feasible
under EDF+SRP scheduling. We therefore looked to the EDF+SRP feasibility test in [23, 29, 6] for inspiration and
ideas. In designing an admission control algorithm based upon these known EDF+SRP feasibility tests there are
a series of design decisions. Based upon the available choices, we came up with two possible admission control
algorithms: a more accurate that requires information regarding each application’s resource hold time for every
resource, and a slightly less accurate test that reduces the amount of information required by the system to make
an admission control decision. In this section, we will introduce the two admission control algorithms and discuss
the benefits and drawbacks of each.

Prior to introducing the admission control algorithms, Section 3.2.1 will prove that many of the desirable proper-
ties of SRP that hold for sporadic task systems [3] continue to hold for our BROE server. Section 3.2. Section 3.2.3
will describe and prove the correctness of the two admission control algorithms.

3.2.1 Stack-Resource Policy Properties

As mentioned at the beginning of this section, Hk(R`) ≤ αkPk for every global resource used by application
Ak. The previous considerations allow to derive some important properties for the open environment, since there
won’t be any deadline postponement inside a critical section, we can view each application execution as a release
sequence of “chunks” (i.e. separate jobs), as suggested in [12]. A new chunk is released each time the application
enters the contending state and is terminated as soon as the state transitions from contending. We will denote the
`’th chunk of application Ak as Jk,`. The release time of Jk,` is denoted as r(Jk,`). The termination time of Jk,` is
denoted by g(Jk,`). Finally, the deadline of chunk Jk,` is the Dk value set by the server at the time it transitioned
to contending; the deadline of chunk Jk,` is represented by d(Jk,`). Let Vk(t) denote the server’s value of Vk at
time t.

7



A priority inversion between applications is said to occur during run-time if the earliest-deadline application that
is contending – awaiting execution – at that time cannot execute because some resource needed for its execution is
held by some other application. This (later-deadline) application is said to block the earliest-deadline application.
SRP bounds the amount of time that any application chunk may be blocked. The enforcement mechanism used in
our open environment allows to prove the following:

Theorem 1 (SRP properties) There are no deadlocks between applications in the open environment. Moreover,
all chunks Jk,` of an application Ak that doesn’t exceed the declared resource-holding-time have the following
properties:

• Jk,` cannot be blocked after it begins execution.

• Jk,` may be blocked by at most one later deadline application for at most the duration of one resource-
holding-time.

Proof: The proof is identical to the proof of Theorem 6 in [3]. The only difference is that in our case the items to
be scheduled are application chunks instead of jobs.

3.2.2 Bounding the Demand of Server Chunks

It is useful to quantify the amount of execution that a chunk of a server requires over any given time interval.
We quantify the demand of a server chunk, and attempt to bound the total demand (over an interval of time) by a
server for Ak. The bound on demand will be useful in the next subsection which discusses our admission control
algorithms. The following are formal definitions of demand for a server chunk and the total demand for a server.

Definition 1 (Demand of Server Chunk Jk,`) The demand of server chunk Jk,` over the interval [t1, t2] is the
amount of execution that Jk,` (with deadline and release time in the interval [t1, t2] must receive before making a
transition from contending to non-contending or suspended. Formally,

DEMAND(Jk,`, t1, t2)
def=


αk (Vk(g(Jk,`))− Vk(r(Jk,`))) if (r(Jk,`) ≥ t1) ∧ (g(Jk,`) < d(Jk,`) ≤ t2)
αkPk if (r(Jk,`) ≥ t1) ∧ (d(Jk,`) ≤ t2) ∧ (g(Jk,`) ≥ d(Jk,`))
0, otherwise

(3)

Definition 2 (Cumulative Demand of BROE Server for Ak) The cumulative demand of Ak over the interval [t1, t2]
is the total demand of all of Ak’s server chunks with both release times and deadlines within the interval [t1, t2]:

DEMAND(Ak, t1, t2)
def=

∑
`≥1

DEMAND(Jk,`, t1, t2) (4)

Different chunks of the same server may execute for different amounts of time. The reason is that some chunks
may terminate early due to becoming non-contending or trying to enter a critical section (i.e. transitions (4) or
(7)). For these chunks, the execution they receive may be less than αkPk. Unfortunately, there are infinitely
many possible application execution scenarios over any given interval (resulting in different sequences of state
transitions). With all these possibilities, how does one determine the cumulative demand of Ak over any interval?
Fortunately, we may, in fact, derive upper bounds for the cumulative demand of a server for specific sequences
of chunks. The upper bound for these sequences will be used in proof of correctness for the admission control
algorithm In the remainder of this subsection, we will present a series of lemmas that derives the upper bound on
the cumulative demand of a sequence of server chunks.

The first lemma states that the virtual time Vk of a server cannot exceed the deadline parameter Dk.
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Lemma 1 For all chunks Jk,` of BROE server of Ak,

Vk(g(Jk,`)) ≤ d(Jk,`) (5)

Proof: Observe that rule (iv) implies that when the virtual time Vk does not exceed the current server deadline
Dk. Therefore, whenever any chunk Jk,` is terminated (via transitions (2), (4), or (7)) at time g(Jk,`) the server’s
virtual time Vk(g(Jk,`)) does not exceed the deadline d(Jk,`) of the chunk.

The next lemma formally states that virtual time does not increase between the termination of a chunk that
becomes suspended, and the release of the next chunk.

Lemma 2 If Jk,`+1 was released due to transition (3) (i.e. suspended to contending), then Vk(r(Jk,`+1)) =
Vk(g(Jk,`)).

Proof: If Jk,`+1 was released due to transition (3), the transition prior to (3) must have been either (2), (7), or
the successive transitions of (4) and (6). For these transitions, either the server rules (iv), (vi), or (vii) apply when
terminating the previous chunk Jk,`. However, notice that none of these rules update Vk, and since virtual time
cannot progress unless the server is contending the virtual time at the release of Jk,`+1 (i.e. Vk(r(Jk,`+1))) must
equal the virtual time at the termination of Jk,` (i.e. Vk(g(Jk,`))).

In the final lemma of this subsection, we consider any sequence of chunks where the server does not become
inactive in between releases and the virtual time at the release of the first chunk equals actual time. For such
a sequence of chunks, we show that the demand of the chunks from the release time of the first chunk of the
sequence to the deadline of the last chunk of the sequence does not exceed αk times the sequence length (i.e. the
deadline of the last chunk minus release time of the first chunk).

Lemma 3 If Jk,`, Jk,`+1, . . . , Jk,s is a sequence of successively released chunks by the BROE server for Ak where
Jk,` satisfies Vk(r(Jk,`)) = r(Jk,`), and Jk,`+1, . . . , Jk,s were all released due to transition (3). If Jk,`, . . . , Jk,s−1

meet their deadline, then

DEMAND(Ak, r(Jk,`), d(Jk,s)) ≤ αk(d(Jk,s)− r(Jk,`)) (6)

Proof:
According to Definition 2, DEMAND (Ak, r(Jk,`), d(Jk,s)) is the sum of the DEMAND (Jk,i, r(Jk,`), d(Jk,s)) for

each chunk Jk,i where ` ≤ i ≤ s. Since both r(Jk,i) and d(Jk,i) must be included in the interval [r(Jk,`), d(Jk,s)]
and Jk,`, . . . , Jk,s−1 chunk meet their deadlines, Equation 3 implies

DEMAND (Ak, r(Jk,`), d(Jk,s)) = DEMAND(Jk,s, r(Jk,`), d(Jk,s)) +
s−1∑
i=`

αk (Vk(g(Jk,i))− Vk(r(Jk,i))) . (7)

Since chunks Jk,`+1, . . . , Jk,s are released due to transition (3), Lemma 2 implies that Vk(r(Jk,i+1)) = Vk(g(Jk,i))
for all ` ≤ i < s− 1. Substituting this into Equation 7,

DEMAND (Ak, r(Jk,`), d(Jk,s)) = DEMAND(Jk,s, r(Jk,`), d(Jk,s)) +
s−1∑
i=`

αk (Vk(r(Jk,i+1))− Vk(r(Jk,i))) . (8)

By the telescoping summation above, it may be shown that
DEMAND (Ak, r(Jk,`), d(Jk,s)) equals DEMAND(Jk,s, r(Jk,`), d(Jk,s)) + αk(Vk(r(Jk,s))− Vk(r(Jk,`))). By the
antecedent of the lemma, Vk(r(Jk,`)) equals r(Jk,`). Thus,
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DEMAND (Ak, r(Jk,`), d(Jk,`)) = DEMAND(Jk,s, r(Jk,`), d(Jk,s)) + αk (Vk(r(Jk,s))− r(Jk,`)) . (9)

It remains to determine DEMAND(Jk,s, r(Jk,`), d(Jk,s)) which is dependent on whether Jk,s meets its deadline.
If Jk,s meets its deadline, then DEMAND(Jk,s, r(Jk,`), d(Jk,s)) equals αk(Vk(g(Jk,s))−Vk(r(Jk,s)). Lemma 1 im-
plies that Vk(g(Jk,s)) ≤ d(Jk,s); so, DEMAND(Jk,s, r(Jk,`), d(Jk,s)) does not exceed αk(d(Jk,s)− Vk(r(Jk,s))).
Combining this fact and Equation 9 implies Equation 6 of the lemma. Therefore, the lemma is satisfied when Jk,s

meets its deadline.
Now consider the case where Jk,s misses its deadline. By Definition 1, DEMAND(Jk,s, r(Jk,`), d(Jk,s)) equals

αkPk. Observe that by antecedent of the lemma, Jk,s is released due to transition (3); either rule (iv), (vi), or
(vii) will be used to set d(Jk,s). Each of these rules sets d(Jk,s) = Vk(g(Jk,s−1)) + Pk ⇒ Pk = d(Jk,s) −
Vk(g(Jk,s−1)). Substituting the value of Pk and observing by Lemma 2 that Vk(g(Jk,s−1) equals Vk(r(Jk,s)), we
derive DEMAND(Jk,s, r(Jk,`), d(Jk,s)) equals αk(d(Jk,s)− Vk(g(Jk,s−1))). Finally, substituting the new expres-
sion for DEMAND(Jk,s, r(Jk,`), d(Jk,s)) into Equation 9 and canceling terms gives us Equation 6 of the lemma.
Thus, the lemma is also satisfied when Jk,s misses its deadline.

3.2.3 Admission Control Algorithms

Adapting the proofs from from the EDF+SRP feasibility tests in [6] and [3] for the case where application chunks,
instead of jobs, are the items to be scheduled, we can find a direct mapping relation between resource-holding-
times of applications and critical section lengths of jobs. The maximum blocking experienced by Jk,` is then:

Bk = max
Pj>Pk

{Hj(R`)|∃Hx(R`) 6= 0 ∧ Px ≤ Pk} (10)

In other words, the maximum amount of time for which Jk,` can be blocked is equal to the maximum resource-
holding-time among all applications having a server period > Pk and sharing a global resource with some appli-
cation having a server period ≤ Pk. The following test may be used when the admission control algorithm has
information from each application Ak on which global resources R` are accessed and what the value of Hk(R`)
is:

Theorem 2 Applications A1, . . . , Aq may be composed upon a unit-capacity processor together without any
server missing a deadline, if

∀k ∈ {1, . . . , q} :
∑

Pi≤Pk

αi +
Bk

Pk
≤ 1 (11)

where the blocking term Bk is defined in Equation 10.

Proof: This test is similar to the EDF+SRP feasibility tests in [6] and [3], substituting jobs and critical section
lengths with, respectively, application chunks and resource-holding-times.

We prove the contrapositive of the theorem. Assume that the first deadline miss for some server chunk occurs
at time tmiss. Let t′ be the latest time prior to tmiss such that there is no application is in the contending with
deadline before tmiss; since there exists a contending server from t′ to tmiss, the processor is continuously busy
in the interval [t′, tmiss]. Observe that t′ is guaranteed to exist at system-start time. The total demand imposed
by server chunks in [t′, tmiss] is defined as the sum of the execution costs of all chunks entirely contained in that
interval, ie.

∑q
i=1 DEMAND (Ai, t

′, tmiss).
We will now show that the demand of any application Ak does not exceed αk(tmiss−t′). Let Y def= {Jk,`, . . . , Jk,s}

be the set of server chunks that the server for Ak releases in the interval [t′, tmiss] with deadlines prior or equal to
tmiss. If Y is empty, then the demand trivially does not exceed αk(tmiss − t′),; so, assume that Y is non-empty.

10



Since the server for Ak is not in the contending state immediately prior t′, it is either in the non-contending,
inactive state, or suspended state for a non-zero-length time interval prior to t′ (note this disallows the instanta-
neous transitions of (2) and (3), or (7) and (3)); therefore, the first chunk of Y must have been generated due
to either transition (1) or (3), in which case either rule (i) or rule (v) apply. Thus Jk,` is the first chunk in Y ,
Vk(r(Jk,`)) = r(Jk,`). We may thus partition Y into p disjoint subsequences of successively generate chunks

Y (1), Y (2), . . . , Y (p) where Y (i) def= {J (i)
k,`i

, . . . , J
(i)
k,si
}. For each Y (i), J

(i)
k,`i

has Vk(r(J
(i)
k,`i

)) equal to r(J (i)
k,`i

), and

J
(i)
k,`i+1, . . . , J

(i)
k,si

are all released due to transition (3). Observe the chunks of each subsequences Y (i) spans the

interval [r(J (i)
k,`i

), d(J (i)
k,si

)] ⊆ [t′, tmiss]. By Lemma 3, the demand of Ak over the subinterval [r(J (i)
k,`i

), d(J (i)
k,si

)]

does exceed αk(d(J (i)
k,si

) − r(J (i)
k,`i

)). Furthermore, the server for Ak does not execute in intervals not covered
by the chunks of some subsequence Y (i). Since Y (1), Y (2), . . . , Y (p) is a partition of Y , the subintervals do not
overlap; this implies that

∑p
i=1(d(J (i)

k,si
)− r(J (i)

k,`i
)) ≤ (tmiss− t′). Therefore the total demand of Ak over interval

[t′, tmiss] does not exceed αk

[∑p
i=1(d(J (i)

k,si
)− r(J (i)

k,`i
))

]
≤ αk(tmiss − t′).

Notice that only applications with period less than (tmiss − t′) can release chunks inside the interval (since any
application Ak is not backlogged at time t′ the first chunk released after t′ will have deadline at least t′ + Pk). Let
Ak be the application with the largest Pk ≤ (tmiss − t′). For Theorem 1, at most one server chunk with deadline
later than tmiss can execute in the considered interval. Therefore only one application with period larger than Pk

can execute, for at most the length of one resource-holding-time, inside the interval. The maximum amount of
time that an application with period larger than Pk can execute in [t′, tmiss] is quantified by Bk.

Since some server chunk missed a deadline at time tmiss, the demand in [t′, tmiss], plus the blocking term Bk as
defined in Equation 10, must exceed (tmiss − t′):∑

Pi≤Pk

(tmiss − t′)αi + Bk ≥ (tmiss − t′) (12)

Dividing by (tmiss − t′), and then observing that (tmiss − t′) ≥ Pk, we have:

∑
Pi≤Pk

αk +
Bk

Pk
≥ 1 (13)

which contradicts Equation 11.
However, such an exact admission control test based on a policy of considering all resource usages (as the

theorem above) has drawbacks. One reason is that it requires the system to keep track of each application’s
resource-hold times. An even more serious drawback of the more exact approach is how to fairly account for
the “cost” of admitting an application into the open environment. For example, an application that needs a VP
speed twice that of another should be considered to have a greater cost (all other things being equal); considered
in economic terms, the first application should be “charged” more than the second, since it is using a greater
fraction of the platform resources and thus having a greater (adverse) impact on the platform’s ability to admit
other applications at a later point in time.

But in order to measure the impact of global resource-sharing on platform resources, we need to consider the
resource usage of not just an application, but of all other applications in the systems. Consider the following
scenario. If application A1 is using a global resource that no other application chooses to use, then this resource
usage has no adverse impact on the platform. Now if a new application A2 with a very small period parameter that
needs this resource seeks admission, the impact of A1’s resource-usage becomes extremely significant (since A1

would, according to the SRP, block A2 and also all other applications that have a period parameter between A1’s
and A2’s). So how should we determine the cost of the A1’s use of this resource, particularly if we do not know
beforehand whether or not A2 will request admission at a later point in time?
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To sidestep the dilemma described above, we believe a good design choice to effectively ignore the exact
resource-usage of the applications in the online setting, instead considering only the maximum amount of time for
which an application may choose to hold any resource; also, we did not consider the identity of this resource. That
is, we required a simpler interface than the one discussed in Section 2, in that rather than requiring each application
to reveal its maximum resource-holding times on all m resources, we only require each application Ak to specify
a single resource-holding parameter Hk, which is defined as follows:

Hk
def=

m
max
`=1

Hk(R`) (14)

The interpretation is that Ak may hold any global resource for up to Hk units of execution. With such character-
ization of each application’s usage of global resources, we ensure that we do not admit an application that would
unfairly block other applications from executing due its large resource usage. This test, too, is derived directly
from the EDF+SRP feasibility test of Theorem 2, and is as follows:

ALGORITHM ADMIT(Ak = (αk, Pk,Hk))
� Check if Ak is schedulable:

1 if maxPi>Pk
Hi > Pk(1−

∑
Pj≤Pk

αj) return “reject”
� Check if already admitted applications
remain schedulable:

2 for each (Pi < Pk)
3 do if Hk > Pi(1−

∑
Pj≤Pi

αj) return “reject”
4 return “admit”

It follows from the properties of the SRP, (as proved in [3]) that the new application Ak, if admitted, may
block the execution of applications Ai with period parameter Pi < Pk, and may itself be subject to blocking
by applications Ai with period parameter Pi > Pk. Since the maximum amount by which any application Ai

with Pi > Pk may block application Ak is equal to Hi, line 1 of ALGORITHM ADMIT determines whether this
blocking can cause Ak to miss its deadline. Similarly, since the maximum amount by which application Ak

may block any other application is, by definition of the interface, equal to Hk, lines 2-3 of ALGORITHM ADMIT

determine whether Ak’s blocking causes any other application with Pi < Pk to miss its deadline. If the answer in
both cases is “no,” then ALGORITHM ADMIT admits application Ak in line 4.

3.2.4 Enforcement

One of the major goals in designing open environments is to provide inter-application isolation — all other appli-
cations should remain unaffected by the behavior of a misbehaving application. By encapsulating each application
into a BROE server, we provide the required isolation, enforcing a correct behavior for every application.

Using techniques similar to those used to prove isolation properties in CBS-like environments (see, e.g., [1, 21]),
it can be shown that our open environment does indeed guarantee inter-application isolation in the absence of
resource-sharing. It remains to study the effect of resource-sharing on inter-application isolation.

Clearly, applications that share certain kinds of resources cannot be completely isolated from each other: for
example if one application corrupts a shared data-structure then all the applications sharing that data structure are
affected. When a resource is left in an inconsistent state, one option could be to inflate the resource-holding time
parameters with the time needed to reset the shared object to a consistent state.

However, we believe that it is rare that truly independently-developed applications share “corruptible” objects
– good programming practice dictates that independently-developed applications not depend upon proper behav-
ior of other applications (and in fact this is often enforced by operating systems). Hence the kinds of resources
we expect to see shared between different applications are those that the individual applications cannot corrupt.
In that case, the only misbehavior of an application Ak that may affect other applications is if it holds on to a
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global resource for greater than αkPk, or than the Hk time units of execution that it had specified in its inter-
face. To prevent this, we assume that our enforcement algorithm simply preempts Ak after it has held a global
resource for min{Hk, αkPk}, and ejects it from the shared resource. This may result in Ak’s internal state getting
compromised, but the rest of the applications are not affected.

When applications do share corruptible resources, we have argued above that isolation is not an achievable
goal; however, containment [15] is. The objective in containment is to ensure that the only applications effected
by a misbehaving application are those that share corruptible global resources with it – the intuition is that such
applications are not truly independent of each other. We have strategies for achieving some degree of containment;
however, discussion of these strategies is beyond the scope of this document.

3.3 Bounded delay property

The bounded-delay resource partition model, introduced by Mok et al. [25], is an abstraction that quantifies
resource “supply” that an application receives from a given resource.

Definition 3 A server implements a bounded-delay partition (αk,∆k) if in any time interval of length T during
which the server is continually backlogged, it receives at least

(T −∆k)αk

units of execution.

Definition 4 A bounded-delay server is a server that implements a bounded-delay partition.

We will show that when every application is admitted through a proper admission control test, BROE implements
a bounded delay partition. Before proving this property, we need some intermediate lemma. The first lemma
quantifies the minimum virtual-time Vk for a server for application Ak that is in the contending state.

Lemma 4 Given BROE servers of applications A1, . . . , Aq satisfying Theorem 2, if server chunk Jk,` of server Ak

is contending at time t (where r(Jk,`) ≤ t ≤ d(Jk,`)), then

Vk(t) ≥ Vk(r(Jk,`)) +
1
αk
·max (0, t− Vk(r(Jk,`))− Pk(1− αk)) . (15)

Proof: The proof is by contradiction. Assume that all servers have been admitted to the open environment via
Theorem 2, but there exists a server Ak in the contending state at time t that has

Vk(t) < Vk(r(Jk,`)) +
1
αk
·max (0, t− Vk(r(Jk,`))− Pk(1− αk)) . (16)

Since Vk never decreases, the above strict inequality implies that

t > Vk(r(Jk,`)) + Pk(1− αk). (17)

We will show that if Equation 16 holds there exist a legal scenario under which Ak will miss a server deadline.
Assume that application Ak has αkPk units of execution backlogged at time r(Jk,`) (the server can be in any state
immediately prior to r(Jk,`)); also assume that no job of application Ak requests any global resources during the
next αkPk units of Ak’s execution (i.e. transition (7) will not be used). The described scenario is a legal scenario
for application Ak with parameter αk and ∆k.
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Note that each of the server deadline update rules essentially sets Dk equal to Vk +Pk; therefore, d(Jk,`) equals
Vk(r(Jk,`))+Pk. The current time remaining until Jk,`’s deadline is Vk(r(Jk,`))+Pk− t. The virtual time of Ak

at time t by Equations 16 and 17 satisfies the following inequality:

Vk(t) < Vk(r(Jk,`)) +
1
αk
· (t− Vk(r(Jk,`))− Pk(1− αk)) . (18)

The remaining amount of time at time t that the server for Ak must execute for Vk to equal d(Jk,`) (i.e. complete
its execution) is αk(Vk(r(Jk,`)) + Pk − Vk(t)). Combining this expression with Equation 18, the remaining
execution time is strictly greater than Vk(r(Jk,`)) + Pk − t. However, this exceeds the remaining time to the
deadline; since the server for Ak is continuously in the contending state throughout this scenario, the server will
miss a deadline at d(Jk,`). This contradicts the given that the servers satisfied Theorem 2. Our original supposition
of Equation 16 is falsified and the lemma follows.

We next show that at any time a server chunk is released for Ak, the actual time must exceed the virtual time.

Lemma 5 For any server chunk Jk,` of BROE server for Ak,

Vk(r(Jk,`))− r(Jk,`) ≤ 0 (19)

Proof: The lemma may be proved by analyzing each of the server rules involved in moving the server state to
contending. If the server state for Ak is inactive prior to the release of chunk Jk,`, then rule (i) sets Vk to current
time, and the lemma is satisfied. If the server was suspended immediately prior to the release of Jk,`, rule (iv)
releases Jk,` only when Zk equals tcur. Observe that all the rules of the server set Zk to a value greater than or
equal to Vk. Thus, Vk(r(Jk,`))− r(Jk,`) is either zero or negative.

The final lemma before proving that BROE is a bound-delay server, shows that for any server the absolute
difference between virtual time and actual time is bounded in terms of the server parameters.

Lemma 6 For application Ak admitted in the open environment, if the server for Ak is backlogged at time t, then

|Vk(t)− t| ≤ Pk(1− αk) (20)

Proof: If the server for Ak is in the suspended stated, then because the server is backlogged this implies that
Vk(t) − t > 0; so, the server will not become contending until time Vk. Let t′ be the last time prior to t that the
server was contending; it’s easy to see that Vk(t′)− t′ > Vk(t)− t. So, we will reason about t′ and show for any
such contending time Vk(t′)− t′ ≤ Pk(1− αk). If the server for Ak was contending at time t; let t′ instead equal
t. We will show in the remain proof that −Pk(1− αk) ≤ V (t′)− t′ ≤ Pk(1− αk). Let Jk,` be the server chunk
corresponding to the last contending state at t′ for application Ak.

Let us first show that V (t′)− t′ ≤ Pk(1− αk). Observe that because virtual time progresses at a rate equal to
1/αk and cannot exceed Dk = Vk(r(Jk,`)) + Pk,

Vk(t′) ≤ Vk(r(Jk,`)) +
1
αk
·max

((
t′ − r(Jk,`)

)
, αkPk

)
(21)

Subtracting t′ from both sides, observe that the RHS is maximized at t′ equal to r(Jk,`) + αkPk. Thus,

Vk(t′)− t′ ≤ Vk(r(Jk,`)) + Pk − r(Jk,`)− αkPk (22)

Lemma 5 implies that Vk(r(Jk,`))−r(Jk,`) ≤ 0. Thus, Equation 22 may be written as Vk(′t)− t′ ≤ Pk−αkPk =
Pk(1− αk), proving the upper bound on Vk(t′)− t′ (and thus an upper bound on V (t)− t).

We will now prove a lower bound on V (t′)− t′. By Lemma 4 and the fact that the server is contending at time
t′, we have an lower bound on the virtual time at t′:
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Figure 2. Worst case scenario discussed in the proof of Theorem 3. The application receives execu-
tion during the shaded intervals.

Vk(′t)− t′ ≥ Vk(r(Jk,`)) +
1
αk
·max

(
0, t′ − Vk(r(Jk,`))− Pk(1− αk)

)
− t′ (23)

The RHS of the above inequality is minimized when t′ equals Vk(r(Jk,`)) + Pk(1 − αk). Thus, Vk(′t) − t′ ≥
−Pk(1− αk). Thus, proving the lower bound on V (t)− t; the lemma follows.

We are now ready to prove that BROE implements a bounded-delay partition.

Theorem 3 (Bounded-delay property) BROE is a bounded-delay server.

Proof:
From the definition of the BROE server, it can be seen that the virtual time Vk is updated only when an inactive

application goes active or whenever subsequently it is executing. In the latter case, Vk is incremented at a 1/αk

rate. Thus, there is a direct relation between the execution time allocated to the application through the BROE

server and the supply the application would have received if scheduled on a Virtual Processor of speed αk. The
quantity Vk(t) − t indicates the advantage the application Ak executing through the BROE server has compared
with VP in terms of supply. If the above term is positive, the application received more execution time than the
VP would have by time t. If it is negative, the BROE server is ”late”.

From Lemma 6, the execution time supplied to an application through a dedicated BROE server never exceeds
nor is exceeded by the execution time it would have received on a dedicated VP for more than Pk(1−αk) time units.
The ”worst case” is when both displacements happen together, i.e. interval T starts when Vk(t)− t = Pk(1−αk)
and ends when Vk(t) − t = −Pk(1 − αk). This interval in which the BROE server can delayed from executing
while still satisfying the bound on |V (t)−t| from Lemma 6 is of length at most twice Pk(1−αk). By the definition
of Pk (Equation 1), this is equal to ∆k. Thus, the maximum delay that an application executing on a BROE server
may experience is ∆k.

In other words, it can be shown that the “worst case” (see Figure 2) occurs when application Ak

• receives execution immediately upon entering the contending state (at time to in the figure), and the interval
of length T begins when it completes execution and undertakes transition (2) to the suspended state (at time
t1 in the figure); and

• after having transited between the suspended and contending states an arbitrary number of times, undertakes
transition (3) to enter the contending state (time t2 in the figure) at which time it is scheduled for execution
as late as possible; the interval ends just prior to Ak being selected for execution (time t3 in the figure).

A job arriving at time t1 will be served by the BROE with the maximum delay of ∆k from the supply granted by a
VP of speed αk. Since the execution received in an interval L going from the deadline of the first chunk (released
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at t0) until the release time of the last one at t2 cannot be higher than αkL, the supply granted over interval T is
αkL = (T − 2Pk(1− αk))αk. By the definition of Pk (Equation 1), this is equal to (T −∆k)αk, and the lemma
is proved.

4 Application-level schedulers

In the previous section we analyzed how to compose multiple servers on the same processor without violating
the bounded-delay server constraints. Provided that these global constraints are met, we now address the local
schedulability problem, to verify if a collection of jobs composing an application can be scheduled on a bounded
delay server with given αk and ∆k, when jobs can share exclusive resources with other applications.

To do this, we have three options on how to schedule and validate the considered collection of jobs:

1. Validate the application on a dedicated Virtual Processor with speed αk using a given scheduling algorithm.
If every job is completed at least ∆k time-units before its deadline, then the application is schedulable on a
bounded-delay partition (αk∆k) when jobs are scheduled according to the same order as they would on a
dedicated VP schedule.

2. Validate the application on a dedicated Virtual Processor with speed αk using EDF. If every job is completed
at least ∆k time-units before its deadline, then the application is schedulable with EDF on a bounded-delay
partition (αk∆k), without needing to “copy” the VP schedule.

3. Validate the application by analyzing the execution time effectively supplied by the partition in the worst-
case and the demand imposed by the jobs scheduled with any scheduling algorithm, avoiding validation on
a VP.

These options are hereafter explained in more detail.

4.1 Replicating the Virtual Processor scheduling

When scheduling a set of applications on a shared processor, there is sometimes the need to preserve the original
scheduling algorithm with which an application has been conceived and validated on a slower processor. If this
is the case, we need to guarantee that all jobs composing the application will still be schedulable on the bounded-
delay partition provided by the open environment through the associated BROE server. Mok et al. [25, 18] have
previously addressed this problem. We restate their result, adapting it to the notation used so far.

Theorem 4 [25, Theorem 6] Given an application Ak and a Bounded Delay Partition (αk,∆k), let Sn denote a
valid schedule on a Virtual Processor with speed αk and Sp the schedule of Ak on Partition (αk,∆k) according
to the same execution order and amount as Sn. Also let ∆̄k denote the largest amount of time such that any job of
Sn is completed at least ∆̄k time units before its deadline. Sp is a valid schedule if and only if ∆̄k ≥ ∆k.

The theorem states that all jobs composing an application are schedulable on a BROE server having αk equal to
the VP speed and ∆k equal to the jitter tolerance of the VP schedule, provided that jobs are executed in the same
execution order of the VP schedule.

In order to be applicable to general systems, this approach would require that each individual application’s
scheduling event (job arrivals and completions) be “buffered” during the delay bound ∆k — essentially, an event
at time to is ignored until the earliest time-instant when V (t) ≥ t — so that events are processed in the same order
in the open environment as they would be if each application were running upon its dedicated virtual processor.
However we will see that such buffering is unnecessary when the individual application can be EDF-scheduled in
the open environment.
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4.2 Application-Level Scheduling using EDF

To avoid the complexity of using buffers to keep track of the scheduling events, it is possible to use a simplified
approach. When an application doesn’t mandate to be scheduled with a particular scheduling algorithm, we show
that EDF can be optimally used as application-level scheduler for the partition, without needing to “copy” the
virtual processor behavior. To distinguish the buffered from the native version of the partition local scheduler,
we will call VP-EDF the application-level scheduler reproducing the virtual processor behavior, while the normal
local scheduler using only jobs earliest deadlines will be simply called EDF.

Definition 5 A scheduling algorithm is resource-burst-robust if advancing earlier the supply, the schedulability is
preserved.

Lemma 7 (from Feng [17]) EDF is resource-burst-robust.

Lemma 8 If all jobs of application Ak always complete execution at least ∆k time units prior to their deadlines
when scheduled with EDF upon a dedicated VP of computing capacity αk, then all jobs of Ak are schedulable
with EDF on a partition (αk,∆k). 4

Proof: We prove the contrapositive. Assume a collection of jobs of an application Ak complete execution at
least ∆k time units prior to their deadlines when scheduled with EDF on a dedicated αk-speed VP, but some of
these jobs miss a deadline when Ak is scheduled with EDF on a partition (αk,∆k). Let tmiss be the first time a
deadline is missed and let ts denote the latest time-instant prior to tmiss at which there are no jobs with deadline
≤ tmiss awaiting execution in the partition schedule (ts ← 0 if there was no such instant). Hence over [ts, tmiss),
the partition is only executing jobs with deadline ≤ tmiss, or jobs that were blocking the execution of jobs with
deadline ≤ tmiss. Let Y be the set of such jobs.

Since a deadline is missed, the total amount of demand of jobs in Y during [ts, tmiss) upon on the BROE server is
greater than the execution time supplied in the same interval. From Lemma 7, we know that the minimum amount
of execution Ak would receive in interval [ts, tmiss), is αk((tmiss − ts)−∆k).

Consider now the VP schedule. Since every job completes at least ∆k time-units before its deadline, the job
that misses its deadline in the partition schedule will complete before instant tmiss − ∆k in the VP schedule.
Moreover, since EDF always schedules tasks according to their absolute deadline, no jobs in Y will be scheduled
in interval [tmiss − ∆k, tmiss]. Therefore, the total demand of jobs in Y during [ts, tmiss) does not exceed ≤
αk((tmiss −∆k)− ts). However, this contradicts the fact that the minimum amount of execution that is provided
by the BROE server over this interval is αk((tmiss −∆k)− ts).

This is a stronger result than the one in [25, Corollary 4], where applications needed to be scheduled according
to VP-EDF.

Moreover, notice that since the proof doesn’t rely on any particular protocol for the access to shared resources,
the validity of the result can be extended to every reasonable policy, like SRP [3] or others, provided that the same
mechanism is used for both the VP and the partition schedule.

Since EDF+SRP is an optimal scheduling algorithm for virtual processors [6], the next theorem follows.
4In [17, Theorem 2.7] a more general result is proved, saying that any resource-burst-robust scheduler can be used without needing

to reproduce the VP schedule. However there is a flaw in this result; for instance, even though DM is a resource-burst-robust scheduler,
it cannot be used without buffering events. To see this, consider an application composed by two periodic tasks τ1 = (1, 6, 4) and
τ2 = (1, 6, 6). If it is validated on a processor of speed αk = 1/2 then each job would finish at least ∆k = 2 time units prior to its
deadline. However, if scheduled on a bounded-delay partition (αk, ∆k) = (1/2, 2), it could potential miss a deadline when both τ1 and
τ2 release jobs at time t and the server exhausts its budget simultaneously at t. The application may have to wait until time t + 2 to receive
service. At which point τ1 would execute in [t+2, t+3) (exhausting the budget). The next service interval could be at latest [t+4, t+5),
but at that point τ1 could release its next job and require the service. The next service time could be [t+6, t+7), but at that point τ2 would
miss its deadline.
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Theorem 5 A collection of jobs is schedulable with EDF+SRP on a partition (αk,∆k) if and only it is schedulable
with some scheduling algorithm on an αk-speed VP with a jitter tolerance of ∆k, ie. all jobs finish at least ∆k

time units before their deadline.

Therefore, when there is no limit on the algorithm to be used to schedule the application jobs on a partition, using
EDF+SRP is an optimal choice, since it guarantees that all deadlines are met independently from the algorithm
that has been used for the validation on the dedicated virtual processor. This also explains the meaning of the
names we gave in Section 2 to αk and ∆k parameters.

On the contrary, when the scheduling algorithm cannot be freely chosen, for instance when a fixed priority order
among tasks composing an application has to be enforced, we showed in Section 4.1 that a buffered version of
the VP schedule can be used. However, to avoid the computational effort of reproducing the VP scheduling order
at run-time, some more expense can be paid off-line by analyzing the execution time supplied by the partition
together with the demand imposed by the jobs of the application. The next section addresses this problem.

4.3 Application-Level Scheduling with Other Algorithms

The application may require that a scheduler other than EDF + SRP be used to as an application-level scheduler.
When a buffered version of the VP schedule is not feasible due to the associated run-time complexity, an alternative
could be to use a more sophisticate schedulability analysis instead of the validation process on a dedicated VP. This
requires to consider the service effectively supplied by the open environment in relation to the amount of execution
requested by the application. Our BROE server implements a bounded-delay server in the presence of shared
resources. Examples of analysis for the fixed-priority case under servers implementing bounded-delay partitions
or related partitions, in absence of shared resources, can be found in [25, 33, 34, 22] and easily applied to our open
environment. We conjecture that the results for local fixed-priority schedulability analysis on resource partitions
can be easily extended to include local and global resources, and be scheduled by BROE without modification to
the server. We leave the exploration of this conjecture to a future paper.

5 Related work

We consider this paper to be a generalization of earlier (“first-generation”) open environments (see, e.g., [25,
18, 10, 33, 17, 13]), in that our results are applicable to shared platforms comprised of serially reusable shared
resources in addition to a preemptive processor.

Our work is closest in scope and ambition to the work from York described in [14], the work in progress
at Malardalen outlined in the work-in-progress paper [9], and the First Scheduling Framework (FSF) [2]. Like
these projects, our approach models each individual application as a collection of sporadic tasks which may share
resources. One major difference between our work and both these pieces of related work concerns the approach
towards sharing global resources — while both [14, 9, 2] have made the design decision that global resources
will be analyzed and executed non-preemptively, we believe that this is unnecessarily restrictive5. The issue of
scheduling global resources is explored further in Section 6 below.

Another difference between our work and the results presented in [14] concerns modularity. We have adopted
an approach wherein each application is evaluated in isolation, and integration of the applications into the open
environment is done based upon only the (relatively simple) interfaces of the applications. By contrast, [14]
presents a monolithic approach to the entire system, with top-level schedulability formulas that cite parameters of
individual tasks from different applications. We expect that a monolithic approach is more accurate but does not
scale, and is not really in keeping with the spirit of open environment design.

5We should point out that [14] considers static-priority scheduling while we adopt an EDF-based approach.
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The brief presentation in the work-in-progress paper [9] did not provide sufficient detail for us to determine
whether they adopt a modular or a monolithic view of a composite open system.

Although they do not consider additional shared resources, two other projects bear similarities to our work. One
is the bounded-delay resource partition work out of Texas [25, 18, 17], and the other the compositional framework
studied by Shin and Lee [33]. Both these projects assume that each individual application is comprised of periodic
implicit-deadline (“Liu and Layland”) tasks that do not share resources (neither locally within each application
nor globally across applications); however, the resource “supply” models considered turn out to be alternative
implementations of our scheduler (in the absence of shared resources).

6 Sharing global resources

One of the features of our open environment that distinguishes it from other work that also considers resource-
sharing is our approach towards the sharing of global resources across applications.

As stated above, most related work that allows global resource sharing (e.g. [14, 9]) mandates that global
resources be accessed non-preemptively. The rationale behind this approach is sound: by holding global resources
for the least possible amount of time, each application minimizes the blocking interference to which it subjects
other applications. However, the downside of such non-preemptive execution is felt within each application – by
requiring certain critical sections to execute non-preemptively, it is more likely that an application when evaluated
in isolation upon its slower-speed VP will be deemed infeasible. The server framework and analysis described in
this paper allows for several possible execution modes for critical sections. We now analyze when each mode may
be used.

More specifically, in extracting the interface for an application Ak that uses global resources, we can distinguish
between three different cases:

• If the application is feasible on its VP when it executes a global resource R` non-preemptively, then have it
execute R` non-preemptively.

• If an application is infeasible on its VP of speed αk when scheduled using EDF+SRP for R`, it follows from
the optimality of EDF+SRP [6] that no (work-conserving) scheduling strategy can result in this application
being feasible upon a VP of the specified speed. Thus, by Theorem 5, no application-level scheduler can
guarantee deadlines will be meet for the application on any BROE server with parameter αk.

• The interesting case is when neither of the two above holds: the system is infeasible when R` executes non-
preemptively but feasible when access to R` is arbitrated using the SRP. In that case, the objective should
be to devise a local scheduling algorithm for the application that retains feasibility while minimizing the
resource holding times. There are two possibilities:

a) Let ξk(R`) be the largest critical section of any job of Ak that accesses global resource R`. If
and ξk(R`) ≤ ∆k/2 (in addition to the previously-stated constraint that the resource-hold time of
Hk(R`) ≤ αkPk), then Ak may disable (local) preemptions when executing global resource R` on its
BROE server. In some cases, it may be advantageous to reduce Hk(R`) to increase the chances that the
constraint Hk(R`) ≤ αkPk is satisfied.

b) If ξk(R`) > ∆k/2 but Hk(R`) ≤ αkPk still holds, R` may be executed using SRP. The resource-hold
time could potentially be reduced by using techniques discussed at the end of this section.
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Executing Global Critical Sections Without Local Preemptions In this section, we will assume that Ak

is comprised of sporadic tasks {τ1, τ2, . . . , τn}. Also, we will assume that for each global resource there is a
application-level ceiling Πk(R`) for resource R`. We set Πk(R`) to be the minimum deadline parameter of any
task τi of Ak that access R`. Additionally, there is an application-wide ceiling that is the minimum ceiling of
any global resource that is currently being accessed by some task of Ak; the scheduling decisions are identical
to the rules for SRP described in Section 3.1.1. We now formally show that even if application Ak was validated
upon a dedicated virtual processor of speed αk using EDF+SRP, some critical sections may executed without local
preemptions under a BROE server.

Theorem 6 Given an application Ak (comprised of sporadic tasks) accessing globally shared resource R` can
be EDF + SRP scheduled upon a dedicated virtual processor of speed-αk where each job completes at least ∆k

time units prior to its deadline: if Hk(R`) ≤ αkPk and ξk(R`) ≤ ∆k/2 then Ak may execute any critical section
accessing R` with local preemptions disabled on a BROE server with parameter (αk,∆k).

Proof: The proof is by contradiction; assume the antecedent of the theorem holds, but the application misses a
deadline on a BROE server with parameters (αk,∆k) when executing R` with local preemptions disabled. Let tmiss

be the first deadline miss for Ak on its BROE server. By Lemma 8, the deadline miss must be due to executing R`

without local preemptions. Let ts be the latest time prior to tmiss at which there were no jobs with deadline≤ tmiss

that are awaiting execution. Thus, the server must be continuously backlogged over [ts, tmiss]. Let Y be the set
of jobs of Ak that are released after or at ts but have deadline prior or equal to tmiss. The execution requirement
of the jobs of Y plus the non-preemptable critical section execution on R` must exceed the execution provided to
Ak over the interval [ts, tmiss] for the deadline miss to have occurred. Let Jblock be the job with deadline ≥ tmiss

that “blocks” jobs of Y . Let ξk(R`, Jblock) be the execution requirement of Jblock’s critical section on R` (note
ξk(R`, Jblock) ≤ ξk(R`)).

A remark about the jobs of Y : each of these jobs is generated by a task that has deadline less than Πk(R`).
Consider if this were not the case and some jobs are generated by tasks with deadline ≥ Πk(R`). In this case,
these jobs could be blocked by the critical section of Jblock when using EDF + SRP, but the absolute deadline of
each of these jobs is still at most tmiss. Thus, the demand of Y over [ts, tmiss] plus the critical section of Jblock

would still exceed the execution provided to Ak over this interval and a deadline miss would still occur even under
EDF + SRP (contradicting Lemma 8); so, any job of Y could not have been generated by a task with deadline
≥ Πk(R`). By definition, the resource-hold time, Hk(R`), accounts for the execution requirement for all jobs
of tasks with deadlines ≤ Πk(R`) that may preempt Jblock while it is holding resource R` under EDF + SRP

plus the execution of ξk(R`, Jblock) (see [19] for further details on resource-hold times). So, the demand of Y
does not exceed Hk(R`) − ξk(R`, Jblock). Furthermore, in the dedicated VP, since each job of Y completes
∆k prior to its deadline, no job of Y executes on the VP in the interval [tmiss − ∆k, tmiss], which implies that
Hk(R`)− ξk(R`, Jblock) ≤ αk((tmiss −∆k)− ts).

We will now show that the BROE server will provide at least Hk(R`) − ξk(R`, Jblock) units of execution over
[ts, tmiss] to jobs of Y contradicting the assumption that Ak missed a deadline at tmiss. Observe that when Jblock

obtains access to global resource R`, rule (vii) implies that there is enough budget to execute Hk(R`) within the
current chunk. If tmiss is greater than the current server deadline Dk, Theorem 2 and the fact there is at Hk(R`)
budget left for the current server chunk imply that Ak will receive at least Hk(R`) units of execution over from
the start of Jblock’s execution of R` to tmiss. Thus, jobs of Y receive Hk(R`) − ξk(R`, Jblock) units of execution
over [ts, tmiss].

If tmiss is at most the current server deadline Dk, observe that the server is contending during the entire interval
[ts, tmiss]; the reason is there is sufficient budget upon Jblock accessing the resource to accommodate any global
resource access of jobs of Y without taking transition (vii), and the server cannot be suspending during [ts, tmiss]
because it is continuously backlogged and will not exhaust its budget. Thus, the BROE server must not have pro-
vided sufficient execution over [ts, tmiss] because it was prevented from executing Y for Hk(R`)− ξk(R`, Jblock)
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time over this interval. However, notice the least that the server Ak could be executing over this interval is
Pk − αkPk = ∆k/2 (otherwise, it would miss the server deadline and contradict Theorem 2). So, the jobs of
Y could be blocked for ξk(R`, Jblock) by the execution of Jblock’s critical section, and further prevented exe-
cuting by at ∆k/2 time by other server’s execution. This implies the minimum execution jobs of Y receive in
[ts, tmiss] is (tmiss − ts − ∆k/2 − ξk(R`, Jblock)). Since ξk(R`, Jblock) ≤ ξk(R`) ≤ ∆k/2, the total execution
received must be greater than (tmiss − ts −∆k) which is greater than αk(tmiss − ts −∆k), and thus greater than
Hk(R`)− ξ(R`, Jblock).

Notice, if the above theorem is satisfied for some Ak and R`, then we may use ξk(R`) instead of Hk(R`) in the
admission control tests of Section 3.2.3. This increases the likelihood of Ak being admitted because the amount
Ak could block applications Ai with Pi < Pk is decreased.

Reducing Resource-Hold Times Hk(R`). We illustrate a resource-hold-time reduction by an example. Con-
sider the application comprised of the following three sporadic tasks, executing upon a VP of unit computing
capacity6:

ci di pi

τ1 1 2 2
τ2 1 5 5
τ3 2 8 8

There is one shared resource, which is accessed by both τ2 and τ3 within critical sections for the entire duration
of their executions.

If the shared resource is accessed non-preemptively by τ3, then τ1’s jobs may miss their deadlines.
Now let us consider the situation if the local scheduling algorithm used is EDF+SRP (the interested reader may

refer to [6] for details of the feasibility test). Under such scheduling, τ3’s execution of the shared resource may
be preempted by τ1 though not by τ2. Consequently, τ1’s jobs all meet their deadline, as do τ2’s and τ3’s, and the
system is feasible.

What is the resource holding time? The test of [6] reveals that the worst-case blocking scenario occurs when
τ1 and τ2 both begin releasing jobs as frequently as possible immediately after τ3 has entered its critical section.
Assuming that τ3 locks the CS at time-instant zero, the resulting EDF+SRP scheduling looks as follows:

-

0 1 2 3 4 5 6

τ1 τ3 τ1 τ3 τ2 τ1

with the critical section executing over [1, 2) and [3, 4) and released at time-instant 4; hence, the worst case
resource hold time is equal to 4.

In [19], we present an algorithm for computing resource hold times when applications are scheduled using
EDF+SRP; this algorithm essentially identifies the worst-case (as we did in our example above) and computes
the resource hold time for this case. We also presented an algorithm for sometimes reducing the resource hold
times by introducing “dummy” critical sections and thereby changing the preemption ceilings of resources. Both
algorithms from [19] may be modified for use in computing/ reducing the resource hold times that are needed to
specify the application interfaces for our open environment. The straightforward modifications to these algorithms

6Note that this example as constructed is not really appropriate for executing upon an open environment on a unit-capacity processor,
since it is itself of unit computing capacity. However, it suffice to illustrate the point regarding [non-]preemptive execution of shared
resources.
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that allow for the computation of resource hold times on a bounded-delay server will be presented in a journal
version of this paper.

Depending upon how much one is willing to modify the local resource-access algorithm from “standard” SRP,
further reduction in resource holding times may be possible. With respect to our example above, we notice that
while task τ1’s jobs cannot be blocked by the entire CS (which has a WCET of 2 time units), each job of τ1 can
however tolerate one unit of blocking. This fact can be incorporated into the local algorithm which would then
recognize that the job of τ1 arriving at time-instant 2 in the “worst-case” scenario described above needn’t preempt
the critical section of τ3, yielding the following schedule:

-

0 1 2 3 4 5 6

τ1 τ3 τ3 τ1 τ2 τ1

with the critical section executing over [1, 3); hence, the worst case resource hold time is now reduced to 3.
That concludes our discussion of the example. Details on the algorithm for reducing resource holding times by

permitting partial blocking will be presented in an extended version of [19], currently under review.

7 Discussion and Conclusions

In this paper, we have presented a design for an open environment that allows for multiple independently
developed and validated applications to be multi-programmed on to a single shared platform. We believe that our
design contains many significant innovations.

• We have defined a clean interface between applications and the environment, which encapsulates the important infor-
mation while abstracting away unimportant details.

• The simplicity of the interface allows for efficient run-time admission control, and helps avoid combinatorial explosion
as the number of applications increases.

• We have addressed the issue of inter-application resource sharing in great detail. moving beyond the ad hoc strategy of
always executing shared global resources non-preemptively, we have instead formalized the desired property of such
resource-sharing strategies as minimizing resource holding times.

• We have studied a variety of strategies for performing arbitration for access to shared global resources within individual
applications such that resource holding times are indeed minimized.

For the sake of concreteness, we have assumed that each individual application to be executed upon our open
environment scheduled using EDF and some protocol for arbitrating access to shared resources. This is somewhat
constraining — ideally, we would like to be able to have each application scheduled using any local scheduling
algorithm7.

Let us first address the issue of task models may be used in our approach. The results obtained in this paper
have assumed that each application is comprised of a collection of jobs that share resources (with the exception
of Theorem 6 that assumes the sporadic task model). Therefore, the results contained in the paper extend in
a straightforward manner to the situation where individual applications are represented using more general task
models such as the multiframe [27, 28], generalized multiframe [7], or recurring [4, 5] task models – in essence,
any formal model satisfying the task independence assumptions [7] may be used.

We conjecture that our framework can also handle applications modeled using task models not satisfying the
task independence assumptions, provided the resource sharing mechanism used is independent of the absolute
deadlines of the jobs, and only depends up on the relative priorities of the jobs according to EDF. We believe that
our approach is general enough to successfully schedule such applications that have been validated by hand on a
slower processor; we are currently working on proving this conjecture.

7Shin and Lee [33] refer to this property as universality.
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Next, let us consider local scheduling algorithms. We expect that analysis similar to ours could be conducted if
a local application were to instead use (say) the deadline-monotonic scheduling algorithm [24, 20] with sporadic
tasks, or some other fixed priority assignment with some more general task model (again, satisfying the task
independence assumption). As discussed in Section 4.3, prior work on scheduling on resource partitions has
assumed the local tasks do not share resources; we believe these results could be easily extended to include local
resource sharing and used within our server framework.

A final note concerning generalizations. Our approach may also be applied to applications which are scheduled
using table-driven scheduling, in which the entire sequence of jobs to be executed is pre-computed and stored in a
lookup table prior to run-time. Local scheduling for such systems reduces to dispatch based on table-lookup: such
applications are also successfully scheduled by our open environment.
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