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S U M M A R Y

Most applications of the publicly released Gravity Recovery and Climate Experiment monthly

gravity field models require the application of a spatial filter to help suppressing noise and

other systematic errors present in the data. The most common approach makes use of a

simple Gaussian averaging process, which is often combined with a ‘destriping’ technique in

which coefficient correlations within a given degree are removed. As brute force methods,

neither of these techniques takes into consideration the statistical information from the gravity

solution itself and, while they perform well overall, they can often end up removing more

signal than necessary. Other optimal filters have been proposed in the literature; however,

none have attempted to make full use of all information available from the monthly solutions.

By examining the underlying principles of filter design, a filter has been developed that

incorporates the noise and full signal variance–covariance matrix to tailor the filter to the

error characteristics of a particular monthly solution. The filter is both anisotropic and non-

symmetric, meaning it can accommodate noise of an arbitrary shape, such as the characteristic

stripes. The filter minimizes the mean-square error and, in this sense, can be considered as the

most optimal filter possible. Through both simulated and real data scenarios, this improved

filter will be shown to preserve the highest amount of gravity signal when compared to other

standard techniques, while simultaneously minimizing leakage effects and producing smooth

solutions in areas of low signal.
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1 I N T RO D U C T I O N

The Gravity Recovery and Climate Experiment (GRACE), launched

in 2002, has provided the scientific community with valuable infor-

mation regarding the time variable nature of the Earth’s gravity field.

The products available to the public range from the raw instrument

measurements to the more refined products such as the u8mean

and monthly spherical harmonic solutions. Even these monthly har-

monic solutions require a certain degree of processing on the part

of the user in order to realize their full potential. This is due to

the fact that these monthly solutions are the output of a parame-

ter estimation process, and are still subject to a range of random

and systematic errors that are inherent to the instrument data and

background models used. These errors increase rapidly with the

spherical harmonic degree. The simplest way to suppress them

is to truncate the spherical harmonic series around degree, say,

20–30. This approach, however, reduces dramatically the spatial

resolution of the models. For applications in which high spatial

resolution is desired, such as the monitoring of hydrological cy-

cles at the basin level, the unaltered monthly GRACE solutions

often contain too much noise to determine these regional signals

accurately.

One approach to deal with noise in the GRACE monthly solu-

tions is to apply a spatial averaging filter, with the idea that localized

noise signals can be sufficiently attenuated by taking a weighted av-

erage of neighbouring points. The number of points to be included

in the averaging process is dependent on the noise covariance struc-

ture. For the GRACE solutions, a number of averaging filters have

already been proposed, ranging from simple isotropic Gaussian fil-

ters to more sophisticated anisotropic filters (e.g. Wahr et al. 1998;

Chen et al. 2006; Swenson & Wahr 2006; Kusche 2007; Sasgen

et al. 2006; Wouters & Schrama 2007; Davis et al. 2008). Each of

these filters has its respective advantages and disadvantages. Some

work better than others with a given type of noise. One example

is the effectiveness of certain filters in suppressing the north–south

‘stripes’ common to most monthly solutions, caused by the reduced

observability of the sectorial and near-sectorial coefficients from

GRACE’s polar orbit configuration. The destriping approach out-

lined by Swenson & Wahr (2006) is effective at removing these

types of noise artefacts; however, in regions where such stripes do

not exist, this filter may actually remove more gravity signal than

other filters.

A completely different approach to deal with the noise in GRACE

monthly gravity models is suggested by Han & Ditmar (2008) and

C© 2008 The Authors 417
Journal compilation C© 2008 RAS



418 R. Klees et al.

successfully applied to the Sumatra–Andaman earthquake by Han &

Simons (2008). They propose a spatiospectral localization method,

which suppresses the errors in the GRACE monthly gravity mod-

els yielding improved signal-to-noise ratio over a particular geo-

graphical region. The localization involves the multiplication of the

estimated mass change function by a spatial band-limited window

(isotropic) function centred at the region of interest. The window

function is determined such that most of its energy is concentrated

inside the region of interest.

The various filters available can be further divided into those fil-

ters that can be independently applied (i.e. they do not rely upon

information about the signal and noise covariance structure), and

so-called ‘optimal’ filters, which rely upon information about the

expected signal and the errors in the Stokes coefficients. As an exam-

ple, a basic implementation of the Gaussian filter is generic enough

that it can be applied directly to any of monthly solutions without

modification. Filters in the first category include the destriping ap-

proach by Swenson & Wahr (2006), and the empirical orthogonal

function (EOF) approach developed by Wouters & Schrama (2007).

The benefit to these filters is that the technique can be consistently

applied to the solutions, and is not dependent on any sort of a priori

information or error model. In addition, their implementation is of-

ten relatively simple, which makes it an attractive option for many

users. On the contrary, the optimal filters rely on the principle that

external knowledge of the problem (such as physical boundaries,

solution error estimates, etc.) can be used to guide the filter in decid-

ing what is noise and what is signal. The primary assumption here is

that the external information used is both sufficiently accurate and

reliable. Both categories of filters have their merits, but one of the

goals of this paper is to argue that the filter that works best under

most conditions is an optimal filter that relies on the expected signal

in terms of Stokes coefficients and their error estimates, which are

provided by the estimation process. This concept will be developed

from the basic principles of the design of a filter, and will be sup-

ported by both simulated and real data scenarios. The approach to

be outlined in this paper has the following properties.

(i) The filter seeks to minimize a clearly defined objective func-

tion.

(ii) The filter makes use of the full variance–covariance matrix

of errors in the solution. To date, this has not been incorporated

into any other filter, but is essential because it utilizes the full set of

correlations between the errors.

(iii) The filter makes use of information about the signal vari-

ance in the spatial domain, in contrast to other filters suggested in

literature, which rely on information about the signal variance in

the frequency domain.

(iv) The filter is both anisotropic and non-symmetric, making it

capable of removing noise artefacts of an arbitrary shape, such as

stripes.

(v) The filter can either be integrated into the processing of

GRACE data directly, or it can be used as a post-processing filter,

that is, both implementations of the filter generate identical results.

These properties result in a filter that preserves signal better

than any other filter tested and performs well everywhere. This

is achieved because the approach developed reduces ‘leakage’ to

and from areas outside the region of interest, and suppresses noise

much stronger in regions of low signal (i.e. oceans, deserts, etc.).

Examples from controlled simulations, as well as applications us-

ing real GRACE data on selected basins where the ground truth

values are well known, will be shown to demonstrate this improved

performance. The simulations will test the performance of a range

of filters on both longitudinally and latitudinally oriented signals,

with and without artificial noise added. The basins tested for the

real data cases include the Zambezi river basin, for which a detailed

and accurate hydrology model exists (see Winsemius et al. 2006),

as well as the Sahara desert, where the hydrology signal should be

close to zero.

2 O P T I M A L F I LT E R D E S I G N

Suppose f is the mass change function (expressed in units of equiv-

alent water height) and f w is the filtered mass change function; f̂

and f̂ w are the corresponding quantities as inferred from GRACE

data. We assume that these functions are defined on the surface of

the mean Earth sphere σ R with radius R. From this we can say that

f is related to f w in the following way:

fw(x) =
1

4π R2

∫

σR

f (y) W (x, y) dσR(y), (1)

where W (x , y) is the filter function and x and y denote points on the

mean Earth sphere with radius R. The same relation exists between

the estimates f̂ w and f̂ . The most general filter function is a two-

point function on the sphere σ R ,

W (x, y) =
∑

l,m

∑

p,q

Wlm,pq Ȳl,m(ξ ) Ȳp,q (η), ξ =
x

|x |
, η =

y

|y|
,

(2)

where l and m are degree and order, Ȳl,m are the 4π -normalized

(or fully normalized) spherical surface harmonics, W lm,pq are the

filter coefficients, and ξ and η are points on the unit sphere. The

filter function W (x , y) is (i) anisotropic as it depends on degree and

order, and (ii) non-symmetric with respect to the points x and y.

Therefore, we call this filter an ‘anisotropic, non-symmetric filter’,

or simply the ANS filter for short.

To determine the values of the filter coefficients, a wide range of

objective functions can be used. The filter we pursue minimizes the

global mean of the mean-square error (MSE), that is, it minimizes

MSEave =
1

4π R2

∫

σR

E{( f − f̂ w)2} dσR, (3)

where E{·} is the statistical expectation operator. Hence, the filter

we look for minimizes the global mean of the mean square differ-

ence between the actual (unfiltered) mass change function f and

the filtered mass change function as inferred from GRACE data,

f̂ w . We call this filter the ‘optimal ANS filter’. A straightforward

computation reveals that the minimizer of MSEave is

W = D (C + D)−1. (4)

W = (W lm,pq) is the filter matrix and the filter coefficients are

arranged in such a way that each pair (l, m) defines one particular

row of W; C is the full noise variance–covariance matrix of the

Stokes coefficients of the estimated mass change function f̂ , that

is,

C = (clm,pq ); clm,pq = E
{

c̄
(ε f )

l,m c̄
(ε f )
p,q

}

, (5)

where c̄
(ε f )

l,m are the Stokes coefficients of the error ε f = f − f̂ ; D

is the matrix with elements

D = (dlm,pq ); dlm,pq = c̄
( f )
l,m c̄( f )

p,q , (6)

where c̄
( f )
l,m are the Stokes coefficients of the mass change function

f . We call D the (frequency-domain) signal variance–covariance

matrix. Note that when the mass change function is interpreted as
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a random function on the sphere, the entries of the matrix D are

defined as

dlm,pq = E
{

c̄
( f )
l,m c̄( f )

p,q

}

. (7)

It can be shown easily that the application of the optimal ANS filter

is equivalent to applying some regularization to the GRACE normal

equations. To show this, we re-arrange eq. (4) to obtain

D (C + D)−1 = (CD−1 + DD−1)−1

= (CD−1 + I)−1

= (CD−1 + CC−1)−1

= (C−1 + D−1)−1 C−1. (8)

If we let N x̂ = b denote the normal equations associated with a

least-squares adjustment of GRACE K-band ranging (KBR) data,

that is, C = N−1, and we let x̂w represent the vector of filtered Stokes

coefficients, we can write

x̂w = W x̂ = D (C + D)−1 x̂ (9)

= (C−1 + D−1)−1 C−1 x̂

= (N + D−1)−1 N x̂ = (N + D−1)−1 b. (10)

Hence, filtering the Stokes coefficients with an optimal ANS filter

is identical to a regularized least-squares adjustment of GRACE

KBR data if the regularization matrix is equal to the inverse signal

variance–covariance matrix. Therefore, the optimal ANS filter of

eq. (4) is a regularization-type filter. Such a filter has already been

discussed in (Kusche 2007).

Several modifications can be applied to obtain filters, which have

a simpler structure than the general ANS filter. For instance, we may

require that the filter function has the following spherical harmonic

representation

W (x, y) =
∑

l,m

Wl,m Ȳl,m(ξ ) Ȳl,m(η). (11)

This filter function is symmetric with respect to the points x and

y but it is still anisotropic. We call this an ‘anisotropic symmetric’

filter, or an ‘AS filter’ for short.

The AS filter that minimizes MSEave is the ‘optimal’ AS filter;

a straightforward computation reveals that the corresponding filter

matrix W is diagonal with elements

Wl,m =
dlm,lm

dlm,lm + clm,lm

. (12)

Obviously, when forcing the filter function to have the structure of

eq. (11), the minimum of MSEave is independent of (frequency-

domain) signal covariances and noise covariances.

The most simple filter function is

W (x, y) =
∑

l,m

Wl Ȳl,m(ξ ) Ȳl,m(η). (13)

We call this an ‘isotropic symmetric’ (IS) filter. For the IS filter,

MSEave attains a minimum if

Wl =

∑

m dlm,lm
∑

m dlm,lm +
∑

m clm,lm

=
σ 2

l ( f )

σ 2
l ( f ) + σ 2

l (ε f )
, (14)

where σ 2
l ( f ) and σ 2

l (ε f ) denote the signal degree variances and

noise degree variances, respectively. The filter matrix associated

with the optimal IS filter is a diagonal matrix, and the diagonal

elements only depend on the spherical harmonic degree. Note that

the application of an optimal AS filter or an optimal IS filter cannot

be interpreted anymore as a regularized least-squares solution of

GRACE data, because both filters do not make use of the full nor-

mal equation matrix. AS-type filters and IS-type filters have been

suggested by many authors, though the objective function they min-

imize is different, unknown, or simply does not exist (e.g. Wahr

et al. 1998; Swenson & Wahr 2002; Han et al. 2005; Swenson

& Wahr 2006; Seo et al. 2006). If an objective function does not

exist, the filter coefficients have to be determined in another way.

This is done either by trial-and-error, the application of other statis-

tical optimization principles, or the comparison with independent

geophysical data.

3 P R A C T I C A L A S P E C T S O F A N S

F I LT E R D E S I G N

The optimal ANS filter of eq. (4) exploits information about the sig-

nal and noise variance–covariance matrices. The latter can be com-

puted if the normal equation matrix, N, is available. However, nor-

mal equation matrices or, equivalently, noise variance–covariance

matrices, are not an official standard level 2 product, and so far, ac-

cess to them is limited to the teams, which compute GRACE models

from GRACE KBR data. The majority of the scientific community

only has access to the noise variances. For that reason, Kusche

(2007) proposed to use an approximate noise variance–covariance

matrix, which only requires publicly available information about

the GRACE orbit geometry. The corresponding filter is a simpli-

fied version of the optimal ANS filter in two respects: (1) it uses a

synthetic noise variance–covariance matrix, which is based on the

assumption that the noise in potential differences between the two

GRACE satellites is white and (2) it uses a diagonal signal variance–

covariance matrix following a power law in the spherical harmonic

degrees. These assumptions may be critical in two respects: (1) the

noise correlations are not modelled properly (remember that de-

striping is effective because it mimics the dominant feature of noise

correlations) and (2) signal correlations in the spherical harmonics

domain are completely ignored. A sensitivity study to be presented

in 6 will answer the question whether these assumptions lead to a

filter which performs similar to the optimal ANS filter.

Another problem of optimal ANS filter design is the compu-

tation of the entries of the signal variance–covariance matrix D,

eq. (4). One possibility is to construct a mass change function

using geophysical models of ocean mass redistribution and terres-

trial water storage variations. They may be taken from the multi-

institutional Estimating the Circulation and Climate of the Ocean

(ECCO) project (Fukumori et al. 2000), the Global Land Data As-

similation System (GLDAS) (Rodell et al. 2004), or the Land Dy-

namics (LaD) model (Milly & Shmakin 2002) to name a few. When

we assume that I monthly mean models of ocean mass redistribution

and terrestrial water storage variations are available, we could con-

sider them as I realizations of the mass change function and could

compute estimates of the elements of the matrix D by averaging

the products c̄
( f )
l,m c̄( f )

p,q over I months. We made a series of experi-

ments following this approach and always obtained filters of very

poor quality. To our understanding, this is caused by the presence of

strong global signal correlations, in particular seasonal variations,

implying the signal behaviour is not random at all. An approach

often seen in the literature is to compute signal degree variances

from geophysical models, or GRACE monthly gravity models, and

neglect all covariances in the spherical harmonics domain (e.g. Seo

et al. 2006; Kusche 2007). That is, the full signal–covariance ma-

trix D is approximated by a diagonal matrix and the diagonal en-

tries depend only on the spherical harmonic degree. Note that a
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diagonal signal variance–covariance matrix D propagates into a full

signal variance–covariance matrix in the spatial domain, accord-

ing to the spherical harmonic synthesis relations. Therefore, the

statement in (Kusche 2007) that his ANS filter uses a full signal

variance–covariance matrix should be understood as a full signal

variance–covariance matrix in the spatial domain, whereas this ma-

trix is diagonal in the frequency domain.

We propose an alternative way of computing the frequency-

domain signal variance–covariance matrix D. Suppose that I mod-

els of monthly mean mass variations are available (how to get them

will be discussed later). From them we compute the signal vari-

ance at a set of K suitably chosen points on the entire mean Earth

sphere. The signal covariances between these points are neglected.

The points may be the nodes of an equal-angular grid or may be-

long to any homogeneous point distribution on the sphere (e.g.

Freeden et al. 1998). These variances form the elements of the di-

agonal spatial-domain signal variance–covariance matrix F. From

F, the frequency-domain signal variance–covariance matrix D is

computed by error propagation using the spherical harmonic anal-

ysis relation

c̄
( f )
l,m =

1

4π R2

∫

σR

f Ȳl,m dσR ≈

K
∑

k=1

fk Ȳl,m;k wk, (15)

where f k is the mass change at node k, Ȳn,m;k is the spherical surface

harmonic of degree l and order m at node k, and wk are suitably

chosen cubature weights. Eq. (15) can be written in matrix-vector

notation as

d = Y f, (16)

where d is the L × 1 vector of Stokes coefficients {c̄
( f )
l,m}, Y is

the L × K matrix with elements Ȳl,m;k wk, L is the number of

Stokes coefficients of the GRACE model, and f is the K × 1 vector

of function values f k . Then, according to the law of covariance

propagation, we obtain

D = Y F YT . (17)

Note that the matrix D built up in this way is a full matrix. Never-

theless, it is just an approximation to the ‘real’ frequency-domain

signal variance–covariance matrix, because spatial-domain signal

covariances have been neglected. The nodes and weights could be

taken from a cubature formula on the sphere. The most simple

choice is to select K points on the sphere, and to choose the weights

according to

wk =
4π R2

K
. (18)

More accurate cubature formulas are known, but for the purpose

of optimal ANS filter design, numerical integration errors are not

critical. If the nodes are located on an equal-angular grid, fast Fourier

transform (FFT) methods can be used to evaluate the expression of

eq. (17) efficiently (e.g. Healy et al. 2003).

Unfortunately, the signal variance–covariance matrix obtained

according to eq. (17) yields signal variances per coefficient, which

are constant. This follows immediately from eq. (15):

1
2l+1

∑

m

∣

∣

∣
c

( f )
l,m

∣

∣

∣

2

≈
1

2l + 1

∑

i,k

fi fk wiwk

∑

m

Ȳl,m;i Ȳl,m;k

=
∑

i,k

fi fk wiwk Pl;ik = constant. (19)

Therefore, any attempt to directly use such a signal variance–

covariance matrix fails. As a solution, we propose to apply an

Figure 1. Mean signal variances per coefficient in terms of equivalent water

height before scaling (brown) and after scaling (blue) according to eqs (20)

and (21). The latter fit rather well the mean signal variances per coefficient

of a combined ECCO/GLDAS model (red).

additional scaling of the signal covariances according to

D ≈ SY F YT S, (20)

where S is a diagonal matrix with entries

S = (slm,lm) =

{

1 l = 0

1
l

otherwise
. (21)

The corresponding mean signal variances per coefficient match the

spectrum of the mass change function rather well, as depicted in

Fig. 1. Note that such a scaling can be interpreted as an additional

low-pass filtering; that is, instead of eq. (16), we use

d = S Y f. (22)

It has not been addressed yet, how information about the signal

is obtained to construct the signal variance–covariance matrix ac-

cording to the procedure outlined above. The preferred source of

information about the signal are geophysical models (e.g. Seo et al.

2006; Kusche 2007). However, as shown by Klees et al. (2007),

the filtered solution will be biased towards these models. Therefore,

we propose an alternative approach, which exclusively uses monthly

GRACE gravity models to build the signal variance–covariance ma-

trix iteratively. The iterations are initialized by assuming constant

signal variances at an equal-angular grid. That is, the initial matrix

F is a scaled unit matrix. Then, an initial matrix D is computed us-

ing eq. (20), the ANS filter is designed according to eq. (4), and the

Stokes coefficients of I monthly GRACE fields are filtered. These

I sets of filtered Stokes coefficients represent monthly signals and

are used in the next iteration to compute the signal variances at the

K nodal points, to compute a new matrix D, and to design a new

ANS filter. The iterations stop if the differences between two sets

of filtered Stokes coefficients are below a given threshold. Fig. 2

shows an example of the signal amplitudes (i.e. the square root of

the signal variances) from 36 monthly GRACE models spanning

the period 2003 February till 2006 February after two iterations

have been performed. The iterations were initialized assuming a

homogeneous signal amplitude of 5 cm. Note that the result is quite
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Figure 2. Signal amplitudes computed from 36 monthly GRACE models

after two iterations in units of [m] equivalent water heights; the initial signal

amplitudes were set equal to 5 cm. The signal variances form the entries of

the diagonal spatial-domain signal covariance function F of eq. (17), which

is used to design the optimal ANS filter.

Figure 3. Difference between two filtered GRACE solutions for 2005 April.

Top panel: initial-filter solution minus first-iteration-filter solution. Bottom

panel: first-iteration-filter solution minus second-iteration-filter solution.

The results indicate a fast convergence of the iterative ANS filter design

scheme.

robust against the choice of the initial signal variances as shown

in all experiments. In this way, we compute the optimal ANS filter

for each particular month. Each monthly optimal ANS filter uses

the same signal variance–covariance matrix and the noise variance–

covariance matrix of that particular month.

Fig. 3 depicts the differences between the initial filter and the fil-

ters after the first and second iteration. The initial filter was designed

assuming that the mass change function is described by a constant

water layer of 5 cm thickness over the globe. The differences do not

exceed 4 and 2 cm, respectively. A similar rapid convergence has

been observed in many practical tests; not more than three iterations

were needed.

4 F I LT E R P E R F O R M A N C E –

S I M U L AT I O N S

In order to understand how the optimal ANS filter behaves and to

assess its performance, we apply the filter to three simulated data

sets. Four filters are included in the comparison: a 700 km isotropic

Gaussian filter (G700), the convolution of the destriping filter with

a 400 km isotropic Gaussian filter (DS400), the optimal AS filter

(AS), and the optimal ANS filter (ANS).

We first consider an isolated target area, which extends 2000 km in

north–south direction and 500 km in east–west direction. The target

area has been centred at 0◦ latitude and 20◦ longitude. Note that the

choice of the longitude is completely arbitrary; however, the choice

of the latitude matters as GRACE solution errors strongly depend on

the latitude. Note further that a real GRACE solution (DEOS Stokes

coefficients for 2005 April) has been used to define the destriping

parameters of the DS400 filter; moreover, the same solution and

the associated variance–covariance matrix have been used to design

the optimal AS filter, and the optimal ANS filter. The mass change

function (signal) to be recovered is the spherical harmonic degree

70 representation of a 10 cm water layer homogeneously distributed

over the target area. The filters are directly applied to this signal.

The destriping filter uses a degree 3 Savitzky-Golay smoothing filter

(Savitzky & Golay 1964) over a 7-point window; orders below eight

were left unchanged. The spatial-domain signal amplitudes used to

construct the signal covariance matrix D are set equal to 5 cm. No

iterations were performed to improve the filters in order to avoid the

situation that the optimal AS filter and the optimal ANS filter use

any information about the true signal. North–south and east–west

cross-sections of the G700, AS, and ANS filter functions are shown

in Fig. 4. Note the negative lobes of the AS filter and the ANS filter

close to the filter centre, which are needed to reduce the correlated

noise. Moreover, the optimal AS and optimal ANS filter functions

have smaller half widths in north–south direction as the G700 filter.

The amplitudes of the side-lobes of the ANS filter are much larger

than the side-lobes of the AS filter; they attain about 40 per cent

of the amplitude of the main lobe, whereas this value is below

10 per cent for the AS filter. The filter half widths differ significantly.

In north–south direction, the ANS always has the smallest half width

(about 330 km in the left-hand panel of Fig. 4), followed by the

AS filter (400 km) and the G700 filter (700 km). In the east–west

direction, however, the AS-filter half width is significantly larger

than 700 km (950 km in the right-hand panel of Fig. 4), whereas

the ANS filter has again the smallest half width (520 km). It is

also remarkable that the ANS filter does not take up its maximum

value at exactly the computation point. In fact, it is shifted by about

110 km to the north.

Fig. 5 shows the signal before and after filtering has been applied.

The G700 filter is isotropic, which is the reason why we obtain

rounded contours deviating from the true basin shape as evident in

Fig. 5. The DS400 filter has negative lobes close to the centre of

the filter to reduce the strong noise correlations in the sectorials.

They are responsible for the clearly visible negative leakage signal

north and south to the target area. The convolution of the destriping

filter with a 400 km isotropic Gaussian filter is responsible for

some rounded contours, which overlay the effects of destriping.

The less pronounced negative lobes of the AS-filter in the north–

south direction is an indication that the AS filter does not sufficiently
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Figure 4. North–south (left-hand panel) and east–west (right-hand panel) cross-sections through the normalized filter functions G700, AS, and ANS. The

filter functions are centred at 0◦ latitude and 20◦ longitude.

Figure 5. Isolated, north–south elongated target area with a 10-cm water mass layer before and after filtering. 700 km isotropic Gaussian filter (G700),

convolution of destriping filter and 400 km isotropic Gaussian filter (DS400), optimal AS filter (AS) and optimal ANS filter (ANS). The non-zero signal outside

the target area is the effect of filtering. Note the pretty strong negative signal to the north and south of the target area for the DS400 and ANS solutions, which

is caused by the negative lobes of the filter functions close to the filter centre.

reduce the highly correlated noise in the Stokes coefficients. The

optimal ANS filter takes the full noise correlations into account

and shows similar leakage patterns in the north–south direction

as the DS400 filter. The main difference to destriping is that the

ANS filter takes all noise correlations into account, including the

noise correlations in the near sectorials, which are not smoothed

sufficiently well by destriping. Moreover, the optimal ANS filter

also takes noise and signal correlations into account, which leads to

a smaller half width in east–west direction than any other filter.

Next, we consider the same target area, but now rotated by 90◦,

that is, the area is now elongated in east–west direction. The G700

shows similar rounded contours as already observed for the north–

south elongated target area, which had to be expected due to the

isotropy of the filter (Fig. 6). All other filters behave differently.

In particular, we observe that now leakage is significantly smaller

than for the north–south elongated target area. Again, the ANS filter

shows the lowest smearing in the east–west direction.

In the third example, we consider the same target area as in the

first example, except we now assume that close to the target area

there is another region of significant mass change (of opposite sign).

More specifically, to the east of the target area, we assume a mass

change signal of −10 cm covering an area of the same size as the

target area (see Fig. 7). That is, the mass change signal in that area

is completely out-of-phase with the mass change signal inside the

target area. Fig. 7 shows that this scenario is a worst-case scenario

for GRACE, because GRACE fails completely to recover the signal,

no matter what filter is being used.

In order to better quantify the loss of signal over the target area,

we computed the north–south and east–west cross-sections for each

scenario (Figs 8 and 9) and the mean water mass change after

filtering (Table 1). The loss of signal is the strongest for the non-

isolated, north–south elongated target area; more than 90 per cent of

the signal has been lost after filtering. The situation is significantly

better for isolated target areas. The east–west elongated target area is
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Figure 6. Isolated, north–south elongated target area with a 10-cm water mass layer before and after filtering. 700 km isotropic Gaussian filter (G700),

convolution of destriping filter and 400 km isotropic Gaussian filter (DS400), optimal AS filter (AS) and optimal ANS filter (ANS). It is evident that leakage

is less pronounced than for the north–south elongated target area shown in Fig. 5.

Figure 7. Non-isolated target area with a strong out-of-phase mass change signal of −10 cm to the east of the target area before and after filtering. 700 km

isotropic Gaussian filter (G700), convolution of destriping filter and 400 km isotropic Gaussian filter (DS400), optimal AS filter (AS) and optimal ANS filter

(ANS). This example shows the problem of any filter when there is a strong out-of-phase mass change signal close to the target area.

less affected than the north–south elongated one. Note that rescaling

as suggested by Velicogna & Wahr (2006) can be applied no matter

what filter is being used. Whether rescaling is helpful depends on

how strong the signal is outside the target area. If it is significantly

smaller than the signal inside the target area (ideally zero as for

isolated target areas), then rescaling is an appropriate tool to improve

the amplitude estimates. However, for non-isolated target areas with

a strong out-of-phase signal in the neighbourhood of the target area,

rescaling is no longer reliable. Instead, the procedure of Klees et al.

(2007) has to be followed, which uses available information about

the mass change function inside and outside the target area provided

by GRACE or geophysical models.

In the second series of experiments, we want to investigate how

the filters perform in terms of noise reduction. The full noise

variance–covariance matrix of a GRACE solution for 2005 April

computed at DEOS, complete to degree 70, has been used to gen-

erate several realistic realizations of noise in the Stokes coeffi-

cients c̄
( f̂ )
l,m . In the following, we show only one noise realization;

all conclusions are valid for the other realizations, as well. The

upper left-hand panel of Fig. 10 shows the spatial pattern of one
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Figure 8. Original and filtered signal along north–south cross-sections through the three target areas. Note the strong loss of signal caused by the filters.

Figure 9. Original and filtered signal along east–west cross-sections through the three target area. There is no significant difference with respect to north–south

cross-sections as shown in Fig. 8.

Table 1. Mean mass change over three target areas (each of size 1.1 ×

106 km2) in units of (m) after filtering. The exact value is 0.1 m.

Filter Isolated Isolated Non-isolated

north–south east–west north–south

G700 0.024 0.026 0.007

DS400 0.027 0.043 0.009

AS 0.023 0.044 0.004

ANS 0.031 0.056 0.009

particular noise realization. The pattern is dominated by the well-

known north–south stripes. Note that the noise amplitudes take up

values of 5 m. All filters succeed in reducing noise significantly by

about two orders of magnitude. The application of the G700 filter

gives the best smoothing. Due to the large half width of 700 km,

noise is distributed smoothly over larger areas, which is the reason

why the maximum amplitudes of noise artefacts are about a factor

of 2 smaller than for the other filters. DS400 leaves significantly

more noise in equatorial regions; this is well known and explained

by the fact that noise is also strong in the near sectorial coeffi-

cients, which is not smoothed enough when destriping (Swenson

& Wahr 2006). Fig. 10 demonstrates nicely how the optimal ANS

filter works. When designing the filter, it was assumed that the sig-

nal variance is 0.75 cm on the oceans and 5.0 cm on land. Hence,

the filter is more aggressive on the oceans, which is the reason for

the very smooth and low amplitude residual noise pattern. On land,

however, the smoothing is less pronounced as the filter expects a

stronger signal. All other filters do not distinguish between areas
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Figure 10. Noise before (left-hand upper panel) and after filtering. 700 km isotropic Gaussian filter (G700, left-hand middle panel), convolution of destriping

filter and 400 km isotropic Gaussian filter (DS400, right-hand middle panel), optimal AS filter (AS, left-hand lower panel) and optimal ANS filter (ANS,

right-hand lower panel). Filtering is a very efficient tool to reduce noise. Depending on what filter is being used, residual noise attains extreme amplitudes of

2–4 cm. G700 provides the smallest amplitudes and the smoothest map of residual noise. Note the very smooth result over the oceans when the optimal ANS

filter is applied.

of different signal amplitudes. Finally, the ANS filter performs the

same, independently of the latitude. It is also remarkable how differ-

ent the optimal AS filter behaves compared with the optimal ANS

filter. In particular, the residual noise left by the AS filter is quite

homogeneous over the globe, and significantly higher on the oceans.

Fig. 11 shows a zoom-in of Fig. 10 to point to another aspect

of correlated noise: the DS400 solution, optimal AS solution, and

optimal ANS solution suffer from noise artefacts which extend over

areas as large as 106 km2 without changing the sign. Amplitudes

attain values up to 4 cm. This means in fact that when comput-

ing the mean mass change over areas of comparable or smaller

size, there is no guarantee that noise cancels out or is reduced

significantly. Computing the mean mass change over a target area

may reduce noise only if the target area is much larger than, say,

106 km2. Note that spatial averaging hardly reduce noise after

a G700 filter has been applied. This, however, is less critical as

the residual noise amplitudes of a G700 solution are significantly

smaller than for DS400, optimal AS and optimal ANS solutions.

A practical implication of this result is that when using GRACE

to quantify continental water cycling, it may be very difficult to

decide whether a particular pattern of size 106 km2 or smaller is

residual noise or signal. This is confirmed by Fig. 12, which shows

the sum of synthetic signal and noise after filtering. All patterns

marked by red circles may be interpreted as signal, but are in fact

noise artefacts. These noise artefacts pose a natural limit to the

spatial resolution of monthly GRACE fields for land water cycling.

Also the appealing mascon solutions (e.g. Rowlands et al. 2005)

suffer from the same problem no matter whether regularization is

applied or not. A time-series plot of each mascon may help to detect

noise artefacts in that particular mascon. This approach is followed

by Lemoine et al. (2007). However, episodic mass change events

remain hard to distinguish from noise artefacts.

5 F I LT E R P E R F O R M A N C E – R E A L

DATA

Another series of computations is done using real data. Two target

areas will be considered in more detail: (1) the Zambezi river basin

in South Africa and (2) the Sahara desert. The Zambezi River basin

is the fourth-largest basin of Africa, after the Congo/Zaire, Nile and

Niger basins (see Fig. 13). The basin has a strong annual amplitude

of more than 15 cm equivalent water height. Its total area is about

1.4 million km2. For the Zambezi River basin, a Lumped Elementary

Watershed (LEW) regional hydrological model is used as reference.

The LEW approach has been presented in a previous study by

Winsemius et al. (2006) (see also Klees et al. 2007). The part of
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Figure 11. Noise before (left-hand upper panel) and after filtering over South Africa. 700 km isotropic Gaussian filter (G700), convolution of destriping filter

and 400 km isotropic Gaussian filter (DS400), optimal AS filter (AS) and optimal ANS filter (ANS). Strong residual noise patterns of amplitudes up to 4 cm

and constant sign over areas as large as 106 km2 are evident in the DS400, optimal AS and optimal ANS solutions.

Figure 12. Signal and noise after filtering. Several local residual noise features are highlighted by red circles. The green box indicates the area of a 10 cm

water mass layer, which is the (true) mass change signal. Hence, every signal outside the green box is due to residual noise or leakage. From left- to right-hand

side: 700 km isotropic Gaussian filter (G700), convolution of destriping filter and 400 km isotropic Gaussian filter (DS400), optimal AS filter (AS) and optimal

ANS filter (ANS).
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Figure 13. The Zambezi river basin and the part of the Sahara desert used

in the study.

the Sahara desert being used in this study comprises only the driest

part of the desert. In particular, the Nile River basin in the eastern

part and the Atlas mountain range in the western part of the Sahara

desert have been excluded (see Fig. 13). The area extends over

about 3.5 million km2 and will be referred to as Sahara desert for

simplicity. When accepting that the monthly mean water storage

variations over this area are almost zero, then the GRACE estimates

represent residual noise artefacts and/or leakage from surrounding

areas, in particular from the Mediterranean Sea, the Intertropical

Convergence Zone, and the Nile River basin.

Fig. 14 shows geographical plots of mass change for 2005 April

derived from GRACE KBR data using the methodology developed

Figure 14. Mass change for 2005 April from GRACE KBR data after filtering. Units are in [m] equivalent water height. 700 km isotropic Gaussian filter

(G700, left-hand upper panel), convolution of destriping filter and 400 km isotropic Gaussian filter (DS400, right-hand upper panel), optimal AS filter (AS,

left-hand lower panel) and optimal ANS filter (ANS, right-hand lower panel). The ANS filter preserves more signal, shows less pronounced leakage, and

provides a smoother solution over the oceans. Some of these areas are marked by red circles.

at DEOS (Ditmar & Liu 2006). A comparison of the filtered solu-

tions reveal some interesting differences. First, we observe that the

optimal ANS filter seems to preserve significantly more signal and

shows less pronounced leakage effects. Examples of areas where

this effect is clearly visible are Antartica, the Amazon River basin,

the Chukchi Peninsula (the northeastern extremity of Asia in the

northern part of the Russian Far East), Madagaskar, and Scandi-

navia. For instance, ANS is the only filter, which shows a clear

mass change signal on Madagaskar and the Chukchi Peninsula; the

latter is probably caused by strong snow cover. This mass change

signal is not visible in the G700, AS, and DS400 solutions, which

is likely due to leakage effects. Second, the ANS filter provides the

smoothest solution over the oceans. This is explained by the fact

that mass redistribution over most of the oceans is much smaller

than over land. Therefore, the optimal ANS filter, which uses infor-

mation about signal and noise variances and covariances, applies a

stronger smoothing to areas of low signal-to-noise ratio.

Fig. 15 shows geographical plots of mass change for 2005 April

after filtering compared with the unfiltered output of the LEW re-

gional hydrological model. The plots indicate that the optimal ANS

filter is the closest to LEW among all filters. The optimal AS filter

performs pretty well, which may be explained by the dominating

east–west mass change features. DS400 and G700 perform worse.

For DS400 this may be explained by the enhanced noise in equatorial

regions, which is not filtered out sufficiently well when destriping,

and by the successive application of an isotropic 400 km Gaussian

filter. The superior performance of the ANS filter is confirmed when

looking at the mean water mass change over the Zambezi basin for

the period 2003 February till 2006 February (Fig. 16). The largest

differences between LEW and filtered GRACE solutions occur dur-

ing periods of extreme water mass change. ANS is always closer

to LEW than any other filter is, for example, for 2004 April, 2004

October and 2005 April. The better performance of the optimal

ANS filter is also confirmed by the RMS fit to LEW over a 3-yr

time period (see Fig. 16).
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Figure 15. Surface mass change in equivalent water height for 2005 April. Output of the LEW regional hydrological model (LEW) and GRACE solutions after

application of various filters: 700 km isotropic Gaussian filter (G700), convolution of destriping filter and 400 km isotropic Gaussian filter (DS400), optimal

AS filter (AS) and optimal ANS filter (ANS).

Figure 16. Mean water mass change over the Zambezi river basin from

2003 February till 2006 February. Units are in [m] of equivalent water

height. Output of the LEW regional hydrological model (LEW) and GRACE

solutions after application of various filters: 700 km isotropic Gaussian filter

(G700), convolution of destriping filter and 400 km isotropic Gaussian filter

(DS400), optimal AS filter (AS) and optimal ANS filter (ANS). The RMS

difference with respect to the LEW model are 0.049, 0.041, 0.039 and 0.034

m, respectively.

We performed similar computations for the driest part of the

Sahara desert, with the assumption that the signal is close to zero

over this region. If the assumption is valid, everything seen in this

area is the effect of residual noise and leakage from surrounding

areas. A 3-yr time-series of the mean water mass change over this

part of Sahara desert (see Fig. 17) reveals some remarkable dif-

ferences between the optimal ANS filter and the other filters. The

latter indicate a strong mass change in 2003 February and 2005

Figure 17. Monthly mean water mass change over the Sahara desert for the

period 2003 February till 2006 February. 700 km isotropic Gaussian filter

(G700), convolution of destriping filter and 400 km isotropic Gaussian filter

(DS400), optimal AS filter (AS) and optimal ANS filter (ANS).

June, whereas ANS does not. Fig. 18 shows the four solutions for

2005 June. The G700, AS and DS400 solutions show a relatively

strong mass change signal at the centre of the Sahara desert, which is

much less pronounced in the ANS solution. A possible explanation

is that we have to deal with a noise artefact, which is successfully

suppressed by the optimal ANS filter, because the signal-to-noise

ratio in this area is very small. Note that noise artefacts in the Sahara

desert of similar pattern and size have been observed as well in the

simulation scenarios of Section 4, Fig. 12. Another explanation is

that we have to deal with an episodic signal, which is falsely filtered

out by the optimal ANS filter, but well recovered by the other filters.

Episodic signals are hard to detect by the optimal ANS filter as it is

currently implemented, because the signal variance–covariance ma-

trix is built up using spatial-domain signal variances obtained from a

3-yr time-series of GRACE solutions. Hence, an episodic event will
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Figure 18. Mean water mass change over the Sahara desert for 2005 June after the application of various filters: 700 km isotropic Gaussian filter (G700),

convolution of destriping filter and 400 km isotropic Gaussian filter (DS400), optimal AS filter (AS) and optimal ANS filter (ANS). Note the strong mass

change signal at the centre of the Sahara desert visible in the G700, DS400 and AS solutions, which is almost absent in the ANS solution.

always be underestimated in the signal variance–covariance matrix,

which means that the ANS filter filters-out this event because of the

low signal-to-noise ratio.

Overall, the optimal ANS filter provides the smallest RMS signal

over a time span of 3 yr: 0.8 cm compared with 1 cm (G700), 1.1

cm (optimal AS) and 1.2 cm (DS400).

6 S E N S I T I V I T Y A NA LY S I S

The results of the simulation scenarios and the real data scenarios

have shown that the optimal ANS filter performs better than any

other filter tested in this study. The optimal ANS filter, however,

requires information about the noise variances and covariances,

and the signal variances and covariances. Our strategy to set-up the

signal variance–covariance matrix requires only information, which

is available to everybody. The situation is different for the noise

variance–covariance matrices. In our study, we used the matrices as

they came out of the least-squares adjustment of GRACE KBR data

according to the methodology developed at DEOS. Similar filtering

could be done by the others centres which process GRACE KBR

data. For the majority of the users, however, only information about

the noise variances is available. Hence, they cannot implement the

optimal ANS filter. Therefore, from a practical point of view, it is

interesting to gain some insight into the sensitivity of the optimal

ANS filter with respect to approximations of the noise variance–

covariance matrix, which is the main question to be addressed in

this section. Moreover, we will also look into the sensitivity with

respect to approximations of the signal variance–covariance matrix.

Four simplified ANS-filters will be investigated.

(i) The noise covariances are neglected and the signal variance–

covariance matrix is left unchanged (ANS-1).

(ii) Noise correlations are computed following the approach of

Kusche (2007) and scaled by a single scale factor to match the

noise degree variances of the DEOS noise variance–covariance ma-

trix as well as possible; the signal variance–covariance matrix is

left unchanged (ANS-2). Fig. 19 shows the noise degree variances

obtained in this way.

(iii) Noise correlations are computed following the approach of

Kusche (2007) and scaled to the variances of the full noise variance–

covariance matrix, which is used in the optimal ANS filter (ANS-3).

(iv) Full noise variance–covariance matrix is used; the signal

covariances are neglected (ANS-4).

Fig. 20 shows the differences between the optimal ANS-filter

solution for 2005 April and the corresponding GRACE solutions

filtered with the approximate ANS-filters. The worst solution is

the ANS-4 solution, which neglects the signal covariances. Differ-

ences with respect to the optimal ANS solution attain values of

up to 11 cm in terms of equivalent water heights, which is about

25 per cent of the maximum signal amplitudes. Taking the full sig-

nal variance–covariance matrix into account and using a synthetic

noise covariance matrix as proposed by Kusche (2007) improves

the quality significantly provided that the covariance matrix is prop-

erly scaled. Scaling it to match estimated noise degree variances

(ANS-2) as proposed by Kusche (2007) introduces errors that are

a factor of 2 larger than a scaling to the estimated noise variances
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Figure 19. Mean noise variances per coefficient (1) from the noise variance–

covariance matrix of the DEOS GRACE solution for 2005 April (solid line);

(2) according to the approach of Kusche (2007) when applying a single

scale factor to match the upper tail of (1) as good as possible (dashed line).

The latter have been used to design the ANS-2 filter. Units are in (m) of

equivalent water height.

Figure 20. Differences between the optimal ANS-filter solution for 2005 April and various ANS-filter approximations. Units are in (m) of equivalent water

height. Noise covariances are neglected and full signal variance–covariance matrix is used (ANS-1, left-hand upper panel); full signal variance–covariance

matrix is used and the synthetic noise correlations, which are obtained by following the approach of Kusche (2007), are scaled by a single scale factor to

the noise signal degree variances (ANS-2, right-hand upper panel); full signal variance–covariance matrix is used and the synthetic noise correlations, which

are obtained by following the approach of Kusche (2007), are scaled to the noise variances from the DEOS 2005 April noise variance–covariance matrix

(ANS-3, left-hand lower panel); full noise variance–covariance matrix is used and signal covariances are neglected (ANS-4, right-hand lower panel). Obviously,

neglecting the signal covariances has the largest effect on the solution (ANS-4). Note that the differences shown in the bottom right-hand panel attain values

up to 11 cm, which are outside the interval represented by the colour bar.

(i.e. to the diagonal elements of the inverse normal equation matrix)

(ANS-3). The quality of the ANS-2 solution is only slightly better

than the quality of the ANS-1 solution, which neglects noise covari-

ances. Note that it does not matter how the estimated noise degree

variances are obtained; either from given estimated noise variances

or using the increasing branch (above degree, say, 30) of the average

power per degree of monthly GRACE solutions over several years,

as used in (Kusche 2007).

7 C O N C LU S I O N S

We have proposed a new filter which takes signal and noise covari-

ances into account. The filter is optimal in the sense that it mini-

mizes the global mean of the square difference between the signal

and the filtered GRACE estimate among all possible anisotropic

non-symmetric filters. A series of simulations and computations

with real data has shown that this filter performs significantly better

than, for instance, the convolution of destriping and Gaussian filter,

all anisotropic symmetric filters, or all isotropic filters. The optimal

ANS filter preserves the signal amplitudes better, has a smaller leak-

age error (e.g. along the coast), and provides smoother solutions in

areas of low signal (e.g. oceans). The filter relies upon full noise and

signal variance–covariance matrices. Neglecting noise and/or signal

covariances degrades the filter performance significantly. Neglect-

ing signal covariances has the largest effect on the filter performance
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and should be avoided. The effect of neglecting noise covariances

is lower (for 2005 April by a factor of 2), though still significant.

If no noise variance–covariance information is available, the user

can generate a noise correlation matrix following the approach pro-

posed by Kusche (2007); however, the matrix should be properly

scaled using information about the noise variances, which is part of

the official level 2 products of the GRACE processing teams at the

CSR, GFZ and JPL. A scaling using noise degree variances should

be avoided because it degrades the filter performance.

A further improvement of the ANS filter is possible if one suc-

ceeds in computing a more realistic signal variance–covariance ma-

trix. An even better performance can be expected from a joint inver-

sion of GRACE KBR data or gravity models and mass redistribution

information provided by geophysical models. This requires a realis-

tic description of the uncertainty of the geophysical models, which

is hardly available today. Without this information, the result of the

inversion could be biased towards the geophysical models or would

not differ significantly from a GRACE-only solution.
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A P P E N D I X A : M I N I M U M M S E

We want to show that the minimum of

MSEave =
1

4π R2

∫

σR

E{( f − f̂ w)2} dσR, (A1)

is attained if

W = D (C + D)−1, (A2)

where W = (W lm,pq) is the filter matrix, C is the full noise variance–

covariance matrix of the Stokes coefficients of the estimated mass

change function f̂ and D is the full frequency-domain signal

variance–covariance matrix. We define vectors

y(x) = [Yl,m(x̂)] (A3)

c(·) = (c̄
(·)
l,m) (A4)
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wl,m = (Wlm,pq ). (A5)

Then, we can write in matrix–vector notation,

f (x) − fw(x) = yT (x) c( f ) − yT (x) W c( f ) (A6)

= yT (x)(I − W) c( f ) (A7)

fw(x) − f̂ w(x) = yT (x) W c( f ) − yT (x) W c( f̂ ) (A8)

= yT (x) W c(ε f ), (A9)

where c(ε f ) = c( f ) − c( f̂ ). The mean-square error is

MSE = ( f − fw)2 + E
[

( fw − f̂ w)2
]

. (A10)

It is

( f − fw)2 = yT (x)[(I − W)D(I − W)T ]y(x), (A11)

where D = c( f ) [c( f )]T , and

E
[

( fw − f̂ w)2
]

= yT (x) WCWT y(x), (A12)

where C = E{c(ε f )[c(ε f )]T }. Using the equations for ( f − f w)2 and

E
[

( fw − f̂ w)2
]

, we find

MSE(x) = yT (x)
[

(I − W)D(I − W)T + WCWT
]

y(x). (A13)

The global mean of the MSE attains a minimum if the term inside

[·] attains a minimum. Hence, a necessary condition for a minimum

of MSEave is

∂

∂W

[

(I − W)D(I − W)T + WCWT
]

= 0, (A14)

or

−2D + 2(D + C) WT = 0 ⇒ W = D (C + D)−1. (A15)

The positive definiteness of C + D guarantees that MSEave at-

tains a minimum at W = D(C + D)−1. Eq. (A15) is identical with

eq. (4).

C© 2008 The Authors, GJI, 175, 417–432

Journal compilation C© 2008 RAS


