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Abstract

In two-level fractional factorial (FF) screening experiments, if some factors are hard-
to-vary and others are easy-to-vary, subsequent randomization restrictions on the
run-order of the experiment may lead to the use of fractional factorial split-plot
(FFSP) designs. Blocked fractional factorial split-plot (BFFSP) designs arise when
all runs cannot be performed under homogeneous conditions. In this thesis, both
applied and theoretical properties of BFFSP designs are considered.

Three approaches to blocking FFSP designs are introduced. The first approach,
“pure whole-plot blocking”, requires that blocking variables be generated exclusively
by whole-plot factors. The second approach, “separation”, uses blocking generators
that consist of sub-plot factors alone, or sub-plot factors in conjunction with whole-
plot factors. The third approach, “mixed blocking”, incorporates properties of both
pure whole-plot blocking and separation.

For ranking FF designs for use in screening experiments, the quality of a design
is often assessed by means of the minimum aberration (MA) criterion. We provide
an extension of the MA criterion to the BFFSP design setting, and a catalog of
MA BFFSP designs is constructed. Using properties of Hadamard matrices, in con-
junction with our MA criterion, we also develop theoretical results to assist in the
construction of large blocked fractional factorial split-plot designs from designs with
considerably fewer factors.

When the objective of an experiment is robust design, the MA criterion is typi-
cally unable to select an appropriate BFFSP design. We develop an approach for
ranking BFFSP designs in this situation, and a catalog is presented containing
BFFSP designs ranked according to our selection criteria. '

We also consider the consequences of “elevating” a sub-plot factor to the whole-
plot level. When the attributes of aberration, the number of clear factor effects and
the precision of effect estimates are considered, it is shown that elevation may be a
good design strategy.

The research in this thesis was motivated by an industrial BFFSP experiment
involving the chrome-plating of aircraft engine component parts. We discuss this

motivating case study in detail.
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Chapter 1
Overview and Summary

Performing screening experiments by means of two-level fractional factorial (FF)
designs has been well documented over the years (Cox, 1958; Box, Hunter and Hunter,
1978; Montgomery, 2001). However, if it is expensive, time consuming or in some
way labor intensive to change the levels of some of the factors, it may be impractical
or even impossible to perform the experimental runs of the FF in a completely
random order. Under these circumstances, the randomization restrictions that are
imposed in the design of the experiment may result in a split-plot structure. In such
cases fractional factorial split-plot (FFSP) designs arise (Bingham and Sitter, 1999a;
2001). FFSP designs also arise when different factors are applied to different sizes
of experimental units. Split-plot designs were originally motivated by agricultural
experiments with the whole-plots (WPs) usually being large areas of land and the
subplots (SPs) being smaller portions of land within the large areas (Yates, 1935).
Two FFs underlie the structure of a FFSP design—the n; WP or hard-to-vary
factors arranged as a 2~ FF and the ny SP or easy-to-vary factors arranged as a
2m~F2 FF. However, if one views the WP and SP designs separately, there are limited
design options (Bingham and Sitter, 1999a). Rather, it is better if WP factors are
included in the SP factor generators (Kempthorne, 1952, p. 318). This approach often
allows one to increase the resolution (R) of a FFSP design. A two-level FFSP design
is typically denoted by 2(ritn2)—(ki+k2) this notation parallels that of Huang, Chen
and Voelkel (1998) and Bingham and Sitter (1999a, 2001) and implies that there are
n = n; + ny treatment factors, k = k; + ko “added” factors and n; + ny — ky — ko

“basic” factors from which the added factors are generated. Chapter 2 provides an
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extensive summary of these introductory design issues.

If it is thought that experimental conditions will not remain homogeneous for all
2(miFn2)=(ki+k2) ryng of the FFSP design, blocking may represent a practical design
option. For example, if a single batch of raw material is not large enough to permit
all 2(m+n2)=(k1+k2) treatment, combinations to be run, then blocking may be used to
account for variability between batches. Industrial experiments may also be blocked
using specific time periods (for example, blocked by week). This enables researchers
to account for variability that occurs in a process over time, including variability due
to changing environmental conditions or personnel.

‘The research in this thesis arose from a blocked fractional factorial split-plot
(BFFSP) experiment involving the chrome-plating of aircraft engine component
parts. The following section provides an introduction to this experiment. We conclude

the chapter with an outline of the research completed in this thesis.

1.1 Motivating Case Study

An aerospace company was experiencing problems with one of its chrome-plating
processes in that, when a particular complex-shaped part was being plated, excessive
pitting and cracking were observed. In addition, poor adhesion and uneven deposition
of chrome across the part were detected. With the goal being the identification of
key factors affecting the quality of the chrome-plating process, it was decided that a
screening experiment would be conducted.

In collaboration with the company’s process engineers, six factors were identified
for consideration in the experiment: A = chrome concentration, B = chrome to sulfate
ratio, C' = bath temperature, p = etching current density, ¢ = plating current density,
and 7 = part geometry. The responses included the number of pits and number of
cracks, in addition to hardness and thickness readings at various locations on the
part.

Factors A, B and C were hard-to-vary in that they represented characteristics of
the bath in which the chrome-plating was being carried out. It was difficult to change
the composition or temperature of the bath quickly, as changes could be made at
most once per day. Moreover, there was only one tank, or bath, available for the

experiment.
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Factors p, ¢ and r were easy-to-vary in that they could be changed multiple times
per day at the rectifier level. A rectifier is a bar through which current passes, and
is the cathode for the plating process. There were a number of rectifiers in the tank,
and different levels of p, ¢ and r could be used on each rectifier.

The fact that some factors were harder-to-vary than others led to restrictions
on randomization. This in turn led to the use of a split-plot design, with A, B and
C being the WP factors and p, ¢ and r being the SP factors. Because this was a
screening experiment a two-level design was used, with high and low levels being
selected for each factor. A full unreplicated factorial experiment would require eight
days, there would be eight rectifiers in the tank, and, on each day, one part would
be plated on each rectifier. In total, 26 = 64 parts would be plated.

However, there were only four rectifiers in the tank, and it was desirable to use
only two of these—with the other two being used for a separate experiment. There-
fore, at first glance, we were faced with a 232 design at the SP level. On the positive
side, sufficient resources were available to run the experiment for 16 days, and to
plate two parts per day. These 16 days consisted of four four-day weeks and it was
desirable to block the experiment by week.

In constructing the design a decision was made to raise (elevate) one of the SP
factors, p, to the WP level (and to denote it by P). Thus, etching current was only
varied at the day level. On the one hand, by raising etching current to the WP level
it was recognized that less information would be available about this factor, because
it would now be tested against the WP error rather than the SP error. On the other
hand, a certain level of simplicity would be achieved, in that we could now think of
the experiment at the WP level as a full, unreplicated, 2¢ design, run in four blocks.
As well, we would have less fractionation at the SP level, as we could now think of
the experiment at the SP level as a one-half fraction of a 22 design (although not
crossed with the WP design).

The design that was run was an unreplicated 2(4*2~(0+1) in 22 blocks. One factor
generator, r = ABC Pq, was used to generate the SP added factor r. Two pure WP
blocking variables, 81 = ABC and s = ABP, were used to generate the four blocks
and, as a consequence, one two-factor interaction (2fi), CP, was also confounded
with blocks.

Questions concerning the optimality of the design led to the current research. We
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were particularly interested in whether the chosen (factor and block) generators were
“optimal”, and whether it was a good idea to raise p to the WP level (or whether
better designs could be constructed by leaving p at the SP level). We will revisit
these issues, in the context of the chrome-plating experiment, in Chapters 9 and 10.
Before doing this we will develop a more general theoretical framework in Chapters 2
- 8.

1.2 Outline of Thesis

Chapter 2 provides an overview of FF, blocked fractional factorial (BFF) and FFSP
designs. This overview will provide the reader with a reasonable foundation for study-
ing more advanced designs in subsequent chapters.

Blocking FFSP designs is complicated by the presence of the two FFs underlying
the split-plot structure. We will demonstrate that there is more than one way to
block a FFSP design. In Chapter 3 we will show that one may induce blocking
at the WP level using three distinct, yet related, approaches. The first approach,
“pure WP blocking”, requires that blocking variables be generated exclusively by WP
factors. The second approach, which we call “separation”, uses blocking generators
that consist of SP factors alone, or SP factors in conjunction with WP factors. The
third approach, “mixed blocking”, incorporates properties of both pure WP blocking
and separation.

In this context, the concept of separation appears to be new. The key point is that
the blocking generators, or “separators”, are used to induce blocking at the WP level
by grouping all of the runs from the same block together. However, the motivation
for separation goes beyond the obvious intent of grouping treatment combinations.
In essence, the process of separation achieves “pseudo-replication” at the WP level
at the expense of further fractionation at the SP level (Brewster and McLeod, 2000).

In Chapter 3 we also provide a straightforward extension of the minimum aber-
ration (MA) criterion to the blocked fractional factorial split-plot (BFFSP) design
setting. Our approach is based upon that of Sitter, Chen and Feder (1997) and en-
ables a practitioner to select “good” BFFSP designs for the estimation of (WP and
SP) main effects and two-factor interactions (2fi’s).

When testing for the significance of an estimated split-plot effect one must test
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the given effect against the appropriate variance. If an incorrect variance is used,
erroneous inferences regarding the statistical significance of that effect may occur.
In Chapter 4, the variance forms for split-plot effects arising from the three blocking
approaches are constructed and compared. These variance forms imply general rules
for correctly assessing the significance of BFFSP design contrasts. These rules are an
extension of those initially developed for the FFSP setting (Bisgaard, 2000; Bingham
and Sitter, 2001).

Chapter 5 details methods by which one may algorithmically “search” for and
obtain two-level BFFSP designs ranked according to the MA criterion. Our search
algorithm is patterned after the search-table approach of Franklin and Bailey (1977)
and the combined approach of Bingham and Sitter (1999a). From this search pro-
cedure we will see that for a given number of treatment factors, blocking variables
and degree of fractionation there may be many BFFSP designs possessing MA. To
further differentiate between the “goodness” of these MA designs additional optimal-
ity criteria (such as the number of clear SP main effects and 2fi’s) will be presented
for ranking purposes. These additional optimality criteria may be used to distin-
guish between MA BFFSP designs possessing the same word length pattern (WLP).
A catalog is then constructed containing 8, 16 and 32-run BFFSP designs ranked
according to the MA criterion and the aforementioned additional optimality criteria.

In experimental design it is well known that the analysis of variance (ANOVA)
approach provides the experimenter with a versatile statistical tool for studying the
relationship between a response variable and one or more (treatment) factors (Mont-
gomery, 2001 and references therein). The main task of an ANOVA is to quantify
and evaluate the importance of possible sources of variation in an underlying lin-
ear model. This is accomplished by forming a partition of the total sum of squares
and degrees of freedom associated with the response variable, y, into its component
parts. With this in mind, Chapter 6 provides an indepth look into the construction of
ANOVA models for the three blocking approaches. Considerable time is then spent
detailing appropriate methods for the testing of split-plot effects using the ANOVA
models. '

While FF and FFSP designs have been widely used for some time, the theoretical
properties of “optimal” (that is, MA) FF and FFSP designs were, for the most part,
undeveloped until recently. Chen and Wu (1991) and Bingham and Sitter (1999b)
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introduced novel matrix representations for the defining contrast subgroups (DCSs)
of FF and FFSP designs, respectively. In Chapter 7 we take a theoretical look at
BFFSP designs by developing a matrix representation for their DCSs that account
for the presence of blocking variables. These results represent an extension of those
for FF and FFSP designs. While adhering to the MA criterion, we develop theorems
that allow BFFSP designs with many factors to be constructed from BFFSP designs
with significantly fewer factors. In addition, theorems are presented which place lower
bounds on a BFFSP design’s maximum resolution. These results can be incorporated
in design search algorithms to reduce search times.

In Chapter 8 we formulate an approach by which one may construct and subse-
quently rank BFFSP designs for the purpose of robust parameter design (RPD). In
RPD, an experimenter’s objective is to reduce the variability in a product or process
by a careful selection of factor level settings. We demonstrate that the MA criterion
developed in Chapter 3 is not suitable for ranking BFFSP RPDs since it is unable to
discriminate between the importance of effects having the same order. For example,
our MA criterion cannot distinguish between the importance of control x control and
control x noise 2fi’s, whereas the latter are more important in RPD. Instead of using
the MA criterion in our ranking procedure, we construct an effect ranking scheme
that is a compromise between the notions of “likely significance” of effects and “ef-
fect interest”. Our approach is an extension of that of Wu and Hamada (2000) and
Bingham and Sitter (2003) for FF and FFSP RPDs, respectively. Using our ranking
procedure 16 and 32-run dptimal BFFSP RPDs are constructed. Examples are given
illustrating the superiority of our effect ranking scheme over that of the MA criterion,
when the objective is robust design.

Chapter 10 considers the effect of “elevating” a sub-plot factor to the whole-plot
level in BFFSP designs. We demonstrate that elevation may lead to a design with
higher estimation capacity. That is, an elevated design may be more appealing in
terms of our proposed design optimality characteristics (aberration, number of clear
effects, precision of effects). Underlying the elevation procedure is the assumption
that the experimenter is not overly concerned with the loss of precision for the
elevated factor as a consequence of running it at the WP level. Catalogs of 32-run
BFFSP designs are constructed containing elevated designs that potentially provide

the practitioner with superior estimation capacity.



Chapter 2
Design Preliminaries

The importance of experimental design in agricultural (Yates, 1935; Kempthorne,
1952; Fisher, 1960), industrial (Box, Hunter and Hunter, 1978; Wu and Hamada,
2000; Montgomery, 2001) and other scientific applications (Lindquist, 1953; Kirk,
1968) has been well documented. The main objective of experimental design has
been to develop methods by which one may simultaneously account for, or model, the
effect of a set of factors (variables) comprising some process under investigation. The
approach taken by today’s proponents of experimental design methodology represents
a radical departure from the “one-factor-at-a-time” investigative approach that was
prevalent in many experiments during the early stages of the 20 century. It is now
well known that the major pitfall of one-factor-at-a-time experimentation is that
it negates the opportunity to identify important interactions between experimental
factors.

The objectives of experimental design usually fall under (at least) one of the

following headings:

1. The determination of which factors exert an important influence on a particular

process,

2. The determination of factor settings by which the process is optimized. (In ex-
perimental design, optimization may take on several forms, such as maximizing

the yield or minimizing the variability of a process.)

The class of designs with n factors each at two levels has been given much attention

in the literature (see above references). These designs have been named “2" full



CHAPTER 2. DESIGN PRELIMINARIES 8

n
factorial designs”, since they consist of m = 2" observations or treatment
combinations. These factor combinations are varied together rather than one-at-a-
time. From this class of designs we obtain two-level fractional factorial (FF), blocked
fractional factorial (BFF) and fractional factorial split-plot (FFSP) designs.

It is our intent in this chapter to provide an overview of FF, BFF and FFSP de-
signs. This starting point will provide the required statistical background for dealing

with more advanced designs in subsequent chapters.

2.1 Two-level Full Factorial Designs

A 2" full factorial design is comprised of all possible 2" combinations of the n factors,
where each factor has only two levels or settings. Therefore, a 2" full factorial design
consists of 2" runs. When conducted, the 2" full factorial experiment will provide
information on all possible factorial effects, where a factorial effect is either a main
effect or an interaction between two or more factors. A main effect refers to the
change in response produced by a change in the levels of one of the primary exper-
imental factors of interest (Montgomery, 2001). An interaction between two factors
is said to occur if we find that the difference in response between the levels of one
factor is not the same at all levels of the other factor.

The classic example by which many authors illustrate the basic attributes and
analysis of a full factorial design is the 2% design (Anderson and McLean, 1974; Bing-
ham, 1998; Montgomery, 2001). We denote the three design factors by A, B and C.
By using the usual “+/- coding” for representing the high and low levels of the fac-

tors, we may list the 23 = 8 runs as the rows of the following array:
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A B C
-
+...._
_ 4
+ o+ -
- - 4
+ -+
-+ +
\+ + +)

This list of runs in terms of the coded factor levels is referred to as the design matriz.
If the experimental design is displayed in terms of the actual factor levels the list of
runs is sometimes referred to as the planning matriz.

One may display the entire set of columns corresponding to all main effects and
interaction effects by use of the full factorial design matriz. For the 23 design, the

full factorial design matrix is given by

A B C AB AC BC ABC

(- - - + + + =)
+ - - - - 4+ 4
T
x|+ + -+ - - -
e S
+ - o+ -+ - -
- 4+ o+ - -+ -
\+ + + o+ o+ o+

where AB, AC, BC and ABC represent all possible two-factor interactions (2fi’s) and
three-factor interactions (3fi’s) of the 2% design.
An estimated main effect or interaction, denoted by ¢, is given by

. Xy
o= 2V (2.1)

where x. is the column vector of +/- signs in the full factorial design matrix corre-

sponding to factor c, y is the vector of the response observations corresponding to
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the factor level settings in each row of X, and 7 is the number of replications of the
2" design.
The usual model for a 2" design may be summarized by

y = f(factor effects) + ¢, (2.2)

where € is the random error term and f(-) is a linear function of the main effects and

interactions.

2.2 Two-level Fractional Factorial Designs

One drawback of 2" full factorial designs is their drain on resources. As n, the number
of factors increases, it is readily apparent that the required number of experimental
runs may become prohibitive. That is, expense, time and labour requirements de-
manded by large 2" designs may be impossible to meet. By assuming that certain
high-order interactions (for example, 3fi’s and 4fi’s) are negligible one may obtain
information on all remaining main effects and interactions by running only a subset
or fraction of the 2" full factorial design. (The assumption that high-order interac-
tions typically exert a negligible effect on a process has been empirically justified by
many studies (Wu and Hamada, 2000) and is referred to as effect hierarchy.) These
considerations have cemented the popularity of two-level FF designs; consequently,
FF, rather than full factorial designs are the norm rather than the exception.

The analytic approach to FF designs (and that of factorial designs in general) is
guided by several principles as listed below:

1. The sparsity of effects principle: When there are several variables the process is
likely to be driven primarily by relatively few of the main effects and low-order

interactions.

2. The projection property: FF designs can be projected into stronger designs in
the subset of significant factors. If the number of significant factors is small,
these “stronger designs” may possess replicated treatment combinations, thus
allowing the formation of error estimates. (For a thorough description see Mont-
gomery (2001), pp.246-251.)

3. Effect hierarchy: Main effects are more likely to be significant than 2fi’s, 2fi’s

are more likely to be significant than 3fi’s, and so on.
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4. Effect heredity: Interactions involving significant main effects are more likely to

be significant than interactions involving main effects that are not significant.

In general, one defines a 2"~ design to be a FF design with n factors, each at two
levels, and consisting of 2"~* treatment combinations or runs. Since a 2"* FF design
is a 27%-th fraction of the 2" full factorial design, the main concern in constructing
FF designs is the correct choice of factor level settings to be run. The correct factor
level settings are determined by assigning k of the factors to interaction columns of
the 2"~* full factorial design matrix. The first n—k columns of the design matrix are
considered to be independent and they determine the 2”* treatment combinations
of the first n — k basic factors. It is the columns representing the interactions of the
first n — k factors that enable the experimenter to determine the factor level settings

for the remaining £ added (or dependent) factors.

Example 2.2.1 Consider a 25=2 FF design. This design requires 16 runs whereas a
25 full factorial design would require 64. Hence, the FF design is a 272 = % fraction”
of the 2° design. One would assign four basic factors, say A, B, C and D, to the four
(independent) columns of the 2* design matriz given in Figure 2.1. One needs to
assign the two remaining factors, say E and F, to interactions involving A, B, C and
D. One possibility is E = AB and F = ACD. This implies that the settings of factors
E and F are completely determined by the columns corresponding to the interactions
AB and ACD, respectively.

From the properties of addition modulus 2 arithmetic it is seen that I = ABE
and I = ACDF where I is the identity column of 1’s (or +’s) and is obtained by
multiplying both sides of E = AB and F = ACD by E and F, respectively. We can
combine the preceding relations by writing I = ABE = ACDF where E = AB and F
= ACD are known as the generators of the 2572 design. By taking the product of

the generators we obtain
I =ABE = ACDF = BCDEF,

which is called the (treatment) defining contrast subgroup or DCS of the
design (Wu and Hamada, 2000), where ABE, ACDF and BCDEF form the set of
words in the DCS. Note that many authors (Boz, Hunter and Hunter, 1978; He-
dayat, Sloane and Stufken, 1999; Montgomery, 2001) also refer to the DCS as the

defining relation of a design.
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Since only a subset of the 2% runs are to be performed we are in essence obtaining
“less than complete information” for some of the main effects and interactions. For
ezample, since the settings of E and F are determined by AB and ACD, respectively,
their factor effect estimates will be indistinguishable from these interactions. That is,
E is aliased with the 2fi AB and F is aliased with the 3fi ACD.

Aliasing is a direct consequence of running a FF design and is always unavoid-
able. However, some forms of aliasing are considered to be worse than others. For
example, consider the aliased effects, E = AB and F = ACD. Here E is aliased with
a 2fi while F is aliased with a 3fi. In order to estimate the main effects E and F the
interactions AB and ACD must be assumed negligible. Whether or not AB and/or
ACD are truly negligible is the key issue. It was previously mentioned that empirical
evidence suggests that higher order interactions are negligible. Therefore, it is “eas-
ier” to claim that the 8fi (ACD) is small and hence F is estimable, than to claim
that the 2fi (AB) is negligible.

One lesson to be drawn from Example 2.2.1 is that longer words in the DCS are
“better”. That is, one would wish to have as many long words in the DCS as possible
since words consisting of only three factors (letters) cause main effects to be aliased
with 2fi’s, words consisting of four letters cause 2fi’s to aliased with other 2fi’s, five
letter words cause 2fi’s to be aliased with 3fi’s, and so on.

At this point it is useful to introduce the concepts of word length, word length
pattern (WLP) and design resolution. The number of letters in a word is its word

length and the vector
W‘—‘—‘ (Al,AQ,...,An), (23)

is called the WLP of the design, where A; denotes the number of words of length
i in the design, D. The shortest word length in a design’s DCS (excluding I) is
called the resolution (Box and Hunter, 1961) of the design. The 25-2 FF design in
Example 2.2.1 has WLP W = (0,0,1,1,1,0) and thus is a resolution 3 design.
From the above discussion we understand that designs with larger resolutions
are often preferred. However, knowledge of the resolution of a design is insufficient
in assessing the estimation capacity of a design. For instance, designs with equal
resolution do not necessarily have equal WLPs and consequently may not have the

same alias structure. In order to differentiate between designs of equal resolution,
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Figure 2.1: The Design Matrix for the 2* Design.

A B C D
S
+__.__
._+__
+ o+ - -
_._+_
+ - + -
+ o+ o+ -
- - - +
+ - - +
-+ - +
+ 4+ -+
- - + +
+ - 4+ +
-+ + +
\+ + + +)

Fries and Hunter (1980) developed a criterion entitled minimum aberration (MA).

In the context of FF designs, MA has the following definition:

Definition 2.2.1 (Minimum Aberration) For two designs D; and D, let r be
the smallest value such that A.(D,) # A.(Ds). We say that D; has less aberration
than Dy if A,(Dy) < A.(Ds). If there is no design with less aberration than D, then
D, has the MA (treatment) DCS and therefore is a “MA design’.

The MA criterion sequentially minimizes the number of words of length A; in the
WLP of a FF design. Since a MA design will have as few short words as possible
one will typically run a MA FF design rather than an equally sized FF design not

possessing MA—exceptions to this “rule” will be considered in later chapters.
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2.3 Blocked Two-level Full Factorial Designs

Montgomery (2001) defines blocking in experimental design to be a technique used
to increase the precision of an experiment. A block is the portion of the experimen-
tal material that is more homogeneous than the entire set of material. For example,
an experiment in a manufacturing process may require two days to complete all the
required runs. However, there could be differences between the days due to employee-
to-employee (work shift) variability. If we are not specifically interested in this effect,
we could think of “days” (work shifts) as blocks. Within a given day, we would expect
experimental conditions to be more consistent (homogenous) given that the employ-
ees remain constant through the day. However, between days we may assume a larger
degree of variability in the process due to an entirely different shift of employees.

In general, blocking serves to reduce the variability transmitted from sources
other than the factors of interest in the underlying process as long as the within-block
variation is smaller than the between-block variation. This variability reduction will
increase the precision by which the experimenter may make subsequent statistical
inferences regarding the treatment factors.

Sitter et al. (1997) and Loeppky and Sitter (2002) summarize the approach to
blocking 2" designs. First, consider the simple scenario of running a 2" experiment
in two blocks of size 2"~1. Here one would assign a blocking variable, say 3, to one of
the columns in the full factorial design matrix. This implies that the block is aliased
with one of the effects and is said to be confounded with the effect. It is advisable to
choose blocking variables using the principle of effect hierarchy. With this in mind,
it makes sense to assign the blocking variable to the highest order interaction. This
will cause the runs of the 2™ design to be grouped into two equally sized blocks of
size 2"1. One block would be run at the high level of 5 and the other at the low
level of S3.

Example 2.3.1 Suppose we wished to run a 23 design in two blocks. Keeping the
effect hierarchy principle in mind, we could let 8 = ABC'. This implies that blocks are
confounded with the 8fi ABC. We could assign the treatment combinations to block
1 whenever ABC = — (that is, whenever the product ABC = —1) and assign the
treatment combinations to block 2 whenever ABC = + (that is, whenever ABC =1).

We may summarize the assignment of the 8 runs to the two blocks with the following
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23 design matriz, sorted by block number:

A B C B=ABC Block

(- - - - 1)

+ + - ~ 1
+ - 4 -~ 1
bk —~ 1
+ - - - 2
-+ - + 2
- - 4 + 2
\+ + + + 2 )

If we wish to run an experiment in 2™ blocks we require m blocking variables. To
construct the blocking variables we must confound the blocks with multiple effect
columns (from the full factorial design matrix) while using suitable replacement
rules (Addelman, 1962). For example, to run an experiment in four blocks, we would
use Table 2.1. Here, 8;, B2 and (132 represent the three blocking variables, each
assigned to a higher-order interaction. Note that the third blocking variable, £;5s,
is automatically determined once f; and [ are chosen since we take 8,3, to be the
product of $5; and fs.

Table 2.1: Running an Experiment in Four Blocks

B B2 BiBs Block Indicator
- - 4 1
+ - - 2
-+ - 3
+ o+ o+ 4

Other references detailing approaches to blocking 2" designs include Kempthorne
(1952), Anderson and McLean (1974) and Montgomery (2001).



CHAPTER 2. DESIGN PRELIMINARIES 16

One model for a BFF design is
y = f(factor effects) + € + g(block effects) + e, (2.4)

where € and e are the (mutually independent) factor and block effect error terms.
For this model, the main assumption is that block-by-treatment interactions are
negligible (Sitter et al., 1997 and Loeppky and Sitter, 2002).

For full factorial designs optimal blocking schemes may be obtained by applying
the MA criterion to the block DCS (Sun, Wu and Chen, 1997). Sun et al. (1997)
denote the number of i-factor interactions that are confounded with block effects by
A;(b). Because no main effect should be confounded with block effects, A;(b) = 0
and the definition of A;(b) begins with i = 2. Therefore, the WLP of the block DCS
is given by

Wy = (As(b), ... , An(B)). (2.5)

Because W, is analogous to the WLP, W, for a FF design, we can apply the MA

criterion to rank-order any two blocking schemes for 2" full factorial designs.

Example 2.3.2 Suppose we wish to arrange a 2* design in 4 blocks. Consider the
blocking variables 1 = AB and Bs = AC. The block DCS, denoted by by, is I =
ABB, = ACPB; = BCBBs. Consider an alternate blocking arrangement for the 24
design given by f1 = ABC and Bs = CD. The block DCS, by, is I = ABCB, =
CDp; = ABDpB, 2. By simple application of the MA criterion we see that Wy, =
(3,0,0) and Wy, = (1,2,0). Therefore, by has less aberration than by since Ay(by) =
1< Ay(by) =3.

2.4 Blocked Two-level Fractional Factorial Designs

The methodology by which one may construct optimal blocking schemes for 2" de-
signs has now been outlined. For 2°~* FF designs, the issue of blocking is consider-
ably more complicated due to the presence of two DCSs—the treatment DCS and
the block DCS. The following example from Wu and Hamada (2000) illustrates how
these two DCSs act jointly in determining the alias structure of factor effects and in

determining the overall (combined) DCS of the design.
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Example 2.4.1 Consider the 282 FF design in 4 blocks, with treatment DCS, I =
ABCE = ABDF = CDEF and block DCS I = ACDB; = BCDf, = ABB:SB,. By
multiplying each word in the treatment DCS by AC’Dﬁi we have ACDB, = BDES, =
BCFB, = AEF .. Therefore, the block effect B, is confounded with the four 3fi’s,
ACD, BDE, BCF and AEF. Similarly, BCDf, = ADEBy; = ACFBy = BEFB, and
ABp\By = CEB1fs = DF B8, = ABCDEF 5. The combined DCS of the blocked
262 FF designs is

I = ABCE = ABDF = ACDp, = BCDB, = CDEF = BDES, = ADEp,
= BCFB, = ACFf, = ABB, S, = AEFB1 = BEFS2 = CEB, 5,
= DFpf; = ABCDEFB,,.

Because of the presence of two distinct DCSs in 2°~* BFF designs there is no
clear choice for an extension of the MA criterion from the (blocked) 2" full factorial
design scenario. There have been recent attempts to address the problem by Bisgaard
(1994a, b) and more thoroughly by Sitter et al. (1997).

Sitter et al. (1997) define the length of a word in the DCS of a 2"~* BFF design
to be

fiei + (1.5) Iy, >0, (2.6)

where fic; and §5; represent the number of factors and blocking variables in the word.
If a given word contains at least one f; (i.e., §8; > 1), then the indicator variable,
I, implies that the word length is increased by 1.5. The motivation for introducing
fractional word lengths is two-fold. First, Equation 2.6 implies that block main effects
and block-by-block interactions contribute the same amount to the length of a word
in a BFF design’s DCS. Second, the choice of 1.5 results in agreement with the word
ranking scheme ccc << echb << ccee << cech << ceece << ..., where ¢ and b
denote factor and blocking variables, respectively, and << is interpreted as “less
desirable than”. Sitter et al. (1997) note that the choice of 1.5 is arbitrary. Any
number between 1 and 2 would imply the previous ranking scheme. This definition
of word length results in the WLP of a BFF design being of the form

W = (A3, A3'5, . ,An+1_5), (27)

where A; denotes the number of words of length 7 in the DCS, 3 <i < n+ 1.5.



CHAPTER 2. DESIGN PRELIMINARIES 18

Note that Equation 2.6 has now made it possible for a BFF design to have
fractional resolution. Also, from Equation 2.7 it is evident that designs having words
that alias or confound (factor or block) main effects with other main effects are
not to be considered since W allows only for those BFF designs that are of at
least resolution 3. The MA criterion can now be easily applied to a BFF design via
sequential minimization of the WLP, W, in Equation 2.7.

Example 2.4.2 To illustrate the above concepts we reproduce an example from Sitter
et al. (1997). Consider blocking a 282 FF design in 4 blocks. This implies that we
require two blocking variables, £, and Bo. If the factor and blocking variable generators
are chosen to be G = ABCD, H = ABEF, 8, = ACE and 8, = BDF then the
DCS will be given by

I = ABCDG = ABEFH = ACEB, = BDFB, = CDEFGH = ABCDEFS,6,
BDEGp, = BOCFHp, = ACFGp, = ADEHB, = EGFS, 6
CDHB. By = ADFGHpB, = BCEGHp, = ABGHB:f,.

This design has (fractional) resolution 4.5 with WLP, W = (0,0,0,4,2,5,1,2,0,1).

Another optimality criterion given considerable attention in the literature when
rank-ordering factorial designs is the total number of clear effects that a design pos-
sesses. A main effect or 2fi is said to be clear if it is not aliased (or confounded) with
any other main effects, 2fi’s or block effects. Sun et al. (1997) rank-ordered both
blocked 2" full factorial and 2"~* BFF designs according to this criterion. It has
been observed that these optimality criteria (MA and total number of clear effects)

may lead to different “optimal” designs (Sitter et al., 1997).

2.5 Split-plot Designs

Split-plot designs arise in experimentation when randomization restrictions exist
while assigning treatments to experimental units. These situations occur primarily in
agricultural and industrial applications but are being observed in an increasing num-
ber of research areas in recent years (Silverstein, 1985; Algina, 1997). Kempthorne’s
(1952) overview of the split-plot framework came at a time when the split-plot ap-

proach in experimental design was becoming popular among design practitioners.
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The split-plot designs described by Kempthorne (1952) were originally motivated
by agricultural experiments with the whole-plots (WPs) usually being large areas of
land and the sub-plots (SPs) being smaller portions of land within the larger areas
(see also, Yates, 1935). In recent years, authors such as Box and Jones (1992), Bing-
ham and Sitter (2001) and Montgomery (2001) have investigated the use of split-plot
designs within industry.

To motivate further theoretical developments we will first look at a small split-
plot experimental design. The example is taken largely from Milliken and Johnson
(1992).

Example 2.5.1 Consider a simple split-plot ezperimental design involving just two
multi-level factors, say A and B. The SP factor, say B, and its b levels are completely
randomized to the SPs within the WP factor A. That is, for each level of A we have
a grouping of the b levels of B. The number of WPs is a multiple of a, the number
of levels of the WP factor A.

Suppose factor A has four levels, factor B has three levels and there are eight
WPs each consisting of three SP experimental units. The levels of A are randomly
assigned to the WPs and the levels of B are subsequently randomly assigned to the
SPs, within the WPs, see Figure 2.2. The randomization restriction is that only one
WP treatment combination takes place on each WP whereas all three SP treatment

levels take place within a given WP.

Figure 2.2: A Simple Split-plot Experiment.

As A1 Ay Ay As Ay A A
By | B, | By | B3| By | By | Bs | By
B, | By | Bs | By | B3 | By | By | B
By | By | By | By | By | Bs | By | By

The larger WP experimental units are expected to be more heterogeneous “across”
than “within”. Consequently, the between WP variability is expected to be larger

than the within WP variability and we write

2 2
Owp > Ogp-
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Also, since the WP treatments in a split-plot design are confounded with the WPs
and the SP treatments are not, it is wise to assign the factors that we are most
interested in to the SPs, if at all possible.

The model for the split-plot experiment in Example 2.5.1 is given by

Yijk = 1+ A; + €5 + By + (AB)i + €iji,

where 1 =1,2,3,4;7 = 1,2;k = 1,2,3. The WP portion of the model is represented
by pu+ A; + e;; and By + (AB);x, + €;5x, represents the SP model portion. Note that
in a split-plot design there are two error terms in the model—one for the WPs, e;;,

and one for the SPs, €. Also, it is assumed that
ei; ~ N(0, Tirp)
and
€k N(0,0%p).

Moreover, we assume all of the e;; and ¢;;;, are mutually independent. The structure
of the analysis of variance (ANOVA) table for the split-plot design in Example 2.5.1
is given in Table 2.2.

Table 2.2: Stucture of the ANOVA Table for the Two-factor Split-plot Experiment
in Example 2.5.1.

Source of Variation df

WP
A 3
Error (WP) 4
SP
B
AB
Error (SP) 8
Total 23

Since there are larger numbers of degrees of freedom (df) for SP error than there
are for WP error, and because the SP error is likely smaller than the WP error,
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we will typically have greater power for detecting statistically significant SP effects.
This greater power results because we have, in essence, more observations of the
individual SP treatments than we do for the WP treatments. This in conjunction
with the expectation that SP experimental units are more homogeneous than WP
units should motivate one to assign the factors of most interest to the SP units if at

all possible.

2.6 Two-level Fractional Factorial Split-plot De-
signs

Some characteristics of a simple split-plot design were outlined in the previous sec-
tion. At that point we did not set restrictions on the number of levels that the factors
possessed. We now turn our attention to factors that have only two levels. By do-
ing this we will be able to specifically consider 2% FF designs with a split-plot

structure.

2.6.1 Full Factorial Split-plot Designs

Suppose the initial intent was to run a 2" design, but upon further consideration n; of
the factors were deemed hard-to-vary. To save resources (money, time or labour) one
can randomly choose one of the treatment combinations of the n; difficult-to-vary
factors and then run all of the level combinations of the ny remaining easy-to-vary
factors in random order—this is done while holding the n; factors fixed. In these
cases, we have randomization restrictions in the design of the experiment which
results in a split-plot structure.

For a 2" design with n; WP (hard-to-vary) factors and ny SP (easy-to-vary)
factors we are now faced with a full factorial split-plot design. The design matrix
for the 2™ = 2™+ fyl] factorial split-plot design is identical to that of the 27 full

factorial design. The only difference is the order in which the runs are performed.

2.6.2 Fractional Factorial Split-plot Designs

Two FFs underlie the structure of an FFSP design—the n; WP or hard-to-vary

factors arranged as a 2% FF and the ny SP or easy-to-vary factors arranged as a



CHAPTER 2. DESIGN PRELIMINARIES 22

2m2~k2 FF. However, if one views the WP and SP designs separately, there are limited
design options (Bingham and Sitter, 1999a). Rather, it is better if WP factors are
included in the SP factor generators (Kempthorne, 1952, p. 318). This approach often
allows one to increase the resolution of an FFSP design. A two-level FFSP design
is typically denoted by 2(m+n2)=(ki+ka). this notation parallels that of Huang, Chen
and Voelkel (1998) and Bingham and Sitter (1999a, 2001) and implies that there are
n = n; + ng treatment factors, k = k; + ky added factors and n; + ny — k; — ko basic
factors from which the added factors are generated.

Example 2.6.1 Consider a 20+t3)-0+1) FFSP design. This design contains three
WP factors (A, B and C) and three SP factors (p, g and ). (We will consistently
denote WP and SP factors with uppercase and lowercase letters, respectively.) It is
implicitly assumed that it is difficult to change the levels of A, B and C, thus their
WP designation.

Suppose that C = AB and r = Apq are the design generators. The DCS of the
FFESP design s

I = ABC = Apgr = BCpgr

and s of resolution 8. The design matriz is given in Figure 2.8. Note that the WP
level of the design is a 23~1 FF, thus there are only 4 distinct WP level combinations
within the 16-run design matriz. The 4 level combinations of the easy-to-vary factors

are run within each WP treatment combination, thus creating the split-plot structure.

The FFSP setting may be modelled as
y = f(WP effects) + e + g(SP effects) + e, (2.8)

(Bingham and Sitter, 2001). The WP and SP error terms are e and e, respectively,
where it is assumed that e and € are mutually independent normal random errors.
That is, we have e «» N(0,0% ) and € ~» N(0,0%p), as in Section 2.5. Lastly, f(-)
and g¢(-) are functions of the WP and SP factorial effects.

2.6.3 Minimum Aberration and Rank-ordering FFSP De-
signs

Huang et al. (1998) extended the concept of MA to FFSP designs.
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Figure 2.3: A 23+3)-(1+1) FFSP Design.
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Definition 2.6.1 (MA FFSP Design) Suppose that D; and Dy are two
2(m+na)=(kitk:) FESP designs. Let v be the smallest i such that A;(D;) # A;(D,).
Then D, is said to have less aberration than Dy if A.(D1) < Ap(Ds). If no such i
exists, then Dy and Dy are said to have equal aberration. A FFSP design is said to
be a MA FFSP design if no other FFSP design has less aberration.

Huang et al. (1998) proposed two methods for finding MA FFSP designs and
subsequently constructed an extensive catalogue of MA FFSP designs. However,
as they noted, their catalogue is incomplete. As an improvement to the existing
MA FFSP design search techniques, Bingham and Sitter (1999a) introduced a more
efficient algorithm that constructed the set of all nonisomorphic (NI) two-level FFSP
designs. (Two designs, D; and D, are said to be NI if one cannot obtain D, from
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D by relabeling the factors of D;.) From this set of NI designs, Bingham and Sitter
(1999a) applied the MA criterion in Definition 2.6.1 to find the set of all NI 8, 16
and 32-run MA FFSP designs containing up to 7, 15 and 10 factors, respectively.

For fixed n1,n9, k; and k, it turns out there may be many NI MA FFSP designs
(Bingham and Sitter, 1999a). Bingham and Sitter (2001) describe how one can choose
between NI MA FFSP designs by considering which effects are compared to which
variance components. They base their selection procedure on work done by Bisgaard
(2000). Bisgaard (2000) showed that confusion regarding which error terms are to be
used when assessing the statistical significance of estimated split-plot effects could
be eliminated by considering the following rules (as summarized by Bingham and
Sitter, 2001):

1. WP main effects and interactions involving only WP factors are compared to
the WP error.

2. SP main effects and interactions involving at least one SP factor that are aliased
with either WP main effects or interactions involving only WP factors are

compared to the WP error.

3. SP main effects and interactions involving at least one SP factor that are not
aliased with either WP main effects or interactions involving only WP factors

are compared to the SP error.

Since there is typically greater power in detecting statistically significant SP effects
than WP effects, we wish to have as many SP effects as possible tested against the SP
error. Bingham and Sitter (2001) provide tables of 16 and 32-run NI FFSP designs
ranked according to the MA criterion and by the total number of SP effects that are
tested against the SP error term. This procedure provides two criteria for ranking

“optimal” FFSP designs.



Chapter 3

BFFSP Designs and MA

Chapter 2 detailed the motivation (as well as the approach) for blocking two-level
full factorial and FF designs. In Chapter 2 we also provided a detailed introduction
to FFSP designs. For each design scenario in Chapter 2 we specifically considered the
MA optimality criterion for ranking the “goodness” of designs. This chapter extends
the material in Chapter 2 by considering the presence of blocking in two-level FFSP
designs. We also provide a straightforward extension of the MA criterion to the
BFFSP design setting. Our approach is based upon that of Sitter et al. (1997) and
enables a practitioner to select “good” BFFSP designs for the estimation of (WP
and SP) main effects and 2fi’s.

3.1 Three Approaches to Constructing Blocking
Variables

The motivation for blocking a FFSP design parallels the discussion in Chapter 2
where we considered blocking a full factorial design. If it is thought that experimental
conditions will not remain homogeneous for all 2(m1+n2)=(k1+k2) rypg of the FFSP
design, blocking may represent a practical design option. For example, if a single
batch of raw material is not large enough to permit all 2(P1+n2)—(kh1+k2) treatment
combinations to be run, then blocking may be used to account for variability between
batches. Industrial experiments may also be blocked using specific time periods (for
example, blocked by week). This enables researchers to account for variability that

occurs in a process over time, including variability due to changing environmental
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conditions or personnel.

We will see in this chapter that blocking FFSP designs is complicated by the
presence of the two FFs underlying the split-plot structure. Moreover, we will demon-
strate that there is more than one way to block a FFSP design. We will show that one
may induce blocking at the WP level using three distinct, yet related, approaches.
The first approach, pure WP blocking, requires that blocking variables be generated
exclusively by WP factors. The second approach, which we call “separation”, uses
blocking generators that consist of SP factors alone, or SP factors in conjunction
with WP factors. The third approach, mixed blocking, incorporates properties of
both pure WP blocking and separation.

3.1.1 Pure Whole-Plot Blocking

Pure WP blocking requires that blocking variables be generated exclusively by WP
factors. However, this does not imply that the SP factors do not play a role in the
formation of the WP blocking variables. Rather, since factor generators and blocking
generators are formed simultaneously, the amount of fractionation at the SP level
will impact the selection of blocking generators.

For pure WP blocking, the 1** pure WP blocking variable is denoted by 5;,i =
1,...,b1. In each block, 2m~*1—b1 distinct WP treatment combinations are present,
1 < b <ny —k; — 1. (The rationale for the upper bound on the allowable number
of WP blocking factors is discussed in Section 3.2.2.) Associated with each WP
treatment combination are 2"2~*2 SP treatment combinations. Therefore, if a design
possesses b; WP blocking variables, the treatment combinations are grouped into 2%
WP blocks of size 2(m1+n2)—(k1+kz)—b1

For compactness of notation, it is useful to incorporate b;, the number of pure WP
blocking variables, into the exponent of 2(m+n2)=(k1+k2)  Ope such representation is
given by 2(m+n2)=(k1+k2)£(1+0) The rationale for this notation, including the presence

of the zero in the exponent, will be given in Sections 3.1.2 and 3.1.3.

Example 3.1.1 Suppose that we wish to run a 28+3-0+D) FFSP design in 28 = 2
blocks. In each block there will be four distinct WP treatment combinations and, cor-
responding to each of the WP treatment combinations, there will be four SP treatment

combinations. Thus there will be 16 Tuns per block.
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Figure 3.1: Geometric Representation of the 2(3+3)-(0+1)=(1+0) BEFFSP Design. The
eight corners of the larger cube represent the eight treatment combinations of the
WP factors A, B and C. Associated with each WP treatment combination are four
treatment combinations, denoted by circles, of the SP factors, p, g and r. Circles of

similar color signify treatment combinations belonging to the same block.

One possible 23+3)~(+VX1+0) BEESP design is constructed by using B1 = ABC
as the pure WP blocking generator and r = ABpq as the SP factor generator. The
resulting defining contrast subgroup (DCS) is I = ABCpB; = ABpgr = Cpqrp.
Figure 3.1 provides a geometric representation of the 82 runs of this BFFSP design.
(The standard run order of the 2B+3)-0+DE(+0) gesign is given in Appendiz A.) The
eight corners of the large cube in Figure 8.1 represent all possible WP level combi-
nations. Associated with each WP level combination are four SP level combinations,

represented by the circles on the corners of the smaller cubes. Note that there are only
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four SP treatment combinations associated with each WP treatment combination due
to the fractionation at the SP level; recall, r = ABpq. In Figure 3.1, circles of similar

color (black or white) represent treatment combinations run within the same block.

3.1.2 Separation

It is useful to recognize that blocking variables need not be generated solely by WP
factors. In fact, blocking variables may be generated by exclusively using SP factors
or by using SP factors in tandem with WP factors in blocking generators. We call
this method by which one includes SP and (possibly) WP factors in the blocking
generators to be separation, and the blocking variables formed in this manner to be
separators. With this definition, note that each separator must contain at least one
SP factor and may or may not contain any WP factors. To ensure that blocking at
the WP level is preserved, we envision that one would conduct the experiment by
first performing the runs in block 1, and then block 2, and so on—over the whole
experiment—not just at the SP level. Some of the runs that, without blocking, would
have been near to each other (because they were in the same WP) are now separated
in time (if blocking is being done in time).

In this form of blocking, the j% separator is denoted by 0;,7=1,...,bo. In each
block, 2" ~% WP treatment combinations are present, and associated with each WP
treatment combination are 2™ ~%2~% SP treatment combinations, 1 < by < ng—ky—1.
(The rationale for the upper bound on the number of separators is discussed in Sec-
tion 3.2.2.) The preceding formulae exemplify one of the consequences of separation.
Specifically, the process of separation achieves pseudo-replication at the WP level at
the expense of further fractionation at the SP level (Brewster and McLeod, 2000).
This pseudo-replication occurs since each separator results in a doubling of the num-
ber of runs at the WP level. The “pseudo” aspect of this replication process arises
since, for a given replicated WP treatment combination, the associated SP treatment
combinations may be different. In any case, separation causes increased precision for
estimates of WP effects. We see these precision gains by first recalling that there are
2m~k1 WP runs per block. Therefore, for 2%2 blocks, we will, over the course of the
experiment, have reset the WP treatment combinations 2%22m1 %1 = 9mi—ki+b2 timeg,
At the SP level, each additional separator causes a decrease, by a factor of two,

in the number of SP treatment combinations associated with each WP treatment
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combination, when compared to the pure WP blocking approach. Central to this
concept of pseudo-replication is the recognition that, at the WP level, the appropri-
ate analysis of a split-plot (or FFSP) design begins by averaging the responses over
the SPs contained within each WP. The use of the term pseudo-replication reflects
that, although we have replicated the treatment combinations for the WP factors,
the associated treatment combinations for the SP factors are not the same.

Previously, we introduced the notation “2(m1+n2)=(k1+k2)E(b1+0)» {4 refer to a two-
level BFFSP design having b; pure WP blocking variables. This notation signified
that blocking was accomplished exclusively through the use of WP factors. When
performing blocking via separation we refer to the BFFSP design with no WP block-
ing variables and by separators as a 2(m1+n2)=(ki+k2)£(0+52) BRFSP design. Note that
the & symbol was chosen in part to remind the practitioner that separators affect the
way that we think about the amount of fractionation and replication in the design,
although they do not affect the total number of runs.

Example 3.1.2 To illustrate the process of separation we return to the 2B3+3)-(0+1)
FFSP design in Example 8.1.1. Again we wish to group the 82-run design into two
blocks; however, here we will accomplish this by using one separator instead of one
pure WP blocking variable.

One possible 23+3)-O+1+0+) BFESP design is formed by using 8, = ABq and
T = ABCp as the separator and SP factor generator, respectively. The DCS is given
by I = ABCpr = ABqdé; = Cpgqrd;. The use of WP factors (A and B) and a
single SP factor (q) is demonstrated in the formation of 6. (Other generators for &,
are of course possible. The selection, §; = ABq, was simply made to exemplify the
properties of separator generators.)

Figure 8.2 provides a geometric representation of the 32 runs of the 2(3+3)-(0+1)£(0+1)
BFFSP design. (The standard run order of the 2B3+3)—(0+DE0+1) desion is given in
Appendiz A.) As in Figure 3.1, the eight corners of the large cube in Figure 3.2
represent all possible WP level combinations. Associated with each WP level combi-
nation are four SP level combinations, represented by the circles on the corners of
the smaller cubes. Note that there are only four SP treatment combinations associ-
ated with each WP treatment combination due to the fractionation at the SP level;
recall, r = ABCp. In Figure 3.2, circles of similar color (black or white) represent

treatment combinations run within the same block. Observe that all eight possible
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Figure 3.2: Geometric Representation of the 2(3+3)-(0+1)£(0+1) BEFSP Design. The
eight corners of the larger cube represent the eight treatment combinations of the
WP factors A, B and C. Associated with each WP treatment combination are four
treatment combinations, denoted by circles, of the SP factors, p, g and 7. Circles of

similar color signify treatment combinations belonging to the same block.

WP treatment combinations are present within each block, in contrast to the design
in Ezample 3.1.1 where there were only four distinct WP treatment combinations per
block. As a result of separation we have thus seen a two-fold increase in the number of
distinct WP treatment combinations in each block of the design. Conversely, within
each block each WP treatment combination has only two associated SP treatment
combinations, as compared to four, in Example 8.1.1. This demonstrates the further

fractionation that always occurs at the SP level when separation has taken place.
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3.1.3 Mixed Blocking

Mixed blocking is a natural extension of the previous two blocking methods in that
we now simultaneously use pure WP blocking variables and separators. Again the
i pure WP blocking variable and the j* separator are denoted by §; and 4;. Un-
der mixed blocking, the formation of 5, pure WP blocking variables and b, separa-
tors causes the subsequent 2(m+72)=(k1+k2)+(bi+b2) BFFSP design to be run in 201+
blocks, where 1 < b, < ny — ki —1and 1 < by < ng — ky — 1. Each block will
contain 2™ %1~ WP treatment combinations and associated with each distinct WP
treatment combination will be 2"2%2~% SP treatment combinations, for a total of
(2h1+b2)(Qmi—k1—b1)(gre—ke—b2) — 9(mi+na)=(k1+ka) yyng, Therefore, as expected, the to-

tal number of runs remains unchanged under mixed blocking.

Example 3.1.3 Suppose we wish to run a 26+3=0+) design in four blocks by using
both a pure WP blocking variable, 51, and a separator, 8;. One possible 203+3)—(0+1)=(1+1)
BFFSP design is formed by using v = ABq as the SP factor generator and §, = ABC
and 6; = ACpr as the pure WP blocking generator and separator, respectively. The
DCS is given by I = ABqr = ABCp; = ACpré; = CqrfB, = BCpgd, = Bprfi6; =
ApqB16:.

Figure 8.8 provides a geometric representation of the 32 runs of the 23+3)-(0+1)+(1+1)
BFFSP design. (The standard run order of the 2B+3-0+02(0+1) desion is given in
Appendiz A.) Each block contains eight runs (circles having identical form represent
treatment combinations run within the same block) where each of the four distinct
WP treatment combinations within a block have two associated SP treatment combi-
nations. Note that the attributes of separation carry directly over to the mized blocking
scenario. By this we mean that, as a consequence of the separator, we again obtain
increased replication of the WP treatment combinations at the erpense of further
fractionation at the SP level.

3.2 MA for BFFSP Designs

To be able to provide a formal definition of what is meant by a MA BFFSP design,

we extend several concepts first introduced in Chapter 2. Recall that Sitter et al.
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Figure 3.3: Geometric Representation of the 23+3)-(0+1)=(1+1) BFFSP Design. The
eight corners of the larger cube represent the eight treatment combinations of the
WP factors A, B and C. Associated with each WP treatment combination are four
treatment combinations, denoted by circles, of the SP factors, p, ¢ and r. Circles

having identical form denote treatment combinations belonging to the same block.
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(1997) define the length of a word in the DCS of a 2"~* BFF design to be
e + (1.5) g, 1), (3.1)

where fic; and §; represent the number of factors and blocking variables in the word.
The motivation for introducing fractional word lengths was two-fold. First, recall
that Equation 3.1 implies that block main effects and block-by-block interactions
contribute the same amount to the length of a word in a BFF design’s DCS. Second,

the choice of 1.5 results in agreement with the word ranking scheme ccc << ceb <<
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ceee << cech << cecee << ..., where << is interpreted as “less desirable than”.
This definition of word length resulted in the WLP of a BFF design being of the

form
W = (43, Ass, ..., Antis), (3.2)

where A; denotes the number of words of length ¢ in the DCS, 3 < i < n + 1.5.
By extension we define the length of a word in the DCS of a 2(n1+n2)—(k1-+kz)& (b1 +52)
BFFSP design to be

fe; + (1-5)I[n(ﬂi+6j)21], (3.3)

where fc; and $(8; + J;) represent the number of factors and blocking variables in
the word. If in a given word we have that §(5; + d;) > 1 then the indicator variable,
I, implies that the word length must be increased by 1.5. Equation 3.3 causes the
WLP of a BFFSP design to be of the form

W = (A37 A3.5) ey An1+n2+1.5), (34)
where A; signifies the number of words of length 4 in the DCS, 3 < i < ny +mny+ 1.5.

Example 3.2.1 Consider the 26+3)-0+1)20+1) BEFSP design given in Example 3.1.3.
The DCS of the design is I = ABqr = ABCf, = ACpré; = CqrB; = BCpqd, =
Bprpi6, = ApgBi161, which yields the WLP, W = (0,0,1,4,0,2). Note that for the
sake of brevity we often truncate the vector W at the largest value of ¢ for which
A; # 0. In this example, the vector W is thus truncated at Ass = 2.

The MA criterion, applied under the word length definition given in Equation 3.3,
amounts to the sequential minimization of As, Ass, A4, Ass, As, As.5, A, .. .. From
this observation, we may extend the MA criterion to the BEFFSP design setting.

Definition 3.2.1 (MA BFFSP Design) Suppose that D, and Dy are two

o(mitnz)—(ki+k2)2(01+b2) BEESP designs. Let  be the smallest i such that A;(D;) #
Ai(D2), 3 < i < my+mne+ 1.5. Then Dy is said to have less aberration than Ds
if A(D1) < Ap(Ds). If no such i ezists, then Dy and Dy are said to have equal
aberration. A BFFSP design is said to be a MA BFFSP design if no other BFFSP

design has less aberration.
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3.2.1 A Limitation on the Word Length Definition

According to Chen and Cheng (1999), the word length definition (Equation 3.1) of
Sitter et al. (1997) has some limitations. They argue that words of length 6 should
be less desirable than words of length 5.5, even though the definition of word length
puts these words in the opposite order. Note that, if Ag # 0, then a number of 3fi’s
are aliased with other 3fi’s; whereas, if A55 # 0, then at least one (less important)
4fi is confounded with blocks.

Since our definition of word length (Equation 3.3) parallels that of Sitter et al.
(1997), it suffers from the same limitations. However, as our focus is on the estimation
of main effects and 2fi’s, the definition remains a useful measure for assessing the
estimation capacity of BEFFSP designs. As we shall see, in the catalog of MA BFFSP
designs presented in Chapter 5, all of the designs are of resolution 4.5 or less. Hence,
the issue raised by Chen and Cheng (1999) will not play any role, at least as far as
the shortest word in the DCS is concerned.

3.2.2 Imeligible and Impractical Designs

Designs with resolution R < 3 are deemed ineligible and will not be considered. This
justifies the restriction 1 < b; < n; — k; — 1 (Section 3.1.1), since if one generates b;
WP blocking variables where b; is greater than the upper bound, one is guaranteed
to obtain R < 3. In this case, the number of WP blocking variables is greater than
or equal to the number of WP basic factors.

There exist BEFFSP designs having R > 3 yet are “impractical” to run. By an
impractical design we refer to a BFFSP design having as many distinct WP treatment
combinations per block as there are runs in the block. Clearly, if we are to change
the levels of the hard-to-vary WP factors for each experimental run we are defeating
the purpose of running the split-plot design in the first place.

Note that any BFFSP design with by = ng — k2 (one more than the upper bound
for by; Section 3.1.2) will have as many distinct WP treatment combinations per block
as there are runs in a block. That is, any design with by = ny — ko will be impractical.
This notion of impracticality can be seen from the following vantage point. Recall that
for each additional separator there is a decrease, by a factor of two, in the number of

SP treatment combinations associated with each WP treatment combination while
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a two-fold increase in the number of distinct WP runs is realized. This relationship
may be represented notationally by 2®2+m1—k1)+(n2—k2—b2) Therefore, if by = 1y — ko,
the SP portion of the design in essence “disappears”, requiring us to reset the WP
factor level combinations at each run.

Table A.5 in Appendix A provides the standard run order of an impractical
2(4+2)=(0+1)£(2+1) BFFSP design, where by = ny — ko = 1. It is clear from Table A.5
that at least one WP factor must be reset for each run, thus destroying the split-plot

nature of the design.



Chapter 4

Variance Forms for Split-plot
Effects

In the analysis of designed experiments the error structure of the estimated facto-
rial effects (contrasts) should be considered by the experimenter. One may argue
that knowledge of the variance structure for the effects is especially critical in the
analysis of split-plot designs since WP and SP effects have different error structures
due to randomization restrictions. When testing for the significance of an estimated
effect one must test the given effect against the appropriate variance. If an incorrect
variance is used, erroneous inferences regarding the significance of that effect may
occur.

In this chapter, the variance forms for split-plot effects arising from the three
blocking approaches (Chapter 3) are constructed and compared. This research ex-
tends the methods of Bisgaard (2000) who provided general results for 2(n1+n2)=(ki+k2)
FFSP designs. As discussed in Chapter 2, Bingham and Sitter (2001) summarize the
results of Bisgaard (2000) as follows:

1. WP main effects and interactions involving only WP factors are compared to
the WP error.

2. SP main effects and interactions involving at least one SP factor that are aliased
with either WP main effects or interactions involving only WP factors are

compared to the WP error.

3. SP main effects and interactions involving at least one SP factor that are not

36
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aliased with either WP main effects or interactions involving only WP factors

are compared to the SP error.

4.1 Derivation of Effect Variances

Again, the intent of this chapter is to investigate the error structure of WP and SP
contrasts in BFFSP designs. To thoroughly demonstrate the construction of these

effect variances we need to consider the following four scenarios:
1. FFSP designs (as investigated by Bisgaard (2000)).
2. BFFSP designs with pure WP blocking.
3. BFFSP designs with blocking via separation.

4. BFFSP designs with mixed blocking.

4.1.1 Variance Forms for FFSP Designs

The results in this section are a summary of the work done by Bisgaard (2000)
in the FFSP design setting. However, some notation in subsequent formulae has
been modified so as to provide a framework by which one may incorporate blocking
variables in later sections.

First, consider the following model for the FFSP setting:

Yr() = f(WP effects) 4 e; + g(SP effects) + ex;), (4.1)

where j =1,...,2 % and £ =1,...,2" % with the WP error terms, e;, having

variance o2

-, and the SP errors, ey;), having variance ¢2. The model term “Yni)"

refers to the response arising from the £ SP within the j%* WP. The term “e;”
refers to the random error arising from the j®** WP unit. Similarly, the term “en)”
refers to the random error arising from the k% SP within the j* WP.

As noted, Bisgaard (2000) only investigated variance forms for FFSP designs. In
this setting, Bisgaard (2000) demonstrated that the variance of an estimated WP

effect (say, A\) is given by



CHAPTER 4. VARIANCE FORMS FOR SPLIT-PLOT EFFECTS 38

on1—hk ony—k1 gno—ky
Var(A) = Va { (an —kp Z TFe; + Z Z ¢ek(]))}
J=1 k=

_ %(22@2—162)2711*’“103] + 2”1_’“12”2*’9203)

—N—(an—kzai + 0'3)’

where N = 2(m+n2)=(ki+k2) Biggaard (2000) also showed that the variance of an

estimated SP effect (say, p) is given by
2 gni~ky gno—kg
Var(p) = Var{ Z Z :i:ek(])}
Jj=1 =
4 oma—kioma—ky 2
m2nl 12”2 20-0
7%

Applying the above results to a 2(3+3)-(0+1) FFSP design (with r = ABCpq) we
find that

and

Note that if a FFSP design is replicated r times, the preceding formulae are easily
adapted by letting N = r2(mtn2)-(ki+k2) (The reader should observe that the use of
“r” to denote the number of replicates is not related to r = ABCpq in the preceding

paragraph.)

4.1.2 Variance Forms for BFFSP Designs with Pure WP
Blocking

Recall that pure WP blocking requires that blocking variables be generated exclu-

sively by WP factors. An extension of the model in Equation 4.1 is now provided so
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as to account for the presence of the blocking variables:
Yr(i) = F(WP effects) + e;;) + g(SP effects) + ex(y), (4.2)

where,i =1,...,2";5=1,... ,2u kb, p =1 . 92m~k.} isthe number of pure
WP blocking variables; 2* is the number of blocks. The model term “Un(ij)” refers to
the response arising from the k™ SP within the 5% WP which, in turn, is within the
it* block. The term “ejs)" refers to the random error arising from the j%* WP unit
within the i* block. Similarly, the term “ep(ij)” refers to the random error arising
from the k™ SP within the 5% WP which, in turn, is within the i block.

Note the absence of an error term for block effects in Equation 4.2. Many au-
thors discourage the comparison of block means (Anderson and McLean, 1974; Mont-
gomery, 2001) due to concerns regarding the normality of the block error terms and
whether or not tests for block effects are meaningful, primarily because all of the ran-
domization takes place within blocks. For these reasons we present a simpler model
for the BFFSP design—one without a separate block error term. It can be shown
that excluding the block error term will not affect the variance forms of either the
WP or SP effects.

The derivation of the effect variances for a BFFSP design with pure WP block-
ing is best demonstrated by way of example. Table A.2 (in Appendix A) provides
the standard run order of the 2B3+3)-(0+1)+(1+0) BRFSP design having DCS I =
ABCp, = ABpgr = Cpqrf, a design first introduced in Chapter 3. In order to aid
the development of the effect variances, the error terms corresponding to each treat-
ment combination are also given in Table A.2. Assuming a fized effects model (where
factor levels are specifically pre-selected by the experimenter) we need only focus
on the “e’s” and “e’s” when calculating variances of estimated effects. For example,
consider a token WP main effect, say A. By adding the error terms in Table A.2,

using the signs of A, we see that

- 1
A = (e +desq) + desr) — dea) +dere) — dea) — des) +4deqr)) +

4 4 4 4 4 4
1
I{;( - Z €k(11) + Z €x(12) T+ Z €x(13) — Z €x(14) T Z €k(21) — Z €x(22) —
k=1 k=1 k=1 k=1 k=1 b1
4 4
Z €k(23) T Z 6k(24))
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(deg(r) + 4esr) + 4eq(e) + 464(2) - 461(1) —deyq) — 462(2) - 463(2)) +

(Zék (12) +Z€k (13) +Z€k 21) +Z€k(24) - Zﬁk a1y — ZGIc(M) -
Z €k(22) — Z €k 23))

This imphes that,

-~ mlr—t glr—l

Var(A)

1
Var{ E(‘leg(l) + 463(1) + 461(2) + 464(2) - 461(1) - 464(1) - 462(2) —

4 4 4 4 4
1
dega)) + 16 ( Z €r(12) T+ Z €x(13) + Z €x(21) T Z €x(24) — Z €x(11) —
k=1 k=1 k=1 k=1 k=1
4 4 4
3w = 3 exm = 3 v }
k=1 k=1 k=1

842 , 32
162 Jv T 16270

1 1
= 503, + é—az.
Similarly, consider a SP main effect, say p. Again, by adding the error terms in

Table A.2, using the signs of p, we see that

p = 16( Z €k(11) — Z €k(11) + Z €k(12) — Z €x(12) + Z €x(13) — Z €x(13) +

k=13 k=24 k=13 k=2,4 k=13
Z €k(14) — Z €x(14) Z €k(21) Z €k(21) T Z €k(22) — Z €k(22) T
k=2,4 k=13 k=2,4 k=13 k=2, k=13
Z €x(23) — Z €x(23) T Z €k(24) — Z 6k(24))
k=2, k=13 k=24 k=1,3
1
= Ié( Z €k(11) T Z €r(12) T Z €x(13) + Z €r(1e) + Z €r(21) T Z €k(22) T
k=2,4 k=2,4 k=2,4 k=24 k=24 k=2,
Z €r(23) T Z €r(24) — Z €p(11) — Z €r(12) — Z €r(13) — Z €k(14) —
k=2,4 k=2, k=13 k=1,3 k=1,3 k=13

Z €x(21) — Z €k(22) — Z €k(23) — Z Ek(24))'

k=13 k=13 k=13 k=1,3
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Note that the WP errors, e;(;), cancel because of an equal number of +’s and —’s
within each WP treatment combination. This result implies that,

32 ,

Var(p) = ﬁ%

1
= g(fg.
In general, the variance of WP main effects or interactions involving only WP

factors (along with all of their aliases) will have the form,

9 2b1 ori-k1-b1 9b1 gni—k1—b1 9no—kg
Var(d) = var{ﬁ(zm—fmz TS S S S :Fsk(ij))}

i=1 ji=1 k=1
4

— m (22(17,2—]02)2131 2'n1 —ki1—b1 0-5, + 2b1 2'n.1—k1 —~b 2n2—k2 O.g)

= Rl o)

with N = 9homi—ki—bigna—kz — 2(n1+n2)~(k1+k2)_
The SP main effects and interactions involving at least one SP factor that are
not aliased with either WP main effects or interactions involving only WP factors

will have variances of the form

2 bl znl—kl —bl 2722-—’1:2
Var (ﬁ) = Va.’f‘{ N Z Z $5k(ij) }

i=1 Jj=1 k=1

4 b ~k1—b1 gna—ka 2
m(21277»1 1—01972 20.0)

= b
where N = 2(m+n2)=(ki+ke) (Note that if a FFSP design is replicated r times, the
preceding formulae are easily adapted by letting N = r2(mi+n2)=(ki+k2) )

Even though the intermediate steps of the variance derivations differ between
FFSP designs and BFFSP designs with pure WP blocking, note that the final form
of the variance for WP effects (Var(A)) is identical. Similarly, the variance of SP
effects (Var(p)) is the same for both FFSP designs and BFFSP designs with pure

WP blocking.
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4.1.3 Variance Forms for BFFSP Designs with Blocking via

Separation

Recall that, under separation, blocking variables (separators) may be generated by
exclusively using SP factors or by using SP factors in tandem with WP factors. Under

separation, the BFFSP model can be reformulated as follows,
Yr(ij) = f(WP effects) + eji) + g(SP effects) + exij), (4.3)

where, ¢ = 1,...,2%;5 = 1,...,2m~ k. = 1 .. 9m—ke-ba.p, i the number of
separators; 2% is the number of blocks.

Table A.3 (in Appendix A) lists the standard run order of the 2(3+3)—-(0+1)£(0+1)
BFFSP design having DCS I = ABCpr = ABgé; = Cpgré; (this design was first
introduced in Chapter 3). To assist in the development of the effect variances the error
terms corresponding to each treatment combination are also provided in Table A.3.

We again assume a fixed effects model so that we need only to focus upon the
“e’s” and “€’s” when calculating variances of the estimated effects. For example,
consider a token WP main effect, say A. By adding the error terms in Table A.3,

using the signs of A, we see that

~ 1
1= E(—Qel(l) + 2e51) — ++ - + 2e5(1) — 2e1(9) + 2e909) — + - - + 2eg(2)) +

2 2 2 2 2
1
15( - Z €r11) + Z €p(12) — T Z €k(18) — Z €r(21) T Z €x(22) —
k=1 k=1 k=1 k=1 k=1
2
vt Z 6k(28))
k=1

1
= 1g(%e2) + o+ 2e50) + 2e5(a) + -+ 2eg0) — 2e101) — - — 2e71) — 2ea(p) —

2 2 2 2
1
= 2eq(9)) + E(Zﬁk(lg) + ...+Zek(18) +Zek(22) + - "‘*‘ZEWB) -
k=1 k=1 k=1 k=1
2

2 2
Z €r(11) — """ — Z €x(17) — Zﬁk(m) - Zek(27))~
k=1 k=1

k=1 k=1

[ &)
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Therefore,

16(2%) , 32 ,
162 Ow T 152%

= i—:aﬁ, + %af.

Note that under separation the coefficient of o2 has decreased from £ to 1. (Com-
pare with the FFSP and pure WP blocking design scenarios.) The preceding result
demonstrates one of the consequences of separation, namely pseudo-replication, first
discussed in Chapter 3. Specifically, we recall that each separator results in a dou-
bling of the number of distinct runs at the WP level, causing increased precision for
estimates of WP effects. (Conversely, recall that each additional separator causes a
decrease, by a factor of two, in the number of SP treatment combinations associated
with each WP treatment combination, when compared to the pure WP blocking ap-
proach.) This doubling of distinct WP runs then results in a decrease, by a factor of
two, in the coefficient of 02. Consequently, increased precision is achieved for testing
the statistical significance of WP effects.

Now consider a SP effect, say p. By adding the error terms in Table A.3, using

the signs of p, we see that

1
= E( — €1(11) T+ €2011) — *** — €1(18) T €2(18) — €1(21) T €2(21) — * ** — €x(28) T+

62(28))

Note that the WP errors, e;(;), cancel because of an equal number of +’s and —’s

within each WP treatment combination. This implies that

. 32
Var(p) = —1—650‘%

_ 2
= gO’o.

For BFFSP designs with blocking via separation, the variance of WP main effects
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or interactions involving only WP factors (along with their aliases) will be of the form,

9 oba gny—ky aby gni—kj gno—ko—by
Var(4) = Var{N<2"2“k2_bzz Z :Fej(i)+z Z Z ¢€k(z'j))}

i=1l j=1 =1 g=1 k=1
4

— __Aﬁ(22(n2—k2—b2)2b22n1—k10-5) + 2b22n1—k12n2—k2—b20§)

= %(2”2_’“2_1’202, + of),

with N = 2b:ne—ke—bagmi—k1 — g(mi+na)-(ki+k2) By examining the final form of
VG,’I‘(A\), we see that the coefficient of 02 will decrease by a factor of two for each
additional separator. However, as discussed in Chapter 3 the allowable number of
separators is given by the inequality, 1 < by < ng — ko — 1.

SP main effects and interactions involving at least one SP factor that are not
aliased with either WP main effects or interactions involving only WP factors will

have variances given by

2 by 9ny—k1 gno—kg—by
Var(p) = Var{ﬁz Z :Fek(z-j)}

i=1l j=1 k=1

— _1\3473 (217227L1—k1 2712—162-520.3)

N™?

where N = 2(n1+nz)—(ki-+k2)

4.1.4 Variance Forms for BFFSP Designs with Mixed Block-
ing

As we know from Chapter 3, mixed blocking is a natural extension of pure WP

blocking and separation in that we simultaneously use pure WP blocking variables

and separators in this blocking approach. Under mixed blocking the BFFSP model
is given by,

Yr(if) = f(WP eﬁ’ects) + €5 + g(SP effects) + €k(ij)s (4.4)
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where, 1 = 1,...,201%b2, 5 =1 | om-ki-bip — 1 9me—k-b2.p ig the number
of pure WP blocking variables; by is the number of separators; 2%11% is the total
number of blocks.

Table A.4 (in Appendix A) gives the standard run order of the 2(3+3)~(0+1)(1+1)
BFFSP design having DCS, I = ABqr = ABCf; = ACpré, = Cqrp, = BCpqé, =
Bprpi6, = Apgfi6; (this design was first introduced in Chapter 3).

Before providing the general variance forms for the mixed blocking approach,
we illustrate the variance derivations for a specific WP and SP effect using the
9(3+3)~(O+1£(1+1) {egign.

Assuming a fixed effects model, consider the WP main effect A. By adding the

error terms in Table A.4, using the signs of A, we see that,

~ 1
A = E( — 2e1(1) + 2eg01) + 2e3(1) — 2e4(1) + 2e1(2) — 2eg(2) — 2e3(2) + 2e4(2) —

281(3) -+ 262(3) -+ 263(3) - 264(3) -+ 261(4) ht 262(4) - 263(4) -+ 264(4)) +

2 2 2 2 2 2
1
E( - Z €x(11) T Z €x(12) + Z €x(13) — Z €x(14) T Z €k(21) — Z €k(22) —
k=1 k=1 k=1 k=1 k=1 k=1
2 2 2 2 2 2
Z €x(23) T Z €k(24) — Z €x31) + Z €x(32) + Z €x(33) — Z €x(34) T
k=1 1 k=1 k=1 k=1 k=1

k=

2 2 2 2
Z €x(a1) — Z €r(42) — Z €x(43) T Z Ek(44))
k=1 k=1 k=1

k=1

1
= (282(1) + 2e31) + 2e19) + 2e4(2) + 2ea3) + 2e3(3) + 2€1(4) + 2€4(4) —

2e1(1) — 2e4(1) — 2e2(2) — 2€3(2) — 2€1(3) — 2e4(3) — 2e2(4) — 263(4)) +

2 2 2 2 2 2

1

E( E €k(12) + E €x(13) + E €k(21) + E €k(24) + E €x(32) T E €x(33)+
k=1 k=1 k=1 k=1 k=1 k=1
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2 2 2 2 2 2
Z €x(41) T Z €k(44) — Z €k(11) — Z €k(14) — Z €k(22) — Z €k(23) —
k=1 k=1 k=1 k=1 k=1 k=1

2 2 9 2
Z €k(31) — Z €x(34) — Z €x(42) — Z €k(43))-
k=1 k=1 k=1 1

Therefore,

Var(A)

-~

k=

16(2%) , | 32 ,

162 ‘w1627
1 1
ZO’,i-f'gO'g
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From the final form of Var(A) we see that the attributes of separation carry

directly over to the mixed blocking scenario. By this we mean that as a consequence

of the separator we again obtain increased replication of the WP treatment combina-

tions at the expense of further fractionation at the SP level. This pseudo-replication

will provide the experimenter with increased precision in testing for significance of

WP effects.

Now consider a SP main effect, say q. Again, by adding the error terms in Ta-

ble A.4, using the signs of ¢, we see that

¢ = _( — €1(11) T €2(11) — €1012) F €2(12) — * - — €(43) T €2(43) — €1(44) T 62(44))

Therefore,

Var(g)

The general form of the variance for a WP effect is given by,
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Var(A)

9 9b1+bg gny1—k1-b1
VGT{N <2n2_k2—b2 X, D Feuet
Jj=1

=1
9b1+b2 gn1—kj—by gno—kg—by
PO Z %Efk(m)}
i=1 j=1 k=1

4
— _]VE 22(712——162—1)2)2bl+bz2711—161—111O-iY + 2b1+b22n1—k1—b12n2—-k2—b20.3

_ b prngt 1ad),

with N = 2ne—ke—bagm—ki=bigbi+bs — g(nitn2)-(ki+k2) The SP main effects and inter-
actions involving at least one SP factor that are not aliased with either WP main

effects or interactions involving only WP factors will have variances of the form

2 2b1+b2 9r1—k1—by gnra—ka—bo
Var(g) = Var{—iv— ?&c(ij)}

g=1 Jj=1 k=1
4 bi+baon1—k1—b1ona—ka—by .2
— 7 obi+b2oni—ki—big 2bz 52
— 4 2
- —]\70-07

where N = 2(mi-+n2)—(k1+k2)

4.2 Summary of Results

In this chapter we reviewed the work of Bisgaard (2000) for the construction of vari-
ances for WP and SP effects in FFSP designs. Following this methodology we derived
the variances for WP and SP effects in BFFSP designs. Specifically we considered

the three scenarios:
1. BFFSP designs with pure WP blocking.

2. BFFSP designs with blocking via separation.
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3. BFFSP designs with mixed blocking.

Table 4.1 summarizes the results and makes it readily apparent that when compared
to pure WP blocking, both separation and mixed blocking provide greater precision
for testing at the WP level.

Table 4.1: Variance Forms of WP and SP Effects in FFSP and BFFSP Designs.

Design WP Effects SP Effects
FFSP and Pure WP Blocking & (2"2 %262 + 02) 202
Separation %(2"2—’02—112 o2 + o2) % o2
Mixed Blocking L(amekebag? 4 52) 452

One may use the following rules in order to correctly select the appropriate error
term (WP or SP) for assessing the statistical significance of BFFSP design contrasts.

For effects not confounded with blocks the rules are as follows:

1. WP main effects and interactions involving only WP factors are compared to
the WP error.

2. SP main effects and interactions involving at least one SP factor that are aliased
with either WP main effects or interactions involving only WP factors are

compared to the WP error.

3. SP main effects and interactions involving at least one SP factor that are not
aliased with either WP main effects or interactions involving only WP factors

are compared to the SP error.

These rules are those originally developed for the FFSP setting by Bisgaard (2000),
and subsequently summarized by Bingham and Sitter (2001).



Chapter 5

MA BFFSP Design Search

Until now there has been no formal attempt to construct catalogues of BFFSP designs
incorporating any one of the three blocking schemes discussed in Chapter 3. This has
prohibited a rank ordering of BFFSP designs using predefined optimality criteria.
This chapter will detail methods by which one may “search” for and obtain two-level
BFFSP designs ranked according to the MA criterion. We shall also see that for
a given value of ny,ng; ki, kg; by, by there may be many 2(1tn2)=(ki+ka)E(b1+b2) DCGg
possessing MA. To further differentiate between the “goodness” of these MA designs

additional optimality criteria will be presented for ranking purposes.

5.1 An Introduction to Search Algorithms and Re-

lated Issues

In recent years, for the purpose of constructing catalogues of optimal FF, BFF and
FFSP designs several algorithms have been introduced to assist in searching through
all design possibilities.

Franklin and Bailey (1977) introduced the search-table approach for identifying
FF designs with particular estimation properties. Chen, Sun and Wu (1993) intro-
duced a sequential approach for constructing complete sets of two-level and three-level
FF designs ranked according to the MA criterion. Huang et al. (1998) presented an
ad-hoc method for finding MA FFSP designs while Bingham and Sitter (1999a) com-
bined the existing search-table and sequential approaches to obtain a more efficient

search algorithm for constructing MA FFSP designs.

49
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The objective of this chapter is not to develop the most efficient algorithm (com-
putationally speaking) for searching for MA BFFSP designs. Rather, the aim is to
provide an algorithm by adapting portions of existing algorithms, used previously in
the search for “optimal” FF, BFF and FFSP designs, to the BFFSP setting.

5.1.1 Search-Table Approach for FFSP Designs

Bingham and Sitter (1999a) provide an example that demonstrates an adaptation of
the search-table technique in the search for FFSP designs. We now summarize this
example using appropriate notational changes.

The search-table is a two-way table with 2(m+n2)=(kitka) _ () — k) — (ny—ky) —1
rows and k; + k2 columns. The columns are headed by the k; + ko WP and SP added
factors of the 2(m1+n2)=(k1+k2) FFSP design. The column headers are arranged so that
the WP added factors appear before the SP added factors. The products of the basic
factors serve as the row headers. The rows are sorted by level of the design (WP
followed by SP) then by word length. This enables the WP basic interactions to
appear before the products containing both basic WP and SP factors. Finally, the

elements of the table are the products of the row and column headers.

Example 5.1.1 For a 26+49-(+3) FFSP design with WP factors A, B, C, D and E
and SP factors p, q, T and s, the search table is given in Table 5.1.

To preserve the split-plot nature of the design we know that WP generators cannot
contain any SP factors and SP factors cannot be assigned to interactions consisting
of only WP factors; consequently, these prohibited generators need not be considered
in the search process. Following Bingham and Sitter (1999a) we use —’s in the
search-table to demonstrate the exclusion of prohibited generators.

To construct a 20+9~C+3) design, one must take a single generator from each of
the five columns of Table 5.1. The first possible design has generators g, = ABD, gy =
ABE, g3 = Apq, g4 = Apr and gs = Aps. One may then form the DCS for the design
by calculating all 25 — 1 possible products of the five generators. Subsequently, the
resolution and WLP of the design may be obtained from the DCS.

The second FFSP design considered via the search-table approach has g5 = Bps,
while g, through g4 remain the same. Thus the search algorithm proceeds from left to

right across columns and from top to bottom within a column.
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Table 5.1: The Search-Table for the 26+4-(2+3) Design in Example 5.1.1.

D E q T S

AB ABD ABE — — —
AC ACD ACE — — —
BC BCD BCE — — —
ABC || ABCD ABCE — — —

Ap — — Apq Apr Aps
Bp — — Bpg Bpr Bps
Cp — — Cpq Cpr Cps
ABp — — ABpgq ABpr ABps
ACp e — ACpq ACpr ACps
BCp — — BCpq BCpr BCps
ABCp —_ —  ABCpq ABCpr ABCps

The search-table requires that Ny = (2% — (n; — k) — 1) WP designs and
Ny = (2(m+n2>—<k1+k2> — ((m1 + ) — (ks + ko)) — (291 — (g — k) — 1) — 1)'” SP
designs be searched. Hence, N; X N, designs must be considered when constructing
all possible FFSP designs using the search-table technique.

5.1.2 Design Isomorphism and Practical Considerations

Two FF designs D; and D5 are said to be isomorphic if we can obtain D, from D,
by relabeling the factors of D;. For example, consider the simple case of two 282
FF designs. Suppose that D; has generators g, = ABCF and g, = CDE, while D,
has generators g; = ABCE and gy = CDF'. These two designs are isomorphic since
D, can be obtained from D; by relabeling F as E and E as F. It has been noted
(Chen et al., 1993) that isomorphic designs are essentially equivalent (for example,
two isomorphic designs will possess the same WLP). In the context of FFSP designs,
the WP or SP designations of factors must also be preserved for isomorphic designs.

The goal of Bingham and Sitter (1999a) was to obtain catalogs of nonisomorphic
2(mi+n2)—(k1+k2) FFSP designs ranked according to the MA criterion. To do this,
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Bingham and Sitter (1999a) prescribed an isomorphism test for the split-plot setting
that entailed several computationally intensive steps. Bingham and Sitter (1999a)
noted that it was inefficient to search for nonisomorphic designs via the search-table
because of the large number of designs that the search-table required one to assess.
As a reasonable solution to this problem, Bingham and Sitter (1999a) proceeded to
develop a more efficient algorithm known as the combined approach.

Our intent is not to distinguish between nonismorphic BFFSP designs. Rather,
we will focus specifically upon the search for MA BFFSP designs without much
regard to their isomorphism status. Therefore, the search-table approach (despite its

computational deficiencies) will suffice for our purposes.

5.2 The Search-Table Approach for BFFSP De-
signs

The three approaches to blocking FFSP designs will necessitate three variations of

the search-table. We will now consider each variation in turn.

5.2.1 The Search-Table for Pure WP Blocking

Recall that pure WP blocking implies that blocking variables must be generated
solely by WP factors. With this in mind, we shall see that the dimensions of the
search-table are altered slightly when compared with the FFSP setting.

The number of rows in the search-table is 21 +nr2)~kitka) _ (), — ) — (ny — k) —
1, the same number as in the unblocked setting. However, the number of column
headers now increases by b;, the number of pure WP blocking variables, to ki + ko +
b1. Therefore, the search-table now requires that Ny = (=% — (n; — k) — 1)1
WP designs be searched. The number of SP designs to be considered, N,, remains

unchanged from Section 5.1.1.

Example 5.2.1 Consider g 2¢4+2)-(1+0)=(+0) BRFSP design. Since the blocking vari-
able, B1, is generated ezclusively by WP factors it appears as a column header before
the SP added factor, q; see Table 5.2. Note that it would make no difference to the
search procedure if one was to shift the column headed by B1 to be in front of the
column headed by the WP added factor, D.
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Table 5.2: The Search-Table for the 2(4+2)-(1+1)£(1+0) Degjgn in Example 5.2.1.

D b !

AB ABD ABpj; —
AC ACD ACpH —
BC BCD BCp; —
ABC | ABCD ABCp; —

Ap — — Apq
Bp — — Bpq
Cp — — Cpq
ABp — — ABpq
ACp — — ACpq
BCp — — BCpq
ABCp — — ABCpq

The first BFFSP design for which the DCS and WLP is calculated is the design
possessing generators g. = ABD, gy = ABf; and g3 = Apq. The second design
encountered has generators, g1 = ABD, g, = ABf; and g5 = Bpq. Thus, as when
searching through all possible FFSP designs, the algorithm proceeds from left to right
across columns and from top to bottom within o column. The WLP of the design
being currently assessed is then compared with that of the previous design(s). If the
current design has less aberration than previous designs, the previous designs can
be discarded. Designs possessing the current MA WLP are retained. The algorithm

continues until all N1 x Ny designs have been searched.

5.2.2 The Search-Table for Separation

Recall that blocking via separation allows one to generate blocking variables by
exclusively using SP factors or by using SP factors in tandem with WP factors in
the blocking generators.

As with pure WP blocking, we see changes in the dimensions of the search-table

due to the presence of the separators. Again, the number of rows is 2(n1+n2)—(k1+k2) _
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(n1 — k1) — (n2 — k2) — 1; however, the number of column headers becomes k; +
ks + by, where by denotes the number of separators. The search-table requires N, =
(2m=k — (ny —ky) — 1)k1 and N, = (2(”1+“2)‘(k1+’“2) — ((n1 +ng) — (ky + k2))—

(@4 — (m = k) = 1) = 1)
tively.

ko

b
i WP and SP designs to be sorted through, respec-

Example 5.2.2 Consider o 2(4+3)-(+0+0+1) BFESP design. The lone blocking vari-
able, denoted by 6, appears as a column header after the column headed by the SP
added factor, r, in Table 5.8. (Note that it would make no difference to the search
procedure if one were to switch the ordering of these two columns.) Since the gener-
ator for the separator must contain ot least one SP factor, —’s in the table indicate
unusable generator candidates.

The algorithm proceeds in a manner similar to that for pure WP blocking. That is,
when sorting through the designs, one proceeds from left to right across the columns
and from top to bottom within a column, while choosing a single generator from each
column. As before, DCSs are formed and WLPs for each design can be compared with

one another in the search for the separated design(s) having MA.

5.2.3 The Search-Table for Mixed Blocking

Recall that mixed blocking entails the use of both pure WP blocking variables and
separators.

It is for this third blocking approach in which we observe the most significant
changes in the dimensions of the search-table (when compared to the FFSP setting).
Although the number of rows remains unchanged, the number of columns is now
ki+ko+by+bq. This implies that the number of WP and SP designs to be sorted thru
are now Ny = (2% — (ny — ky) — 1)" ™ and N, = (2("1+”2)“(’°1+’“2) — ((n1+ng)—

(k1 + ko)) — (2™ ~%1 — (ny — k) — 1) — 1) k2+b2, respectively. Therefore, N; x N, split-
plot designs possessing mixed blocking must be individually examined. In comparison
with V; and NV, from the pure WP blocking and separation approaches, it can be seen
that the mixed blocking procedure will often require the largest number of designs

to sort through in the search-table.
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Table 5.3: The Search-Table for the 2(4+3)-(1+1)£(0+1) Degign in Example 5.2.2.

D r 01
AB ABD — —
AC ACD — —
BC BCD — —
ABC ABCD — —
Ap e Apr Apé;
Bp — Bpr Bpd;
Cp —_ Cpr Cpé;
Aq — Aqgr Aqgé;
Bqg — Bqr Bqd;
Cq — Cqr Cqd
pPq — pqr pPady
ABp — ABpr ABpd;
ACp — ACpr ACpé;
BCp — BCpr BCpéd;
ABq — ABqr ABqd;
ACq — ACqr ACqé;
BCq — BCar BCqd,
Apq — Apqr Apqdy
Bpq — Bpgr Bpqd;
Cpq — Cpar Cpaqd;
ABCp — ABCpr ABCpé,;
ABCq — ABCqr ABCqd
ABpq — ABpgr ABpqgd;
ACpq — ACpgr  ACpqd;
BCpq — BCpqr  BCpqd;
ABCpq —_ ABCpgr ABCpqgd

Example 5.2.3 Consider a 82-run 24+t3-(0tDX(+Y) BEESP design. The column
headings of the search-table, Table 5.4, consist of the WP and SP added factors as
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well as a pure WP blocking variable and a single separator.

Table 5.4: The Search-Table for the 2(4+3)-(1+1)+(1+1) Degjgn in Example 5.2.3.

D B1 iy o1
AB ABD ABpj; — —
AC ACD ACp — —
BC BCD BCp; — —
ABC ABCD ABCp; — —
Ap — — Apr Apé,;
Bp e — Bpr Bpé;
Cp —_ — Cpr Cpd;
Ag — — Agr Aqé;
Bq — —— Bqr Bqd;
Cq — — Cqr Cqd,
Pq — — par Pqdy
ABp — — ABpr ABpéd;
ACp — — ACpr ACpd;
BCp —_ — BCpr BCpd;
ABq — — ABqgr ABqd,
ACq — — ACqr ACqdy
BCq — — BCqr BCqd;
Apq — — Apqr Apqd,
Bpq — — Bpgr Bpqd,
Cpq — — Cpar Cpqd:
ABCp — — ABCpr ABCpd;
ABCq — — ABCqgr ABCqd,;
ABpq — — ABpgqr  ABpqgéd;
ACpq — — ACpgr  ACpqd;
BCpgq — — BCpgr BCpqgd;
ABCpq — — ABCpgr ABCpqgd;

The search algorithm proceeds in a manner similar to that for the previous blocking
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schemes. Again, when sorting through the designs, one proceeds from left to right
across the columns and from top to bottom within a column, while simultaneously
choosing a single generator from each column. As before, DCSs are constructed and

WLPs are compared with one another in the search for the design(s) with MA.

5.3 Additional Optimality Criteria

After searching through all N; x N, BFFSP design possibilities generated by the
search-table, we may obtain many MA designs. In order to further differentiate be-

tween MA designs, we introduce the following six additonal optimality criteria:
(a) The number of clear main effects
(b) The number of clear two-factor interactions
(c) The number of clear SP main effects
(d) The number of clear SP two-factor interactions
(e) The number of clear SP main effects tested against WP error
(f) The number of clear SP two-factor interactions tested against WP error.

Each MA BFFSP design is assessed with respect to (a) - (f). Obviously, we would
like an MA BFFSP design to have large values for criteria (a) - (d) and small values

for criteria (e) and (f).

5.4 A Catalog of MA BFFSP Designs

The tables in Appendix B contain MA BFFSP designs constructed via pure WP
blocking, separation and mixed blocking, respectively. All designs have between five
and eleven factors and blocking variables (combined) and consist of either 8, 16 or
32 runs in either two, four or eight blocks. Each MA 2(mi+n2)=(ki+k2)£(b1+b2) BRFSP
design is abbreviated “Design = nq, ng; k1, k2; b1, by”. Within the tables, the designs
are presented in ascending order of n = n; + ng + by + by, the total number of factors
and blocking variables. Note that the WLPs are truncated at the last non-zero value.

A-G and p-w are used to denote the WP and SP factors, respectively, with the last
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letter in each generator representing the added factor. The i and j** WP blocking
variable and separator are denoted by f; and ;. In columns (a) - (f) we have included
an assessment of each MA BFFSP design with respect to the six optimality criteria of
Section 5.3. If an MA 2(ra+n2)=(k1+k2)E(b1+b2) BEFSP design possesses a WLP identical
to the design preceding it in the table, yet differs with respect to optimality criteria
(a) - (f), we denote it by a “*” in the table. Note that any BFFSP design denoted by
a “*” is superior with respect to at least one of the criteria (a) - (f), in comparison
with the preceding design. This allows a practitioner to choose between MA BFFSP
designs having identical WLPs, based upon the strength of the designs with regards
to criteria (a) - (f).

Example 5.4.1 Consider a 2(4+9)-0+3)£(040) BFFSP design. Table B.3 in Appendiz
B lists two such MA BFFSP designs, each with the same WLP. In order to choose
between these similar designs one should assess the differences between the two de-
signs with respect to the criteria in columns (a) - (f). Using criterion (f), the design
labeled “4,4;0,3;1,0” is better than design “*” because it has zero, rather than three,
SP 2fi’s tested against WP error. However, using criterion (d), design “*” is better
than design “4,4;0,3;1,0”, because it possesses 10 rather than eight clear SP 2fi’s.
The decision regarding which design to run may in part be motivated by the ezperi-

menter’s preference for an MA BFFSP design that is optimal with respect to criteria

(@) or (f).

5.4.1 Overview of the MA Design Search Algorithm

This section provides a brief overview of the structure of the program used to con-
struct the MA BFFSP designs in Appendix B.
The program, “searchmixed.cpp”, consists of a main body of code that calls upon

four primary functions. These five program elements are now briefly described:

(1) Main Body of Program: This portion prompts the program user to enter all of
the relevant variables. For example, n{, ng, ki, kg, b1, and by are all entered at
this stage. The construction of the search-table is also completed at this stage

for use in subsequent functions.

(2) Function “SearchDCSWLP”: This function receives (from the main body of
the program) the generators for each of the potential MA BFFSP designs.
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From these generators, the DCS of the design is constructed using modulus 2
arithmetic. The DCS is then passed back to the main body of the program to

be used in subsequent functions.

(3) Function “BFFSPWLP”: At this stage the WLP is calculated for the BFFSP
design currently under consideration. The DCS used in the function’s WLP

calculations is received via function “SearchDCSWLP”.

(4) Function “BFFSPCompareWLP”: This function compares the WLP of the
current design (as calculated by function “BFFSPWLP”) with the WLPs of
previous designs. If the current design has less aberration than previous designs
the current DCS is retained and the others are discarded. If the current design
has aberration equal to the currently optimal design then both designs are

retained. Otherwise the design is discarded.

(6) Function “PrintBFFSPDesigns”: A considerable number of calculations are
performed by this function. It first receives all MA designs from function “BFF-
SPCompareWLP”. Subsequently, all MA designs are assessed with regards to
the six optimality criteria in Section 5.3. Those MA designs that are superior
in at least one of the six criteria are retained. Finally, a representative MA
design is printed from each group of MA designs that are superior in at least

one of the six criteria.

The search algorithm and all other programmable calculations were implemented
using Microsoftg Visual CT*® 6.0 Professional Edition. Computer hardware con-
sisted of a Dimension™ 8100 Desktop Pentium 4 computer with a 1.40 GHz CPU.

5.4.2 A Note on the Incompleteness of the MA BFFSP De-
sign Catalog

If desired, implementation of the search-table algorithm via the program “search-
mixed.cpp” will allow us to construct any 8, 16, or 32-run two-level BFFSP design.
However, upon examination of the MA catalog it is evident that not all possible 8,
16 and 32-run MA BFFSP designs are listed—there are several reasons for this.
First, many BFFSP designs are impractical by our definition (Section 3.2.2) and
therefore we have chosen to exclude these designs from the catalog. Second, ineligible
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designs (designs with R < 3) are of little interest to an experimenter due to their
poor estimation capacity and therefore are excluded from the catalog as well.

Additional reasons for not including other 8, 16 or 32-run MA BFFSP designs in
Appendix B include:

1. If the design possesses a small number of clear SP main effects and 2fi’s (for
example, 16-run designs with pure WP blocking having n; + ng + b; + by > 11;
16-run separated designs having n; + ng + by + by > 11).

2. If the design has a large number of clear SP main effects and 2fi’s tested against
WP error (for example, 32-run mixed designs with n; + ng + by + by > 11).

3. Time considerations—constructing BFFSP designs can be time intensive. There-
fore, we do not include any designs with ni+ny+b;+by > 11. However, with this
said, a practitioner may still request that an excluded 2(1+n2)=(ki-+k2)E(b1+b2)

design be constructed without the program being hindered in any way.



Chapter 6

Analysis of Variance for BFFSP

Designs

The analysis of variance (ANOVA) approach provides the experimenter with a ver-
satile statistical tool for studying the relationship between a response variable and
one or more (treatment) factors. The main task of an ANOVA is to quantify and
evaluate the importance of possible sources of variation (factor effects, error terms)
in an underlying linear model. Generally speaking, this is accomplished by forming
a partition of the total sum of squares and degrees of freedom (df) associated with
the response variable, y, into its component parts. ANOVA models allow for the
independent variables to be both qualitative (for example, day of the week, process
operator) and quantitative (for example, temperature, weight).

In this chapter we will examine the use of ANOVA models for assessing the
magnitude of factor effects in various two-level designs. This is done so as to provide
the practitioner with a statistical tool for ascertaining the important experimental
factors when investigating some process. We begin by considering ANOVA concepts
with application to 2* full factorial designs eventually proceeding to ANOVA models
for 2(mi+n2)—(ki-+k2)(b1+b2) BEFSP designs.

6.1 ANOVA Models for 2 Designs

To illustrate the general approach for the analysis of 2% designs via an ANOVA model

we summarize an example given by Montgomery (2001).

61
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Example 6.1.1 In this study the experimenter invesigated the effects of three factors
(percent carbonation, operating pressure and line speed—each at two levels) on the
fill height of a carbonated beverage. This resulted in a 23 design being performed. In
addition, the experimenter replicated the design twice so that 16 observations were
obtained. The full factorial design matriz (with corresponding observations) is given
in Figure 6.1. Percent carbonation, operating pressure and line speed are denoted by

A, B and C, respectively.

Figure 6.1: The Design Matrix for the Replicated 23 Design.

A B C AB AC BC ABC vy
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Sums of squares for estimated factorial effects are denoted by SSz and are obtained

by use of the equation,

(6.1)
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where x, denotes the column of +/- signs for a specific factor ¢, N = r2* (the total
number of runs) and r signifies the number of times the design is replicated. For

example, the sum of squares due to percent carbonation is given by

2

16

= Ilg((“+“"+)(—3 0...1 5)')2
(24)

16
= 36.0.

Sums of squares for the effects B, C, AB, AC, BC, and ABC are obtained in a
stmilar fashion. The total sum of squares, SSre, is calculated by taking the sum of
the squares of the deviations of the individual observations from the overall mean, 7.

This quantity is easily obtained by use of the computational form for SSt.:, given by,

2 2 2 9

2
SSror =YD i — (6:2)
i=1 j=1 I=1 r=1
where i, j and | denote the i", j™ and I™ levels of factors A, B and C, respectively.
The resulting ANOVA table is given in Table 6.1.

Note that the sum of squares due to error (unezplained variation in the response)
may be obtained last, by subtraction, and is usually labeled SSE. If there had been
no replication of the 2% design SSE could not have been formally calculated. In such
cases, sums of squares for higher-order interactions are often “pooled” together in
order to obtain an estimate of SSE.

It is now useful to turn our attention to the three rightmost columns in Table 6.1.
The third column in Table 6.1 displays the df associated with each source of variation
in the ANOVA model. The df for any factorial effect is equal to the number of its
treatment levels less one. Therefore, all factorial effects in a two-level design will
possess 1 df. The total df for any two-level design is N — 1, the total number of
observations less one. Here the df for the lone error term is obtained by subtracting
the total number of factorial effects, 28 — 1, from N — 1.

For each source of variation the fourth column displays the associated mean
squares (MS). These are the sums of squares for each source of variation divided

by their corresponding df. By dividing the MS of each effect with its corresponding
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Table 6.1: ANOVA for the Replicated 22 Design in Example 6.1.1.

Source of  Sum of Degrees of Mean

Variation = Squares Freedom Square Fj

A 36.00 1 36.00 57.60
B 20.25 1 20.25 32.40
C 12.25 1 12.25 19.60
AB 2.25 1 2.25 3.60
AC 0.25 1 0.25 0.40
BC 1.00 1 1.00 1.60
ABC 1.00 1 1.00 1.60
Error 5.00 8 0.625

Design Total 78.00 15

error term we form the ratio,
SS/dfs S5S5:/1 MS;

Fy

N SSE/derror - SSE/((T - 1)2’“) - MSE’ (63)

Equation 6.3 is the test statistic for the null hypothesis (Hy) that “the main effect
or interaction, denoted by ¢, exerts no statistically significant effect on the response”.
If Hy is true, the ratio has the F distribution with 1 and (r — 1)2% df (Montgomery,
2001). If Hy is false, then the expected value of M S; is greater than the ezpected value
of MSE. Therefore, under the alternative hypothesis (Hy) that “the main effect or
interaction exerts a statistically significant effect on the response”, we reject Hy for
large values of Equation 6.3. Formally, we have an upper-tail critical region, where

we reject Hy if,
FO > Fa,l,(r—l)Zka (64)

a being the level of significance for the hypothesis test.
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6.2 ANOVA Basics for Other Two-level Designs

Having been given an introduction to ANOVA concepts in the previous section we
now briefly summarize some ANOVA issues associated with 2°~* FF and BFF de-
signs.

Sums of squares calculations for factorial effects in 2"* FF and BFF designs
proceed in a similar fashion to that in the 2* setting. Again, we denote sums of squares
for estimated effects by S'S;, and they are calculated via Equation 6.1, repeated below
for the convenience of the reader:

_ (xy)?
§8e = (6.5)

Note that in the 2"~* FF and BFF setting N = r2%%,
If we wish to estimate a main effect or interaction we change the denominator in
Equation 2.1 to reflect the number of experimental runs in FF and BFF designs. As
a result of the fractionation, Equation 2.1 becomes,
Xy
Fon—k—1"

é= (6.6)

If a BFF design is run (thereby confounding higher-order interactions with block
effects) the calculation of sums of squares for blocks is straightforward—simply find
the sums of squares for those effects confounded with blocks. For example, suppose
we wish to run a 283 design in 22 = 4 blocks, using blocking variable generators
B = ABE and B, = ABH. This implies that we will have 3 df for blocks, the third
df accounted for by the product, 8:8: = EH. By totaling the sums of squares of the
confounded effects (SS453 + SSozm + SSgs) we will then have found SSpyyes for
the 283 BFF design.

Formation and interpretation of ANOVA tables proceeds in a manner analagous
to that in Section 6.1. Montgomery (2001) and Cochran and Cox (1957) provide
modern and classical references, respectively, to the topic of ANOVA in the two-level
design setting. These texts present ANOVA models for virtually all “introductory”

experimental designs.
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6.3 ANOVA Models for Two-level FFSP Designs

Having presented the basic concepts of ANOVA models we now enter the more com-
plicated arena of ANOVA for the split-plot setting. In this section, examples will
be given illustrating ANOVA models for two 2(m1+n2)=(k1+k2) FESP designs. This
overview is motivated by examples given in Bingham and Sitter (2001) and Mont-
gomery (2001). We wish to stress that despite the fact that the ANOVA results in
this section are conceptually well established (Kempthorne, 1952; Hinkelmann and
Kempthorne, 1994) it is rare (see references in previous sentence) to find them out-
lined in their general form.

(For the interested reader, a thorough discussion of ANOVA for multi-level split-
plot designs may be found in Hinkelmann and Kempthorne (1994). This text pro-
vides considerable insight into the split-plot setting outside of the two-level factorial
framework in which we are now entrenched. Some results in the following sections

are motivated by this text.)

6.3.1 Two Approaches

Two slightly different approaches may be taken when constructing an ANOVA model
for g 2(ri+n2)=(k1+k2) FFSP design. One approach is implicitly suggested by Bingham
and Sitter (2001). In this article they provide an example of a 23+2-(0+1) FFSP
design replicated four times. Their analysis description states that the df for WP
error is (r—1)2™ %1 (Therefore, this implies that there will be (4—1)23-% = 24 df for
WP error.) They also state that the df for SP error is (r—1)(2(n1+n2)-(kitkz) _gni—k1)
From this we may infer the general ANOVA model, as displayed in Table 6.2.
Similarly, Montgomery (2001) provides an example of a replicated 2(2+2)-(0+0)
split-plot design. In the subsequent analysis, df for replications is separated from
the df for WP error, implying the general ANOVA model outlined in Table 6.3. If
it is not expected that there will exist statistically significant differences between
replications we envision similar results from both ANOVA models. In this case we
may think of the WP portion to be run as a completely randomized design (CRD),
thus performing an ANOVA on the WP observations (averaged over the SP treatment
combinations) using the model of Table 6.2. If it is thought that replications will

account for a significant portion of the WP error, it is wise to separately calculate the
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Table 6.2: An ANOVA Model for the 2(1+n2)=(k1+%2) FFSP Design.

Source of Variation Degrees of Freedom
WP
Effects gmi—k1 _ |
Error (r —1)2m—h
WP Total rom—ki _q
SP
Effects 9(ni+n2)—(k1+k2) _ 9gni—k:
Error  (r — 1)(2(mtn2)—(kitka) _ gna—kr)
Design Total ro(nitne)—(ki+ks) _ 1

sum of squares for replications (SSgeps), thereby following the outline in Table 6.3.

A computational formula for finding SSgeps is given by

o _ ET: R2 _ YBa (6.7)
Reps = et 9(n1+n2)—(k1+k2) N’ ‘

where Rj, equals the sum of the observations in the A™ replicate, y2 , equals the
square of the total of all the observations and N = r2(mtn2)—(k1+ks)

The SP portion of the design is typically viewed as a randomized block design
(RBD) with the “blocks” being the 72™ % WP treatment combinations. To account
for the number of df for SP effects (2(r1+72)=(ki+k2) _ 9m—k1) we note that this is the
number of main effects and interactions involving at least one SP factor that are not
aliased with WP main effects or interactions involving only WP factors.

It is worthwhile noting that when split-plot designs are run outside of the two-
level factorial structure, we encounter other variations (besides the CRD and RBD
formats) by which one may need to analyze the WP and SP portions. Again, the text
by Hinkelmann and Kempthorne (1994) provides an informative discussion regarding
this topic.
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Table 6.3: An Alternate ANOVA Model for the 2(m+n2)-(k1+k2) PRSP Design.

Source of Variation Degrees of Freedom
Reps r—1
wP
Effects gni-ki _ 1
Error (r— 1)(2“1—’01 —1)
WP Total r(2m—k 1)
SP
Effects o(m1+ne)—(ki1+k2) _ gomi—ki
Error  (r — 1)(2(m+n2)—(kithe) _ gma—kr)
Design Total ro(m+na)—(ki+k2) _ |

6.4 ANOVA for Unreplicated BFFSP Designs

At this point we may begin discussion regarding ANOVA models for BFFSP designs.
In this section we intend to concentrate our efforts upon the “simpler” unreplicated
2(m1+n2)=(k1+k2)+(b1-+b2) BEFSP design scenario. Aside from the simplicity of this set-
ting we shall see in this section that there are additional justifications for this initial

focus.

6.4.1 Some Comments Regarding Unreplicated Designs

One reason for the relevancy of unreplicated designs is due to the prohibitive size of
two-level designs for even a “small” number of factors. For example, if (n; + ng) —
(k1 + k2) > 5 we are faced with an experiment consisting of at least 2° = 32 runs—
with just one replicate. Replicating a design of this magnitude only compounds the
size problem in terms of the strain on an experimenter’s resources (time, money,
personnel).

A drawback of unreplicated designs is that they provide no estimate of WP or
SP error. A possible solution to this problem is to assume that some (if not all)
higher-order interactions are negligible thereby allowing one to combine their MS to
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estimate the two error terms. For split-plot designs, higher-order WP effects would be
pooled in order to form MSEy, an estimate of E[M.SEwp)|. Likewise, higher-order
SP effects would be combined so as to form MSEg;, an estimate of E[MSEgp).
This method of pooling MS is not an unreasonable solution given our assumption of
neglibility of effects of order three and higher. If one cannot assume the negligibility
of certain higher-order effects, the experimenter should consider the use of normal
probability plots of the effect estimates. For FF designs, Daniel (1959) provides the
classical reference to this topic and most current texts on experimental design devote
some discussion to this graphical tool. For FFSP designs, two normal probability plots
should be constructed, one for the WP effects and one for the SP effects (Box and
Jones, 1992; Bingham and Sitter, 2001).

6.4.2 The ANOVA Model for Pure WP Blocking

Table 6.4 displays the general ANOVA model for BFFSP designs in which blocks
are generated solely by WP factors. This model contains several noteworthy char-
acteristics. First, recall that for b, blocking variables we will have 2 blocks. This
explains the 2% — 1 df reserved for WP effects confounded with blocks. Second,
following the discussion in Section 6.2, SSpj.cks is found by totaling the sums of
squares of all effects confounded with blocks. Third, one notes that sums of squares
calculations for all effects will follow in the same vein as Equation 6.1 but with
N = 9(m1+na)—(k1+k2)E(5140) — 9(ni+ng)—(k1+ks).

Fourthly, since we are assuming that the BFFSP design is not replicated we have
” in the ANOVA table).

As previously mentioned, we could combine MS of higher-order effects to obtain the

no formal estimate of error (signified by the solid line “

estimates MSEgz3 and MSEg;. (Since we are assuming throughout this research
the negligibility of effects of order three and higher, this pooling of MS, though not
ideal, is not of serious concern.) Upon forming estimates of the respective error terms,
one may perform tests of significance for the main effects and 2fi’s. Recall that in
a test of significance we first need to construct the test statistic, Fp, a ratio of MS,
(Section 6.1). For example, if one wished to test the significance of an estimated WP
2fi, say ZI_\S’, we would form the test statistic,

MS5

Fo=-—-4B
° T MSEgz’
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Table 6.4: The ANOVA Model for the 2(m1+n2)=(k1+k2)£(b1+0) BRFSP Design.

Source of Variation Degrees of Freedom

Blocks
Pure WP Blocks 2b1 — 1

WP
Effects gmi—ki _ obi
Error —

WP Total oni—k1 _ ob

SP
Effects 9(m1+nz)—(ki+ks) _ oni—k:
Error -

Design Total 9(ni+ne)~(ki+k2) _ 1

and then determine whether or not Fy > Fa’l’dfMSEﬁ, where dfMSEm, is the to-
tal number of higher-order WP effects pooled together to form the error estimate,
MSEg%.

Fifthly, from Table 6.4 we see that there are 2(m1tn2)—(kitk2) _ 9ni~k1 df reserved
for SP effects. These effects are all those main effects and interactions, comprised of
at least one SP factor, that are not aliased with WP main effects, pure WP blocking
variables or interactions involving only WP factors and/or pure WP blocking vari-
ables. In testing the significance of an estimated SP effect, say the 2fi .717], we would
form the test statistic,

Fy= M5 ;
MSEg

and then compare whether or not £y > Fa,l,dfMSEﬁ, where dfyse.; is the total

number of higher-order SP effects pooled together to form the estimate, MSEg.
Finally, suppose an experimenter is interested in testing for the statistical sig-

nificance of block effects. From the ANOVA table, one may be inclined to form the

ratio

o= MSBlocks
°T MSEz’
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and subsequently compare it t0 Fy 1 g5 Egp” However, as Montgomery (2001) points
out, in the context of randomized complete block designs (RCBDs), randomization
has been applied only to the treatments within blocks; therefore, the blocks place a
restriction on randomization. The impact of this randomization restriction is debated
in the literature. Box, Hunter and Hunter (1978) say that an F' test for the com-
parison of block means (effects) is meaningful provided the errors are normally and
identically distributed with constant variance; that is, if the errors are NI1D(0, 0?).
Anderson and McLean (1974) say that regardless of the distribution of the errors,
this test is still meaningless. Montgomery (2001) agrees in principle with Box, Hunter
and Hunter (1978) but notes that the assumption of normality for the error terms
is often questionable, so “an exact F' test on the equality of block means is not a
good general practice”. Although the discussion given in the preceding references
is with regards to RCBDs and other “simple” two-level designs possessing blocks,
these arguments carry over to the BFFSP setting since randomization of the treat-
ment combinations is performed within blocks as well. Consequently, in subsequent
analyses for unreplicated designs we will exclude formal F' tests for the comparison of
block means. We shall see in later sections that in the presence of design replication
we may introduce an appropriate formal test for block effects.

Example 6.4.1 To illustrate the preceding model, we turn again to the 2(3+3)-(0+1)£(1+0)
BFFSP design (as in Section 3.1.1) having DCS I = ABCB; = ABpqr = Cpqrp;.
By displaying the design’s alias structure in Table 6.5, we indicate the appropriate
breakdown of the df for all sources of variation. Note that for the sake of brevity,
treatment X block interactions (which we assume to be negligible) have been excluded
from the displayed alias structure.

The total df for blocks is 2' — 1 = 1, the total df for WP effects is 260 — 9l = 6
and the total df for SP effects is 23+3)-(0+1) _ 9B-0) — 94  which is in agreement
with Table 6.4.

6.4.3 The ANOVA Model for Blocking via Separation

Table 6.6 displays the general ANOVA model for the BFFSP design in which blocks
are generated via separation. The creation of by separators will result in 2% blocks
being formed, so 2%2 — 1 df are reserved for block effects. Total df for SP effects is
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Table 6.5: Alias Structure of the 2(3+3)-(0+1)=(1+0) BFFSP Design in Example 6.4.1.

Alias Chain df
Blocks
B1 = ABC = Cpgr 1
WP Effects
A = Bpgr 1
B = Apgr 1
C = ABCpgr 1
AB = pgr 1
AC = BCpqr 1
BC = ACpqr 1
Total WP df 6
SP Effects
p = ABgr, ABp = gqr 2
q = ABpr, ACp = BCqr 2
r = ABpq, BCp = ACqr 2
Ap = Bqr, ABCp = Cqr 2
Bp = Agr, ABq = pr 2
Cp = ABCqr, ACq = BCpr 2
Aq = Bpr, BCq = ACpr 2
Bq = Apr, ABCq = Cpr 2
Cq = ABChpr, ABr = pq 2
Ar = Bpq, ACr = BCpq 2
Br = Apg, BCr = ACpq 2
Cr = ABCypq, ABCr = Cpq 2
Total SP df 24

then 2(mtn2)—(k1t+k2) _ 9m—kitb2 the number of design points less the number of block
and WP effects.
The variation due to the separators has been delineated from the SP portion of the
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Table 6.6: The ANOVA Model for the 2(m1+n2)=(k1+k2)+(0+h2) BFFSP Design.

Source of Variation Degrees of Freedom

Blocks
Separators ob2 1

WP
Effects on1—ki+bz __ 9bs
Error -

WP Total gni—ki+bz __ 9bs

SpP
Effects o(n1+nz)—(ki+ke) _ gni—ki+by
Error -

Design Total o(m1+nz)—(ki+ka) _

ANOVA table. This is done to emphasize that although the separators are blocking
variables containing at least one SP factor, we do not test for their significance
by use of the estimate, MSEgy, in the test statistic, Fy. (Deriving the variances
of the separators by the methods introduced in Chapter 4 would confirm this.) Of
course, we do not wish to test for the significance of block effects anyways—this
follows from the comments made in Section 6.4.2 regarding the inappropriateness of
tests of significance for block means in the unreplicated design setting. (Section 6.5
will demonstrate how one may, in the presence of replication, correctly test for the
significance of block effects.)

Other calculations, including tests of significance for effects not confounded with
separators proceed in a manner analogous to that for designs with pure WP blocking
variables.

The most noteworthy change to our ANOVA model, as a result of separation,
occurs in the total number of df available at the WP level of the design. For each
additional separator we see a two-fold increase in the number of distinct WP runs—a
type of pseudo-replication (as explained in Chapters 3 and 4). We recall that this

pseudo-replication provides the experimenter with increased precision when calcu-
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lating the variance of effects that are to be tested against the WP error. In Table 6.6
the benefit of separation is seen as an increase in available df for WP effects. The cost
of this WP run replication is seen at the SP level of the design. Specifically, at the
SP level each additional separator causes a decrease, by a factor of two, in the num-
ber of SP treatment combinations associated with each WP treatment combination.
In the SP portion of the ANOVA table, the net effect of separation is to reduce the
available df for SP effects by a factor of 2°2. Note that forming “too many” blocks via
separation will result in there being no SP effects. This will occur when by = ny — ks,
implying that we have 2(ritn2)—(ki+kz) _oni—ki+by — gni+na)~(k1t+ks) _gmi—kitna~k: — )
SP effects. Of course, in the case where by = ny — kg an impractical design will result
(see Section 3.2.2). Recall that we do not consider an impractical design to be a

viable experimental option.

Example 6.4.2 Consider the 203+3)-(0+1)+(0+1) BEFEFSP design having DCS I =
ABCpr = ABqé; = Cpgré, (this design was first introduced in Chapter 3). Ta-
ble 6.7 contains the design’s alias structure, thereby ezhibiting the proper distribution
of df between the sources of variation. Note that some of the treatment X block in-
teractions have been included in the displayed alias structure. We have only included
treatment X block interactions in those alias chains for which it would otherwise be
ambiguous as to the design status (WP or SP) of the other effects in the chain. The
implication in Table 6.7 is that any effect aliased with a treatment X block interac-
tion is in fact a WP effect. That is, in any tests of significance, the MS of these
aliased effects will be tested against MSEg+. (This can be confirmed by deriving the
variance forms of treatment X block interactions using the methods of Chapter 4.)
The total df for blocks (separators) is 2! — 1 = 1, the total df for WP effects is
20-0+1) _ 9l = 14 and the total df for SP effects is 23+3)-0+1) _9B-0+1) = 1§ yhich

is in agreement with Table 6.6.

6.4.4 The ANOVA Model for Mixed Blocking

In Table 6.8 we present the general ANOVA model for unreplicated BFFSP designs
possessing mixed blocking. In essence, this model serves as an amalgamation of the
models presented in Tables 6.4 and 6.6.

For mixed blocking there are 2115 — 1 df associated with blocks. We see that

2b1 — 1 df are reserved for pure WP blocking variables, 2% — 1 df are reserved for
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Table 6.7: Alias Structure of the 23+3)-(0+1)£(0+1) BFFSP Design in Example 6.4.2.

Alias Chain df
Separators
01 = Cpqr = ABq 1
WP Effects
A = BCpr, q = ABCpgr = AB¢, 2
B = ACpr, Aq = BCpqr = Bé, 2
C = ABpr, Bg = ACpqr = Aé; 2
AB = Cpr, Cq = ABpgr = ABCé; 2
AC = Bpr, ACq = Bpgr = BCé; 2
BC = Apr, BCq = Apgr = ACY, 2
ABC = pr, ABCq =pgr = Cé; 2
Total WP df 14
SP Effects
p= ABCr, pg = ABCqr 2
r = ABCp, Agr = BCpq 2
Ap = BCT, Bqr = ACpq 2
Bp = ACr, Cqr = ABpq 2
Cp = ABr, ABqr = Cpq 2
Ar = BCp, ABr = pq 2
Br = ACp, ACqr = Bpgq 2
Cr = ABp, BCqr = Apq 2
Total SP df 16

separators and the remaining (2% — 1)(2%2 — 1) df are associated with those blocking
variables generated by the product of the pure WP blocking variables and separators.
Again, for unreplicated BFFSP designs with mixed blocking we suggest that one not
test for the significance of block effects. In subsequent sections, when design replicates

are considered, we will present a better approach for testing block means.
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Table 6.8: The ANOVA Model for the 2(m1+n2)=(ki-+k2)£(b1+b2) BEFSP Design.

Source of Variation Degrees of Freedom
Blocks
Pure WP Blocks 201 — 1
Separators 9% _ 1
Pure WP Blocks x Separators (2% — 1)(2% — 1)
Block Total 9bi+bz _ 1
wP
Effects gni—ki+by _ 9bi+bs
Error -
WP Total gni—k1+bz __ 9bi-+be
SP
Effects 9(n1+nz)—(k1+ke) _ gni—ki+bs
Error —_—
Design Total 9(m1-tnz)—(k1+k2) _ 1

Again, recall that for each additional separator we see a two-fold increase in the
number of distinct WP runs. In Table 6.8 the benefit of separation is seen as an
increase in available df for WP effects. The cost of this WP run replication is seen
at the SP level of the design. Specifically, at the SP level each additional separator
causes a decrease, by a factor of two, in the number of SP treatment combinations
associated with each WP treatment combination. In the SP portion of the ANOVA
table the net effect of separation is to reduce the available df for SP effects by a

factor of 2%2,

Example 6.4.3 The alias structure for the 2G+3-(0+D=(+1) BEFESP design with
DCS I = ABqr = ABCfB, = BCpqd, = Cqrp, = ACprd, = Bprf6, = Apqpé1, is
presented in Table 6.9. The resulting breakdown of df for each source of variation is
wn accordance with the general ANOVA model in Table 6.8. As in Table 6.7, note that
some of the treatment X block interactions have been included in the displayed alias

structure. We have only included treatment X block interactions in those alias chains
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for which it would otherwise be ambiguous as to the design status (WP or SP) of
the other effects in the chain. The implication in Table 6.9 is that any effect aliased
with a treatment X block interaction is in fact a WP effect. That is, in any tests of
significance, the MS of these aliased effects will be tested against MSEg. (This can
be confirmed by deriving the variance forms of treatment X block interactions using
the methods of Chapter 4.)

The total df for block effects is 2'* — 1 = 3, the total df for WP effects is
2(-0+1) _ 20+1) = 19 and the total df for SP effects is 23+3)-(0+1) _ 9(3-0+1) — 16

which is in agreement with Table 6.8.

6.5 ANOVA for Replicated BFFSP Designs

On occasion, an experimenter may have adequate resources that allow design repli-
cates to be run. This occurrence is sufficiently commonplace, hence we devote this sec-
tion to considering the impact of replication upon the analysis of 2(71+72)—(k1+k2)£(b1-+b2)
BFFSP designs.

Design replication causes the complexity of ANOVA models to increase. We will
use the results of Section 6.4 as a stepping stone for developing this more technical

setting.

6.5.1 The ANOVA Model for Pure WP Blocking: With Repli-

cation

Replicating a 2(1+n2)=(ki+k2)£(51+0) BEFSP design implies that r2(®1+n2)=(k1+k2) treat
ment combinations will be run. Therefore, 72(m1tn2)—(k1+k2) _ 1 df must be accounted
for in the ANOVA model (see Table 6.10).

Given that there are 2% blocks per replicate this implies that there will be a total
of 72% blocks in the design. Therefore, the model will have 725 — 1 df reserved for
block effects. In this model we extend the method described by Cochran and Cox
(1957) for distributing the df for blocks and replicates in a replicated full factorial
two-level design. In this reference, the authors explain that block df can be thought
to consist of the df for replicates, factorial effects confounded with blocks and the
interaction, replicates x blocks. Therefore, for a 2(r1+n2)=(k1+k2)£(b1+0) BEFFSP design,
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Table 6.9: Alias Structure of the 23+3)-(0+1)£(1+1) BFFSP Design in Example 6.4.3.

Alias Chain df
Blocks
B1 =Cqr = ABC 1
0y = ACpr = BCpq 1
$16, = Bpr = Apg 1
Total Block df 3
WP Effects
A = Bgr, pq = ABpr = BCé; = AB16: 2
B = Aqr, pr = ABpqg = ACé; = B4, 2
C = ABCqr, Apr = Bpq = Cé; = ABf6, 2
AB =qr, Cpr = ABCpq = Aé; = BCBi6; 2
AC = BCqyr, BCypr = ACpq = ABé = Cpi61 2
BC = ACqr, ABCpr = Cpg = B, = ACBi6; 2
Total WP df 12
SP Effects
p = ABpgqr, Cq= ABCr 2
q = ABr, Cr = ABCq 2
r = ABq, ABp = pqr 2
Ap = Bpgr, ACp = BCpgr 2
Bp = Apqgr, BCp = ACpgr 2
Cp = ABCpgr, ABCp = Cpgr 2
Aq = Br, ACq= BCr 2
Bq = Ar, BCq= ACr 2
Total SP df 16

we conclude that there are r — 1 df for replicates, 2% — 1 df for effects confounded
with blocks and (r — 1)(2% — 1) df for replicates x blocks. These df quantities sum

to 2% — 1 which is required.

The interaction, replicates X blocks, can be thought of as the error for which
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Table 6.10: ANOVA Model for a Replicated 2(m1+n2)=(k1+k2)£(1+0) BFFSP Design.

Source of Variation Degrees of Freedom
Blocks
Replicates r—1
Pure WP Blocks 201 — 1
Error (r—1)(2% -1)
Block Total b 1
WP
Effects gnri—k1 _ 9b
Error (r —1)(2m~F1 — 2h1)
WP Total r(2mM—k — 9b1)
SP
Effects 9(n14n2)—(ki+ke) _ gni—k
Error (r — 1)(2(n1+n2)~(k1+k2) — gmi—k1)
Design Total ronitne)—(ki+k2) _ 1

the MS of those effects confounded with blocks are compared to. Consequently, in
the presence of replication, we are now able to correctly test for the significance
of block means; recall that this was not possible for unreplicated BFFSP designs.
However, one should note that if the df for replicates x blocks is small, this test will
be insensitive in detecting block differences (Cochran and Cox, 1957).

Despite the ability to test for block effects the practitioner will likely choose not
to perform such tests. From a practical standpoint, the reason for blocking in the
first place is because of the desire to control for variation in the response due to
nonhomogeneous conditions in the experiment. Any test for block effects would most
likely only serve to confirm their significance.

The design replicates now allow the experimenter to calculate the “true” MSE
estimates (MSEwp and MSEgsp) of the WP and SP error terms (03,5 and o2p).
No longer do we have to pool negligible higher-order interactions to form estimates
of E[MSEwp| and E[MSEgsp| as we did in previous sections. That is, correct F-
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statistics may now be constructed for testing the significance of treatment main
effects and interactions. As well, the large number of observations due to replica-
tion will improve the estimates of 0%,p and o2p thus strengthening the power and
precision in inference.

Having presented the general ANOVA model, we now consider the approach to
analyzing the data. We will do this via a three-step process, where each of the three
steps corresponds to one portion of the ANOVA model in Table 6.10. The steps are

as follows:

1. To analyze the “block” portion of the BFFSP design, we view the 72% blocks
as the experimental units. The experiment as a whole is seen as a RCBD, with
2% treatments in each of the replicates. Note that since the blocks are the
experimental units, we perform the ANOVA on the block averages. (That is,
average over the WP and SP treatment combinations within a given block to
obtain one observation for the RCBD.)

2. The WP portion is analyzed as a BFF with r2% blocks, an ANOVA being run
on the WP averages. (That is, average over the SP treatment combinations
associated with each WP treatment combination.) The SSt,: from step 1 will

now be thought of as SSpeks in the WP analysis.

3. The SP portion is also viewed as a BFF, this time possessing 72™ %! blocks,
where the blocks are the WPs. The 557, from step 2 will be viewed as SSpiocks
in the SP analysis.

6.5.2 The ANOVA Model for Blocking via Separation: With

Replication

A replicated 2(m1+m2)—(ki+k2)£(0+b2) BRFSP design has r2("1+m2)=(k1+k2) treatment com-
binations to be run. Again, we must account for the resulting r2(m1tn2)-(ki+k2)_1 gf
in the corresponding ANOVA model (see Table 6.11).

Similar to the BFFSP design with pure WP blocking, we have 22 blocks per
replicate for a total of 2% blocks in the design. This implies that r2°2 — 1 df will
be reserved for the block portion of the design. The other df may be accounted for
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Table 6.11: ANOVA Model for a Replicated 2(n1+n2)—(k1+k2)2(0+b2) BEFSP Design.

Source of Variation Degrees of Freedom
Blocks

Replicates r—1

Separators 2% —1

Error (r— 1)(2b2 -~ 1)
Block Total robe — 1
WP
Effects gni=—kitbs _ 9bs
Error (r — 1)(2"1—k1+b2 _ sz)
WP Total r(gm—kitbr _ gb2)
SP
Effects (na+nz)—(k1+k2) _ gn1—Fki-+bs
Error (r — 1)(2(n1+n2)—(k1+k2) _ 2n1-—k1+b2)
Design Total ronitnz)—(ki1+k2) _ 1

by considering the discussion in Section 6.4.3 regarding unreplicated BFFSP designs
obtained via separation.

Again, as a result of the design replicates we may calculate MSEwp and MSEgp
as estimates of 03,p and o%p, respectively. F-statistics may then be constructed for
testing the significance of treatment main effects and interactions. Tests for signif-
icance of block effects may also be performed by use of the block error estimate,
replicates X separators.

As in Section 6.5.1, we now present the three-step approach to the analysis of a
9(n1+n2)—(k1+ke)£(0+b2) BFFSP design:

1. To analyze the “block” portion of the BFFSP design, we view the r2°2 blocks
as the experimental units. The experiment as a whole is seen as a RCBD, with
22 treatments in each of the replicates. Note that since the blocks are the
experimental units, we perform the ANOVA on the block averages. (That is,

average over the WP and SP treatment combinations within a given block to
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obtain one observation for the RCBD.)

2. The WP portion is analyzed as a BFF with 72 blocks, an ANOVA being run
on the WP averages. (That is, average over the SP treatment combinations
associated with each WP treatment combination.) The SSr, from step 1 will

now be thought of as SSpieceks in the WP analysis.

3. The SP portion is also viewed as a BFF, this time possessing 72" ~*1+52 blocks,
where the blocks are the WPs. The 557, from step 2 will be viewed as SSpiocks
in the SP analysis.

6.5.3 The ANOVA Model for Mixed Blocking: With Repli-

cation

The ANOVA model for a 2(mtn2)—(k1+k2)(b1+b2) BRFSP design with mixed blocking
is an amalgamation of Tables 6.10 and 6.11. Any BFFSP ANOVA model discussed

thus far can be derived from the general model for mixed blocking (see Table 6.12 ).

Here we have 2% blocks per replicate for a total of 72°1%% blocks in the design;
therefore, 72°11% — 1 df will be reserved for the block portion of the design. Also,
observe that r(2m—ki+b2 _ 901+b2) df are available for the WP portion in Table 6.12.
The remaining design df are distributed among the SP effects and SP error.

The three-step approach to analysis is easily extended to 2(1+m2)—(ki+ka)E(b1+52).
BFFSP designs:

1. To analyze the “block” portion of the BFFSP design, we view the 72512 blocks
as the experimental units. The experiment as a whole is seen as a RCBD, with
2b1+b2 treatments in each of the replicates. Note that since the blocks are the
experimental units, we perform the ANOVA on the block averages. (That is,
average over the WP and SP treatment combinations within a given block to
obtain one observation for the RCBD.)

2. The WP portion is analyzed as a BFF with 72%+%2 blocks, an ANOVA being
run on the WP averages. (That is, average over the SP treatment combinations
associated with each WP treatment combination.) The SSry: from step 1 will
now be thought of as SSpes in the WP analysis.
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Table 6.12: ANOVA Model for a Replicated 2(mtm2)—(kitk2)+(b1+b2) BEFSP Design.

Source of Variation

Degrees of Freedom

Blocks
Replicates r—1
Pure WP Blocks 2k — 1
Separators b2 _ 1
Pure WP Blocks x Sep’s (2% —1)(2% - 1)
Error (r — 1)(201+P2 — 1)
Block Total robitb _q
WP
Effects on1—k1+bz _ obi+b2
Error (r — 1)(2ma—kitbr _ obi+ba)
WP Total r(2m—Fki+be _ gbitba)
SP
Effects 9(n1+n2)—(ki1+kz) _ 9ni—ki+bs
Error (r — 1)(2(n1+n2)—(k1+k2) — gmi—k1+bz)

Design Total

,,.2(n1+n2)—(k1+k2) -1

3. The SP portion is also viewed as a BFF, this time possessing 72™ ~*1+%2 blocks,
where the blocks are the WPs. The S 57 from step 2 will be viewed as SSBiocks

in the SP analysis.



Chapter 7

Results Analogous to Those for
FFSP Designs

Chen and Wu (1991) provided an approach to summarizing the DCSs of FF designs
through the use of matrices. Subsequently, Bingham and Sitter (1999b) extended this
matrix representation to the FFSP design scenario. These matrix representations
were then utilized in the development of theoretical results for two-level FF and
FFSP designs with emphasis on the resolution and MA criteria. In this chapter we
develop extensions to the matrix representation of FFSP designs by allowing for the
presence of blocking variables in the derivations. Notation is developed first through
an example while theoretical results are established by more detailed discussions in

subsequent sections.

7.1 Matrix Representation of BFFSP Designs: No-

tational Development

Example 7.1.1 Suppose an ezperimenter intends to run a 20+3)-(1+D2(1+1) pppgp
design. One possible design has factor and blocking generators given by E = ABC, f; =
BCD,r = Apq and 8, = Bpq. The resulting DCS for this design is I = ABCE =
BCDpB, = Apqr = Bpqd, = ADEfB, = BCEpqr = ACEpqé; = ABCDpqrp; =
CDpgB,6, = ABré; = DEpqrf, = ABDEpqgBid, = CEré; = ACDrpid; =
BDErpi6.. The matriz form of the DCS for the 20+3-(+020+1) BEFSP design
is given in Table 7.1. As in Bingham and Sitter (1999b), w; denotes the i word in

84
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the design’s DCS. If o factor or blocking variable is present within w; it is identified
with a 1 in its corresponding column.

By looking closely at Table 7.1 we see that columns “D” and “B,” are identical.
Also, columns “p” and “q” are identical. Instead of writing down these redundant
columns one may represent a BFFSP design by providing the matriz containing only

the unique columns from the design’s DCS matriz as well as a frequency vector,

f

Table 7.1: Matrix Representation of the DCS for the 200+3)-(1+1)£(+1) Degign

A B CDE B pqor &
w1 11 1 0 1 0 0 O0O0 O
wp (0 1 1 1 0 1 0 0 0 O
wg |1 0 0 0O O O 1 1 1 O
wg |01 0 0 0 0 1 1 0 1
ws |1 0 01 1 1 000 0
We 011 01 0 1110
wy 1 0 1.0 1 0 1 1 0 1
Wg 11 1 1 0 1 1 11 O
wg 0 0 1 1 0 1 1 1 0 1
wefl 1 0 0 0 0 O 0 1 1
w0 O 0 1 1 1 1 1 1 0
wplll 1 0 1 1 1 110 1
wag0 0 1 0 1 0 0 0 1 1
wyel|l 0 1 1 0 1 0 0 1 1
ws O 1 0 1 1 1 0 0 1 1

Consequently, the 26+3)~(4DE0+) design may be summarized by the reduced ma-

triz,
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[11101000)
01110000
10000110
01000101
10011000
01101110
10101101

Mi=]11110110
00110101
11000011
00011110
11011101
00101011
10110011

\0 1011011}/

and the frequency vector f = (1,1,1,2,1,2,1,1), where f; is the number of factors
associated with the i column of M.

We may identify which factors are WP factors, pure WP blocking variables, SP
factors or separators by introducing an extension of the (split-plot) frequency ma-
triz first described by Chen and Wu (1991). For the 26+3)-(U+0E0+1) design in this

ezample,

O N O O

0
0
1
0

O O ek
OO O
= O O O

11
00
00
00

o O O

In our representation, (f14, fas, fs4, fa:) tmplies that column i of My occurs (or
has a frequency of) fi; + foi + f3: + fa; times. Of this number, fi; is due to WP
factors, fa; is due to pure WP blocking variables, f3; is due to SP factors and fy; is
due to separators. It can be shown that by using My and f one could work “backwards”
and reconstruct Table 7.1, the DCS of the 26+3)-(+1)+(+1) BFFSP design.
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7.2 Development of a General Matrix Represen-
tation for BFFSP Designs

The objective of this section is to extend the general matrix framework found in the
literature (developed for the FF and FFSP settings) to that of the BFFSP design
scenario. Consequently, the results that follow in this and subsequent sections closely
parallel those found in Chen and Wu (1991) and Bingham and Sitter (1999b). In this
particular section we intend to simply adjust the existing general FFSP design matrix
representation by allowing for the inclusion of blocking variables.

Let M be a (29— 1) x (2% — 1) matrix where

I, B
e (22, -

and d = ki + ko + by + by. I; denotes the d x d identity matrix while the set of
columns of (I, B) form the vector space spanned by the columns of I; over the finite
field GF(2). Likewise, the rows of My form the vector space spanned by the rows
of (I3, B) over the finite field GF(2). Note that the identity column and row of 0’s
has been excluded from M, thereby reducing its dimensions from what otherwise
would have been 2¢ x 2¢. If we replace the 0’s and 1’s in My with 1’s and -1’s,
respectively, and add a column and row of 1’s, Mz would be equivalent to a 2¢ x 2¢
Hadamard matrix, Hea. This equivalence with Hadamard matrices will provide us
with several useful properties for proving theorems in following sections. (For a brief
introduction to finite fields and Hadamard matrices, the reader is encouraged to read
the relevant sections of Durbin (2000) and Hedayat and Wallis (1978), respectively.)
Note that M;, in Section 7.1, is in a slightly different form than M, in that it is
a subset of columns from Mj, with a permutation of the columns and rows of M.
These differences between M; and Ms do not affect the inherent structure of the
corresponding BFFSP design.

When constructing a BFFSP design we must specify which factors are WP factors,
pure WP blocking variables, SP factors and separators. To assign these factors to

the columns of M, we may begin by partitioning the first d rows of My into the

Ik1+b1 0 Bl 0 Cl (72)
0 Ik2+b2 0 BQ C'2

following form,
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Iy, 45, and Iy, 1y, represent the (ki +b1) X (k1 +b1) and (ka2 + ba) X (k2 + bo) identity
matrices, respectively. Similar to that for (I, B) in 7.1, the columns of (Iy,+s,, B1)
and (Ix,1b,, B2) form the subspace spanned by the columns of Iy, 44, and Iy, Te-
spectively, excluding the identity columns of 1’s. This implies that B; will have
2k1+b1 _ (k) +b;) — 1 columns; likewise, B, will contain 22452 — (kg +by) — 1 columns.
The remaining 2k1+ke+bi+bs _ gki+br _ 9kdb2 4 1 columns in (Cy, Cs)' form a subset

of the vector space spanned jointly by the columns of

L — (Ik1+b1 0
d= .
0 Ik2+b2

The complete, “expanded” matrix form for M is given by

{ Ik1 +b1 0 B, 0 C \
0 P 0 By Cy
M, = B! 0 BB 0 B C, ;

0 B, 0 BB, By,
\ C/ G C,B CiB, CiCi+CyC;

B, 0 O,
0 B, Cy )’

where B, from 7.1, is,

such that,
BB, 0 B,
B’B - 0 BéBz BéCQ
C!B, CLB, CCi+CiCs
n Mz.

Reordering the columns of M, in the style of Bingham and Sitter (1999b), we
obtain M = (41, As), where,

[0 0 )

I TS )
A; = 0 0 (7.3)
B, BB,

\ C CiB; )
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and
/ Ik1+b1 Bl C’1 \
0 0 Cs
A;=| B, BB, B : (7.4)

0 0 BYC,
\ C. CiB CiCi+CyC; |

A BFFSP design is now able to be fully represented by the matrix M and its

corresponding split-plot frequency matrix,

f1,1, f1,2, vee f1,2k2+bz—17 f1,2"2+b27 SRR f1,2d—1

£ = f2,17 f2,2, sy f2,2k2+62—1: f2,2k2+627 SRR f2,2d—1 ,
fa, fs2y -ov, f3,2k2+b2_1, 0, ceny 0
faq, fao, ..., f4,2k2+62_1, 0, e 0

where the frequencies in the i** column of f correspond to the number of factors
and blocking variables assigned to the i column of M. Of course, we must have
M fi=mny,y.foi=b1,0. fsi=mngand Y fa; = bo.

In Chapter 3 it was shown that SP generators may be comprised of both WP and
SP factors. In Chapter 3 we also demonstrated that separators may contain both
WP and SP factors. Because of this we may assign WP factors and WP blocking
variables to any of the 2¢ — 1 columns of M. However, WP generators and WP
blocking variables cannot contain SP factors. As a result, we may not assign the ng
SP factors and by separators to all of the columns of M. Therefore, f5; and fs; may
only be nonzero for columns in A;. The rationalization for rearranging My into the
form M = (A;, Az) is now more apparent. The usefulness of the form of M will be

even greater appreciated when theorems are derived in the following sections.

7.3 Main Results

Now that we have developed a general matrix representation for BFFSP designs
we may formulate some useful theoretical results, keeping in mind the restrictions
on the assignment of both SP factors and separators to the columns of M. The

yet-to-be established results will provide means by which we may construct larger
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BFFSP designs from other, smaller BEFSP designs. In addition, resolution and MA
properties of these larger designs will be investigated.

The theorems presented in this chapter are analogous to the ones presented by
Chen and Wu (1991) and Bingham and Sitter (1999b) with respect to the FF and
FFSP settings, respectively. In those papers, theoretical results were also motivated
by the corresponding general matrix representations for FF and FFSP designs. Be-
cause of this parallel, proofs will be developed in a fashion very similar to that of the
preceding references. Adaptations to the proofs will primarily occur when account-
ing for the presence of blocking variables, the revised form of the split-plot frequency
matrix, and the existence of fractional word-lengths in a BFFSP design’s WLP.

7.3.1 Adding Both WP and SP Factors to an Existing BFFSP
Design

Theorem 7.1 Let D(ny,ng; ki, ko by, by) be a 2(mtn2)—(kitka)E(bi+b2) BEESP design
with WLP W, and let lag(W,m) = (0,0,...,0,W) be the lag vector of the WLP W
with m leading zeroes. For 0 < r < 2F+b% _ 1 there exists a D(ny +2% — 1 — 1,15 +
73 k1, ko by, ba) with WLP lag(W,29), where d = k; + ky + by + bs.

Proof : Let D; be a D(ny,ng; ki, ko; by, b2) BFFSP design represented by (M, f).
Also, let f* be a split-plot frequency matrix with 2¢ — 1 columns ( Tii T2 f3i0 1)
such that there are 2¢—r —1 columns in f* of the form (1,0, 0,0)' and 7 columns in f*
of the form (0,0, 1,0)". Columns of the form (0,0, 1,0)’ are assigned only to columns
in A; while the 2¢—r—1 columns of the form (1,0, 0, 0)' are assigned to the remaining
columns of M. Therefore, Y (fii+ fi;) =m +22—7—1and Y (fsi+ f3;) = na+7.

By letting Dy be a BFFSP design represented by (M, f + f*), we are in effect
adding r new SP factors and 2¢ — r — 1 new WP factors to D;. Clearly then, D, is
a D(ny +2% — 7 — 1,n9 + 7; k1, k; b1, by) BFFSP design. Since M is equivalent to a
Hadamard matrix, excluding the identity column and row of 1’s, by a property of
such matrices we know that there are 2%~! 1’s in each row of M (Hedayat, Sloane
and Stufken, 1999, p.147). Now by assigning each of the 2¢ — 1 new treatment fac-
tors to separate columns of M, each word in the DCS of D, is 2¢~! longer than its
corresponding word in D;.

As first described in Section 3.2, let W = (A3, Ass, A4, A4, ..., Anjingt1.5) TED-
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resent the WLP of a 2(m+n2)—(k1+k2)E(b1+b2) BEFSP design. For an increase of 241 in
the length of each word, we must then move each entry, 4;, 2% 2%~! = 2¢ positions to
the right in W as a consequence of both the increased word-length and the presence
of fractional resolution in the definition of W. We see that in comparison to W for
D1, Dy’s WLP must have 2¢ leading zeros so that it becomes lag(W, 2%). O

Example 7.3.1 Consider ¢ 16-run 2@2+3)-0+0)2(+) BEFSP design with generators
B1 = AB, r = ABq, §; = Bpq and WLP W;. For this design, W1 = (0,2,1,4).
Using Theorem 7.1, we may add a total of 22 — 1 = 7 treatment factors to the
22+3)—(0+1)E(1+1) Jesign, with the restriction that at most 8 of the additional factors
are to be SP factors. Using r = 2, we infer that there ezists g 27+5)-(0+1)+(1+1) pEEgp
design with WLP, say W, such that W, = lag(Wh, 2%) = (0,0, 0,0,0,0,0,0,0,2,1,4).
The larger design requires that 2,048 treatment combinations be run; this design is, for
all intents and purposes, too large to be considered for a real-life experiment. Later,
we will show how one may construct larger, yet more “reasonably-sized” BFFSP

designs.

Theorem 7.1 allows us to add a combination of WP and SP factors to an existing
BFFSP design thereby providing an explicit method for constructing larger BFFSP
designs from smaller ones. Theorem 7.1 also allows us to simultaneously predict the
larger design’s WLP. The restriction (0 < 7 < 2%2%%2 —1) on the number of SP factors
which we may add is a direct result of the fact that we must assign SP factors only to
the 2%2+b2 1 columns of A;. If we were to set 7 = 0, we would be adding WP factors
exclusively. Having r = 0 would probably be of interest to an experimenter only
if there are considerably more WP factors than SP factors comprising the process
under investigation.

This approach to adding additional treatment factors to an existing BFFSP de-
sign is limited in that it allows only for the addition of basic (independent) treatment
factors. Since blocking variables are always generated by other (WP or SP) factors
this construction method does not allow for the inclusion of additional blocking vari-
ables in an existing BFFSP design. This observation also holds for other theorems
provided in this section.

By the definition of a BFFSP design we must have that k1+k2 > 1 and b +b, > 1.
Thus, by applying Theorem 7.1 we are adding a minimum of 22 — 1 = 3 basic

factors in forming the larger design. This implies that a larger design, constructed
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via Theorem 7.1, will always possess at least 23 = 8 times as many runs as the smaller
BFFSP design from which it was formed.

Since Theorem 7.1 provides us with the WLP of the larger design, we then also
know that design’s resolution. This knowledge could aid in the search for larger
MA BFFSP designs. That is, having constructed a 2(n1+2?=r—1ltnz+r)=(k1-+k2)%(b1-+b)
BFFSP design, say D;, using Theorem 7.1, we have in effect obtained a lower bound
for the resolution of the MA BFFSP design with equal ny, ns, k1, k2, by and by values.
Therefore, we could compare D;’s resolution with the resolution of other BFFSP
designs constructed perhaps via a computer algorithm. Designs with resolution less
than that of D; could then be immediately discarded since we now know that the
MA BFFSP design must have resolution at least that of D;. This would assist in
reducing search times for large BFFSP designs.

Having constructed a larger BFFSP design using Theorem 7.1, the following

theorem allows us to place a lower bound on this design’s maximum resolution.

Theorem 7.2 Let R(ny,ng; ki, k2; b1, b2) be the mazimum resolution for a D(ny,ng;
ki, kg;b1,b;) BFFSP design. For 0 < r < 2kt — 1 R(p; +2¢ — 7 — 1,ny +
T k1, k2; by, be) > 2971 + R(ny, no; ki, ko; by, by).

Proof : Let D; be a maximum resolution D(ny,ng; k1, ke; b1, be) BFFSP design rep-
resented by (M, f) with WLP W. Also, let Dy be a BFFSP design corresponding
to (M, f + £*), (f* being defined in the proof of Theorem 7.1). By Theorem 7.1,
Dy is a D(ny + 2% —r — 1,ng + 75 k1, ka; b1, bo) BFFSP design with WLP lag(W, 29)
having resolution R(my,ng; ki1, kg; b1, ba) + 2971, Therefore, the maximum resolution
D(ny + 2% — 7 — 1,ny + 7} k1, k2; by, bo) design must have resolution greater than or
equal to 2971 + R(nq, ng; ki, ka; b1, be). O

Theorems 7.1 and 7.2 assist in the search for large MA BFFSP designs. It would
be beneficial to have an ezplicit form for the upper bound of the resolution, but
this is not possible. However, using methods very similar to Chen and Wu (1991)
and Bingham and Sitter (1999b) we show that the maximum resolution of a BFFSP

design is periodic. This result is summarized in the following theorem.

Theorem 7.3 For any fized ni,ng, ki, k2, b1, by and 0 < v < 2F2%02 — 1 there exists
Ly such that R(ny +1(2% —r —1),ng +1r; k1, ko by, bg) = 2471 + R(ny + (I — 1)(2¢ —
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r—1),n9+ (I = 1)7; k1, ko; b1, ba) VI > Ly. That is, there exists Ly such that VI > L,

the mazimum resolution of a BFFSP design is periodic.

Proof : The proof is by contradiction. Assume that there are infinitely many [, ;
such that

R(nl -+ l17z‘(2d - T - 1), ) + ll,ir; kl, kz; bl, bz) (75)

> 9d-1 -+ R(’I’Ll + (ll,z' — 1)(2d —_— - 1), No -+ (ll,z' — 1)7‘; kl, kz; b1, bg) + 1.
Assuming (7.5), we then have an increasing sequence of I1’s, say {1,;}32,, such that
(7.5) is true. Now by Theorem 7.2 we have that,
R(ny + (l; — 1)(2% = 7 — 1), na + (I — 1)75 k1, ko; by, bo)
Z 2d_1 =+ R(m + (ll,i - 2) (2d -7 — 1), No -+ (ll,i - 2)7‘; k)l, k:g; bl, bz)

Substituting this result into (7.5), we obtain,

R(ny +1,;(2% — 7 — 1), mo + Ly ;75 ku, ko; b1, bo)
>2%291 L R(n; + (li; — 2)(2d — 7 —1),n2 + (li; — 2)7; k1, ko3 by, bg) + 1.

Using (7.5) and Theorem 7.2,

R(ny +1,4(2% — 1 — 1), ng + li7; k1, ko; b1, o)
> (I, — ll,i—l)zd—l + R(ny + ll,i~l(2d =7 =1),n9 + U1 ;-17; k1, ka; br, ba) + 2.

Eventually,

R(m + ll,i(2d el 1), g -+ ll,,-r; kl, kg; bl, bg) (76)
> 13,27 + R(nq, ng; by, ko; by, ba) + 4.

Plotkin (1960) showed that there is an upper bound on the maximum resolution for
a 2" % FF design. Specifically, if R(n, k) is the maximum resolution for the 2"~* FF
design then

k1
2k — 1
Because of the restriction on the assignment of SP factors and separators to the
columns of A; in M (Section 7.2), it is clear that R(ni,ng; k1, ko; b1,b2) < R(n, k).

So, we have

R(n,k) <

n.

d—1

2
R(n1,mg; k1, k2; b1, bo) <

99 — 1 (n1 -+ ’I’Lz) (77)
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for d = ki + kg + by + be. It follows from (7.7) that

R(ny + 11,;(2% — 7 — 1), na + L7 ka, k2; by, b)

2d—1
S 2«1 — 1(TL1 -+ ll,i(2d —Tr — 1) -+ g -+ ll,i’l")
2d—1 4 »
= 5r (M + 12" = 1) + 1)
211.—1
1 Zd—_i'(’n,l + ’I’Lg) + ll,i2d_1. (78)
From (7.8)
2d—1
l1,i2d~1 > R(Tbl 4+ ll,i(2d o 1), Ny + ll,iT; kl, kg; bl, bg) - 99 — 1 (77/1 -+ TLQ) (79)
and from (7.6)
1,247 (7.10)

< R(my + 1,3(2% — 7 — 1), mg + L7y K,y b2y by, be) — R(n, o K,y ko; by, bo) — 4.

Therefore, using (7.9) and (7.10) and multiplying through by -1, we obtain,

2d—1 -
ﬁ(nl —+ TLQ) 2 R(nl, N9, kl, kg, bl, bg) + 1.

This is not true for 4 — oo thereby establishing the contradiction. O

In the FFSP setting both the maximum resolution and MA criteria are peri-
odic. In Theorem 7.3 we showed that the maximum resolution of a BFFSP design is
periodic. In the following theorem, we establish periodicity of the MA criterion for
BFFSP designs.

Theorem 7.4 For any fized n1,ng, ki, ko, b1,ba and 0 < r < 2F2%02 — 1 there ex-
ists Qu, such that ¥q > Q1, if the MA 2{m+a-D@*—r—1)+na+(g-1)r)}=(k1-+ha)£(b1-+b2)
BFFSP design has WLP W, then the MA 2{m+e@*=r—1)+(nater)}~(k1+k2)2(b1+52) BEESP
design has WLP lag(W,2%).

Proof : Let vy, ; be the number of shortest length words in the DCS of the MA
9{lm+91: (2% —r—1)]+(na-+q1e7)}~ (k1 +k2)E(b1 +02) BFFSP design, with q1; < g5, Vi < j. Us-
ing Theorems 7.1 - 7.3 and the definition of MA for BFFSP designs (Section 3.2),
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vq, ; has the property, v, ; > vy, ; for gi; < ¢1,;. Therefore, there will exist a positive
integer v1, such that v, ; = v, for sufficiently large . By the periodicity of maxi-
mum resolution (Theorem 7.3) the limit to the number of words of shortest length is
nonzero. Now recall that the MA criterion sequentially minimizes successively larger
words in a design’s WLP. This fact in conjunction with adaptations of Theorems 7.1
- 7.3 would enable us to similarly construct sequences for the number of words with
the second shortest word-length, the third shortest word-length and so on, with each
of these sequences having a nonegative integer as a limit. Note that if we have only
finitely many sequences there will be a finite @1 > L; (L; from Theorem 7.3) such
that for ¢ > Q1, Wy, = lag(W, 2% ;), where Wy, ; and W are the WLPs of MA
9lln+a1: (2 —r— Dl +(ma+auin)}—(kitha)E(b1+02) and 9(m1+na)=(k1+ka)(b1+b2) degigns, respec-
tively. The final justification for the 2% leading zeroes in Wy, ; follows an argument
identical to that in Theorem 7.1.

What we must now establish is that there are only finitely many sequences that
need to be constructed for a MA 2{mi+a1:(2*—r—1)l+(na+quir)}—(k1+k2)£(1-+52) BFFSP
design. To show that there are finitely many sequences we need to show that the
word-lengths lie in an interval of finite length for any ¢; ;. Trivially, we know that the
length of the shortest word in the DCS of any 2(m1+n2)=(ki+k2)%(b1+b2) BRFSP design
must be bounded below by 1. In using Theorem 7.4 we will add ¢; ;(2¢ —1) treatment
factors to the design. Therefore, the length of the shortest word must be bounded
below by 1+ ¢1,;(2%71).

To establish an upper bound on the length of the longest word in the DCS of a
MA BFFSP design we begin by using an identity due to Brownlee, Kelly and Loraine
(1948) and adapt it to include the presence of WP factors, SP factors and blocking
variables. In the BFFSP setting this identity is,

Z’LAZ = [nl + ql,z-(2d el i 1) + ng + ql,i’f‘]2d_l, (7.11)

which gives the sum of all the word-lengths in the DCS of a design. So, if the BFFSP
design has resolution R, then given that there are 2¢ —1 words in the designs’s DCS,
the longest possible word-length is

U<[n+ai(28—r—1)+ny+qur)25t — (2 - 2)R. (7.12)

Using Theorem 7.2, a MA 2{mi+a0:i@*~r—1+(matquir)}-(ki+k2)£01402) degign has the
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following lower bound for its shortest word-length,

R(n; + ql,i(2d — 1 — 1), n9 + q1,7; k1, ko; b1, by) (7.13)
> 1,27 + R(ny, ng; ky, ka; by, ba).

Let Ry be the maximum resolution for the design with ¢;; = 0. Then from (7.12)
and (7.13), the longest word-length is bounded above by,

U< +qi(2—7—1)+ns+ 727" — (24— 2)(q1,:27" + Ro).
This simplifies to,
U < (77/1 + n2)2d_1 + ql,i2d_l - RO(Zd - 2)

Hence, the word-lengths of a MA 2{n1+21:@*—r—1)+(notquir)} (k1 +k2)£(b1+b2) Jesign

must be in the range,
[1 41287, (n1 + )27 + 1,297 = Ry(27 - 2)].

The length of this interval is independent of g;; and therefore of finite length. This

proves the theorem. O

Theorems 7.1 - 7.4 allow for the possibility of generating large MA BFFSP de-
signs from smaller ones. However, MA designs constructed via these theorems will
often be too large for all practical purposes since we are required to add 2¢ — 1 basic
factors to the smaller BFFSP designs. Recall that the addition of 2¢ — 1 basic factors
implies that the larger design will always possess at least 23 = 8 times as many runs
as does the smaller BFFSP design from which it was formed (Section 7.3.1).

In the next section we will consider adding only basic SP factors to existing
Q(n1tne)—(kit+ka)E(b1+b2) designs. We will see that this provides an experimenter with
“not-as-large” BFFSP designs. In addition, since SP factors are typically of more
interest to the researcher from an inferential perspective, focusing exclusively on the

addition of SP factors is intuitive.

7.3.2 Adding Only SP Factors to an Existing BFFSP Design

In Section 7.2 we demonstrated that one cannot add SP factors to each column of

M, whereas with WP factors one may. In doing so, we showed that one can add only
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0 < 7 < 2%2+b2 _ 1 basic SP factors to an existing BFFSP design whereas up to 2¢—1
basic WP factors may be added. We have previously mentioned that this could result
in the construction of very large BFFSP designs (Example 7.3.1 provided evidence
of this).

What may be of more interest to the experimenter is a method that accommo-
dates only the exclusive addition of SP treatment factors. We can guarantee the
existence of larger BFFSP designs by adding SP factors to all of the 2F*b2 — 1
columns of A; in M, without adding any additional WP factors. In this setting the
word-lengths of words in the DCS containing only WP factors and WP blocking vari-
ables will remain unchanged; changes in word-length will occur only in those words
containing SP factors and separators.

The theorems presented in this section will be analogous to Theorems 7.1 - 7.4,
the primary difference here being that only basic SP factors are added to smaller

pre-existing BFFSP designs.

Theorem 7.5 Let D(ny,ng; ki, ka; b1, by) be a 2(tne)=(hi+ka)E(bitb) BEFSP design
with WLP W. Let WWF be the WLP of D for the words containing only WP factors
and pure WP blocking variables. Also, let WS be the WLP of D for words containing
any SP factors or separators. There ezists a D(ny, ng+2%%%2—1: k,, ky; b, by) BFFSP
design with WLP WWP 4 lag(W5F  2katb2),

Proof : This proof follows in the manner of Theorem 7.1 but here we are adding
only SP factors.

Let D; be a D(ny,no; ki, ko; b1, ba) design represented by (M,f). Let f* be a
split-plot frequency matrix with 2¢ — 2¥2+% columns of the form (0,0,0,0) and
2k2+bz 1 columns of the form (0,0,1,0)". This form for f* implies that we will be
exclusively adding SP factors to the existing design D;. Therefore, the 2%+t — 1
columns of the form (0,0,1,0)" are assigned to each of the 2¥2*% — 1 columns in
A; of M (7.3). Now, denote the BFFSP design corresponding to (M, f + *) as Dj.
Since, 3 (fri, +F1s) = m, Yo (fai +F55) = b1y Yo(faus +£3:) = ne + 2512 — 1 and
>~ (a3 +F5;) = bz, then Dy is a D(ny,ng + 212 — 1, &y, ky; by, by) BFFSP design.

We must now demonstrate that the WLP of the D(ny, no+2%2+%2 —1; ky, ko; b1, b2)
design is indeed WWF + lag(WSP, 2k2+b2), Similar to the matrices My (7.1) and M,

M3 — Ikz—ll-bz -IBQ
B, BB,
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can be viewed as equivalent to a Hadamard matrix, without the identity column and
row of 1’s. As a consequence of this equivalence, we conclude that there are 2F2+b2~1
1’s in each row of Mg. One can also infer the existence of 2F21%2~! 1’5 in each of the
rows corresponding to (Ch, C3By) in A; since these rows are nonzero linear combina-
tions of the rows of the “Hadamard” matrix, Mg, over GF(2). We then see that by
assigning new SP factors to each of the columns in A;, the word-length of each word
in the DCS containing at least one SP factor or separator is increased by 2F2+b2—1,
(This implies that the word-lengths of words containing only WP factors or pure WP
blocking variables remains unchanged.)

Finally, let WSF = (A3, Ass, A4, Ass, - -« , Anytng+1.5) represent the WLP of those
words in a 2(m1tn2)—(ki+k2)E(b1+b2) BEFSP design containing any SP factors or sepa-
rators. For an increase of 2%2+%2~! in the length of each of these words, we must then
move each entry, A;, 2 2k+b2—1 = 2k+b2 positions to the right in WSF as a conse-
quence of both the increased word-length and the presence of fractional resolution in
the definition of W5P. We see that in comparison to WF for D;, W5F for D, must
have 221%2 leading zeroes so that Dy’s WLP becomes WWF + lag(WSF 2k+02) O

Example 7.3.2 Consider a 16-run 28+2-(+0+0+1) BEFSP design with generators
C = AB and 6, = ABpq. For this design W = (1,0,0,1,0,1) where WWFP =
(1,0,0,0,0,0) and W5 = (0,0,0,1,0,1). Theorem 7.5 guarantees the ezistence of a
32-run 2B+3)-(+00+1) BEFSP design with WLP, W = (1,0,0,0,0,1,0,1), where
WWP remains unchanged and W5 = (0,0,0,0,0,1,0,1).

Theorem 7.6 Let R(ni,ng; k1, ko; by, bs) be the mazimum resolution for a
o(nitne)—(ki1+k2)(b1+b2) BEFSP design and let RST (ny, no; k1, ko; by, ba) be the mawi-
mum resolution for the words containing any SP factors or separators. Then R5F (n1, na+
oFatb2 _ 1: ki, ko; by, bg) > 20221 4 RSP(ny mys by, ka; by, bo).

Proof : Let D; be a maximum resolution D(ny, ng; k1, k2; b1, b2) design represented
by (M, f) and let RSP (nyi,ng; ki1, ko; b1, bo) be the maximum resolution for the words
containing any SP factors or separators. Also, let D, be a BFFSP design correspond-
ing to (M, f +f*), £* being defined in the proof of Theorem 7.5. By Theorem 7.5, D
is a D(ny,ng + 2919 — 1; k), ko by, by) design with WLP WWF 4 [ag(W5F, 2k2+02),
Therefore, RSP (ny,ng; k1, k2;b1,b2) of a maximum resolution D(ny,ng + 2F2702 —
1; ky, ko; by, bo) design must be at least 2F2+%2=1 + RSP (ny, ng; ki, ko; by, bo). O
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Theorem 7.7 establishes the periodicity property for the maximum resolution
of words in a design’s DCS containing any SP factors or separators. Theorem 7.7

and its proof follow in a fashion similar to that of Theorem 7.3.

Theorem 7.7 For any fized nq, ng, k1, ko, by and by there exists Ly such that V1 > Lo,
RSP(ny,ng + 1(2%2+b2 — 1); ky, ko by, by) = 2Fetbe—l 4 RSP(n, my + (I — 1)(2k2+02 —
1); k1, ka3 b1, be). That is, there exists Ly such that VI > Lo, the mazimum resolution
for words in the DCS of a BFFSP design containing any SP factors or separators is

periodic.

Proof : The proof is by contradiction. Assume that there are infinitely many I ;
such that,

RSP (’I’Ll, Ng + lg,i (2k2+b2 - 1), kl, kg, bl, b2) (714)
Z 2k2+b2_1 + RSP(TLl, o -+ (l2,i ot 1)(2k2+b2 - 1); kl, ]CQ; bl, bz) -+ 1.

Assuming (7.14) we then have an increasing sequence of ly’s, say {l2;}52, such that
(7.14) is true. Now by Theorem 7.6 we have that,

RSP(nl,nz + (lo; — 1)(2k2+b2 — 1); k1, ko3 b1, ba)
2 2k2+b2‘1 -+ RSP(nl, Ny + (lg’i — 2)(2k2+b2 — 1), kl, kz, bl, bz)

Substituting this result into (7.14) we obtain,

R3P(ny,mg + 153 (252792 — 1); Ky, kg by, bo)
> 2% gk2+b2—1 + RSP(nl, N9 -+ (lg,z' — 2)(2k2+b2 — 1), kl, kg; bl, bg) + 1.

Using (7.14) and Theorem 7.6,

R (ny,ng + l9; (25272 — 1); by, ka; by, o)
2 (lz,i - l2,5_1)2k2+b2_1 -+ RSP(’I'Ll, Tig -+ lg,z‘__l (2k2+b2 - 1), kl, kQ; bl, bg) -+ 2.

Eventually,

R5P(ny,ma + 1;(25%% — 1); Ky, ka; b1, bo) (7.15)
> 1p;27%021 - RSP (ny, ng; ki, ko by, by) + i
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Now, Bingham and Sitter (1999b) showed that,

ko—1
R (n1,na; k1, ko) < oFs 1(774 + ng).
It is obvious then that
op 2k2—|—b2—-1
R (nl,nz;kl,kg;bl,bz) S W(nl —|—7’L2). (716)

It follows from (7.16) that

RSP (ny,ng + 1 (257 — 1); k1, ka; by, bo)

2kz+b2—1 foh
S g g e (2T - 1)
2k2+b2—-l
= —2k2+b2 _1 (nl —+ TLQ) + l27i2k2+b2_1. (717)
From (7.15)
Jp 2kttt (7.18)

< RSP (ny,mg + 1o (2F10 — 1); ky, k; b1, by) — RF (ny, ma; ox, koa; b1, ba) — 4.
and from (7.17)

lp 2kttt (7.19)
2k2+b2—1

> RF(ny,ma + 10,3(291% — 1) ky, ko by, b2) — (n1 + ng).

9k2+b2 _ ]

Therefore, using (7.18) and (7.19) and multiplying through by -1, we obtain,

2k2+b2 -1

m(nl +ng) > R°F(ny, ng; ky, ks b, b) + 4.

This is not true for i — oo, thereby establishing the contradiction. [

Theorem 7.8 Let D be g 2(mtme)=(kitka)t(bi+b2) BEESP design with WLP W. Let
WWP be the WLP of D for words containing only WP factors and pure WP blocking
variables. Similarly, let WS be the WLP of D for words containing any SP factors
or separators. For any fized ny,ng, ki, ke, by and by there exists Qo such that Vg >
Q., if the MA 2{mtne+(g-1)@2* 21}~ (ki +ka)t(b1+b2) BEFFSP design has WLP W,
then the MA 2{m+ne+q(22+2-1)}—(ki+k2)2(r1+b2) BFFSP design has WLP WWP +
lag(WSP, 2ketbe)
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Proof : Consider a 2{m+n2+e,i(2"2 2 -1)}-(h1+k2)2(b1+b2) BFFSP design. With each
unit increase in the value of ¢o;, the words in this design’s DCS possessing at least
one SP factor or separator will increase in length by 2%2*%2-1, Clearly then, when g ;
becomes large, the 2¥1+%1 — 1 shortest words in the design’s DCS will be those con-
taining only WP factors and pure WP blocking variables. Therefore, for sufficiently
large o5, 8 MA BFFSP design must have its WP factors and WP blocking variables
arranged as a MA 2™ ~F1%b1 BFF. This is assumed for the remainder of the proof.

"The remainder of this proof parallels that of Theorem 7.4. Let v, ; be the number
of shortest length words containing at least one SP factor or separator in the DCS of
the 2{n1+neta: (25272 1)}~ (ki +h2)£(b1+02) BFFSP design where ga; < g5 Vi < j. Using
Theorems 7.5 - 7.7 and the definition of MA for BFFSP designs (Definition 3.2.1),
Vg, ; has the property, vg,, > v,, . for go; < ¢z ;. That is, there is a positive integer v,
such that vg, , = v, for sufficiently large i. By the periodicity of maximum resolution
(Theorem 7.7) the limit to the number of words of shortest length is nonzero.

Recall that the MA criterion sequentially minimizes successively larger words
in a design’s WLP. This fact, along with results motivated by Theorems 7.5 - 7.7,
would enable us to similarly construct sequences for the number of words with the
second shortest word-length, third shortest word-length, and so on, with each of these
sequences having a nonegative integer as a limit. Note that if we have only finitely
many sequences there will be a finite Qg > Ly (L, from Theorem 7.7) such that for
g > Qa, WiF = lag(W5F, 2102, ;), where W, and W5F are the SP WLPs of MA
9{mtnetans (2202 ~1)]}—(ki+ho)£(ba+b2) gnd 9(matna)—(ki+ka)E(b1+b2) designs, respectively.
The final justification for the 2% leading zeroes in W% follows an argument
identical to that in Theorem 7.1.

What we must establish now is that there are only finitely many sequences that
need to be constructed for a MA 2{ni+ne+a::(22**2—1)}- (k1 +k2)£(b1452) Jesign. To do
this we show that the word-lengths of words containing at least one SP factor or
separator lie in an interval of finite length for any g, ;. Trivially, we know that the
length of the shortest word in the DCS of any 2(m1+n2)=(ki+k2)+(b1+b2) BFFSP design
must be bounded below by 1. In using Theorem 7.8 we will add g ;(2%2+%2 — 1) SP
treatment factors to the design. Therefore, the length of the shortest word must be
bounded below by 1 + gg;(2F2Fb2=1).

To find an upper bound on the longest word containing at least one SP factor or
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separator, we again utilize (as in Theorem 7.4) an adaptation of the identity due to
Brownlee, Kelly and Loraine (1948). This adaptation is,

> iAi = {ny + [ng + g24(2%7% — 1)]}2%, (7.20)

where (7.20) gives the sum of all the word-lengths in the DCS of a

9in1+na+az,: (2202 1)} —(k1+k2)£(1+02) design. However, we are only interested in the
sum of the word-lengths containing at least one SP factor or separator. Therefore,
we need to subtract from (7.20) the sum of the word-lengths in the DCS arising from
those words consisting exclusively of WP factors and WP blocking variables. This
sum of the WP word-lengths is

S i =2kt

and when subtracted from (7.20) we obtain
> ids = {ng + [na + (277 — 1)]}27" - py2bthl, (7.21)

the sum of the SP word-lengths. If the resolution of SP words is denoted by R°%,
the longest possible word-length, U, has an upper bound given by,

U < {7’1,1 + [77/2 + q2,i(2k2+b2 — ]_)]}Qd—l — n12k1+b1—1
—[(2d — 1) — (2k1+b1 _ 1) _ 1]RSP
= {ny + [ng + goi (252702 — 1)]}29°1 — p, 2R tEr1
_[(2d — 9kit+b _ 1)]RSP. (7.22)

Using Theorem 7.6, a MA 2{mi+{ne+g2,:(2"2¥°2-1)}-(k1-+k2)£(b1+b2) design has the follow-
ing bound for its shortest SP word-length,

RSP (‘TLI, To -+ QQ’i(2k2+b2 - 1), kl; kg, bl; b2) (723)
> qp:252702 71 4 RSP (ny, ng; by, ka; by, b))

Let Ry be the maximum resolution for the design with g; = 0. Then, from (7.22)
and (7.23), the longest SP word-length is bounded above by,

U< {'n'l + [712 + q2,i(2k2+b2 — 1)]}2d_1 - n12k1+b1—1
_[(2d — 9ki+br _ 1)](q2’i2k2+b2—1 + Ro)- (7.24)
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This simplifies to,
U< (n1 + n2)2d‘1 — n12k1+b1—1 + q2,i2kz+b2—1 _ R0(2d — gki1+b1 _ 1)_

Hence, the SP word-lengths of a MA 2{n1+n2ta:(2%24°2 1)}~ (k1-+k2) £(b1+b2) desion must

be in the interval,
[1 4 go 251071 () + ny)2¢7t — p2k1tti-1 4 g 2Rt — Ry(24 — okttt _ 7)),

The length of this interval is independent of g,; and therefore, is of finite length for

any ¢o; which proves the theorem. O

7.3.3 Comments Regarding Theorems 7.4 and 7.8

In applying Theorems 7.4 and 7.8 it is required that one know the values of @); and
()2, respectively, for which the MA criterion becomes periodic. It is useful to note that
@ and @, will vary for different values of ny, g, k1, ko, by and by. This implies that
the MA criterion becomes periodic at different times for different BFFSP designs.
Therefore, establishing appropriate values for ); and Q2 requires that one separately
consider each BFFSP design in the MA BFFSP design catalog.

The task of finding Q; and @) is essentially a linear-integer programming prob-
lem. In the FFSP context, Bingham (1998) provides @; and @, values for a limited
number of FFSP designs. Extensions of this approach to the BFFSP setting should
be straightforward, albeit perhaps time consuming. It is not our intention, at this

point, to develop a solution to this problem and so it remains an open research area.



Chapter 8

Optimal BFFSP Experiments for

Robust Parameter Design

Wu and Hamada (2000, p.436) define robust parameter design (RPD) as “statistical /
engineering methodology that aims at reducing the performance variation of a system
(that is, a product or process) by choosing the setting of its control factors to make it
less sensitive to noise variation.” Control factors inherit their name as a consequence
of an experimenter’s ability to control them while performing the experiment. In
RPD the majority of variability of a process around a target value or response is
thought to be caused by a second set of uncontrollable noise factors. Noise variables
are required to be controlled at the design level for the purpose of experimentation
but are assumed to be uncontrollable at the production level. It is this lack of control
at the production level that transmits variability to the process. Of primary interest
to the experimenter is the impact of noise variation on the selection of control factor
settings. In an effort to ascertain control factor settings that are robust to noise,
interest often focuses upon the estimation of control x noise (CN) interactions. In
RPD, one wishes “to find the level settings of the control factors that result in the
flattest line across the levels of the noise factors” (Loeppky and Sitter, 2002). A flat
line for a control factor setting implies that the response is unaffected by the noise
factor.

The current drive for quality improvement via RPD owes itself largely to the
pioneering work of Genichi Taguchi in the 1980’s (Taguchi and Wu, 1980; Taguchi,
1986; Taguchi, 1987). Although much of Taguchi’s work has been constructively

104
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criticized, it in effect laid the foundation for the modern framework of RPD.

In recent years, RPD has undergone refinements. Myers and Montgomery (2002)
summarize methods by which one may use response surface models for the devel-
opment of a robust process or product. Wolfinger and Tobias (1998) present an
extension of the general linear mixed model methodology for simultaneously model-
ing location effects, dispersion effects and random effects in RPD. Wu and Hamada
(2000) present a thorough summary of the location and dispersion modeling approach
as well as the response modeling approach for RPD.

The papers by Box and Jones (1992) and Bisgaard (2000) are of high interest
in that they demonstrate the usefulness of split-plot designs for robust parameter
experimentation. In these papers the authors show that split-plot designs are of
considerable value in that they provide the experimenter with efficient estimates of
parameter effects while yet possibly allowing for savings in terms of experimental
effort. For example, Taguchi’s approach to RPD required the use of cross arrays,
where a cross array is a cross-product of two designs—an inner array containing
the control factors and an outer array containing the noise factors. Many authors
have noted, including Box and Jones (1992), that “except in situations where both
these arrays are small, this arrangement may involve a prohibitively large amount
of experimental work.” In an attempt to reduce such work, split-plot designs are
frequently performed.

Cox (1958) and Box and Jones (1992) note that split-plot designs are particularly
useful when one or more factors are classification (WP) factors. Cox (1958) defines
classification factors as experimental factors which are included in the design “to see
if they modify the action of other factors or indicate how the other factors work.”
Main effects of the classification factors are not of particular interest but are included
to examine potential interaction with other factors. Cox (1958) also noted that lower
precision is acceptable in the estimation of these classification factors so that the
precision of the other factors and their interactions with classification factors may be
increased. By thinking of the classification factors as noise (environmental) factors,
many researchers have opted for the use of split-plot designs in robust parameter
experiments.

Until now, the primary criterion we have considered when rank-ordering BFFSP
designs has been the MA criterion. Recall that the MA criterion (Definition 3.2.1)
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seeks to minimize short wordlengths in a design’s DCS so that low-order effects
of interest may be clearly estimated. Although the MA criterion in Definition 3.2.1
provides an experimenter with reasonable designs for estimating key low-order effects,
we will demonstrate that it is unable to correctly rank-order designs for the purpose
of RPD. Deficiencies in the MA criterion may be brought to light when considering
the differing order of effect importance in RPD. For example, it is understood that
in RPD, the CN 2fi’s are the 2fi’s of primary interest in analysis. Recall that in
RPD we attempt to select control factor settings which dampen the influence of any
noise factors on the response or process. This selection of appropriate control factor
settings is often done by visual inspection of CN interaction plots. Consequently,
control x control (CC) and noise x noise (NN) interactions are not as highly valued
when selecting appropriate control factor level settings. Since the MA criterion, as
presently defined, cannot distinguish between CC, NN and CN 2fi’s, it is not ideal
for rank-ordering robust designs.

In an attempt to resolve the deficiencies of the MA criterion in the two-level
FFSP RPD setting, Bingham and Sitter (2003) revise the notions of resolution and
MA. They then use their adapted definitions of resolution and MA to assist in their
FFSP RPD ranking procedure. We reserve a more detailed discussion regarding their
approach for Section 8.1.2.

The primary objective of this chapter is to formulate a methodology by which
one may construct, and subsequently rank, “good” two-level BFFSP designs for the
purpose of robust parameter experimentation. In doing this, the following steps will
be taken:

1. Develop an effect ranking scheme.

2. Given an effect ranking scheme, construct a program that searches for optimal
BFFSP RPDs.

3. Construct tables of optimal BFFSP RPDs.

8.1 Effect Orderings for FF and FFSP RPDs

This section provides an overview of two current approaches for ranking two-level
FF and FFSP RPDs. In this context we will consider research conducted by Wu and
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Hamada (2000) and Bingham and Sitter (2003).

8.1.1 Effect Ordering for FF RPDs

Wu and Hamada (2000, p.462) acknowledge the inadequacy of current definitions
for resolution and MA for ranking FF RPDs. They suggest that for FF RPDs the
importance of effects should be arranged in the following descending order of impor-

tance:

(i) CN 2fi’s, C and N main effects;

(ii) CC 2fi’s and control x control x noise (CCN) 3fi’s;
(iii) NN 2fi’s.

The CN 2fi’s and control main effects are the most important effects in the preced-
ing list because they may be employed in parameter design optimization procedures.
(These optimization procedures are detailed in Wu and Hamada (2000, pp.446-451)
and consist of the “two-step procedure for nominal-the-best problems” and the “two-
step procedure for larger-the-better and smaller-the-better problems”.) The rationale
for including the noise main effects in (i) is that, although their levels cannot be ad-
justed in parameter design optimization, their magnitude (due to their low-order)
can make it difficult to assess the significance of other effects that are aliased with
them. Further explanation for the preceding effect ordering may be found in Wu and
Hamada (2000, p.463).

The following example, given by Chen et al. (1993), illustrates the inadequacy of
the resolution and MA criteria for ranking FF RPDs.

Example 8.1.1 Consider a 2572 FF design where A, B and C are three control
factors and r, s and t are three noise factors. The resolution 4 MA design, D;, has
DCS I = ABCr = BCst = Arst, such that the siz me’s, A, B, C, r, s and t are clear.
Now consider the resolution 8 design, Do, with DCS I = ABCr = rst = ABCst. This
lower-resolution design yields the following nine clear effects—A, B, C, As, Bs, Cs,
At, Bt and Ct. Assuming the validity of the preceding effect ordering principle, D,
has higher estimation capacity than the MA design, D., since 9 effects are of rank
“(i)” for Dy whereas only 6 effects are of rank “(i)” for D;.
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8.1.2 Effect Ordering for FFSP RPDs

For screening experiments we know that the hierarchical ordering principle states that
lower-order effects are more likely to be important than higher-order effects and that
effects of the same order are equally likely to be important. We have also seen that in
RPD, not all effects of the same order are of equal interest (for example, CN Vs. NN
2fi’s). In the context of FFSP RPDs, Bingham and Sitter (2003) construct an effect
ranking scheme that is a compromise between the notions of “likely significance” of
effects and “effect interest”. To understand the compromise between these two issues
Bingham and Sitter (2003) first provide the following rankings (see Table 8.1).

Table 8.1: Effect Rankings for FFSP RPDs

Ranking Likely Significance Interest
i C,N C,CN
(ii) CC,CN, NN CC,CCN,CNN

(iii) cCcC,CCN,CNN, NNN cCcCC

The “likely significance” ranking, in Table 8.1 may be explained by way of the
hierarchical principle. The “interest” rankings of Table 8.1 are justified by Bingham
and Sitter (2003) as follows. First, these authors note that in RPD, the effects of
primary interest are the control main effects, the CN 2fi’s and the CC 2fi’s. Knowledge
of the statistical significance of the control main effects and the CC 2fi’s gives the
practitioner the ability to improve the process mean by appropriately adjusting the
levels of the significant control effects. In addition, the ability to dampen the effect
of the noise factors on the response variability is obtained by a judicious selection
of control factor level settings as prescribed by the CN interaction plots. Since the
levels of the noise effects cannot be set in practice, they cannot be directly used to
improve the process. Consequently, effect estimates of noise main effects and their
interactions are of less interest. Further discussion regarding the usefulness of CC,
CCN and CNN interactions in FFSP RPDs is included in Bingham and Sitter (2003).

From Table 8.1, Bingham and Sitter (2003) form their proposed effect rank-
ing scheme, presented in Table 8.2, with word-lengths in parentheses. This ranking

scheme provides a compromise betweeen the two issues of likely effect significance
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and effect interest.

Table 8.2: Compromise Ranking Scheme with Associated Word-lengths

Length Effects

1 O,N
(1.5) CN
2) ©C, NN

(2.5) CCN,CNN
(3) CCC, NNN

Using the word-lengths from Table 8.2, word-lengths of larger words may be
found. With these redefined word-lengths one can simply use the usual definitions of
resolution and MA to form catalogs of MA FFSP RPDs. Bingham and Sitter (2003)
obtain MA FFSP RPDs for the following two scenarios:

1. Noise factors as WP factors (that is, control factors as SP factors);
2. Control factors as WP factors (that is, noise factors as SP factors).

By way of example these authors demonstrate the superiority of their RPD MA
criterion over the usual MA criterion for FFSP screening experiments.

The following example illustrates one instance where the RPD MA criterion se-
lects a FFSP RPD with higher estimation capacity than what would have otherwise

been selected using the usual MA criterion for screening experiments.

Example 8.1.2 Consider a 23+9)-0+3) RPD with n, = 3 control factors and ny = 5
noise factors. One MA FFSP design, D;, has DCS I = ABCpr = ABCqgs = Apgt
= pqrs = BCqrt = BCpst = Arst. Using the new word-lengths, the MA FFSP RPD,
Dy, has DCS I = pgr = ABCps = ABCqt = ABCqrs = ABCprt = pgst = rst. In
D, all CN 2fi’s are clear if three factor and higher interactions are negligible. In
comparison, the words Apgt and Arst in the DCS of Dy cause all CN 2fi’s involving
A to be aliased with NN 2fi’s, which are not of interest but are potentially significant.
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8.2 Effect Ordering for BFFSP RPDs

Thus far we looked at the methodology of Wu and Hamada (2000) and Bingham and
Sitter (2003) for ranking FF and FFSP RPDs. We will now present an approach for
ranking BFFSP designs for the purpose of robust parameter experimentation. In
advance of implementing a mathematical or computer algorithm that searches for
optimal BFFSP RPDs, we must first develop an effect ranking scheme. This effect
ranking scheme should allow one to discriminate between BFFSP RPDs of varying
estimation capacity. Table 8.3 presents, in descending order of importance, a ranking
scheme for the ordering of low-order effects in BFFSP RPDs. In addition, Table 8.3
includes the ranking of the optimality characteristic, effect precision, associated with

each of the low-order effects.

Table 8.3: Effect and Effect Precision Rankings for BFFSP RPDs

Ranking Effects / Effect Precision

@ C

(b) CN

(c) cC

(d) The number of clear C main effects tested against WP error.

e) The number of clear CN 2fi’s tested against WP error.
f) The number of clear CC 2fi’s tested against WP error.

(
(

Some discussion regarding the ranking scheme of Table 8.3 is necessary. First, by
the hierarchical principle, control main effects should be ranked ahead of the CN and
CC 2fi’s. Control main effects and CN 2fi’s are both of high interest, the former for
adjusting the mean of a process and the latter for identifying control factors to make
the process robust to noise variation. CC 2fi’s are also used to adjust the mean of a
process but are less likely to be significant than control main effects—therefore, in
terms of importance, we rank CC 2fi’s below control and CN effects.

It may also be advantageous to the practitioner to have some knowledge of the
precision of these important low-order effects. For this reason, we wish to evaluate
each BFFSP design for the number of clear low-order (C, CN and CC) effects that

are tested against the WP error. Since control main effects are of highest importance
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we wish to see fewer of these effects tested against WP error than we would for CN
and CC 2fi’s. Moreover, since CN 2fi’s are the primary 2fi’s of interest in RPD we
also wish to have few clear CN 2fi’s tested against the WP error. For these reasons,
the number of clear CC 2fi’s tested against WP error is of lowest rank in Table 8.3.

While developing the optimality criteria for ranking BFFSP RPDs, we chose not
to use an adaptation of the MA criterion. (Recall that Bingham and Sitter (2003)
adapted the MA criterion in the search for optimal FFSP RPDs.) The rationale for
this choice is two-fold. First, there is some ambiguity in determining what are “ap-
propriate” word-lengths for words in the DCSs of RPDs. In the presence of blocking
factors this ambiguity is further magnified. Second, the MA criterion is not able to
distinguish between effects of varying precision. Instead, we choose to use a sequen-
tial search algorithm in conjunction with the ranking scheme of Table 8.3 in order to
select those BFFSP designs having large numbers of clear low-order effects (C, CN
and CC) but with few (or none) of them being tested against the WP error.

8.2.1 Implementation of the Effect Ordering for BFFSP RPDs

This section outlines one approach for implementation of Table 8.3 in the search for
optimal BFFSP RPDs.
For a given BFFSP design with (ny, ng; k1, k2; b1, b2), the optimal BFFSP RPD is

obtained by sequential completion of the following steps:

(i) Obtain the set of 2(r1tn2)=(ki-+k2)+(b1+b2) BRFSP designs such that the number
of clear control main effects is maximized. Denote this set by D;);

(ii) From Dy;, obtain the set of BFFSP designs such that the number of clear CN
2fi’s is maximized. Denote this set by D3y;

(iii) From D;), obtain the set of BFFSP designs such that the number of clear CC

2fi’s is maximized. Denote this set by Dy;;);

(iv) From Dy;;), obtain the set of BFFSP designs such that the number of clear
control main effects tested against WP error is minimized. Denote this set by
D(i’l})'

(v) From D;,, obtain the set of BFFSP designs such that the number of clear CN
2fi’s tested against WP error is minimized. Denote this set by D).
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vi) From D), obtain the set of BFFSP designs such that the number of clear CC
(v)
2fi’s tested against WP error is minimized. Denote this set by D vy

It is extremely likely that the final design set, Dy, will contain more than one
optimal BFFSP RPD. For brevity, the optimal BFFSP RPD catalog will include
only one representative design from Dy,; for a given value of (nj, ng; k1, ko; b1, by).

The following example provides an optimal BFFSP design for the purpose of a
robust parameter experiment. Its superiority in terms of estimation capacity over
that of a MA BFFSP design (developed for screening purposes) is demonstrated.

Example 8.2.1 Consider a 22+3)-0+0)=0+1) BFFSP ezperiment with ny = 3 con-
trol factors. The optimal (representative) BFFSP RPD, D, has DCS I = ABpqr =
ABpd, = qréy such that all siz CN 2fi’s (Ap, Ag, Ar, Bp, Bq and Br) are clear.
In comparison, the (representative) MA BFFSP design, Dy, with DCS I = ABgr =
Bpgd, = Apré, yields only two clear CN 2fi’s. For the purpose of robust experimenta-
tion, D, is by far superior since it has siz clear CN 2fi’s. Note that the MA criterion

selects Dy since it has fewer shorter words than D;.

When constructing BFFSP RPDs, two cases will be considered. They are:
1. Noise factors as WP factors (that is, control factors as SP factors);
2. Control factors as WP factors (that is, noise factors as SP factors).

For case (2), criteria (d) and (f) of Table 8.3 need not be explicitly calculated since
in this case all control main effects and CC 2fi’s are WP effects. These effects are

then, by definition, automatically tested against WP error.

8.2.2 A One-Number Optimality Criterion for BFFSP RPDs

For practitioners that do not wish to use the sequential approach for optimal BFFSP
RPD selection we now present an alternative selection criterion. This criterion is a
one-number design summary statistic and is a (weighted) function of criteria (a) -
(f) in Table 8.3.

Let x40 denote the one-number summary statistic where

Ttotal = W1X(3) + Wak (i) + W3 (i) + W4T (4v) + WsT(v) + WeT (i) - (8.1)
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The variables x(;),... , () are the values for criterion (a) - (f) (Table 8.3) that a
specific BFFSP design possesses. The weights, ws, ... ,ws, reflect the importance
that the experimenter wishes to place upon the six optimality criteria. Since larger
numbers for criteria (a) - (c) are desirable, it is intuitive to have w;, wy, w3 > 0 where
wy > wp > ws. (The latter inequality arises due to the priority ordering given to
control main effects, CN interactions and CC interactions in Table 8.3.) In contrast,
smaller values for criteria (d) - (f) are desirable so it is useful to have the restriction
wg, w5, We < 0 where wy < ws < we. With these restrictions on the w; (1 <4 < 6)
we then select the BFFSP design that maximizes Tiosq;.

The only occasion where a weight, w;, should equal zero is when the exper-
imenter has no interest in the associated criterion. For instance, if the objective
was only to count the number of clear control main effects and CN 2fi’s that a
(mi+n2)—(kit+ka)£(b1+b2) BEFSP design possesses, a weight selection of w; = wy = 1
and ws = wy = ws = wg = 0 would be appropriate. That is, in this case no consid-
eration would be given to optimality criteria (c) - (f).

Given the variety of expressions that T, may take, it is envisioned that the
optimal BFFSP RPD determined by the one-number summary statistic could be
different than the design selected by the sequential approach of Section 8.2.1. An
example illustrating this possibility is given in Section 8.3.

Finally, when comparing BFFSP RPDs having control factors at the WP level,
it is reasonable to set ws = wg = 0 since in this case we know in advance that all

control main effects and CC 2fi’s will be tested against WP error.

8.2.3 Overview of the RPD Search Algorithm

This section provides a brief overview of the structure of the program used to con-
struct optimal BFFSP RPDs.
The program, “RPDsearchmixed.cpp”, consists of a main body of code that calls

upon four primary functions. These five program elements are now briefly described:

(1) Main Body of Program: This portion prompts the program user to enter all of
the relevant variables. For example, ni, no, k1, k2, b1, and by are all entered at
this stage. In addition, the user is prompted to enter the weights, w;, (1 < i < 6)

if calculation of x4, is desired.
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The construction of the search-table is also completed at this stage for use in
subsequent functions. (See Chapter 5 for a detailed description of the search-

table in the context of BFFSP screening experiments.)

(2) Function “SearchDCSWLP?”: This function receives (from the main body of
the program) the generators for each of the potentially optimal BFFSP RPDs.
From these generators, the DCS of the design is constructed using modulus 2
arithmetic. The DCS is then passed back to the main body of the program to

. be used in subsequent functions.

(3) Function “AliasStructure”: A considerable number of calculations are per-
formed by this function. This function first receives the DCS of the BFFSP
design currently under consideration. It then calculates the number of clear
low-order (C, CN, and CC) effects, using the DCS from “SearchDCSWLP”.
For each design, this function also calculates the number of clear C, CN and
CC effects that are to be tested against WP error. Finally, the one-number
optimality criterion (Section 8.2.2) is calculated.

(4) Function “Comparison”: This function receives, from “AliasStructure”, the
number of clear low-order effects that a BFFSP design possesses. Also, it re-
ceives information regarding the precision of the low-order effects as well as
the value of ;. From these values comparison is made with the values of
other BFFSP designs previously calculated. Using Table 8.3 as its guide, this
function then selects a representative design that is optimal with respect to
these criteria. Note that the optimal designs selected according to Table 8.3

and Tyt may differ.

(6) Function “Print”: This function prints the DCS of the optimal design(s). As
well, this function prints information regarding .., the number of clear low-
order effects, and the precision of the clear low-order effects for the optimal
BFFSP robust parameter design(s).

The search algorithm and all other programmable calculations were implemented
using Microsoftg Visual C**® 6.0 Professional Edition. Computer hardware con-
sisted of a Dimension™ 8100 Desktop Pentium 4 computer with a 1.40 GHz CPU.
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8.3 Using the Optimal BFFSP RPD Catalog

Appendix E contains BFFSP RPDs that are optimal with respect to the sequential
ranking scheme of Table 8.3. These designs were constructed via pure WP block-
ing, separation and mixed blocking. All designs have between 6 and 10 treatment
and blocking variables and comnsist of 16 or 32 runs in either 2 or 4 blocks. Each
2(mi+n2)—(ki+ke)£(b1+52) RPD is abbreviated “Design = 11, no; k1, ka: b1, be” in order to
distinguish between different designs. Within the tables, the designs are presented
in ascending order using n = n; + ng + by + by, the total number of treatment and
blocking variables. A - G and p - v are used to denote the WP and SP factors, re-
spectively, with the last letter in each generator representing the added factor. The
Greek letters, §; and §;, denote the ™ and j** pure WP blocking variable and sepa-
rator, respectively. In columns (a) - (f) we have included a summary of each optimal
BFFSP RPD with respect to the six optimality criteria of Table 8.3. In column (g)
we have included the value of the one-number optimality criterion, Z;o, having used
the total number of clear C main effects and CN 2fi’s as our one-number statistic. (If
a different one-number criterion is of interest to the practitioner the search program
may be rerun using a different weighting scheme for z5t4.)

Recall that when constructing BFFSP RPDs we are considering the following two

scenarios:
1. Noise factors as WP factors (that is, control factors as SP factors);
2. Control factors as WP factors (that is, noise factors as SP factors).

Consequently, for a given number of runs, each 2(m+n2)=(ki+k2)E(M1+52) Jesign is as-
sessed first by assuming that the noise factors are at the WP level, and then in a
separate table, by assuming that the control factors are at the WP level. In the latter
case we do not explicitly calculate criteria (d) and (f), since in this case all C main
effects and CC 2fi’s will naturally be tested against WP error. Therefore, when con-
trol factors are run at the WP level we simply present an assessment of the designs
with respect to criteria (a), (b), (c), (e) and (g).

For certain values of ni,ng; ki, k2; b1, b2 a BFFSP RPD may be optimal with
respect to the sequential ranking scheme (Table 8.3) but not with respect to the one-

number criterion, Ti.. In such cases we present two optimal designs—the design
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that is optimal according to Table 8.3 and the design that is optimal by Tose;. The
latter design is denoted by a “*” and, in the appropriate table, follows immediately
after the 2(m1+n2)=(ki+k2)E(b1+b2) design that is optimal according to the sequential

ranking scheme.

Example 8.3.1 Consider a 2@+t9-0+2=040) desion with ny = 4 control factors.
This 16-run design is listed in Table E.1. Its generators are given as B = AB,
T = ABp and s = ABq. This design has four clear C main effects (criterion (a)) and
criteria (b) - (f) all have zero values. Using the sequential effect ranking scheme, this
design represents the “best” that one can do when the goal is robust experimentation.
That is, all other 2(r+n2)=(kitk2)E(bi11b2) fosions in Dyyyy, selected via the sequential
ranking scheme, will have four clear C main effects. In addition, all designs in D)
will have zero values for criteria (b) - (f).

We have previously mentioned that the optimal BFFSP RPD selected by the one-
number criterion could be different then the optimal design selected by the sequential
approach. Such an event occurs here. Using the one-number criterion (where Tigq =
T(;) + T(ii), the total number of clear C main effects and CN 2fi’s) we observe that the
2(2+4)~(0+29£(14+0) gesign with generators B, = AB, r = ABpq and s = ABpq, has a
total of six clear C and CN effects—two more than that of the previous design. (Note
that this design is optimal with respect to Tio despite the fact that r is aliased with
s.) This “alternative” optimal design is denoted with a “*” and follows, in Table E.1,
immediately after the design that is optimal according to the sequential effect ranking

scheme.

The designs listed in Appendix E do not form an exhaustive list of all possible
16 and 32-run BFFSP RPDs. Obviously one could consider designs with values of
n (where n = ny + ng + by + be) larger than those considered here. Indeed, even for
values of n between 6 and 10, not all ny, ng; ki, ke; by, bo design combinations have
been assessed. The intent of the catalog is to provide a substantial portion of those
16 and 32-run optimal RPDs that experimenters will find useful to perform.

In comparison to the number of designs investigated in the context of MA BFFSP
screening experiments, we anticipate that there are more ni, ng; k1, ko; by, by combi-
nations to consider in the robust design setting. This arises due to the fact that in
RPD we no longer restrict ourselves to designs with R > 3. In the optimal BFFSP
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RPD catalog, many of the designs have R < 3 and would not have been included in
the MA BFFSP design catalog.

Finally, since impractical designs (Section 3.2.2) can occur in the RPD setting we
require that 1 < by < ng — kg — 1, as we did for MA BFFSP screening experiments.
However, since in robust design we no longer have the restriction that R > 3, we no

longer require that & have an upper bound of n; — k; — 1 for resolution purposes.

Example 8.3.2 For erample, consider a 28+t2-C+DE6+0) desion with ny = 2 con-
trol factors. Suppose the generators are i = A, s = B, 3 = C and ¢ = ABCp.
The DCS of the design is I = Ay = By = Cf3 = ABCpq = ABB1s = ACB. S5 =
BC (3 = ABCB1523 = BCpgpy = ACpqfa = ABpgfs = CpqB1f2 = Bpgffs =
ApqBafs = pqf1Pafs, implying that all control main effects and CN 2fi’s are clear.
Therefore, despite the confounding of noise main effects with blocks, we have con-
structed a reasonable RPD. Clearly, if we were using the restriction R > 3, (implying
b < ny — k1 — 1) this design would not be eligible.

8.4 Limited Theoretical Results for RPDs

When selecting a 2(n1+72)—(k1+k2)£(b1452) design for the purpose of robust experimenta-
tion, information regarding the estimation capacity of the design is typically required.
In particular, knowledge about the number of clear low-order effects is crucial in se-
lecting the appropriate design. It was seen, in Section 8.2.1, that our search program
(implemented via computer) provides us with such knowledge. The objective of this
section is to provide a glimpse of the theoretical development necessary to answer
questions regarding the estimation capacity of a given RPD. Specifically, we will
consider the difficulty in determining, without the aid of a computer, the number
of clear CN 2fi’s that a given RPD possesses. To do this, we will consider “simple”
cases from the FFSP and BFFSP RPD scenarios. It is hoped that the reader will
appreciate the need for further research in this area.

The following theorem describes conditions under which all CN 2fi’s will be clear
for a FFSP design.

Theorem 8.1 Consider a 2(M+n2)-(1tk2) FESP design in cross array form such
that 2m+n2)=(kitke) — 9(m—k) @ 9(m2~k2) yhere all ky added SP factors are generated
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exclusively by SP factors. If both the WP and SP arrays are of resolution at least
3, then all ning CN 2fi’s will be clear.

Proof : This proof follows from that of Theorem 10.1 (ii) in Wu and Hamada (2000,
pp. 460-461).

Without loss of generality, let 2(™~%) = dy the noise array and let 2(m2—F2) =
dc, the control array. Let u;,...,uq, _; denote the words in the DCS of dy and
V1, ... ,Ugky_; denote the words in the DCS of di. Then dy®dc, which is a 2(1+n2)~(k1+ks)

design, has 2F1%2 — 1 words in its DCS of the form
Uz, Vg, Uiy, (82)

where i=1,...,2M —1landj=1,...,2% — 1.

First, note that any of the niny; CN 2fi’s can only appear in u;v; among the
words in 8.2. Because d¢ and dy must both be at least resolution 3, u; and v; have
at least length 3. Also, since u; only involves noise factors and v; involves only control
factors, this implies that w;v; has length at least 6. Therefore, any CN 2f is aliased
with four-factor or higher-order interactions. Also, a CN 2fi can be aliased with some
3fi’s that involve at least one control factor and at least one noise factor. (See the

following example.) Therefore, by definition, each CN 2fi is clear. O

Example 8.4.1 Consider a 23+3)-0+1) FESP design with n, = 3 noise factors. If
the added factors are C = AB and r = pq this implies that the DCS is of the form I
= ABC = pgr = ABCpyr. It is obvious that all CN 2fi’s are clear. (For ezample, Ap
= BCp = Agqr = BCqr, implying that Ap 1is clear.) Furthermore, note that all CN

2fi’s are clear regardless of whether the noise factors are run at the WP or SP levels.

The following theorem describes conditions under which all CN 2fi’s will be clear
for a BFFSP design.

Theorem 8.2 Consider a 2(m+n2)-(ki+ka)E(bitb2) BEESP design in cross array form
such that 2m+ne)=(kitka)2(bitbe) — glmi~k)Eby @ 9(na—ka)Ebe  hore gll ky added SP
factors and by separators are generated exclusively by SP factors. If both the WP

and SP arrays are of resolution at least 8, then all nyny CN 2fi’s will be clear.

Proof : Without loss of generality, let 2(m—F)bt = gy the noise array and let
2(me—k2)Eb2 — ¢, the control array. Let ui,..., Uk +s_, denote the words in the
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DCS of dy and v1,. .. , Ugky+b,_; denote the words in the DCS of dg. Then dy ® dg,
which is a 2(n1+n2)=(k1+k2)£(b1+b2) Jegign has 2k1+ke+bi+b2 — | words in its DCS of the

form
Us,y Vg, Uiy, (83)

where i =1,...,20% — 1 and j=1,..., 2%t 1,

First, note that any of the nyny CN 2fi’s can only appear in u;u; among the words
in 8.3. Also, since d¢ and dy must both be at least resolution 3, u; and v; have at
least length 3. In the BFFSP setting, notice that u; may involve both noise factors
and pure WP blocking variables. Similarly, v; may involve both control factors and
separators. Furthermore, using Equation 3.3, any word containing a blocking variable
in the DCSs of d¢ or dy must be of length at least 3.5. This implies that u;v; has
length at least 5.5. Therefore, any CN 2fi is aliased either with treatment x block
interactions (which we assume to be negligible) or with three-factor and higher-order

interactions. Regardless, we conclude that each CN 2fi is clear. O

Example 8.4.2 Consider a 28+0-0+0E04) degion with ny = 3 noise factors. Us-
ing the generators 1 = ABC, s = pq and 6, = pr we are ensured that dy and dc
both have resolution of at least 3. The DCS is given by I = ABCB, = pgs = pré; =
ABCpqsp, = ABCprpi6, = qrsé, = ABCqrspi6,. One can verify that oll CN 2fi’s
are aliased with either treatment x block interactions or with interactions having at
least three factors. Therefore, all CN 2fi’s are clear. O

Theorems 8.1 and 8.2 apply only to those “rare” FFSP and BFFSP RPDs in
which the added SP factors and separators are generated ezclusively by SP factors.
Considerable difficulty arises in predetermining the number of clear CN 2fi’s in those
FFSP and BFFSP RPDs having WP factors in their SP factor and separator gen-
erators. The following theorem describes one scenario where a single WP factor is
present within the generator of a lone SP added factor. This result is presented to
give the reader an idea as to the complexity in predetermining the number of clear
CN 2fi’s in FFSP and BFFSP RPDs.

Theorem 8.3 Consider a 2m+m2)-(tk) FESP design with ky > 0 and ke = 1
such that the added SP factor has one WP factor in its generator. For a design with

resolution 3 in both dc and dy, there can be at most nyn, — 2 clear CN 2fi’s.
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Proof : Without loss of generality let 2™~F1) and 2("2—k2) represent dy and dg,
respectively. Let uy, ..., ug,_; denote the defining words in the DCS of dy and v;
denote the lone word in the DCS of d¢. Then dy X d¢ has 2%+ — 1 words in its DCS
of the form

Uy V1, Uiy, (84)

where 1 =1,...,2% — 1.
Letting L(u;) denote the length of the word u;, we have min L(y;) = 3, i =
1,...,2F—1. Also, L(v;) = 3. Then, since v; contains one WP factor (by assumption)

this implies that two CN 2fi’s are “automatically” unclear.

If the noise (WP) factor in v; is common to a noise factor in one of the u; then
min L(u;v1) = min L(u;) + L(v;) — 2 = 3+ 3 — 2 = 4, so that additional CN 2fi’s
may be unclear. Therefore, to minimize the number of unclear CN 2fi’s arising from
the four letter words we must have that min L(u;v;) > 4. This only occurs if the
noise factor in v; is not present in any of the u; having length 3. In this case, the
only two unclear CN 2fi’s arise from v; and we have at most 11715 —2 clear CN 2fi’s. O

For FFSP designs having k; > 1 with several WP factors in each of the added SP
factor generators, any theoretical results will require very technical derivations. The
level of required mathematical sophistication is further magnified when considering
the presence of pure WP blocking variables and separators. In the context of BFFSP
RPDs, the use of our search algorithm (implemented via computer) is absolutely
necessary in order to circumvent tedious theoretical derivations. Little, if any, work

has been completed in this theoretical research area.



Chapter 9

The Chrome-Plating Experiment
Revisited

We now wish to address the optimality questions pertaining to the case study first
described in Chapter 1. To do this, design issues surrounding the chrome-plating

experiment will now be investigated in detail.

9.1 Three Competing Designs

'Three design scenarios will be considered in this chapter, as illustrated in Figure 9.1.
One can think of F as having been obtained from D by elevation of p to P and §
as having been obtained from D by separation. D uses four rectifiers and eight days,
whereas E' and S use two rectifiers and 16 days. All of the designs use the same
number of runs, and all are blocked by week. For each scenario the MA design was
obtained (using the search-table approach outlined in Chapter 5).

For scenario D two generators are required—one SP factor generator and one WP
blocking variable generator. The MA design has 7 = ABpq as the factor generator
and B; = ABC as the pure WP blocking generator.

For scenario E three generators are required—one SP factor generator and two
pure WP blocking variable generators. The MA elevated design has 7 =ACPq as the
SP factor generator and 51 = ABC and 3 = ABP as the blocking generators.

Again, for scenario S three generators are required. This time, however, one of

the blocking variables is formed via separation. The MA design has 7 = ABq as the

121
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Figure 9.1: The Three Competing Scenarios, Illustrating Elevation and Separation

Scenario D
9(8+3)-(0+D)=(1+0) i

8 days; 4 rectifiers; 2 blocks

WP factors ABC
SP factors pgr

e hN
Scenario F Scenario S
9(4+2)~(0+1)%(2+0) 9(8+3)—(0+1)£(1+1)
16 days; 2 rectifiers; 4 blocks 16 days; 2 rectifiers; 4 blocks
WP factors ABCP; WP factors ABC;;
SP factors gr SP factors pgr

factor generator and 5; = ABC and §; = ACpq as the blocking generators .

9.1.1 Comparison of Designs

Table 9.1 summarizes the advantages and disadvantages of the three designs, with
emphasis on main effects and 2fi’s only. The presence of at least one asterisk (* or *
*) implies that the effect of interest is tested against the WP error for that design.
Note that two asterisks appear under Design D. This reflects the fact that the WP
error in Design D is larger than that in the other two designs, because Design D
utilizes only eight days at the WP level. (The variance forms of WP and SP effects
for Designs D, E and S are presented in Table 9.2.) The two horizontal lines in
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Table 9.1 are used to set apart the effects, p, Ap, Bp and Cp. This is done to remind

the reader that under elevation, these are WP effects.

Table 9.1: Precision of Effect Estimates and Alias Structures for the Three Designs

Effect Design D Design E  Design S
A * % * *

B * % * *
AB * % * * qr
C * % * *
AC * % * *
BC * % * *

p *

Ap *

Bp *

Cp blocks

q

Aq Br
Bq Ar
Cq

Pq *

r

Ar Bq
Br Aq
Cr

pr *
qr * * AB

Consider Design D. On the one hand, it can be seen that all main effects and 2fi’s
are clear in that they are not aliased with other main effects, 2fi’s or blocks. On the
other hand, the WP error in design D is larger than that in the other two designs,
as noted above and as also seen in Table 9.2.

It would appear that design £ is better than design S, because there is too much
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Table 9.2: Variances of Estimated Effects for Designs D, E and S

Design WP Effects SP Effects
D 502 + 02 02
E S 102 + 402 02

aliasing in S. It is interesting to note that the experiment that was run was very
similar to design E. The only difference was that the actual 2(4+2)~(0+D£(2+0) gyner.
iment used 7 = ABCPgq as the factor generator, rather than r = ACPgq. Without
realizing it at the time we had used the MA design for the unblocked design—and
then blocked it—instead of considering all generators at the same time as dictated

by the search-table approach. A useful lesson was learned.

9.1.2 Practical Considerations

A few practical issues arose in the chrome-plating experiment that are worthy of
comment. These deal with center points, blocking and the use of factors that involve
concentrations.

Firstly, the actual experiment used 20 days, rather than 16, with the additional
days corresponding to center points in the quantitative factors. These points were
useful for a number of reasons with the most important of these being that the center
points corresponded to current operating conditions.

Secondly, as the experiment proceeded some of the benefits of blocking became
evident. For one thing blocking allowed the design to be rescued at one point. This
happened on the Monday of the second week, when the bath temperature was sup-
posed to be at its high level. It turned out that, starting from a cold start on Monday
morning it was not possible to reach the high temperature when the parts were to be
placed in the tank. The design for the third week, which had a low bath temperature
on Monday, was interchanged with the design for the second week. A decision was
also made to begin heating the bath on Sunday for the third and fourth weeks, in
order to reach the high temperature sooner. Another advantage of blocking was that



CHAPTER 9. THE CHROME-PLATING EXPERIMENT REVISITED 125

interim analyses could be performed at the end of each of the weeks. This could have
led to changes in the experimental design, or even to termination, although this did
not happen in this experiment.

Thirdly, there was another restriction on randomization that is common in sit-
uations involving concentrations. Basically, it is relatively easy to increase the con-
centration of a solution, but much more difficult to decrease it. This is because
decreasing the solution requires that some of the solution be discarded and, in the
chrome-plating example, the expense associated with disposal was prohibitive. For
this experiment a compromise was reached. It was decided that the bath would be
discarded at the end of each week, but that the concentrations (in chrome and sul-
phate) would increase throughout the week. (Each Wednesday thus corresponded to
a center point in the WP factors.) It was recognized that because we did not ran-
domize over the two concentration factors, if something were to change during the
week (for example, degradation of the bath) we would have difficulty with inference
concerning the concentrations. However, the feeling was that the one week blocks
were short enough to prevent such difficulties.

For proprietary reasons, we do not provide analytical results from the chrome-
plating experiment. One of the approaches that we used, however, involved the con-
struction of two normal probability plots for each response variable—one for the WP
effects and one for the SP effects (as determined by the rules in Section 4.2). This
analytical approach is typical for FF and FFSP experiments (Daniel, 1959; Box and
Jones, 1992; Bingham and Sitter, 2001; Loeppky and Sitter, 2002). The results ob-
tained from the screening experiment enhanced understanding of the chrome-plating
process, and led to further experimentation involving the key factors.

Finally, it should be noted that the actual experiment contained two additional
factors—plating time and surface preparation. These factors were easier-to-vary than
A, B, C, p, ¢ and r and were considered to be sub-subplot factors. By utilizing
4 rectifiers, a 2% design in the sub-subplot factors could be performed daily using
one part per rectifier for each combination of plating time and surface preparation.
However, since the focus in this chapter (and thesis) is on BFFSP designs, we choose

to forgo any further discussion pertaining to the sub-subplot factors.



Chapter 10
Elevation

In Chapter 1 the notion of elevation was introduced in context of the chrome-plating
experiment. In this case study, we saw that elevation of a SP factor afforded a full,
unreplicated 2* design at the WP level over the course of the 16 day experiment. This
16-run design at the WP level was viewed as more appealing than an 8-run 22 design
at the WP level because of the increased precision for the WP effects provided by the
8 additional runs in the 2* design. Also, in the chrome-plating experiment elevation
provided a means by which less fractionation could be imposed upon the SP level.
Recall that the experimenters were originally faced, in essence, with a 232 design at
the SP level due to the availability of only two rectifiers (the SP experimental units)
per day in the tank. Instead of running a 1/8% fraction at the SP level, elevation of a
SP factor implied that a 22~ SP design could be performed daily on the two rectifiers.
Thus, by means of elevation, less fractionation was incurred at the SP level. (For an
indepth discussion concerning specific design issues in the chrome-plating experiment
refer to Chapter 9.)

In contrast to Chapters 1 and 9 this chapter investigates the concept of eleva-
tion from a broader perspective. Two elevation approaches are defined and for each
approach the impact of elevation on the estimation capacity (aberration, number
of clear effects, precision of effects) of selected MA BFFSP designs is documented.
It will be shown that elevation is but one approach by which an experimenter may
increase the estimation capacity of an existing BFFSP design. Estimation gains may
also be realized by means of separation. This chapter investigates potential advan-

tages/disadvantages realized by elevation or separation of selected MA BFFSP de-
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signs. Catalogs of designs are presented detailing cases in which elevation and/or
separation may yield superior design choices for an experimenter.

Note that research concerning elevation cannot proceed without satisfaction of
one primary assumption—the existence of a wversatile factor. A versatile factor is
a SP factor, say p, that may be elevated to the WP level, say P, without causing
the experimenter to be unduly concerned with the ensuing loss of precision for the

elevated factor as a result of running it at the WP level.

10.1 Elevation Vs. Separation: As Motivated by
the Chrome-Plating Experiment

In this chapter’s introduction we alluded to the fact that there are two approaches
to elevating a 2(m1+n2)—(ki+k2)t(1+52) egign. The first approach to be evaluated is
depicted in Figure 10.1 which is a generalization of the methodology undertaken in
the chrome-plating experiment (Figure 9.1). Figure 10.1 depicts the scenario in which
an elevated and a separated design are both investigated as possible alternatives to
an initial design. One feature of this approach is that the number of WP treatment
combinations per block remains constant across the initial, elevated and separated
designs. This methodology follows that of the chrome-plating experiment where the
initial, elevated and separated designs (Scenarios D, E and S in Figure 9.1) all had
four WP treatment combinations per block. The advantage of fixing the number of
WP treatments in blocks, across designs, is that the WP variability, 02, can then
be thought as constant across designs. That is, fixing the number of WP treatment
combinations in a block allows the experimenter to assume that each design possesses
the same degree of homogeneity among the WP experimental units. The assumption
of constancy of o2 across designs will allow for an accurate comparison of WP effect
precision between designs.

A mathematical description of the elevation and separation procedures in Fig-
ure 10.1 is now detailed. Firstly, let the set of all possible BEFSP designs be denoted
by D = {d|d = 2mne)=(rtk)2bitba)} = {d|d = (ny,ng; k1, ka; b1, b2) }. Mappings
for both the elevation and separation procedures can then be defined utilizing this
notation. For elevation, let fg, be the mapping such that fz, : D —> D, where
Te(d) = fr,(n1,m9; k1, ka; b1, be) = (ny+1,n5—1; k1, ko; b1 +1, by). This notation im-
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plies that elevation raises one versatile SP factor, in a 2(n1+72)—(kitk2)£(bi+b2) degign
to the WP level such that the resulting design will have one additional WP factor
and one fewer SP factor. By increasing the number of WP factors by one, there is a
subsequent doubling of the number of WP treatment combinations in the elevated
design. To ensure that the number of WP treatment combinations per block is equal
to that of the initial design, one additional pure WP blocking variable is required
in the elevated design. Therefore, b; is increased by 1 as depicted in the bottom left
hand box of Figure 10.1.

Figure 10.1: Elevation Vs. Separation: As Motivated by the Chrome-Plating Exper-

iment.
Initial Design
MA 9(r1+nz)—(ki+h2)+(b1+b2)
n 2 1;np 22
by > 0; by > 0;
ky > 0; ky > 0;
e N fs
Elevation Separation
MA 2((r1+1)+(n2—1))—(k1+k2)E((b1+1)+b2) MA 2(ma-+n2)—(k1+ka)£(b1+(b2+1))
ny and byincrease by 1; b, increases by 1;
ng decreases by 1; all other variables remain
ba, k1, ke remain constant constant

Let fs symbolize the mapping which occurs under separation. Here, fs : D — D,
where fs(d) = fs(ni,ng; ki, ke; b1, b2) = (n1, ne; ki, ke; b1, ba + 1). Under separation,
no SP factor is elevated; rather, pseudo-replication of the WP treatment combina-
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tions is achieved with the presence of an additional separator (Chapter 3). (Note
that b, is increased by 1 as illustrated in the bottom right hand box of Figure 10.1.)
The additional separator causes each WP treatment level setting to be reset twice as
often, hence the replication. Also, observe that the presence of the additional sepa-
rator implies that there will be twice as many blocks, 20112+ a5 compared to the
initial design. This doubling of the number of blocks ensures that the number of WP
treatment combinations per block is equal to that of the initial design. Furthermore,
from the comments in the previous paragraph we may infer that both the elevated
and separated designs have an equal number of WP treatment combinations per
block.

It can be seen that the initial, elevated and separated designs in Figure 10.1 are
fundamentally the “same”. By this we mean that from a practitioner’s perspective
each design could be run just as easily as another. To see this, consider the following.
Firstly, all three designs require the same number of runs. Therefore, the initial,
elevated and separated designs all require the same number of experimental units
and intuitively they should then require an identical amount of resources (time,
money, personnel) to complete.

Secondly, the presence of an additional WP factor in the elevated design will not
increase the complexity of the experiment. Note that the elevated factor is inherently
an easy-to-vary factor, evidenced by its placement at the SP level in the initial design.
Therefore, raising this easy-to-vary factor should not impose any additional strain
upon the resetting of the other WP treatment levels.

Thirdly, as was mentioned previously, the restriction that the number of WP
treatments per block be fixed across the three designs enables a “fair” comparison of
02 the WP variability. This constancy of WP variability across the designs prevents
“apple and orange” comparisons in terms of precision of estimated WP effects. This

point will be expounded upon in subsequent sections.

10.1.1 Some Comments and an Example

Before proceeding to an example some additional general observations regarding the
implications of Figure 10.1 are in order. Firstly, elevation always requires that an
initial design possess n; > 1 and ny > 2. If the initial design has ny = 1, this implies
that the elevated design has ny = 0 which in turn implies that the elevated design
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is not a split-plot design. In this case, the elevated design could be thought of as a
two-level BFF design, a scenario not of interest in this research.

Secondly, it has been noted that elevation of one SP factor or the presence of one
additional separator doubles the number of runs at the WP level. This increase in WP
runs serves to increase the precision of the WP effect estimates, a result developed
first in Chapter 4 in the context of separation and in Chapter 9 in the context of the
elevated chrome-plating design. The important point here is that the elevation and
separation procedures yield an identical increase in precision for the estimation of

WP effects. More will be said about this point after the following example.

Example 10.1.1 Suppose ezperimenters in a manufacturing company initially con-
template running a 260+3)-0+220+) design. The 32-run design, perhaps too large to
be completed in one shift, is to be run in two blocks. After careful consideration of
the design, suppose that the ezperimenters are not satisfied with the degree of pre-
cision at the WP level that this design provides. An effort should then be made to
explore methods by which the precision of the yet-to-be estimated WP effects may be
mcreased.

Note that the 26+9)-0+220+) gesign qlready includes one separator (by = 1)
but assume that the resulting 8 WP runs are not sufficient for achieving a satis-
factory level of precision for the WP effects. In this setting, consideration of a de-
sign incorporating an elevated factor, or perhaps an additional separator may lead
to a better design choice. Following the general approach outlined in Figure 10.1,
the two design alternatives are the 2(+9-(1+22(+1) eleyqgted design (Design A) and
the 2B3+5)-(+220+2) design (Design B)—note the additional separator in the latter
design. All three designs have four WP factor combinations per block so accurate

comparisons of WP errors across designs can be made.

Table 10.1 assists in summarizing the advantages and/or disadvantages of the
three designs in Example 10.1.1. Specifically, Table 10.1 provides the following sum-

mary:
1. Lists all factor main effects and 2fi’s for each design.
2. Differentiates between clear and unclear treatment effects.

3. Provides the alias chain for each unclear treatment effect.
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Table 10.1: Precision of Effect Estimates and Alias Structures for the Initial, Elevated
and Separated Designs in Example 10.1.1.

Effect Initial Design Design A Design B
A --BC - -BC
B --AC - -AC
AB --C -CD, blocks -C

C --AB - -AB
AC --B -BD, qr -B
BC --A -AD, ps -A
D\t - -
AD\ At 1s -BC, ps blocks
BD \ Bt pq -AC, gr -

CD \ Ct -AB, blocks -pq, rs
p

Ap Ds

Bp qt Cs

Cp Bs qt
Dp\pt Bq As Cq

q

Aq Cr

Bq pt Dr

Cq Ar pt
Dqg\qt Bp Br Cp

r

Ar st Cq

Br Dq

Cr Aq st
Dr\rt As Bq Cs

s

As 1t Dp

Bs Cp
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Table 10.1 (Cont’d)

Effect Initial Design Design A Design B
Cs Bp Tt

Ds \ st Ar Ap Cr

Pa - -Bt - -rs, Ct

pr - - - -gs

pPs -AD,BD  -qgr

qr -AC,BD  -ps

gs -- - -pr

rs At - -pq, Ct

4. Distinguishes between those effects that are tested against the WP and SP

errors.
5. Gives indication to the size of a design’s WP error.

Note that to correctly read Table 10.1 one must replace ¢ with D (and vice
versa) within the appropriate effects when moving between the initial and elevated
designs. (That is, we are explicitly assuming that treatment factor ¢ is the versatile
SP factor in the 26+5)-(1+2)2(0+1) design.) Using Table 10.1 the following observations

are noted:

1. The initial design has less aliasing of SP main effects and 2fi’s. In fact, the
initial design has 13 clear SP 2fi’s whereas the elevated and separated designs

have only 4 and 9, respectively.

2. Effects tested against WP error are indicated by either one dash (-) or two
dashes (- -). The presence of two dashes reflects a larger WP error for the
corresponding main effect or 2fi. The elevated and separated designs both have
smaller WP errors (that is, greater precision) than the initial design; therefore,

their WP errors are denoted by only a single dash.

3. The 2(4+49-(1+2(1+1) eleyated design has the “best” alias structure at the WP
level. In this design, all WP main effects are clear. All WP main effects are

unclear in the initial and separated designs.
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4. Overall, the elevated design has the worst alias structure in that it possesses
only 12 clear WP and SP main effects and 2fi’s. The initial and separated
designs have 18 and 14 clear WP and SP main effects and 2fi’s, respectively.

10.1.2 The Initial, Elevated and Separated BFFSP Design
Catalog

In this section we outline the construction and use of the BFFSP design catalog, Ap-
pendix C, containing MA initial, elevated and separated BFFSP designs. For a given
initial MA 2(m1+n2)=(kitke)(b1+b2) design, the catalog provides a corresponding MA
2((n1+1)+(n2—1)) ~(k1 +k2)=((b1+1)+b2) glevated design and a MA 2(+ne)=(k1+ke)Z(bi+(b2+1))
separated design. Each group of three associated designs is referred to as a “triple”,
where the elevated and separated designs represent alternative choices available to
an experimenter in light of an initial design.

For brevity, the initial designs that we will consider represent only a subset of
the 32-run MA BFFSP designs already tabled in Appendix B. Also, we will not
investigate the 8 and 16-run design scenarios here. It is envisioned that this catalog
of triples contains a large number of the 32-run BFFSP design possibilities facing
an experimenter and thereby is considered an extensive although not an exhaustive
listing. Each initial MA design in a triple must possess n; > 1 and ny > 2. These
restrictions are a consequence of the discussion in Section 10.1.1, where we explained
that if these inequalities do not hold a split-plot design will not be formed by our
elevation procedure.

When selecting an initial MA 2(m+n2)-(ki+k2)£(b1+b2) design from Appendix B,
to use in Appendix C, we take the MA design having the highest ranked esti-
mation capacity—if there are multiple MA designs listed for a specific value of
1, Na; K1, ko; by, ba.

Appendix C contains separate tables of triples for each of the following scenarios:
1. The initial design is a MA 2(mtn2)=(ki+k2) FFSP design.

2. The initial design is a MA 2(1+n2)—(ki+k2)£(b1+0) BRFSP design with pure WP
blocking.

3. The initial design is a MA 2(r1+n2)-(k1+k2)2(0+b2) BRFSP design with separation.
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4. The initial design is a MA 2(m+n2)=(ki+ke)E(b1+b2) BEFSP design with mixed
blocking.

All designs have between six and ten factors and blocking variables (combined) and
consist of 32 runs in either two, four or eight blocks. Each 2(mt+m2)—(k1+k2)(bi-+b2)
BFFSP design is abbreviated “Design = ny, ng; k1, ko; by, by”. Within the tables the
designs are presented in ascending order of n = ny + ns + b; + by, the total number
of factors and blocking variables in the initial design. As in the MA BFFSP design
catalog, the WLPs are truncated at the last non-zero value. A-G and p-w are used
to denote the WP and SP factors, respectively, with the last letter in each generator
representing the added factor. The i* and j® WP blocking variable and separator
are denoted by §; and §;. In columns (a) - (f) we have again included the assessment
of each BFFSP design with respect to the six optimality criteria of Section 5.3.

One distinguishing feature of this catalog is that, within a design triple, each
design has the same number of WP treatment combinations per block. As previously
discussed, this design characteristic provides the user with the ability to accurately
compare WP errors across associated designs.

The following example provides the reader with an introduction to the use of the

“initial, elevated and separated BFFSP design catalog”.

Example 10.1.2 In Ezample 10.1.1 we envisioned an erperimenter choosing be-
tween the 20B+9)-(+2)E(0+1) - 9(+4)-(1+2)E(1+1) gy g 9B+5)-(142£(042) degigns. In that
ezample we provided Table 10.1 to assist in the selection process. However, in most
cases a table of such detail is not necessary. Rather, the practitioner should refer to
Appendiz C to quickly determine whether or not elevation and/or separation provide
designs with greater estimation capacity than that of the initial design.

To find the initial, elevated and separated designs of Example 10.1.1, scan Ta-
ble C.3 (in Appendiz C) until you reach those designs having n = ny +ng+by+by = 9.
In this catalog n reflects the number of variables in the initial design. (Note that the
elevated and separated designs will always have a value of n one greater than that
of the initial design. This is due to the presence of the additional blocking vari-
able in these designs.) After locating the correct triple (denoted by 3,5;1,2;0,1 and
4,4;1,2;1,1 and 3,5;1,2;0,2) one can make the necessary comparisons. As detailed
in Ezample 10.1.1, the initial design outperforms the elevated and separated designs

in terms of the total number of clear main effects and 2fi’s (criteria (a) and (b)).
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However, the elevated design is “optimal” with respect to the number of clear WP
main effects (4). Neither the initial or separated designs have any clear WP main
effects.

What is not obvious from criteria (a) - (f) in the catalog is that the elevated
and separated designs possess a smaller WP error than the initial design. These
precision gains are, to a large extent, the motivation behind considering the elevated
and separated designs in the first place. The ezxact form of the WP error in elevated
and separated BFFSP designs is provided in Section 10.1.3.

Again, one should be aware that not every possible 32-run design triple is present
within the catalog. We have chosen to include only those triples in which the elevated
design is superior in at least one of the criteria (a) - (f), compared to the separated
design. To include elevated designs which are inferior in all six of the criteria would
only serve to lengthen the catalog. As a result, some triples that one might expect
to be present in Appendix C have been completely omitted. The implication of these
omissions is that, for the given 32-run initial design, no elevated design could be
constructed that was superior to the corresponding separated design in any of the
criteria, (a) - (f).

Finally, one may have observed the presence of horizontal lines within the tables
while working through Example 10.1.1. The horizontal lines are used to distinguish

between triples having identical values for n = n; + ns + by + bs.

10.1.3 Additional Comments

In this section we formalize several of the implications of the elevation and separation
procedures, as outlined in Figure 10.1.

Firstly, elevation causes twice as many distinct WP treatment combinations to
be run as there would have been otherwise. Separation provides a pseudo-replication
of existing WP treatment combinations. Therefore, elevation and separation yield
small(er) variances for effects at the WP level of the design. This result can be seen by
considering the general variance form of a WP effect, Var(4) = £ (2n2~*~b202 4 62),
where A is a given WP factor (Chapter 4). We observe from this variance structure
that if a SP factor is elevated, then the exponent ny — ky — by will decrease by 1, due

to the unit reduction in 7. Also, if separation occurs, ny — ky — by will again decrease
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by 1, due to a unit increase in bs. Either approach produces a smaller numerator in
the coefficient of 02, thus decreasing the size of the WP error.

Secondly, we anticipate that the overall alias structure of elevated and separated
designs will, in general, be worse than that of the corresponding initial design. This
observation arises from the fact that the elevated and separated designs require
one additional blocking variable than the initial design. This additional variable has
the effect of increasing the degree of aliasing within the DCSs of the elevated and
separated designs. Anticipated consequences of greater aliasing among factor effects
include fewer clear SP main effects and 2fi’s. A scenario evidencing this possibility
was given in Example 10.1.1.

Thirdly, despite the fact that the overall alias structure of an elevated design
may be worse than that of the initial design, one may actually observe a decrease
in aliasing at the WP level. This possibility (of which Example 10.1.1 is a case in
point) arises due to the presence of the additional WP factor in elevated designs.
Therefore, if interest in the WP factors is high, elevation may provide a means for
higher estimation capacity at the WP level of a BFFSP design.

10.2 Elevation: Another Approach

The introduction of this chapter mentioned that two approaches to elevation were
to be considered. The distinguishing feature of the elevation procedure described in
Section 10.1 is that each (initial, elevated and separated) design in a triple had equal
numbers of WP units per block. This condition was imposed so as to maintain a fair
comparability of o2 across the designs. If one relaxes this condition another elevation
procedure can be described, as outlined in Figure 10.2.

There are two primary differences between Figures 10.1 and 10.2. Firstly, the
approach outlined in Figure 10.2 does not consider design triples but rather pairs of
designs only. That is, in this section there is no direct comparison of separation with
elevation. The decision to only compare initial and elevated design pairs is driven by
practicality (size of design catalog) rather than by theory.

Secondly, the elevation approach of Figure 10.2 considers only those design pairs
in which the number of WP units per block differs between the initial and elevated

designs. Conditions are stipulated in Figure 10.2 that allow these differences to occur.
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Figure 10.2: Elevation: Another Approach

Initial Design

MA 2(m1+n2)—(k1+k2)=£ (b +b2)
n 2 15 np 2 2
by 2 0; ba > 0;
ki > 0; kg > 0;

sz\L

Elevated Design

MA 2((r1+1)+{na—1})—(k1-+ke)=£(b]; +b5)
n, increases by 1; ny decreases by 1;
b + b, = by + bo, so by, b, either both

vary or both stay the same

In defense of holding b, + b, fixed across design pairs we present the following

two arguments:

1. Changing the total number of blocks from a proposed (initial) design may im-
pede, from a practical standpoint, completion of the experiment. For example,
suppose a 32-run BFFSP experiment is desired. If only two shifts (blocks) of
workers are available for the experiment, an increase in b; + b, between the

initial and elevated designs may be infeasible from a personnel perspective.

2. Although o2 will probably differ across designs if the number of WPs per
block differs across designs, this difference could be small if the difference in
the number of WPs per block is small. For example, if the initial design has 4
WPs per block and the elevated design has 8 WPs per block, the dissimilarities

between the designs’ o2s may be small if WPs tend to be homogenous with
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one another.

The elevation procedure of Figure 10.2 may be described as follows. As in Sec-
tion 10.1, let the set of all possible BEFSP designs be denoted by D = {d|d =
pmtne)—(krtk)t(br+52)) = Ld|d = (ny,mg; ki, ko;bi,b2)}. Let fm, be the mapping
such that fg, : D — D, where fg,(d) = fgr,(n1,n2; k1, k2;b1,02) = (ny + 1,09 —
1; k1, ko3 b, b5). This notation implies that elevation raises one versatile SP factor, in
a 2(miFn2)=(k1t+ka)+(b1+b2) degign, to the WP level such that the resulting design will
have one additional WP factor and one fewer SP factor. By increasing the number of
WP factors by one, there is a subsequent doubling of the number of WP treatment
combinations in the elevated design. Since fg, causes twice as many WP treatment
combinations to be formed there is an increase in precision at the WP level. This
result parallels that for the mapping fg,. However, unlike fg,, fg, does not produce
elevated designs with the same number of WP units per block as the initial design.
Therefore, b; is not necessarily increased by 1 under this elevation approach.

The following example illustrates one scenario where elevation, via fg,, provides

a design with appealing estimation qualities.

Example 10.2.1 Consider the resolution 8, MA 26+3)-2+1x(+0) gesign (Appendiz B).
This design has 3 clear SP main effects and 18 clear SP 2fi’s. However, no WP
main effects or 2fi’s are clear. This lack of estimation ability at the WP level may be
unattractive to an experimenter if some information regarding WP effects is desired.
Elevation of this design to a MA 26+2-2+0)(+0) design allows all 6 WP main ef-
fects to be clearly estimated. In addition, there is increased precision for estimating
the variance of these main effects due to the increased number of WP runs. More
precisely, under elevation the variance of a WP effect decreases from %012,, -+ %af to
102 + 02 (see Section 10.1.8 for the general variance form of a WP effect).

The primary drawback of elevation in this scenario is that one fewer SP main
effect and five fewer SP 2fi’s are estimable in the 26+2-C+VE0+0) degsign. When
elevation is performed this sacrifice in terms of the total number of clear SP main
effects and 2fi’s is often observed. Specifically, in the elevated design it should be
anticipated that there will be one fewer clear SP main effect (due to elevation of
the SP factor). In addition, all 2fi’s involving the versatile SP factor and other WP

factors in the initial design will “disappear” due to elevation.
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10.2.1 The Initial and Elevated BFFSP Design Catalog

In this section we outline the construction and use of the BFFSP design catalog,
Appendix D, containing MA initial and elevated BFFSP design pairs. For an ini-
tial MA 2(mitnz)-(hi+k2)t(b1+b2) design, the catalog provides a corresponding MA
2((m1+D)+n2—1))—~(k1+k2)2(51+82) elevated design as implied by the mapping fz,. The
elevated design in a pair represents an alternative to the initial design. Therefore,
this catalog provides one method by which a practitioner may choose a design that
best satisfies the estimation demands for a particular BFFSP experiment.

Appendix D contains only those 32-run initial and elevated design pairs in which
the elevated design is superior in at least one of the criteria (a) - (f). To include ele-
vated designs which are inferior in all six of the criteria would unnecessarily lengthen
the catalog. As a result, some pairs that one might expect to be present in Ap-
pendix D have been completely omitted. The implication of these omissions is that,
for the given 32-run initial design, no elevated design could be constructed that was
superior in any of the criteria, (a) - (f).

When selecting an initial MA 2(ritn2)=(ki+k)E(b1402) degion from Appendix B,
to use in Appendix D, we take the MA design having the highest ranked esti-
mation capacity—if there are multiple MA designs listed for a specific value of
71, N2; ki, koj b1, bo.

For the mapping defined by fg,, the following list enumerates all possible elevation

scenarios for 32-run BFFSP designs:

1. Elevation of a BFFSP design with pure WP blocking to another BFFSP design
with pure WP blocking,

2. Elevation of a separated BFFSP design to another separated BFFSP design,

3. Elevation of a separated BFFSP design to a BFFSP design with pure WP
blocking,

4. Elevation of a BFFSP design with pure WP blocking to a separated BFFSP

design.

All designs have between seven and ten factors and blocking variables (combined)
and consist of 32 runs in either two or four blocks. Each 2(n1+n2)-(ki1+k2)+(b1+b2) BRFSP

design is abbreviated “Design = ny,ng; ki, ko; by, by”. Within the tables the designs
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are presented in ascending order of n = n; +ng + by + ba, the total number of factors
and blocking variables. As in the MA BFFSP design catalog, the WLPs are truncated
at the last non-zero value. A-G and p-w are used to denote the WP and SP factors,
respectively, with the last letter in each generator representing the added factor. The
i* and 7% WP blocking variable and separator are denoted by §; and ;. In columns
(a) - (f) we have again included the assessment of each BFFSP design with respect
to the six optimality criteria of Section 5.3.

The following example provides the reader with an introduction to the use of the

initial and elevated BFFSP design catalog.

Example 10.2.2 Consider again the 26+3)-C+0E0140) gp g 9(68+2) =2+ D)E(1+0) Jegiong
in Ezample 10.2.1. This initial and elevated design pair may be found in Table D.1
in Appendiz D. The values for criteria (a) - (f) are listed for both designs. Again,
the elevated 26+2)~C+02(+0) design provides the experimenter with a superior design
choice if there is significant interest in the WP main effects (refer to the discussion
in Example 10.2.1).

What is not directly obvious from Appendiz D is that an elevated design possesses
a smaller WP error than its corresponding initial design. These precision gains should
not be ignored since they are, to a large extent, the motivation behind considering
elevation in the first place. The general form of the WP error in elevated designs is

provided in Section 10.1.3.

10.2.2 Additional Comments

This section highlights the primary advantages/disadvantages of elevation via fg,.
The key advantages are:

1. Precision gains at the WP level: Elevation of a versatile SP factor causes twice
as many distinct WP treatment combinations to be run. The consequence of
the additional runs on the form of the variance for a WP factor is the same as

that for elevation under the mapping, fg,.

2. Decreased aliasing at the WP level: The additional WP factor may produce
WP generators with greater word lengths. Consequently, more WP effects may
be clear in the elevated design.
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3. Consistency in the number of blocks between initial and elevated designs: The
advantage of fixed blocks is more practical than statistical. For example, if
the number of blocks (work shifts, batches of material) cannot be practically

changed, elevation under fz, may be reasonable.
The key disadvantages are:

1. Possible dissimilarities in 02 between the initial and elevated designs: Unless
the WPs are reasonably homogeneous, the WP errors of initial and elevated

designs may be incongruous.

2. Elevation of a WP factor typically results in fewer clear SP main effects and
2fi’s.
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Table A.1: Standard Run Order of the 23+3)-(0+1) FFSP Design.

Run A B C p q r Error Term
1 - - - - - - e+teaq
2 + - 4+ el+teéy
3 -4+ etey
4 + o+ - e teq
5 + - - - -+ eteyy
6 + - - exteéyy)
7 R ez + €3(2)
8 + + et ey
9 -+ - - -+ e3tey
10 + - - es + €2(3)
11 -+ - es + €3(3)
12 + + +  e3teypm
B+ + - - - - €4 + €1(4)
14 + -+ es+éyy
15 -+ + estezy
16 + 4+ - estey
17 - - 4+ - - 4+ este
18 + - - €5 + €2(5)
19 -+ - e5+e€zp)

20 + + + esteyy
21 4+ - + - - - s + €1(6)
22 + - 4+ es+ e
23 -+ + et €3
24 + + - €6 + €4(s)
2% - + + - - - ertey
26 + - 4+ ertex
27 -+ +  erteyy
28 + + - €7 + €47)
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Table A.1 (Cont’d)

Run A B C q r Error Term
29 + + + -+ egtep
30 - - €g + €o(g)
31 + - es+egp)
32 + o+ eg ey
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Table A.2: Standard Run Order of the 23+3)-(0+1)=(1+0) BFFSP Design.

Run A B C p q r f; Block Error Term
r - - - - -+ - 1 e +eqy
2 + - - - 1 ey + e
3 -+ - - 1 €1(1) T €3(11)
4 + 4+ + - 1 e1(1) T €4(11)
5 + + - - - + - 1 €2(1) -+ €1(12)
6 + - - - 1 ex(1) + €2(12)
7 -+ - - 1 €a(1) + €3(12)
8 + + + - L e +eq19)
9 4+ - + - - - - 1 e + €
10 + -+ - 1 es3(1) 1 €2(13)
11 -+ 4+ - 1 es3(1) + €3(13)
12 + + - - 1 esq) +eqas)
3 - 4+ + - - - - 1 es1) + €1(14)
14 + - 4+ - 1 e4(1) + €2(14)
15 -+ + - 1 e4(1) + €3(14)
16 + + - - I eqq) + €019
7 + - - - - - 4+ 2 epteaq
18 + - + + 2 et e
19 -+ + + 2 €1(2) + €3(21)

20 + + -+ 2 ey + e
21 - + - - - - 4+ 2 eg(2) + €1(22)
22 + - + + 2 e Tt e
23 -+ 4+ + 2 ey texm
24 + + - 4+ 2 €a(2) 1 €4(22)
25 - - 4+ - - 4+ + 2 e3) + €y
26 + - - + 2 €3(2) + €2(23)
27 -+ - + 2 €e3(2) + €3(23)
28 + + + + 2 e3(2) + €4(23)
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Table A.2 (Cont’d)

Run A B C p ¢ B1 Block Error Term
29 + + + - - + 2 e4(2) + €1(24)
30 + - + 2 e4(2) + €2(24)
31 -+ + 2 e4(2) + €3(24)
32 + + + 2 €4(2) T €4(24)
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Table A.3: Standard Run Order of the 2(3+3)-(0+1)£(0+1) BRFSP Design.

Rin A B C p ¢ 01 Block Error Term

T
- - - - - -+ -
+ - - -

[y
—

ei(1) + €1(11)
e1(1) + €2(11)
ea(1) + €1(12)
(1) + €2(12)
es3(1) + €1(13)
es3(1) 1 €2(13)
e4(1) + €1(14)

€4(1) + €2(14)

© 00 ~J O Ot i W N
+

€s5(1) + €1(15)

—
o
+

€5(1) + €2(15)

Jun—y
ok
+
+

e6(1) -+ €1(16)

[y
[\)
+

€6(1) - €2(16)

er(1) + €1(17)

= o
4
4

4+

+ + + +
+

e7(1) + €2(17)

—
o
_|_
+
+

eg(1) + €1(18)
eg(1) + €2(18)

ei2) + €1(21)

—
© -3
+ 1

+ +

ei(2) + €z21)

-
Ne)
+

€a(2) + €1(22)

DO
()
-+
+

€a(2) 1 €2(22)

BN
[t
+

e3(2) + €1(23)

N
[\V]
+

es(2) 1+ €2(23)

| \)
w
_|_
+
+ +

€4(2) T €1(24)

e4(2) T €2(24)

[\v]
(@]
+

es(2) -+ €1(25)

[\

ey

+
+ + + +

[N
[@2]
+
+ o+

€5(2) T €2(25)

[Sv]
~J
+
+

€s(2) T €1(26)

—
(@]
+
1
+ o+
I
[ I R N N . I I N T I R e T e S Gy oy oy VA oy o S G O VT UG S

+ 4+ 4+ + 4+

[\]
oo
+

€6(2) 1 €2(26)
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Table A.3 (Cont’d)

Run A B C p q r p; Block Error Term
29 - + + - - 4+ 4+ 2 epteae
30 + - - + 2 e7(2) T €3(27)
31 + 4+ + - + - + 2 ega) + €1(2s)
32 + + + + 2 eg(2) + €2(28)
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Table A.4: Standard Run Order of the 23+3)-(0+D)+(1+1) BFFSP Design.

Run A P r B 6 Block Error Term
1 - + - - - 1 agteap
2 - + - - 1 ei(1) + €2(11)
3+ - - - - I ey teqy
4 + + - - 1 €2(1) T €2(12)
29 + - + - - 1 e3(1) + €1(13)
6 + - - - 1 esu) + €q3)
T - + + - - L eqq) + €109
8 - - - - 1 eqn) + ey
9 + + + + - 2 ei2) + €1(21)
10 - S 2 e1(2) + €2(21)
11 - - + + - 2 ex(2) + €1(22)
12 + -+ - 2 ey +eyam
13 - - -+ - 2 e t €
14 + + + - 2 €3(2) + €2(23)
15 + + -+ - 2 ey(2) T €1(24)
16 - + 4+ - 2 e4(2) + €2(24)
17 - - - - 4+ 3 eis) + €i(sy)
18 - + - + 3 e1(3) + €2(31)
19 + + - - 4+ 3 €g(3) 1 €1(32)
20 - + - + 3 €y(3) 1 €2(32)
21 4+ + + - 4+ 3 e3(3) T €1(33)
22 - - - 4+ 3 €e3(3) + €2(33)
23 - - + - 4+ 3 e4(3) + €1(34)
24 + - -+ 3 e4(3) 1 €2(34)
25 + - + + + 4 ei(4) + €1(41)
26 + -+ + 4 eyt e
27T - + + + + 4 €2(4) 1 €1(42)
28 - -+ + 4 eyq + e
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Table A.4 (Cont’d)

Run P q r pB; & Block Error Term
29 + - -+ o+ 4 ey teu
30 -+ + + + 4 e3(4) + €2(43)
31 - - -+ 4+ 4 ey + ey
32 + + + + + 4 eyq) + €349
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Table A.5: Standard Run Order of the Impractical 2(4+2)-(0+1)£2+1) BFFSP Design.

Run A B D p q B p2 6 Block Error Term
1 - - - - - - - - 1 ei(1) + €1(11)
2+ - -+ + - - - 1 ez(1) + €1(12)
3 + + + - 4+ - - - 1 es3(1) 1 €1(13)
4 - 4+ + + - - - -1 ey teu
5 - + -+ - + - - 2 e1(2) + €1(21)
6 + -+ - -+ + - - 2 ey + ey
7+ - + + + + - - 2 es(2) + €1(23)
8§ - - + - - + - - 2 ey t e
9 -+ + - - - - 4+ - 3 e(3) + €1(31)
10 - + -+ + -+ - 3 ea(3) + €1(32)
im - - + - + - + - 3 esm) +eysm)
12+ - + + - - 4+ - 3 ey + €z
13 + - -+ - + + - 4 e1(4) + €1(41)
4 - - - -+ + + - 4 ey + e
5 - + + + + + + - 4 e3(4) + €1(43)
16 + + + - - + 4+ - 4 €4(4) T €1(44)
17 - - -+ 4+ - - 4+ 3 ei(s) + €1(51)
18 4+ - - - = - - + ) ex(s) + €1(52)
19 + + + + - - - 4+ ) es(s) 1 €1(53)
20 - + + -+ - -+ 3 ey ey
21 - + - - + + - + 6 eis) + €1(61)
22 + + -+ - 4+ - + 6 ey(6) + €1(62)
23 + - + -+ + -+ 6 ey temm
24 - - + 4+ + + - + 6 e4(6) 1 €1(64)
2 + + -+ + - + + T eyn+eyn
26 - + - - - - 4+ + 7 ex(7) + €1(72)
2T - - + + - - 4+ -+ 7 es3(7) + €1(73)
28 + - + - + - 4+ + T eyn+eyn
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Table A.5 (Cont’d)

Run D p q fBi B 6 Block Error Term
29 - -+ A+ o+ 8 ey tem
30 -+ - 4+ + + 8 ea(8) T €1(82)
31 + - - + + + 8  es(s) + €uss)
32 + o+ + + o+ 8 eyt
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B.1 Catalog of MA 8-Run BFFSP Designs via
Pure WP Blocking



APPENDIX B. CATALOG OF MA BFFSP DESIGNS 155

Table B.1: MA 8-Run BFFSP Designs via Pure WP Blocking.

n  Design WLP and Generators (@) (b) (c) (d) (e) (f)

5 220110 021 4 0 2 0 0 0
ABp, ABpg

6 2,3;02;10 2212 0 6o 0 0 0 O

ABp,, ABpg, Bpr

7 24:0,3:1,0 4334000001 0O 0 0 0 0 0
ABpB,, ABpq, Bpr, Aps

NOTE: The 2(m+n2)—(k1+k2)£(b1+b2) degigns are labeled as “Design = ny, no; k1, ko; b1, bo” and are
ordered by the number of treatment and blocking factors, n = ny + ng -+ by + bs.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote
the WP and SP factors, respectively. The i** WP blocking variable is denoted by 8;. Finally, the

last letter in each generator represents the added factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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B.2 Catalog of MA 16-Run BFFSP Designs via
Pure WP Blocking
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Table B.2: MA 16-Run BFFSP Designs via Pure WP Blocking.

n  Design WLP and Generators (@) (b) (c¢) (d) (e) (f)

6 2,30,1;1,0 01011 5 9 3 9 0 0
ABpB,, ABpgr
3,2:0,1;1,0 0012 5 4 2 2 0 0
ABCpf,, ABpq
41:1,0:1,0 021 5 4 1 4 0 0
ABCD, ABB,
7 240210 023002 6 0 4 0 0 0
ABp:, Bpgr, Apgs
3,2:0,1:20 03031 5 7 2 7 0 1
ABpB,, ACfs, ABCpq
3,3;0,2;1,0 0034 6 0 3 0 0 O
ABCp,, ABpq, ACpr
4,1;1,0:2,0 06 1 5 4 1 4 0 0
ABCD, ABB,, ACSs
4,2:1,1;1,0 023002 6 0 2 0 0 O

ABCD, ABp;, ACpq

NOTE: The 2(m1+n2)—(k1+k2)£(1+b2) degigns are labeled as “Design = ny, ng; ki, ka3 by, bo” and are
ordered by the number of treatment and blocking factors, n =nq + ng + b1 + ba.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote
the WP and SP factors, respectively. The i* WP blocking variable is denoted by ;. Finally, the

last letter in each generator represents the added factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c¢) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table B.2 (Cont’d)

n  Design

WLP and Generators (@) (b) (c) (d) (e)

8 2,5:0,3:1,0

3,3;0,2;2,0

3,4:0,3:1,0

4,2;1,1;2,0

4,3;1,2;1,0

9,2;2,1;1,0

9 2,6;04;1,0

3,4;0,3;2,0

3,5;0,4;1,0

037004 _ 7 0 5 0 0
ABpy, Bpgr, Apgs

ABgqt

063006 6 0 3 0 0
ABp,, ACBa, ABpg

ACpr

007700000001 7 0 4 0 0
ABCpS,, ABpg, ACpr

BCps

0730040001 6 0 2 0 0
ABCD, ABf;, ACpB,

ABpg

0370040001 T 0 3 0 0
ABCD, ABp;, ABpq

ACpr

223322000001 2 2 2 2 0
ABCD, ABE, ACpS,

BCpq

041400800041 8 0 6 0 O
ABp:, Bpgr, Apgs |

ABgqt, ABpu

09700120003 7T 0 4 0 O
ABp,, ACB,, ABpg

ACpr, BCps

317744001301 1 0 1 0 0
ABCp,, ABCpq, ABpr

ACps, BCpt
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Table B.2 (Cont’d)
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Design

WLP and Generators (@) (b) (c) (d) (e)

10

4,3:1,2:2,0

4,4;1,3;1,0

5,3;2,2:1,0

6,2;3,1;1,0

2,7,0,5;1,0

3,5;0,4;2,0

3,60,5;1,0

4,4:1,3;2,0

4,5;1,4;1,0

09700120003 7 0 3 0 O
ABCD, ABp,, ACpB,

ABpq, ACpr

041400800041 8 0 4 0 O
ABCD, ABfB;, ABpq

ACpr, BCps

337344041101 1 1 1 1 0O
ABCD, ABE, ACp,

ABpq, ACpr

44644004041 2 0 2 0 0
ABCD, ABE, ACF

BCp,, BCpq

4414488084414 0 0 0 0 O
ABp, pgr, ABpgs

ABgqt, Bpu, Apv

39794120121303 1 1 1 1 0
ABpy, ACfBs, ABCpq

ABpr, ACps, BCpt

6210888442614 0O 0 0 0 O
ABCpS,, ABCpq, ABpr

ACps, BCpt, Cpu

012140024000121 8 0 4 0 0
ABCD, ABfB;, ACS,

ABpq, ACpr, BCps

4414488084414 6o 0 0 0 O
ABCD, ABfB;, ABCpq

ABpr, ACps, BCpt
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Table B.2 (Cont’d)

n  Design WLP and Generators (@) (b) (c¢) (d) (e) (f)
10 542,310 4414488084414 0 0 0 0 0 0
ABCD, ABE, ACS,
ABpq, ACpr, BCps
6,3:3,21,0 6410684482812 0 0 0 0 0 0
ABCD, ABE, ACF
BCpB1, ABCpq, BCpr




APPENDIX B. CATALOG OF MA BFFSP DESIGNS - 161

B.3 Catalog of MA 32-Run BFFSP Designs via
Pure WP Blocking
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Table B.3: MA 32-Run BFFSP Designs via Pure WP Blocking.
n  Design WLP and Generators (a) (b) (¢) (d) (e) (f)
7 240,110 0100011 6 14 4 14 0 0
ABp,, ABpgrs
3,3;0,1;51.,0 000111 6 15 3 12 0 O
ABCpS,, ABpgr
4,2:0,1;10 000111 6 15 2 9 0 1
ABCDp,, ABCpq
4,2:1,010 021 6 9 2 9 0 0
ABCD, ABf;
8 250210 01112101 7 14 5 14 0 0
ABg,, Bpgrs, ABpgt
3,3;0,1;2,0 0300031 6 12 3 12 0 0
ABpB,, ACp,, ABCpgr
3,4:0,210 001222 7 15 4 13 0 0
ABCfy, ABpgr, ACpqs
4,2:01:2,0 010312 6 14 2 9 0 1

ABCﬂl, ABDﬁz, ACqu

NOTE: The 2(m1+n2)—(k1+k2)E(b1+b2) Jegigns are labeled as “Design = ny, ng; ki, k2; b1, bs” and are

ordered by the number of treatment and blocking factors, n = ny + ng + by + bs.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote
the WP and SP factors, respectively. The i**» WP blocking variable is denoted by f;. Finally, the

last letter in each generator represents the added factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.

(e) The number of clear SP main effects tested against WP error.

(f) The number of clear SP two-factor interactions tested against WP error.
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Table B.3 (Cont’d)
n  Design WLP and Generators (b) (c) (d) (e) (f)
8 4,2;1,0,20 061 9 2 9 0 0
ABCD, ABfB,, ACps
43:0,210 001222 15 3 10 0 2
ABCDp,, ABCpq, ABDpr
4,3;1,1;1,0 02102002 15 3 1 0 0
ABCD, ABp,, ACpqr
5,2:2,0:1,0 2212 11 2 11 0 0
BCD, ACE, ABpB,
52:11:10 001222 15 2 11 0 1
ABDE, ACDf,, BCDpq
6,1;2,0;1,0 0034 6 1 6 0 0
ABCE, ABDF, ACDp,
9 260310 0132420201 12 6 12 0 0
ABpB, pgrs, ABpqt
Bpru
3,4:0,2:20 0314220201 12 4 12 0 1
ABpB,, ACBs, ABpqr
Cpgs
3,5;0,3;1,0 003344000001 13 &6 11 0 0
ABCp,, ABpqr, ACpqs
BCyqt
4,2:0,1;30 06041103 9 2 9 0 1
ABB;, ACB,, ADfs
ABCpq
43:02:20 0116240001 14 3 10 0 2

ABC,Bl, ABDﬂz, ACqu
BCDpr
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Table B.3 (Cont’d)
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n Design

WLP and Generators

0 4,4:0,3:1,0

4,3;1,1;2,0

4,4:1,2:1,0

5,2:1,1:2,0

5,3;1,2;1,0

9,3;2,1;1,0

6,1;2,0;2,0

003344000001
ABDg,, ABCpq, ACDpr

BDps
*

ABCDS,, ABCpq, ABDpr

ACDps
061120040001
ABCD, ABp,, ACB,
ABpqr
023142020001
ABCD, ABpB,, ABpgr
ACpgs
021524000001
ABCE, ABDpS,, ACDgfs
BCDpq
003344000001
ABCE, ABDp,, ACDpq
BCDpr
22122122000001
ABCD, ABE, ACp,
BCpgr

0338000001
ABCE, ABDF, ACDp;
BCDp,

13

13

15

13

15

13

18

10

15

13

11

18

* Indicates a design with ni,n9; k1, ko; b1, b2 and WLP identical to the design immediately

preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (f).
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Design

WLP and Generators (a)

(b)

10

6,2;2,1:1,0

2,7,0,4;1,0

3,5:0,3;2,0

3,6;0,4;1,0

4,3;0,2;3,0

4,4:0,3:2,0

4,4:1,2:2.0

4,5:0,4:1,0

4,5:1,3:1,0

00344300000001 8
ABCE, ABDF, ACDp,

BC Dpq

01648304031001 9
ABS,, pgrs, ABpqt

ABpru, Bgrv

0338440405 8
ABpB;, ACBy, ABpgr

Cpgs, ABCqt
006488000014 9
ABCp:, ABpgr, ACpgs

BCqt, BCpu

0718260601 7
CDp1, BDB,s, ADpB;

ABDpq, ACpr
0131048000302 8
ABCpS,, ABD@y, ACDpq
BCDpr, ABps
073244080102 8
ABCD, ABB,, ACp,

ABpqr, ACpqs
0064880000114 9
ABCDfy, ABCpq, ABDpr
ACDps, BCDpt
026284040212 9
ABCD, ABf,, ABpgr

ACpqs, BCqt

13

10

10

12

13

10

10

13
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Design

WLP and Generators (a) (b)

(c)

(d)

(e)

()

10

5,2;1,1;3,0

5,3;1,2;2,0

5,4;1,3;1,0

5,4;2,2;1,0

6,1;2,0;3,0

6,2;2,1;2,0

6,3;2,2;1,0

6,3;3,1;1,0

7,2;3,1;1,0

0101524080001 7 11
ABCE, ABCDp,, ABpB;

ADpBs, ABDpq

025904260201 8 4
ABCE, ABDpS,, ACDp,

ABCDpq, ABpr
006488000014 9 8
ABCE, ABDf,, ACDpq

BCDpr, ABps

224462220412 4 11
ABCD, ABE, ACp

ABpqr, ACpqs

015300120001 7 6
ABCE, ABDF, ABCDp,

ABpB,, ACPB;

0351002240302 8 4
ABCE, ABDF, ACDpS,

BCDg,;, ABCDpgq
009700660003 9 0
ABCE, ABDF, ACDp,

ABCDpq, ACpr
4335304005031 3 21
ABCD, ABE, ACF

BCpB,, BCpgr

0010800440014 9 2
ABCE, ABDF, ACDG

BCDp,, ABCDpq

2

11

11

21

0
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B.4 Catalog of MA 8-Run BFFSP Designs via

Separation
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Table B.4: MA 8-Run BFFSP Designs via Separation.

Design WLP and Generators (a) (b) (c) (d) (e) (¥)

5 1,3;0,1:0,1 021 4 0 3 0 1 0
Apgqr, pgd;
6 1,4:0,2:0,1 2212 0 0 0 0 0 O

pgr, Apgs, Agqd;

7 1,550,301 4334000001 0 0 0 0 0 0
pgr, Apgs, Aqt, Apd,

NOTE: The 2(m+n2)—(kit+k2)E(b1+b2) degigns are labeled as “Design = ny, ng; ky, ko; by, ba” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + bs.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote
the WP and SP factors, respectively. The j** separator is denoted by §;. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear main effects.

(b) The number of clear two-factor interactions.

(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.

(e) The number of clear SP main effects tested against WP error.

(f) The number of clear SP two-factor interactions tested against WP error.
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B.5 Catalog of MA 16-Run BFFSP Designs via

Separation
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Table B.5: MA 16-Run BFFSP Designs via Separation.

n  Design WLP and Generators (a) (b) (c¢) (d) (e) (f)

6 1,40,1;01 0012 5 4 4 4 0 0
pgrs, Apgé,
2,3:0,1;,0,1 0012 5 4 3 4 0 2
ABqr, Bpgd;
* * 5 4 3 3 1 1
Bpgr, Apqd,
3,2:1,001 100101 2 7 2 7 0 1
ABC, ABpgb;
7 1,40,1;02 0214 5 4 4 4 0 0
pqrs, pgoy, Aprés
1,5:0,2;,0,l 0034 6 0 5 0 0 0
pgrs, Apqgt, Apré;
2,4:0,2:01 0034 6 0 4 0 0 0
ABgqr, ABps, Bpgd;
331,101 111211 3 5 3 5 1 1

ABC, ABpqr, Bpgd,

NOTE: The 2(m+n2)—(k1tk2)£(1+b2) degigng are labeled as “Design = ni, na; k1, ko b, be” and are
ordered by the number of treatment and blocking factors, n = ny + 1o + b1 + bs.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to denote
the WP and SP factors, respectively. The jt* separator is denoted by §;. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear main effects.

(b) The number of clear two-factor interactions.

(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.

(e) The number of clear SP main effects tested against WP error.

(f) The number of clear SP two-factor interactions tested against WP error.

* Indicates a design with ni,n9; k1, k2; b1,bs and WLP identical to the design immediately
preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (f).
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Table B.5 (Cont’d)

n  Design

WLP and Generators

(a)

(b)

(c)

(d)

(e)

(f)

8

1,5:0,2;0,2

1,6;0,3;0,1

2,5;0,3;0,1

3,4;1,2;0,1

1,6;0,3;0,2

1,7:0,4:0,1

2,6;0,4;0,1

3,9;1,3;0,1

0338000001
pqrs, Apgt, pgd:
Aprés
007700000001
pgrs, Apqt, Apru
Agqré,
007700000001
Bpgr, Apgs, ABqt
ABpd,
2134220001
ABC, ABpgqr, Bpgs
Agdy

09700120003
pgrs, Apqgt, Apru
pgbi, pré,
041400800041
pgrs, Apqgt, Apru
Agrv, pgd
0414008000141
Bpgr, Apqs, ABqt
ABpu, pqé
317744001301
ABC, ABpgr, Bpgs
Aqt, Apd,

6

0

5

0

1

0
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Table B.5 (Cont’d)

n  Design WLP and Generators (a) (b) (c) (@) (e ()
10 1,70,40,2 012140024000121 & 0 7 0 3 0
pgrs, Apqt, Apru
Agrv, pqéy, pris
1,8:0,5:0,1 4414488084414 0 0 0 0 0 0
pqrs, pqt, Apqu
Aprv, Agrw, pré;
2,7:0,5:0,] 4414488084414 0O 0 0 0 0 0
pqr, ABpqgs, ABqt
Bpu, Apv, Bpqé;
3,6:1,4:0,1 4414488084414 0O 0 0 0 0 0

ABC, ABpqr, Bpgs
Agt, Apu, pqd;
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B.6 Catalog of MA 32-Run BFFSP Designs via

Separation



APPENDIX B. CATALOG OF MA BFFSP DESIGNS 174

Table B.6: MA 32-Run BFFSP Designs via Separation.

n  Design WLP and Generators (a) (b) (¢) (d) (e) (D

7 150,101 000111 6 15 5 15 0 0
Apgrt, pgsé
2,4;0,1;,01 000111 6 15 4 14 0 1
ABpgs, pqré,
3,3;0,1;,0,1 000111 6 15 3 12 0 3
ABCqr, ACpgd,
3,3;1,000 10000101 3 12 3 12 0 0
ABC, ABpgré,
4,2:1,0:01 001002 6 9 2 9 0 1

ABCD, ABpgé,

8 150,102 001402 6 9 5 9 0 0
pqrt, pqséy, Aprsd,
1,6:0,2:01 001222 7 15 6 15 0 0

pqgrt, Aprsu, qrsé,

NOTE: The 2(m1+n2)=(kitk2)E(b1+b2) designs are labeled as “Design = n1,na; k1, ka3 b1, be” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + bs.

"To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to denote
the WP and SP factors, respectively. The j** separator is denoted by d;. Finally, the last letter in

each generator represents the added factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
* Indicates a design with n1,n9;k1, ko; b1, b2 and WLP identical to the design immediately

preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns
labeled (a) - (f).
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Table B.6 (Cont’d)
n  Design WLP and Generators (a) (b) (c¢) (d) (e) (f)
8 2,40,1;02 001402 6 9 4 8 0 0
pgrs, ABpqd,, Bprés
* * 6 9 4 9 0 5
ABrs, Apré,, ABpqd,
* * 6 9 4 9 1 4
ABrs, Bpgréy, Apré,
2,5:0,2:01 001222 7 15 5 14 0 0
pgrs, ABpqt, ABpré;
* * 7 15 5 15 0 2
ABrs, ABpqt, Apgré;
3.4:0.2:01 001222 7 15 4 12 0 0
ABCpr, ABCqs, ABpgd;
* * 7 15 4 13 0 5
ABCpr, ACqs, BCpqé,
* * 7 15 4 13 2 3
ABpgr, ACpqs, BCpgd,
3,3;1,0,02 100303 3 12 3 12 0 3
ABC, ABpqd:, Bpré,
3,4:1,1;,01 1002121 4 18 4 18 0 2
ABC, ABpqrs, Bpgd,
431,101 001222 7 15 3 15 1 5
ABCD, ABpgr, ACpqd;
5,2;2,0,0,1 20100202 2 11 2 11 0 1
ABCD, ABE, ACpqd,
9 15:0,1:03 0308031 6 12 5 12 1 4

Apgrst, Apqd,, Aréd,
Ap863
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Table B.6 (Cont’d)

n  Design WLP and Generators (@) (b) (c) (d) (e) (f)
9 1,60,20,2 003704000001 7 6 6 6 0 O

pgrt, pgsu, prsé;
Aqrsdq

1,703,001 003344000001 8 32 7 28 0 O
pgrst, Apgru, Apgsv
Aprséy

2,5:0,2:0,2 003704000001 7 6 5 6 1 2
ABrs, ABqt, Bqré,
ABpé,

* * 7 6 ) 5 1 1
pqrs, Bpgt, Apgd
ABprd,

2,6;0,3;0,1 003344000001 &8 13 6 12 0 0
pgrs, ABpqt, ABpru
Bgré,

* * 8 13 6 13 0 3
ABps, ABrt, Bpgru
Apqré,

* * &8 13 6 13 1 2
ABps, ABqrt, Apru
Apgéd,

3,9;0,3;0,1 003344000001 g 13 o5 11 1 3
BCpr, BCqs, ACpqt
ABpgé,

* * 8 13 5 10 1 2

ABCpr, ABCqs, Apqt

Bpgd,
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Table B.6 (Cont’d)

177

Design

WLP and Generators (a)

(b)

3,4:1,1;0,2

3,5:1,2:0,1

4,4:1,2:0,1

5,3;2,1;0,1

10 1,6;0,2;0,3

* 8
BCpr, ABCqs, ABpt

ACpqé,

* 8
ABpqr, ACpqs, BCpqt
ABCqd;

101606001 4
ABC, pqrs, ABpqé;

Bopré,

1023331101 5
ABC, ABpqrs, Bpgt

Bpré,;

003344000001 8
ABCD, ABpqgr, ACpgs
BCqé,

201324200001 3
ABCD, ABE, ACpgr
ABpgb,

05112260203 7
Agrst, Aprsu, Apgsé,

7809, Ards

* 7
Arst, Apqsu, Ard,

Apsdy, Apgrds

13

13

12

13

13

18

12

12

13

13

12

13

13

18

12

12
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Table B.6 (Cont’d)
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Design

WLP and Generators

(a) (b)

(¢) @ (¢

10

1,7;0,3;0,2

1,8;0,4;0,1

2,6;0,3;0,2

2,7:0,4;0,1

3,6;0,4:0,1

3,5:1,2;0,2

0131048000302
Agqrst, prsu, Apqsv
Aqdy, Apré,

*

pgrst, Apgru, Apgsv
pgdy, Aprsd,
0064880000114
Aqrst, Aprsu, Apqrv
Apqsw, pgrsd;
0131048000302
pqrs, ABpqt, ABpru
Bqré,, Agrd,
006488000014
ABps, ABqrt, Apru
Bpqrv, Apqé;

*

pqrs, ABpqt, ABpru
Bqrv, Agré;
006488000014
ABpgr, ACpgs, BCpqt
ABCqu, ABCpé;

*

BCpr, Bpgs, ACpqt
ABCqu, ABpd,
113928021301
ABC, pgrs, ABpqt
Bpqé,, ABpri,

8 12

7T 12 1
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Table B.6 (Cont’d)

n  Design WLP and Generators (@) (b) (c) (d) (e) (f)
10 3,6;1,3;,0,1 10556522120101 6 9 6 9 0 1
ABC, pgrs, ABpqt
Bpru, ABgré;

451,301 006488000014 9 8 5 8 1 4
ABCD, ABpgr, ACpgs
BCqt, BCpé,

54:2,2:01 204466220212 4 11 4 11 1 5

ABCD, ABE, ABpgr
ACpgs, BCqé;
6,3;3,1;0,1 404426222212 3 18 3 1 1 5)
ABCD, ABE, ACF
ABCpqr, Apgé,
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B.7 Catalog of MA 16-Run BFFSP Designs via
Mixed Blocking
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Table B.7: MA 16-Run BFFSP Designs via Mixed Blocking.

n  Design WLP and Generators (a) (b) (¢ (d) (e) ()
7 230111 0214 5 4 3 4 0 2
ABpB, ABqr, Bpgd,

8 240,211 0338000001 6 0 4 0 0 O
ABpB,, ABqr, ABps
Bpgé,

9 250311 09700120003 7T 0 5 0 1 0

ABpB,, ABpr, ABgs
Apqt, ABpgd;
10 2,6;0,4;1,1 012140024000121 8 0 6 0 2 0
ABp,, Bpgr, Apgs
ABgqt, ABpu, pqé;

NOTE: The 2(mtn2)—(ka1t+k2)£(b1+b2) degigns are labeled as “Design = ny, ng; k1, ko by, ba” and are
ordered by the number of treatment and blocking factors, n = n; + ng + by + bs.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to
denote the WP and SP factors, respectively. The i** and j** WP blocking variable and separator
are denoted by f; and §;, respectively. Finally, the last letter in each generator represents the added
factor.

(a) The number of clear main effects.

(b) The number of clear two-factor interactions.

(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.

(e) The number of clear SP main effects tested against WP error.

(f) The number of clear SP two-factor interactions tested against WP error.

* Indicates a design with ni,n9;k1, k2;b1,b2 and WLP identical to the design immediately
preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (f).
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Table B.7 (Cont’d)

n  Design WLP and Generators (a) (b) (c) (@) (e) ()
11 2,7,0,5;1,1 4121412824024412112 0 0 0 0 0 0
ABpy, pqr, ABpgs
ABgqt, Bpu, Apv
Bpqd,
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B.8 Catalog of MA 32-Run BFFSP Designs via
Mixed Blocking
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Table B.8: MA 32-Run BFFSP Designs via Mixed Blocking.

n  Design WLP and Generators (@ (b) (c) (d) (e) (¥
8 24:01:11 010312 6 14 4 14 0 1
ABpB,, ABpqs, Apqrd,
3,3;0,1;1,1 001402 6 9 3 7 0 2
ABCpf,, ABgr, ACpqd,
42:1,0:1,1 021004 6 9 2 9 0 1

ABCD, ABB1, ACpqd,

9 24,0,1;12 0308031 6 12 4 12 0 4

ABpB,, ABpgrs, Bpgé;
Bypré,

2,5:0,2;1,1 0116240001 7T 14 5 14 0 0
ABp;, pgrs, ABpgt
Bpré,

3,3;0,1;2,1 04061301 6 11 3 11 0 2
ABpy, ACpBy, ABCqr
pgéy

NOTE: The 2(m+n2)—(ki+k2)*(b1+b2) degigns are labeled as “Design = nq, ng; k1, ko; b1, bs” and are
ordered by the number of treatment and blocking factors, n = ny + ng -+ by + bs.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to
denote the WP and SP factors, respectively. The i* and j** WP blocking variable and separator
are denoted by B; and §;, respectively. Finally, the last letter in each generator represents the added
factor.

(a) The number of clear main effects.

(b) The number of clear two-factor interactions.

(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.

(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table B.8 (Cont’d)
n  Design WLP and Generators (a) (b) (c) (d) (e) (f)
9 340,2,1,1 003704000001 7 6 4 4 0 0
ABCB,, BCpr, BCqgs
Bpgé,
* * 7 6 4 6 0 3
ABCp;, ABqr, ACqgs
BCpqé,
42:10:21 06140004 6 9 2 9 o0 1
ABCD, ABB,, ACB,
ABCpqb,
43;1,1;1,1 021524000001 7 15 3 15 1 15
ABCD, ABpB,, ABpgr
ACpqé,
52:2,0;1,1 221304020001 2 11 2 11 0 1
ABCD, ABE, ACpB,
ABpqé;
10 2,5;0,2;1,2 05112260203 7T 12 5 12 1 0
ABpy, ABgrs, pqrt
Apréi, pgds
* * 7T 12 5 12 0 6
AB@,, ABps, Apqrt
Apré;, Bpqds
2,6;0,3;1,1 0131048000302 8 12 6 12 0 O

ABpi, pgrs, ABpgt
ABpru, Bgré;

* Indicates a design with ni,n9;k1, ke; b1, b2 and WLP identical to the design immediately
preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (f).
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Table B.8 (Cont’d)
n  Design WLP and Generators (a) (b) (c¢) (d) (e) ()
10 3,40,221 05112260203 7 12 4 12 0 0
ABpB,, ACBs, ABCqr
ABCps, pgd;
3,5;0,3;1,1 0131048000302 g8 12 5 10 1 2
ABCp,, ABpgr, ACpqs
BCqt, BCpé,
* * 8 12 5 12 0 6
ABCpS,, BCpr, ACps
ABCqt, Cpgb,
4,31,1;21 0738040801 7 6 3 6 0 2
ABCD, ABp:, ACB2
ABgr, ABCpqé,
441211 02580528000001 8 4 4 4 0 4
ABCD, ABpB:, ACqr
BCps, ABCpgé;
53;:2,1;1,1 223726040401 3 9 3 9 0 2

ABCD, ABE, ACS,
BCqr, ABCpqé;
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Table C.1: 32-Run Triples: Initial Design is an MA FFSP Design

n  Design WLP and Generators (a) (b) (c) (d) (e) (f)

6 2,401,000 0000001 6 15 4 14 0 0

ABpqrs

3,3:01:1,0 000111 6 15 3 12 0 0
ABCpf,, ABpgr

2,4;,0,1,0,1 000111 6 15 4 14 0 1
ABpgs, pqré,

3,3;,0,1,000 0000001 6 1 3 12 0 0
ABCpgr

4,2:0,1;1.0 000111 6 1 2 9 0 1
ABCDS,, ABCpq

3,3;0,1;0,1 000111 6 1 3 12 0 3
ABCqgr, ACpqé,

3,3;1,0,00 1 3 12 3 12 0 0
ABC

42:1,0;1,0 021 6 9 2 9 0 0
ABCD, ABp,

3,3;1,0,01 10000101 3 12 3 12 0 0

ABC, ABpqré;

NOTE: The 2(m+n2)=(ki+k2)E(b11+b2) designs are labeled as “Design = ny, no; k1, ka; b1, bs” and are
ordered by the number of treatment and blocking factors, n = nj +ng + by -+ bs. The initial, elevated
and separated designs appear first, second and third, respectively, within a triple.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to
denote the WP and SP factors, respectively. The i** and j** WP blocking variable and separator
are denoted by 3; and §;, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table C.1 (Cont’d)
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n  Design WLP and Generators (a) (b) (¢) (d) (e) ()
7 3,4:1,1:00 1000101 4 18 4 18 0 0
ABC, Apgrs
43:1,1:10 02102002 7 15 3 15 0 0
ABCD, ABB;, ACpgr
34;1,1:01 1002121 4 18 4 18 0 2
ABC, ABpqrs, Bpgé;
4,3:1,1:00 00102 7 15 3 15 0 0
ABCD, BCpgr
521,110 001222 7 15 2 11 0 1
ABDE, ACDB,, BCDpq
43;1,1:01 001222 7 15 3 15 1 5
ABCD, ABpqr, ACpqé,
5,2:2,0:00 201 2 11 2 11 0 0
BCD, ACE
6,1:2,0:1,0 0034 7 6 1 6 0 0
ABCE, ABDF, ACDp;
52:2,001 20100202 2 11 2 11 0 1
ABCD, ABE, ACpgd,
8 3,50,3;,000 00304 8 13 5 13 0 3
BCpr, ACps, ABpqt
4,4;0,31,0 003344000001 8 13 4 8 0 0
ABDg,, ABCpq, ACDpr
BDps
3,5;0,3;,0,1 003344000001 8 13 5 11 1 3

BCpr, BCqgs, ACpqt
ABpqé,
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Table C.1 (Cont’d)
n  Design WLP and Generators (a) (b) (c) (d) (e) ()
8 3,5;1,2,000 1020301 5 13 5 13 0 0

ABC, Agrs, Bprt

441,210 023142020001 8 13 4 13 0 0
ABCD, ABpS,, ABpqr
ACpqs

351,201 1023331101 5 13 5 13 0 2
ABC, ABpqrs, Bpgt
Bprd,

4,4:1,2:00 00304 8 13 4 13 0 1
ABCD, BCpr, ACpgs

5,3;1,2,10 003344000001 8§ 13 3 9 0 2
ABCE, ABDg,, ACDpq
BCDpr

4,4:1,2:01 003344000001 8 13 4 13 1 6
ABCD, ABpqr, ACpgs
BCqd,

53:21:00 2010202 3 18 3 18 0 0
BCD, ACE, ABpgr

6,2;2,1;1,0 00344300000001 8§ 13 2 13 0 1
ABCE, ABDF, ACDS,
BCDpq

5,3;2,1;0,1 201324200001 3 18 3 18 1 6

ABCD, ABE, ACpgr
ABpgé,
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Table C.1 (Cont’d)
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n  Design

WLP and Generators

()

9 2,7:0,4;0,0

3,6;0,4;1,0

2,7;0,4;0,1

00608000001
ABps, ABgrt, Apru
Apqu
006488000014
ABCB,, ABpgr, ACpqs
BCqt, BCpu
006488000014
ABps, ABgrt, Apru
Bpgrv, Apgd

3,6;0,4;0,0

4,5:0,4:1,0

3,6:0,4;0,1

00608000001
BCpr, ACps, ABCqt
Cpqu

006488000014

ABCDg,, ABCpq, ABDpr

ACDps, BCDpt
006488000014
ABpgr, ACpqs, BCpqt
ABCqu, ABCpé,

3,6:1,3;0,0

4,5:1,3:1,0

3,6;1,3;0,1

105060201

ABC, Agrs, Aprt

Bpqu
026284040212
ABCD, ABpB,, ABpgr
ACpqs, BCqt
10556522120101
ABC, pgrs, ABpqt
Bpru, ABqré;
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Table C.1 (Cont’d)
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n  Design

WLP and Generators (a) (b) (¢) (d) (e)

9 4,5:1,3:0,0

5,4;1,3;1,0

4,5:1,3:0,1

00608000001 9 8 ) 8 0
ABCD, BCpr, BCqgs

ACpqt

006488000014 9 8 4 4 0
ABCE, ABDf,, ACDpq

BCDpr, ABps

006488000014 9 8 ) 8 1
ABCD, ABpgr, ACpqs

BCqt, BCpé;

5,4:2,2:0,0

6,3;2,2:1.0

5,4;2,2:0,1

20406020001 4 11 4 11 0
BCD, ACE, ABpr

Cpgs

009700660003 9 0 3 0 0
ABCE, ABDF, ACDp;

ABCDpq, ACpr

204466220212 4 11 4 11 1
ABCD, ABE, ABpgr

ACpqs, BCqd,

6,3;3,1;0,0

7,2;3,1;1,0

6,3;3,1,0,1

4030304000001 3 21 3 21 O
BCD, ACE, ABF

ABCpgr

0010800440014 9 2 2 2 0
ABCE, ABDF, ACDG

BCDg,, ABCDpq

404426222212 3 15 3 15 1
ABCD, ABE, ACF

ABCpqr, Apqd;
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Table C.2: 32-Run Triples: Initial Design is an MA BFFSP Design with Pure WP
Blocking

n  Design WLP and Generators (@ () (¢) (d) (e) ()
7 24:01:10 0100011 6 14 4 14 0 0
ABp,, ABpqrs
3,3;0,1:20 0300031 6 12 3 12 0 0
ABpB,, ACpB,, ABCpqr
9,4;0,1;1,1 010312 6 14 4 14 0 1
ABpy, ABpgs, Apqré;
3,3;0,1;1,0 000111 6 15 3 12 0 0
ABCpS,, ABpqr
42:01:20 010312 6 14 2 9 0 1
ABCpy, ABDfBy, ACDpgq
3,3:0,1:1,1 001402 6 9 3 7 0 2

ABCpS,, ABgr, ACpgd,

NOTE: The 2(mi+n2)=(ki+k2)£(b1+b2) designs are labeled as “Design = ny, no; k1, ka; b1, ba” and are
ordered by the number of treatment and blocking factors, n = 13 +ng + b1 + be. The initial, elevated
and separated designs appear first, second and third, respectively, within a triple.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to
denote the WP and SP factors, respectively. The i** and j2» WP blocking variable and separator
are denoted by §; and d;, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table C.2 (Cont’d)
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n Design

WLP and Generators

(2)

(4)

8 3,3;0,1;2,0

4,2:0,1;3,0

3,3;0,1;2,1

0300031

ABp,, ACB,, ABCpgqr
06041103

ABpB:, ACB., ADpBs
ABCpq

04061301

ABpB,, ACB,, ABCqr

pgdy

6

11

12

11

3,4:0,2:1,0

4,3:0,2:2,0

3,4:0,2;1,1

001222

ABCpy, ABpgr, ACpgs
0116240001
ABCpB,, ABDpBy, ACDpq
BCDpr
003704000001
ABCp,, BCpr, BCqs
Bpgé,

15

14

13

10

4,3;1,1;1,0

5,2;1,1;2,0

4,3;1,1;1,1

02102002

ABCD, ABpB,, ACpgr
021524000001
ABCE, ABDp,, ACDj,
BCDpq
021524000001
ABCD, ABpB:, ABpgr
ACpqb;

15

15

15

15

11

15

15
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Table C.2 (Cont’d)
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n  Design

WLP and Generators (a)

(4)

8 5,2;2,0;1,0

6,1;2,0;2,0

9,2;2,0;1,1

9 3,50,3;1,0

4,4:0,3;2,0

3,5:0,3:1,1

2212 2
BCD, ACE, ABpS,
0338000001 7
ABCE, ABDF, ACDS,
BCDg,

221304020001 2
ABCD, ABE, ACB;

ABpgé,

003344000001 8
ABCp,, ABpqr, ACpgqs

BCqt

0131048000302 8
ABCB;, ABDB,y, ACDpq
BCDpr, ABps
0131048000302 8
ABCp,, ABpgr, ACpqs

BCqt, BCpd;

11

13

12

12

11

11

11

10

4,3;1,1;2,0

9,2;1,1;3,0

4,3;1,1;2,1

061120040001 7
ABCD, ABB,, ACpS,

ABpgr

0101524080001 7
ABCE, ABCDp,, ABp,
ADps, ABDpq
0738040801 7
ABCD, ABB,, ACS2

ABgqr, ABCpgd,

15

11

15

11
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Table C.2 (Cont’d)
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n Design

WLP and Generators (a) (b) (c) (d)

9 441,210

5,3;1,2:2,0

4,4;1,2:1,1

023142020001 8 13 4 13
ABCD, ABpy, ABpgr

ACpgs

025904260201 8 4 3 2
ABCE, ABDp;, ACDp,

ABCDpq, ABpr

02580528000001 8 4 4 4
ABCD, ABB,, ACqr

BCps, ABCpqé,

5,3:2,1:1,0

6,2;2,1;2,0

9,3;2,1;1,1

22122122000001 3 18 3 18
ABCD, ABE, ACp,

BCpgr

0351002240302 8 4 2 4
ABCE, ABDF, ACDg,

BCDgy, ABCDpq

223726040401 3 9 3 9
ABCD, ABE, ACB,

BCqr, ABCpgé,
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Table C.3: 32-Run Triples: Initial Design is an MA BFFSP Design with Separation

n  Design WLP and Generators (a) (b) (¢) (d) (e) ()
7 1,5;0,1;0,1 000111 6 15 5 18 0 0
Apqrt, pgsd,
9,4:0,1;:1,1 010312 6 14 4 14 0 1
ABpB,, ABpgs, Apqré;
1,5:0,1:0,2 001402 6 9 5 9 0 0
pgrt, pgsd;, Aprsd,
3,3:1,0:0,0 10000101 3 12 3 12 0 0
ABC, ABpqré;
42:1,0:1,1 021004 6 9 2 9 0 1
ABCD, ABp1, ACpgd;
3,3;1,0,02 100303 3 12 3 12 0 3

ABC, Aqu61 , Bpr52

NOTE: The 2(mitn2)=(k1+k2)£(b1+b2) degigns are labeled as “Design = ny, no; k1, ko; by, be” and are
ordered by the number of treatment and blocking factors, n = nj +ns + by +bo. The initial, elevated
and separated designs appear first, second and third, respectively, within a triple.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to
denote the WP and SP factors, respectively. The i** and j** WP blocking variable and separator
are denoted by j; and d;, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table C.3 (Cont’d)

n  Design

WLP and Generators (a) (b) (c) (d) (e)

8 1,5:0,1:0,2

2,4:0,1;1,2

1,5;0,1;0,3

001402 6 9 5 9 0
pqrt, pgsdy, Aprsd,

0308031 6 12 4 12 0
ABg:, ABpqrs, Bpgd;

Bpré,

0308031 6 12 5 12 1
Apgrst, Apqé,, Ardsy

Apsds

1,6:0,2:0,1

2,5;0,2;1,1

1,6:0,2;0,2

001222 7 15 6 15 0
pgrt, Aprsu,qrsd;

0116240001 7 14 5 14 0
ABB;, pqrs, ABpgt

Bpré,

003704000001 7 6 6 6 0

pqrt, pgsu, prsé
Agrsby

2,5;0,2;0,1

3,4;0,2:1,1

2,5;0,2:0,2

001222 7 15 5 14 0
pqrs, ABpqt, ABpré;

003704000001 7T 6 4 4 0
ABCf,, BCpr, BCqgs

Bpgé,

003704000001 7T 6 5 6 1
ABrs, ABqt, Bqré;

ABpb
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Table C.3 (Cont’d)

n  Design

WLP and Generators

8 3,4;1,1;0,1

4,3;1,1;1,1

3,4:1,1;0,2

9 1,6,0,2;0,2

2,5;0,2;1,2

1,6;0,2;0,3

1002121

ABC, ABpqrs, Bpqd;
021524000001
ABCD, ABpB,, ABpgr
ACpqé,
101606001

ABC, pqrs, ABpqé;
Bpré,

003704000001
pqrt, pgsu, prsd;
Agqrsdy
05112260203
ABp,, ABgrs, pqrt
Aprdy, pgdy
05112260203
Agrst, Aprsu, Apgsé,
7802, Ards

18

15

12

12

12

18

15

12

12

12

1,7;0,3;0,1

2,6;0,3;1,1

1,7;0,3;0,2

003344000001
pgrst, Apgru, Apgsv
Aprsé;
0131048000302
ABp:, pqrs, ABpqt
ABpru, Bgré;
0131048000302
Agrst, prsu, Apgsv
Aqéy, Aprés

32

12

12

28

12

12
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Table C.3 (Cont’d)

Design WLP and Generators (a) (b) (c¢) (d) (e) ()
9 3,51,2,0,1 1023331101 5 13 5 13 0 2

ABC, ABpqrs, Bpqt
Bpré,

441211 02580528000001 8 4 4 4 0 4
ABCD, ABB;, ACqr
BCps, ABCpgé,

351,202 113928021301 5 9 5 9 1 1

ABC, pgrs, ABpqt
Bpgd,, ABprd,
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Table C.4: 32-Run Triples: Initial Design is an MA BFFSP Design with Mixed Block-

ing

n  Design WLP and Generators (a) (b) (¢) (d) (e) ()
8 240111 010312 6 14 4 14 0 1
ABpB;, ABpgs, Apqré;
3,3:0,1:21 04061301 6 11 3 11 0 2
ABp,, ACB,y, ABCqr
pqoy
2,4;0,1;1,2 0308031 6 12 4 12 0 4
ABpB,, ABpgrs, Bpgd,
Bpri,
9 250211 0116240001 7 14 5 14 0 0
ABpB,, pgrs, ABpqt
Bpré,
3,40,2:21 05112260203 7 12 4 12 0 0
ABpB,, ACBs, ABCqr
ABCps, pgd;
2,5;0,2;1,2 05112260203 7 12 5 12 1 0
ABpB,, ABqrs, pgrt
Apréy, pqda

NOTE: The 2(m+n2)—(k1+k2)£(b1+b2) designs are labeled as “Design = nq, ng; ki, ko; by, by” and are
ordered by the number of treatment and blocking factors, n = ny +ng + b1 + be. The initial, elevated
and separated designs appear first, second and third, respectively, within a triple.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to
denote the WP and SP factors, respectively. The i** and jt» WP blocking variable and separator
are denoted by §; and d;, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c¢) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table D.1: 32-Run Pairs: Elevation of an MA Initial Design with Pure WP Blocking

to an MA Design with Pure WP Blocking

203

n  Design WLP and Generators (a) (b) (c) (d) (e) (f)
7 330110 000111 6 15 3 12 0 0
ABCp,, ABpqr
2,4;0,1;1,0 0100011 6 14 4 14 0 0
ABpS,, ABpgrs
8 340210 001222 7 15 4 13 0 0
ABCpB,, ABpgr, ACpgs
2,5:0,210 01112101 7 14 5 14 0 0
ABf,, Bpgrs, ABpqt
4,2:0,1;20 010312 6 14 2 9 0 1
ABCp,, ABDfs, ACDpq
3,3;0,1:20 0300031 6 12 3 12 0 0

ABpB,, ACpB,, ABCpgr

NOTE: The 2(m+n2)—(k1+k2)E(b1+b2) designs are labeled as “Design = n1, no; k1, ka; by, be” and are

ordered by the number of treatment and blocking factors, n = n; + ng + by + be. The elevated and

initial designs appear first and second, respectively, within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The i** WP blocking variable is denoted by S;. Finally, the

last letter in each generator represents the added factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.

(f) The number of clear SP two-factor interactions tested against WP error.
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Table D.1 (Cont’d)
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Design

WLP and Generators (a)

(4)

3,5;0,3;1,0

2,6;0,3;1,0

003344000001 8
ABCp,, ABpgr, ACpgs

BCqt

0132420201 8
ABpB:, pgrs, ABpqt

Bpru

13

12

11

12

4,3:0,2;2,0

3,4;0,2;2,0

0116240001 7
ABCpB,, ABDf,, ACDpq
BCDpr

0314220201 7
ABpBy, ACBs, ABpgr

Cpgs

14

12

10

12

10

6,2;2,1;1,0

95,3;2,1;1,0

3,6;0,4;1,0

2,7:0,4:1,0

00344300000001 8
ABCE, ABDF, ACDp,
BCDpq
22122122000001 3
ABCD, ABE, ACSH

BCpgr

006488000014 9
ABCpy, ABpgr, ACpqs

BCqt, BCpu
01648304031001 9
ABp,, pgrs, ABpgt

ABpru, Bqrv

13

18

13

18
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Table D.1 (Cont’d)
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Design

WLP and Generators (a)

10

4,4:0,3;2,0

3,5:0,3;:2,0

0131048000302 8
ABCpy, ABDfBs, ACDpq
BCDpr, ABps

0338440405 8
ABp;, ACpB,, ABpgr

Cpqs, ABCqt

12

10

10

4,5;0,4;1,0

3,6;0,4;1,0

006488000014 9
ABCDfS,, ABCpq, ABDpr

AC Dps, BCDpt
006488000014 9
ABCp,, ABpgr, ACpqgs

BCqt, BCpu

6,3;2,2;1,0

5,4:2,2:1,0

009700660003 9
ABCE, ABDF, ACDp,
ABCDpq, ACpr
224462220412 4
ABCD, ABE, ACp

ABpqr, ACpqgs

11

11

7,2;3,1;1,0

6,3:3,1;1,0

0010800440014 9
ABCE, ABDF, ACDG

BCDg,, ABCDpq
4335304005031 3
ABCD, ABE, ACF

BCp,, BCpgr

21

21
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Table D.2: 32-Run Pairs: Elevation of a Separated MA Initial Design to a Separated
MA Design

n  Design WLP and Generators (a) (b)) (¢) (d) (e) (f)

7 42:1,00,1 001002 6 9 2 9 0 1
ABCD, ABpgd;

3,3:1,001 10000101 3 12 3 12 0 0

ABC, ABpqré;

8 431,1;01 001222 7 15 3 15 1 5
ABCD, ABpqr, ACpqé;
3,41,1:01 1002121 4 18 4 18 0 2

ABC, ABpqrs, Bpqgd;

9 441,201 003344000001 8 13 4 13 1 6
ABCD, ABpgr, ACpqs
BCqé;
3,5,1,2,0,1 1023331101 5 13 5 13 0 2
ABC, ABpqrs, Bpqt
Bpré,

NOTE: The 2(n1+n2)—(kit+k2)£(b1+b2) degigns are labeled as “Design = ny, no; ki, ko; by, bo” and are
ordered by the number of treatment and blocking factors, n = n; + ny + by + be. The elevated and
initial designs appear first and second, respectively, within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote
the WP and SP factors, respectively. The j** separator is denoted by ;. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear main effects.

(b) The number of clear two-factor interactions.

(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.

(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table D.2 (Cont’d)
n  Design WLP and Generators (a) (b) (d) (e) (f)
10 2,6;0,3;0,2 0131048000302 8 12 12 0 0
pqrs, ABpqt, ABpru
Bqré,, Agrés
1,7:0,3:0,2 0131048000302 8 12 12 1 0
Agrst, prsu, Apgsv
Aqby, Aprés
4,5:1,3;0,1 006488000014 9 8 8 1 4
ABCD, ABpqr, ACpqs
BCqt, BCpd,
361,301 10556522120101 6 9 9 0 1

ABC, pqrs, ABpqt
Bpru, ABgré;
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Table D.3: 32-Run Pairs: Elevation of a Separated MA Initial Design to an MA
Design with Pure WP Blocking

n Design WLP and Generators (a) (b) (c) (d) (e) (f)
8 3,30,1;20 0300031 6 12 3 12 0 0
ABpy, ACBs, ABCpgr
9,4:0,1:0,2 001402 6 9 4 8 0 0
pqrs, ABpgb,, Bprd,
4,2:1,020 061 6 9 2 9 0 0
ABCD, ABpB, ACp,
3,3;1,0,0,2 100303 3 12 3 12 0 3

ABC, Aqu51 3 BpT(SQ

9 340,220 0314220201 7T 12 4 12 0 1
ABg;, ACBs, ABpgr
Cpgs
2,5;0,2,02 003704000001 7 6 5 6 1 2
ABrs, ABqt, Bqré;
ABpbs

NOTE: The 2(m+n2)~(k1+k2)E(b1+b2) degions are labeled as “Design = nq, no; k1, ka; b1, ba” and are
ordered by the number of treatment and blocking factors, n = nj + ng + by + bs. The elevated and
initial designs appear first and second, respectively, within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to
denote the WP and SP factors, respectively. The i** and j** WP blocking variable and separator
are denoted by f; and d;, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table D.3 (Cont’d)

n  Design WLP and Generators (a) (b) (c) (d) (e) (f)
9 431,120 061120040001 7 16 3 15 0 0
ABCD, ABB;, ACp,
ABpgr
341,102 101606001 4 12 4 12 0 0
ABC, pqrs, ABpqd,
Bproo,
10 441,220 073244080102 8 13 4 13 0 0
ABCD, ABB;, ACpS,
ABpgr, ACpgs
3,5;1,2,0,2 113928021301 5] 9 5] 9 1 1

ABC, pqrs, ABpqt
Bpgd,, ABpri,
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Table D.4: 32-Run Pairs: Elevation of an MA Initial Design with Pure WP Blocking
to a Separated MA Design

n  Design WLP and Generators (a) (b) (¢) (d) (e) ()

7 3,30,1:01 000111 6 15 3 12 0 3
ABCqr, ACpqé;

2,4:0,1:10 010001 1 6 14 4 14 0 0

ABpB,, ABpgrs

8 340,201 001222 7 15 4 12 0 0
ABCpr, ABCqs, ABpqé,
2,5:0,2:10 01112101 7 14 5 14 0 0

ABpi, Bpgrs, ABpgt

9 3,50,3;0,1 003344000001 8 13 5 11 1 3
BCpr, BCqs, ACpqt
ABpgé,
2,6:0,3;:1,0 0132420201 8 12 6 12 0 0
ABPp,, pgrs, ABpqt
Bpru

NOTE: The 2(m+n2)=(k1+k2)E(br+b2) degigns are labeled as “Design = ny, ng; k1, k2; b1, bo” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + b2. The elevated and
initial designs appear first and second, respectively, within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to
denote the WP and SP factors, respectively. The it* and j** WP blocking variable and separator
are denoted by f; and d;, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table D.4 (Cont’d)

n  Design WLP and Generators (@) () (c) (@) (e) (P
10 3,6;0,4;,0,1 006488000014 9 8 6 8 1 4
ABpgr, ACpqs, BCpqt
ABCqu, ABCpé;
2,7;0,41,0 01648304031001 9 7 7 7 0 0
ABpSi, pgrs, ABpqt
ABpru, Bgrv
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E.1 Catalog of Optimal 16-Run BFFSP RPDs via
Pure WP Blocking: Control Factors as SP

Factors
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Table E.1: Optimal 16-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as SP Factors

n  Design Design Generators (@) (b) (¢) () (e) () (g
6 2,3,0,1,1,0 ABPp,, ABpqr 3 6 3 0 0 0 9
3,2;0,1;1,0 BCp;, ABCpq 2 6 1 0 0 1 8
4,1;1,0:1,0 BCD, BCB 1 4 0 0 0 0 5
7 240,210 ABf, ABpr, ABgs 4 0 0 0 0 0 4
* ABpB,, ABpgr, ABpqs 6

3,2,0,1;2,0 BCB, BCBy, ABCpg 2 6 1 0 0 1 8

3,3;0,2;1,0 BCp:, BCpq, ACpr 3 0 0 0 O o0 3
* BCp,, Apq, BCpr 4
33:1,1:1,0 ABC, ABB,, Apgr 3 6 0 0 0 0 9
42:1,1;1,0 BCD, BCB,, ACpq 9 4 0 0 0 0 6
4,1;1,0;2,0 BCD, BCpB,, BCp 1 4 0 0 0 0 5

NOTE: The 2(n1#n2)—(k1+k2)£(b1+b2) designs are labeled as “Design = ny, ng; k1, k2; by, be” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + be.
A-G and p-v are used to denote the WP and SP factors, respectively. The i** WP blocking

variable is denoted by ;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(d) The number of clear C main effects tested against WP error.

(e) The number of clear CN two-factor interactions tested against WP error.

(f) The number of clear CC two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.1 (Cont’d)

Apgs, Apqt

n  Design Design Generators (a) (b) (¢) (d) (¢) () (g
8 2,50,3;1,0 ABpy, ABpr, ABgs 5 0 0 0 0 0 5

Apqt

* ABp,, ABpgr, ABpgs 6
ABpqt

3,3:0,2;2,0 BCp:, BCBa, BCng 3 0 0 0 0 0 3
ACpr

* BCp,, BCp,, Apg 4
BCpr

3,4;,0,3;1,0 BCp,, BCpq, ACpr 4 0 0 0 O o0 4
ABps

4,2:1,1;20 BCD, BCB,, BCB, 2 4 0 0 0 0 6
ACpq

4,3;,1,2,1,0 ABCD, BCf,, BCpq 3 0 0 0 0 0 3
ACpr

5,2;2,1;1,0 BCD, BCE, BCp, 2 4 0 0 0 0 &6
ABCpq

2,6:0,4;1,0 ABB,, ABpr, ABgs 6 0 0 0 0 0 6
Apqt, Bpq

3,4;0,3;2,0 BCp,, BCpBs, BCpq 4 0 0 0 0 0 4
ACpr, ABps

3,5;0,4;1,0 BCg,, BCpq, BCpr 3 0 0 0 o0 o0 3
ACps, ABpt

* BCp., Apq, Apr 4
Aps, ABCpt

3,5:1,3:1,0 ABC, ABB., Apgr 2 4 0 0 0 0 6
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Table E.1 (Cont’d)

n  Design Design Generators (a) (b) (¢) (d) (¢) (f) (g)
9 431,220 ABCD, BCB, BCB, 3 0 0 0 0 0 3
BCpq, ACpr
441,310 ABCD, BCB, BCpq 4 0 0 0 0 0 4
ACpr, ABps
52:2,1:20 BCD, BCE, BCB; 29 4 0 0 0 0 6
BCf,, ABCpgq
5,3:2,2:10 ABCD, ABCE, BCf, 2 4 0 0 0 0 6
BCpq, ACpr
6,2:31:1,0 BCD, BCE, BCF 2 4 0 0 0 0 6

BCp,, ABCpq
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E.2 Catalog of Optimal 32-Run BFFSP RPDs via
Pure WP Blocking: Control Factors as SP
Factors
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Table E.2: Optimal 32-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as SP Factors

n  Design Design Generators (a) () (¢) (d) () &) (g
7 24;0,1;1,0 ABf;, ABgrs 4 8 6 0 0 0 12
3,3;0,1;1,0 BCpB,, BCpgr 3 9 3 0 0 0 12
3,3:1,0;1,0 ABC, ABB, 3 9 3 0 0 0 12
4,2:0,1:1,0 CDB;, BCDpg 29 8 1 0 0 1 10
4,2:1,0:1,0 BCD, BCB, 2 8 1 0 0 0 10
8 250210 ABB,, ABgrs, ABprt 5 10 4 0 0 0 15
3,3:0,:2,0 BCp., BCB,, BCpgr 3 9 3 0 0 0 12

3,4,0,2;1,0 BCPB,, ABCpr, ABCgs 4 12 0 0 0 0 16
3,4;1,1;1,0 ABC, ABf,, Apgrs 4 12 6 0 0 0 16
4,2:0,1;2.0 CDB,, CDB;, BCDpg 2 8 1 0 0 1 10

4,2:1,0;20 BCD, BCB:, BCS, 2 8 1 0 0 0 10

NOTE: The 2(mtn2)—(kitk2)£(b1+b2) degigns are labeled as “Design = n, ng; k1, ko; b1, be” and are
ordered by the number of treatment and blocking factors, n = n; + ns + by + bs.
A-G and p-v are used to denote the WP and SP factors, respectively. The i** WP blocking

variable is denoted by ;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(d) The number of clear C main effects tested against WP error.

(e) The number of clear CN two-factor interactions tested against WP error.

(f) The number of clear CC two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.



Apgrs
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Table E.2 (Cont’d)
n  Design Design Generators (@ (b) (c) (d) (¢) () (g
8 4,3;0,2;1,0 CDpy, CDpq, ABDpr 3 8 2 0 0 2 1

4,3:1,1;1,0 BCD, BCB,, ACpgr 3 12 3 0 0 0 15

43:2,0:1,0 ABC, ABD, ABB, 3 6 3 0 0 0 9

5,2,1,1;1,0 CDE, CDp,, ABDpq 2 10 1 0 0 1 12

6,1;2,0;,1,0 CDE, BDF, CDp; 1 6 0 0 0 0 7

2,6;0,3;1,0 ABp,, ABqrs, ABprt 6 12 0 0 0 0 18
ABpqu

3,4;0,2;2,0 BCp,, BCBy, ABCpr 4 12 0 0 0 0 16
ABCqgs

3,5;0,3;1,0 BCpy, ABCpr, ABCqgs 5 10 0 0 0 0 15
pqt

3,5:1,2:1.0 ABC, ABB,, Agrs 5 10 0 0 0 0 15
Aprt

4,3;0,2;2,0 CDpy, CDpy, CDpq 3 8 2 0 0 2 1
ABDpr

43:1,1:20 BCD, BCB, BCPBs 3 12 3 0 0 0 15
ACpqr

4,4:0,3;1,0 CDg,, CDpq, ABDpr 4 8 0 0O 0 0 12
ABCps

44:12:10 BCD, BCB, ACpr 4 9 2 0 0 0 13
Bpgs

44:21:10 ABC, ABD, ABBS, 4 8 6 0 0 0 12
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Table E.2 (Cont’d)

n  Design Design Generators (a) (b) (¢) (d) (e) (f) (e
9 5,21,1,20 CDE, CDB,, CDB; 5 10 1 0 0 1 12
ABDpq
531,210 BCDE, CDB,CDpg 3 7 2 0 0 2 10
ABDpr
5,1:2,0:2,0 BCD, ACE, BCB 1 5 0 0 0 0 6
BCp,
5,2:2,0:2,0 BCD, ACE, BCB, 2 10 1 0 0 0 12
BCps
5,3:2,1:1,0 BCD, ACE, BCB, 3 15 3 0 0 0 18
ABpgr
6,1;2,0:20 CDE, BDF, CDB, 1 6 0 0 0 0 7
CDg,
6,2:2,1:1,0 CDE, BDF, CDB, 2 12 1 0 0 1 14

ABCpq
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E.3 Catalog of Optimal 16-Run BFFSP RPDs via
Pure WP Blocking: Control Factors as WP
Factors
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Table E.3: Optimal 16-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as WP Factors

n  Design Design Generators (a) (b) (c) (e) (g
6 2,3;0,1;1,0 ABp:, ABpgr 2 6 0 0 8
3,2:0,1:1,0 ABCS, ABCpg 3 6 3 0 9
4,1;1,0:1,0 ABCD, BCB, 4 4 0 0 8
7 2,4;0,2;1,0‘ ABp,, ABpr, ABpqs 2 4 0 0 6
3,2:0,1:2,0 ABCB,, ABCB,, ABCng 3 6 3 0 9
3,3;0,2;1,0 ABCpB,, ABCpq, ABCpr 3 3 3 0 6
3,3;1,1;1,0 ABC, ABpBy, pgr 3 6 3 0 9
42:1,1;1,0 ABCD, BCpB,, BCpq 4 0 0 0 4
* ABCD, BCp,, Apq 9
4,1;1,0;2,0 ABCD, BCp;, BCps 4 4 0 0 8
8 2,5;0,3;1,0 ABpS,, ABpr, ABps, ABpqt 2 4 0 0 6

3,3;0,2;2,0 ABCp,, ABCp,, ABCpq, ABCpr 3 3 3 0 6

NOTE: The 2(m+n2)=(k1+k2)£(b1+b2) designg are labeled as “Design = ny,ng; ki, ka3 by, bo” and are
ordered by the number of treatment and blocking factors, n = ny + ng + b1 + ba.
A-G and p-v are used to denote the WP and SP factors, respectively. The i** WP blocking

variable is denoted by B;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

{(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(e) The number of clear CN two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.3 (Cont’d)
n  Design Design Generators (a) () (¢) () (g
8 3,4,0,3;1,0 ABCp,, ABCpq, ABCpr, ABCps 3 3 3 0 &6
4,2:1,1:20 ABCD, BCB,, BCB,, BCpq 4 0 0 0 4
* ABCD, BCp,, BCpBs, Apq 9
4,3;1,2:1,0 ABCD, BCp,, BCpq, BCpr 4 0 0 0 4
* ABCD, BCpB,, APq, Apr 6
5,2;2,1;1,0 ABCD, ABCE, BCf:, ABCpq 3 6 0 0 9
9 2,6:0,4:1,0 ABB,, ABpr, ABps, ABpt 2 4 0 0 6
ABpqu
* ABp,, Apr, Ags, Apqt 7
pau
3,4;0,3;2,0 ABCp,, ABCpy, ABCpq, ABCpr 3 3 3 0 6
ABCps
3,5;0,4;1,0 ABCp,, ABCpq, ABCpr, ABCps 3 3 3 0 6
ABCpt
3,5;1,3;1,0 ABC, ABpS, pgr, pgs 0 6 0 0 6
pqt
4,3:1,2:20 ABCD, BCp,, BCBs, BCpq 4 0 0 0 4
BCpr
* ABCD, BCﬂl, BC,BQ, qu 6
Apr
4,4;1,3;1,0 ABCD, BCp,, BCpq, BCpr 4 0 0 0 4
BCps
* ABCD, BCp,, Apq, Apr 6

Aps
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Table E.3 (Cont’d)

224

n  Design Design Generators (a) (b) (c) (e) (g)

9 5,2:2,1;20 ABCD, ABCE, BCB,, BCB; 3 6 0 0 9
ABCpq

5,3:2,2:1,0 ABCD, ABCE, BCB, ABCpg 3 3 0 0 6
ABChpr

6,2:3,1.1,0 ABCD, ABCE, ABCF, BCB, 3 6 0 0 9

ABCpq
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E.4 Catalog of Optimal 32-Run BFFSP RPDs via
Pure WP Blocking: Control Factors as WP
Factors
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Table E.4: Optimal 32-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as WP Factors

n  Design Design Generators (a) (®) (c) (¢) (g
7 2,4,0,1;1,0 ABp,, ABgrs 2 8 0 0 10
3,3;0,1;1,0 ABCp,, ABCpr 3 9 3 0 12
3,3:1,0;1,0 ABC, ABB 0 9 0 0 9
4.2:0,1:1,0 BCDp,, BCDpg 4 8 6 0 12
42:1.0:1,0 ABCD, BCB 4 8 0 0 12
8 2,5;0,2;1,0 ABp,, ABqrs, ABprt 2 10 0 0 12
3,3;0,1;,2,0 ABCf:, ABCpBy, ABCpr 3 9 3 0 12
3,4;,0,2;,1,0 ABCp,, ABCpr, ABCqgs 3 12 3 0 15
3,4;1,1;1,0 ABC, ABp,, Apgrs 0 12 0 0 12
4.2:0,1:2,0 BCDp;, BCDB,, BCDpg 4 8 6 0 12
4,2:1,0;2,0 ABCD, BCp,, BCp, 4 8 0 0 12
4,3:0,2;,1,0 CDp,, CDpq, ABDpr 4 8 5 0 12

NOTE: The 2(r+n2)—(k1t+k2)£(b1+b2) Jegigns are labeled as “Design = ny, ng; ki, ko3 b1, be” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + bs.
A-G and p-v are used to denote the WP and SP factors, respectively. The i** WP blocking

variable is denoted by f;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(e) The number of clear CN two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.4 (Cont’d)

n  Design Design Generators (a) (b) (c) (e) (g
g * CDp,, Apq, BCDpr 13
43:1,1;1,0 ABCD, BCB,, BCpgr 4 12 0 0 16
4,3;2,0;1,0 ABC, ABD, ABpS, 0 6 0 0 6
521,1:1,0 BCDE, CDB,, ACDpq 5 10 4 0 15
6,1:2,011,0 BCDE, ACDF, CD, 6 6 0 0 12
9 2,6;0,3;1,0 ABp, ABqrs, ABpri, ABpqu 2 12 0 0 14
3,4:0,2;2,0 ABCB,, ABCB,, ABCpr, ABCgs 3 12 3 0 15
3,5;0,3;1,0 ABCp,, ABCpr, ABCqs, ABCpqt 3 15 3 0 18
3,5:1,2:1,0 ABC, ABB,, qrs, prt 0 15 0 0 15
4,3:0,2;2,0 CDp., CDB,, CDpq, ABDpr 4 8 5 0 12
* CDpy, CDpBs, Apq, BCDpr 13
4,3;1,1;2,0 ABCD, BCp,, BCBy, BCpgr 4 12 0 0 16
4,4;0,3;1,0 CDpB,, CDpq, ABDpr, ABCps 4 8 5 0 12
* CDg,, Apq, BCDpr, ABCDps 15
4,4;1,2,1,0 ABCD, BCp,, BCpr, BCpqs 4 8 0 0 12
* ABCD, BCp,, Apr, Ags 15
44;21;1,0 ABC, ABD, ABfB,, ABgrs 0 8 0 0 8
5,2;1,1;,2,0 BCDE, CDp,, CDf,, ACDpq 5 10 4 0 15
5,3;1,2,1,0 BCDE, CDp,, CDpq, ABDpr 5 7 4 0 12
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Table E.4 (Cont’d)
n  Design Design Generators (a) (b) (c) (e) (g)
9 * BCDE, CDp,, Bpq, ADpr 13
5,1;2,0;2,0 ABCD, ABCE, BCp,, BCS, 3 3 0 0 6
5,2:2,0:2,0 ABCD, ABCE, BCp., BCp, 3 6 0 0 9
* BCD, ACE, BCp:, BCBs, 10
5,3:2,1;1,0 ABCD, ABCE, BCB, ABCpr 3 9 0 0 12
* BCD, ACE, BCp,, ABpgr 15
6,1;2,0:2,0 BCDE, ACDF, CDB,, CDg, 6 6 0 0 12
6,2:2,1:1,0 BCDE, ACDF, CDB,, ABDp 6 12 0 0 18
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E.5 Catalog of Optimal 16-Run BFFSP RPDs via
Separation: Control Factors as SP Factors
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Table E.5: Optimal 16-Run BFFSP RPDs via Separation: Control Factors as SP
Factors

n  Design Design Generators (a) (b) (¢) @ () () (g
6 1,4;0,1;,0,1 Apgrs, Agrd; 4 4 5 0 0 1 8
2,3;0,1;0,1 ABpgr, ABpd; 3 6 2 1 2 0 9
3,2;1,0,0,1 ABC, Apgd, 2 6 1 0 0 1 8
7 1,4;0,1;0,2 Apgrs, Agrd;,, Aqré, 4 4 5 0 0 1 8
1,5;0,2;0,1 Agrs, Aprt, Apgd; 5 0 0 0 0 0 5
* Aps, Apgrt, Apd, 6
2,4;0,2;,0,1 ABpr, ABgs, Apgd; 4 0 0 O O 0 4
* ABpgr, ABpqs, ABpd, 6
3,3;1,1,0,1 ABC, Apgr, Apé; 3 6 0 1 2 0 9
4,2:2.0.0,1 ABC, ABD, Apgs, 2 4 1 0 0 1 6
8 1,5;0,2;,0,2 Agrs, Aprt, Apgd, 5 0 0 0 0 0 5

Apqd,

NOTE: The 2(m+n2)—(k1+k2)E(b1+b2) designs are labeled as “Design = nq, ng; ki, ko; b1, ba” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + bs.
A-G and p-v are used to denote the WP and SP factors, respectively. The j* separator is denoted

by d;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(d) The number of clear C main effects tested against WP error.

(e) The number of clear CN two-factor interactions tested against WP error.

(f) The number of clear CC two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.5 (Cont’d)
n  Design Design Generators (a) (b) (¢ (d) (¢) () (g)
8 * Aps, Apgrt, Apd; 6
Ap62
1,6;0,3;0,1 Aqrs, Aprt, Apqu 6 0 0 O 0 0 6
Apqré,
2,5;0,3;0,1 ABpr, ABqgs, Apqt 5 0 0 1 0 o0 5
Bpgd,
* ABpgr, ABpgs, ABpqt 6
ABp51
3,4;1,2:0,1 ABC, Apgr, Apgs 2 4 0 0 0 0 6
Apgé,
4,3;2,1,0,1 ABC, ABD, ABpqr 3 6 0 1 2 0 9
ABp51
5,2:3,0:0,1 ABC, ABD, ABE 2 4 1 0 0 1 6
Apgd,
9 1,6;0,3;0,2 Agrs, Aprt, Apqu 6 0 O 0 O 0 6
Apqréy, Apgrés
1,7,0,4;0,1 Agrs, Aprt, Apqu 7T 0 0 1 0 o0 7
pgrv, Apd
2,6;0,4;0,1 ABpr, ABqs, Apqt 6 0 0 2 0 0 6
Bpqu, Apé:
3,5;1,3;0,1 ABC, Apgr, Apgs 2 4 0 0 0 0 &6
Apgt, Apgd,
44;2,2:01 ABC, ABD, ABpgr 2 4 0 0 0 0 =6
ABpgs, Apgd
5,3:3,1:0,1 ABC, ABD, ABE 3 6 0 1 2 0 9

ABpqr, ABpd;
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Table E.5 (Cont’d)

n  Design Design Generators (@ (b) (¢) (d) () () (&)
9 6,2:400,1 ABC, ABD, ABE 2 4 1 0 0 1 6
ABF, Apqé;
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E.6 Catalog of Optimal 32-Run BFFSP RPDs via
Separation: Control Factors as SP Factors
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Table E.6: Optimal 32-Run BFFSP RPDs via Separation: Control Factors as SP
Factors

n  Design Design Generators (@ (b) (c) (d) (e) () (g
7 1,5;0,1;0,1 Agrst, Aprséd; 5 5 10 0 0 0 10
2,4;0,1;,0,1 ABgrs, Apré; 4 8 6 0 0 1 12
3,3:0,1;,0,1 ABCpr, Apgd, 3 9 3 0 0 3 12
3,3;1,0,0,1 ABC, Apgré, 3 9 3 0 0 0 12
4,2:1,0,0,1 BCD, Apgs, 2 8§ 1 0 0 1 10
8 1,5;0,1;0,2 Agqgrst, Aprsé;, Aprsdy 5 5 10 0 0 0 10
1,6;0,2;0,1 Agrst, Aprsu, Apgé; 6 6 9 0 0 0 12
2,4:0,1:0,2 ABgrs, Apréy, Aprd, 4 8 6 0 0 1 12

2,5:0,2;:0,1 ABgrs, ABprt, Apgé, 5 10 4 0 0 0 15
3,4;0,2;0,1 ABCpr, ABCqs, Apgé, 4 12 0 0 0 0 16
3,3;1,0;0,2 ABC, Apgré,, Apgro, 3 9 3 0 0 0 12
3,4;1,1;,0,1 ABC, Apgrs, Bqré; 4 12 6 0 0 2 16

NOTE: The 2(m+n2)—(kitk2)£(b1+b2) degigns are labeled as “Design = ny, ng; k1, ko; by, by” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + be.
A-G and p-v are used to denote the WP and SP factors, respectively. The jt* separator is denoted

by d;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(d) The number of clear C main effects tested against WP error.

(e) The number of clear CN two-factor interactions tested against WP error.

(f) The number of clear CC two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates & design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.6 (Cont’d)
n  Design Design Generators (a) (b) () @ () () (g
8 4,3:1,1,01 BCD, ACpqr, ABpo; 3 12 3 1 4 1 15
5,2:2,0:0,1 BCD, ACE, Apgs, 2 10 1 0 0 1 12
9 1,6;0,2;0,2 Agrst, Aprsu, Apgd; 6 6 9 0 0 0 12
Apgé,
1,7,0,3;0,1 Agrst, Aprsu, Apgsv T 7 6 0 0 0 14
Apgré,
2,5;0,2;0,2 ABgqrs, ABprt, Apgd, 5 10 4 0 0 0 15
Apqée
2,6;0,3;0,1 ABgqrs, ABprt, ABpqu 6 12 0 0 0 0 18
Apgré;
3,5;0,3;0,1 ABCpr, ABCqs, Apqt 5 10 0 1 2 0 15
Bpgd,
3,4:1,1;0,2 ABC, Apqrs, Bqré, 4 12 6 0 0 2 16
BqT(SQ
3,5;1,2,0,1 ABC, Agqrs, Aprt 5 10 0 0 0 0 15
Apqd,
4,4,1,2:0,1 BCD, ACpr, Bpgs 4 9 2 1 3 1 13
Bq51
5,3:2,1:0,1 BCD, ACE, ABpgr 3 15 3 1 5 1 18
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E.7 Catalog of Optimal 16-Run BFFSP RPDs via
Separation: Control Factors as WP Factors
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Table E.7: Optimal 16-Run BFFSP RPDs via Separation: Control Factors as WP
Factors

n  Design Design Generators (a) (b) (c) (e) (g)
6 1,4;0,1;0,1 Apgrs, Agréd; 1 4 0 0 5
2,3;0,1;0,1 ABpqr, ABpé; 2 6 1 2 8
3,2:1,0:0,1 ABC, Apgd, 0 6 0 0 6
7 1,4;0,1;,0,2 Apgrs, Agqrd,, Aqré, 1 4 0 0 5
1,5;0,2;0,1 gqrs, prt, Apgd; 1 5 0 0 &6
2,4:0,2;0,1 ABpqr, ABpgs, Apqd, 2 4 1 0 6
3,3;1,1;,0,1 ABC, pgr, pgd, 0o 9 0 3 9
4,2;2,0,0,1 ABC, ABD, Apgé, 0 4 0 0 4
8 1,5;0,2;0,2 gqrs, prt, Apgdy, Apgd, 1 5 0 0 6
1,6;0,3;0,1 grs, prt, pqu, Apgrd; 1 6 0 0 7
2,5;0,3;0,1 ABpgr, ABpgs, ABpqt, Apgd; 2 4 1 0 6
3,4:1,2:0,1 ABC, pgr, pgs, Apgd; 0 6 0 0 6

NOTE: The 2(m+n2)=(k1+k2)E(b1+b2) designs are labeled as “Design = ny,ng; ki, ka; b1, bo” and are
ordered by the number of treatment and blocking factors, n = ny + ns + b1 + bs.
A-G and p-v are used to denote the WP and SP factors, respectively. The jt* separator is denoted

by d;. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(¢) The number of clear CC two-factor interactions.

{(e) The number of clear CN two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.7 (Cont’d)

238

n  Design Design Generators (a) (b) (c) (e) (g
8 4,3;2,1,0,1 ABC, ABD, ABpqr, ABpd; 0 6 0 2 6
5,2:3,001 ABC, ABD, ABE, Apgé; 0 4 0 0 4
9 1,6;0,3;0,2 gqrs, prt, pqu, Apgré, 1 6 0 0 7
Apqrda
1,7,0,4;,0,1 gqrs, prt, pqu, pgrv 1 7T 0 1 8
qréy
2,6;0,4;0,1 ABpgr, ABpgs, ABpqt, ABpqu 2 4 1 0 6
Apgd
* Apr, Ags, Apgt, pqu 7
Ap(51
3,5;1,3;0,1 ABC, pqr, pgs, pqt 0 6 0 0 6
Apqéy
4,4;22:0,1 ABC, ABD, ABpr, ABpqs 0 4 0 0 4
Ap61
5,3:3,1:0,l ABC, ABD, ABE, ABpgr 0 6 0 2 6
ABp51
6,2:40:0,1 ABC, ABD, ABE, ABF 0 4 0 0 4

Apgd,
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E.8 Catalog of Optimal 32-Run BFFSP RPDs via
Separation: Control Factors as WP Factors
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Table E.8: Optimal 32-Run BFFSP RPDs via Separation: Control Factors as WP
Factors

n  Design Design Generators (a) () (¢) (e) (g
7 1,5;0,1;0,1 Agrst, Arsd; 1 5 0 0 6
2,4;0,1,0,1 ABgqrs, Apré; 2 8 1 0 10
3,3:0,1:0,1 ABCopr, Apgd, 3 9 3 0 12
3,3;1,0,0,1 ABC, Agqré, 0O 9 0 0 9
4,2:1,0;0,1 ABCD, Apgé, 4 8 0 0 12
8 1,5;0,1;0,2 Agqgrst, Arsd;, Arsd, 1 5 0 0 6
1,6;0,2;0,1 Agrst, Aprsu, Arsé; 1 6 0 0 7
2,4;0,1;0,2 ABgqrs, Apréd,, Apré, 2 8 1 0 10
2,5;0,2;0,1 ABgrs, ABprt, Apgd, 2 10 1 0 12
3,4;0,2;0,1 ABCpr, ABCqs, Apgd; 3 12 3 0 15
3,3;1,0,0,2 ABC, Agqré,, Aqréy 0 9 0 0 9
3,4;1,1,0,1 ABC, Apgrs, Aqré; 0 12 0 0 12

NOTE: The 2(m+n2)—(k1+k2)E(b1+b2) designs are labeled as “Design = ny, ng; k1, ko; b1, bs” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + ba.
A-G and p-v are used to denote the WP and SP factors, respectively. The j** separator is denoted

by d;. Finally, the last letter in each generator represents the added factor.

{(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(e) The number of clear CN two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.



APPENDIX E. CATALOG OF OPTIMAL BFFSP RPDs 241
Table E.8 (Cont’d)
n  Design Design Generators (a) (b) (¢) (e) (g
8 4,3;1,1;,0,l ABCD, BCpqr, BCpé; A 12 0 4 16
5,2;2,0,0,1 ABCD, ABCE, Apqé; 3 6 0 0 9
* BCD, ACE, ABpé; 10
9 1,6;0,2;0,2 Agrst, Aprsu, Arsé,, Arsd, 1 6 0 0 7
1,7;0,3;0,1 Agrst, Aprsu, Apgsv, Arsd; 1 7 0 0 8
2,5:0,2;0,2 ABgrs, ABprt, Apqé,, Apqé, 2 10 1 0 12
2,6;0,3;0,1 ABgqrs, ABprt, ABpqu, Apgrd, 2 12 1 0 14
3,5;0,3;0,1 ABCpr, ABCqs, ABCpqt, Apqd; 3 15 3 3 18
3,4;1,1;,0,2 ABC, Apgrs, Aqré;, Aqré, 0 12 0 0 12
3,5;1,2;0,1 ABC, qrs, prt, Apqd, 0 15 0 0 15
4,4;,1,2;,0,1 ABCD, BCpr, BCpgs, Apd; 4 8 0 0 12
* ABCD, Apr, Agqs, Apé; 15
5,3;2,1;0,1 ABCD, ABCE, ABCpr, Apqé, 3 9 0 0 12
* BCD, ACE, ABpqr, ABpd; 15
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E.9 Catalog of Optimal 16-Run BFFSP RPDs via
Mixed Blocking: Control Factors as SP Fac-
tors
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Table E.9: Optimal 16-Run BFFSP RPDs via Mixed Blocking: Control Factors as
SP Factors

n  Design Design Generators (a) (b) (¢) (d) (e) () (g
7 2,3;0,1;1,1 ABp,, ABpgr, Apé; 3 4 3 1 0 1 7
* ABpB:, ABpgr, ABpé; 8
3,21,0:1,1 ABC, ABB:, Apgs, 2 6 1 0 0 1 8
8 24;0,2;1,1 ABp,, ABpr, ABgs 4 0 0O 0O 0 0 4
Apqd
* ABpB,, ABpgr, ABpqs 6
Apqd,
3,3:1,1:1,1 ABC, ABB., Apgr 3 5 0 1 1 0 8
Ap61
9 25;0,3;1,1 ABp,, ABpr, ABgs 5 0 O 1 0 0 5
Apqt, ABpgé,
* ABpy, ABpgr, ABpqs 6
ABpqt, Apgd,
3,4;1,2;1,1 ABC, ABfSy, Apgr 2 4 0 0 0 0 6

Apgs, Apgd,

NOTE: The 2(n1+n2)~(k1+k2)£(b1+b2) degigns are labeled as “Design = ny, ng; k1, k2; b1, be” and are
ordered by the number of treatment and blocking factors, n = ny + ne + by + b.

A-G and p-v are used to denote the WP and SP factors, respectively. The t* and j%* WP
blocking variable and separator are denoted by B; and §;,respectively. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(d) The number of clear C main effects tested against WP error.

(e) The number of clear CN two-factor interactions tested against WP error.

(f) The number of clear CC two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.9 (Cont’d)

n  Design Design Generators (a) (b) (c) (d) (e) (f) (g

10 2,6;,0,4;1,1 ABp,, ABpr, ABgs 6 0 0 2 0 0 6
Apqt, Bpqu, Apd,

3,5:1,3:1,1 ABC, ABB., Apgr 2 4 0 0 0 0 6

Apqs Apqt, Apgd,
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E.10 Catalog of Optimal 32-Run BFFSP RPDs
via Mixed Blocking: Control Factors as SP
Factors
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Table E.10: Optimal 32-Run BFFSP RPDs via Mixed Blocking: Control Factors as
SP Factors

n  Design Design Generators (@ (b) (¢) (d) (¢ () (g

8 24;0,1;1,1 ABp,, ABgrs, Aprd; 4 8 6 0 0 1 12

3,3;0,1;1,1 BCPpi, ABCpr, Bpgd; 3 9 3 0 0 3 12

3,3;1,0;1,1 ABC, ABpy, Apgrd, 3 9 3 0 0 0 12

4,2;,1.0,1,1 BCD, BCB,, Apgd, 2 8 1 0 0 1 10

9 25;0,2;,1,1 ABp;, ABgrs, ABprt 5 10 4 0 0 0 15
Apgé,

3,4;,0,2;1,1 BCp,, ABCpr, ABCgqs 4 12 0 0 0 0 16

Apqé :

3.4;1,1;1,1 ABC, ABp,, ABpgrs 4 12 6 0 0 2 16
Agqré,

4,3;1,1;1,1 BCD, BCpB,, ABCpgr 3 12 3 1 4 1 15
ACpdy

5,2;2,0;1,1 BCD, ACE, BCp; 2 10 1 0 0 1 12
Apgdy

NOTE: The 2(m+n2)—(k1+k2)£(1+b2) degigns are labeled as “Design = n1, ng; ki, ka; by, be” and are
ordered by the number of treatment and blocking factors, n = ny + ng + by + be.

A-G and p-v are used to denote the WP and SP factors, respectively. The i** and j** WP
blocking variable and separator are denoted by 8; and d;respectively. Finally, the last letter in
each generator represents the added factor.

{(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(d) The number of clear C main effects tested against WP error.

(e) The number of clear CN two-factor interactions tested against WP error.

(f) The number of clear CC two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates & design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.10 (Cont’d)
n  Design Design Generators (a) (b)) () ) (¢) ) (g
10 2,6;0,3;1,1 ABp,, ABqrs, ABprt 6 12 0 0 0 0 18
ABpqu, Apqré
3,5;0,3;1,1 BCp,, ABCpr, ABCqs 5 10 0 1 2 0 15
Apqt, Bpgd,
3,5:1,2:1,1 ABC, ABB., Aqrs 5 10 0 0 0 0 15
Aprt, Apgd;
44:12:1.1 BCD, BCB,, ACpr 4 9 2 1 3 1 13
Bpgs, ACqd,
5,3:2,1;1,1 BCD, ABCE, BCS 3 15 2 1 5 0 18

ACpgr, ACpd;
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E.11 Catalog of Optimal 16-Run BFFSP RPDs
via Mixed Blocking: Control Factors as WP
Factors
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Table E.11: Optimal 16-Run BFFSP RPDs via Mixed Blocking: Control Factors as
WP Factors

n  Design Design Generators (@) (b) (c) (e) (g
7 230,1;1,1 ABpS,, ABpgr, ABpd; 2 6 0 2 8
3,2;1,0;1,1 ABC, ABpBy, Apgd; 0 6 0 0 6

8 240,2;,1,1 ABp,, ABpr, ABpqs, Apd; 2 4 0 0 6

3,3;1,1;1,.1 ABC, ABp., pgr, ABpd, o 8 0 2 8
9 2,50,31,1 ABpy, ABpr, ABps, ABpqt 2 4 0 0 6
Apdy
3,4;1,2:1,1 ABC, ABpS., pgr, pgs 0 6 0 0 6
Apgd
10 2,6:0,4;1,1 ABS:, ABpr, ABps, ABpt 2 4 0 0 6
ABpq, Apé,
3,5;1,3;1,1 ABC, ABp,, pqr, pgs 0 6 0 0 6
pgt, Apgd

NOTE: The 2(m+n2)—(k1+k2)£(b1+b2) designs are labeled as “Design = n1,ng; ki, k23 by, be” and are
ordered by the number of treatment and blocking factors, n = ny + na + by + ba.

A-G and p-v are used to denote the WP and SP factors, respectively. The ** and j** WP
blocking variable and separator are denoted by §; and §; respectively. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(e) The number of clear CN two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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E.12 Catalog of Optimal 32-Run BFFSP RPDs
via Mixed Blocking: Control Factors as WP
Factors



APPENDIX E. CATALOG OF OPTIMAL BFFSP RPDs 251

Table E.12: Optimal 32-Run BFFSP RPDs via Mixed Blocking: Control Factors as
WP Factors

n  Design Design Generators (a) (b) (c) (&) (g
8 2,4,0,1;1,1 ABp,, ABqrs, Apré; 2 8 0 0 10
3,3;,0,1;1,1 ABCp,, ABCpr, Apqé, 3 9 3 0 12
3,3;1,0;1,1 ABC, ABpB;, Agrd, 0 9 0 0 9
42:10:1,1 ABCD, BCB,, Apgs, 4 8 0 0 12
9 2,50,2;1,1 ABp,, ABgrs, ABprt, Apqé; 2 10 0 0 12

3,4;,0,2;,1,1 ABCp,, ABCpr, ABCqs, Apgd, 3 12 3 0 15

3,4;1,1;1.1 ABC, ABpB,, Apgrs, Aqré, 0 12 0 0 12

43:1,1;1,1 ABCD, BCp,, BCpqgr, BCpd; 4 12 0 4 16

5,2;,2,0;1,1 ABCD, ABCE, BCp,, Apgd, 3 6 0 0 9

* BCD, ACE, BCp;, Apgd; 10

10 2,6;0,3;1,1 ABp,, ABqrs, ABprt, ABpqu 2 12 0 0 14
Apqré,

NOTE: The 2(m1+n2)~(k1+k2)£(b1+b2) degigns are labeled as “Design = n1, no; k1, ko; by, bo” and are
ordered by the number of treatment and blocking factors, n = n; + ng + by + bs.

A-G and p-v are used to denote the WP and SP factors, respectively. The i** and jt* WP
blocking variable and separator are denoted by f; and §;,respectively. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.

(b) The number of clear CN two-factor interactions.

(c) The number of clear CC two-factor interactions.

(e) The number of clear CN two-factor interactions tested against WP error.

(g) One number optimality criterion: Total number of clear C main effects and CN two-factor
interactions.

* Indicates a design that is optimal with respect to the one-number criterion in the event that
the design immediately preceding it in the table is not.
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Table E.12 (Cont’d)

n  Design Design Generators (a) (b) (c) (e) (g)
10 3,5;0,3;1,1 ABCp,, ABCpr, ABCqs, ABCpqt 3 15 3 3 18
ABCpgd,
3,5;1,2;1.1 ABC, ABp,, qrs, prt 0 15 0 0 15
Apqd,
44:1,2;,1,1 ABCD, BCpB,, BCpr, BCpgs 4 8 0 0 12
Ap51
* ABCD, BCp,, Apr, Ags 15
Apqéy
5,3:2,1:1,1 ABCD, ABCE, BCB,, ABCpr 3 9 0 0 12
Apqé
* BCD, ACE, ABpB,, ABpgr 15

ABp51
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