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Abstract

In twoJevel fractional factorial (FF) screening experiments, if some factors are hard-
to-vary and others are easy-to-vary, subsequent randomization restrictions on the
run-order of the experiment may lead to the use of fractional factorial split-plot
(FFSP) designs' Blocked fractional factorial sptit-plot (BFFSP) designs arise when
all runs cannot be performed under homogeneous conditions. In this thesis. both
applied and theoretical properties of BFFSP designs are considered.

Three approaches to blocking FFSP designs are introduced. The first approach,
"pure whole-plot blocking", requires that blocking variables be generated exclusively
by whole'plot factors. The second approach, "separation,,, uses blocking generators
that consist of sub-plot factors alone, or sub-plot factors in conjunction with whole.
plot factors' The third approach, "mixed blocking", incorpoïates pïoperties of both
pure whole-plot blocking and separation.

For ranking FF designs fo¡ use in screening experiments, the quality of a design
is often assessed by means of the minimum aberration (MA) criterion. we provide
an extension of the MA criterion to the BFFSP design setting, and a catalog of
MA BFFSP designs is constructed. using properties of Hadamard matrices, in con-
junction with our MA criterion, we also develop theoretical results to assist in the
construction of large blocked fractional factorial split-plot designs from designs with
considerably fewer factors.

When the objective of an experiment is robust design, the MA criterion is typi-
cally unable to select an appropriate BFFSP design. we develop an approach for
ranking BFFSP designs in this situation, and a catalog is presented containing
BFFSP designs ranked according to our serection crite¡ia.

We also consider the consequences of "elevating" a sub-plot factor to the whole.
plot level' When the attributes of aberration, the number of clear factor effects and
the precision of effect estimates are considered, it is shown that elevation may be a
good design strategy.

The research in this thesis was motivated by an industrial BFFSp experiment
involving the chrome-plating of aircraft engine component parts. we discuss this
motivating case study in detait.
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Chapter 1

Overview and Summary

Performing screening experiments by means of twolevel fractional factorial (FF)

designs has been well documented over the years (Cox, 1958; Box, Hunter and Hunter,

1978; Montgomery, 2001). However, if it is expensive, time consuming or in some

way labor intensive to change the levels of some of the factors, it may be impractical

or even impossible to perform the experimental runs of the FF in a completely

random order. Under these circumstances, the randomization restrictions that are

imposed in the design of the experiment may result in a split-plot structure. In such

cases fractional factorial split-ploi (FFSP) designs arise (Bingham and Sitter, 1999a;

2001). FFSP designs also arise when different factors are applied to different sizes

of experimental units. Split-plot designs were originally motivated by agricultural
experiments with the whole-plots (WPs) usually being large areas of land and the

subplots (SPs) being smaller portions of land within the large areas (Yates, 1935).

Two FFs underlie the structure of a FFSP design-the n1 WP or hard-to-vary

factors arranged as a2n'-kt FF and the n2 SP or easy-to-vary factors arranged as a

2tu2-kz FF. However, if one views the WP and SP designs separately, there are limited

design options (Bingham and Sitter, iggga). Rather, it is better if WP factors are

included in the SP factor generators (Kempthorne, 1952, p. 3iS). This approach often

allows one to increase the resolution (fi) of a FFSP design. A two-level FFSP design

is typically denoted by 2(nr+nz)-(h+kz); this notation parallels that of Huang, Chen

and Voelkel (1998) and Bingham and Sitter (1999a, 2001) and implies that there a¡e

n : U I nz Lreatment factors, fr : fu + k2 "added" factors and n1 * nz - lq - lcz

"basic" factors from which the added factors are generated. Chapter 2 provides an

I



CHAPTER 1. OVERVIEW AND SUMMARY

extensive summary of these introductory design issues.

If it is thought that experimental conditions will not remain homogeneous for all
2@r+nz)-1rt'r*'tz) ¡¡¡s of the FFSP design, blocking may represent a practical design

option. For example, if a single batch of raw material is not large enough to permit

^112@t+nz)-(k#kz) 
treatment combinations to be run, then blocking may be used to

account for variability between batches. Industrial experiments may also be blocked

using specific time periods (for example, blocked by week). This enables researchers

to account for variability that occurs in a process over time, including variability due

to changing environmental conditions or personnel.

The research in this thesis arose from a blocked fractional factorial split-plot
(BFFSP) experiment involving the chrome-plating of aircraft engine component
parts. The following section provides an introduction to this experiment. We conclude

the chapter with an outline of the research completed in this thesis.

1.1 Motivating Case Study

An aerospace company \ryas experiencing problems with one of its chrome-plating
processes in that, when a particular complex-shaped part was being plated, excessive

pitting and cracking were observed. In addition, poor adhesion and uneven deposition

of chrome across the part were detected. With the goal being the identification of
key factors affecting the quality of the chrome-plating process, it was decided that a

screening experiment would be conducted.

In collaboration with the company's process engineers, six factors were identified

for consideration in the experiment: A: chrome concentration, B : chrome to sulfate

ratio, C : bath temperatuÍê, p : etching current density, q : plating current density,

and r - part geometry. The responses included the number of pits and number of
cracks, in addition to hardness and thickness readings at various locations on the

part.

Factors A, B and C were hard-to-vary in that they represented characteristics of
the bath in which the chrome-plating was being carried out. It was difficult to change

the composition or temperature of the baih quickly, as changes could be made at

most once per day. Moreover, there was only one tank, or bath, available for the

experiment.
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Factors p, q and r were easy-to-vary in that they could be changed multiple times

per day at the rectifier level. A rectifier is a bar through which current passes, and

is the cathode for the plating process. There $¡ere a number of rectifiers in the tank,

and different levels of p, q and r could be used on each rectifier.

The fact that some factors were harder-to-vary than others led to restrictions

on randomization. This in turn led to the use of a split-plot design, with ,4, B and

C being the WP factors and p, q and r being the SP factors. Because this was a

screening experiment a twolevel design was used, with high and low levels being

selected for each factor. A full unreplicated factorial experiment would require eight

days, there would be eight rectifiers in ihe tank, and, on each day, one part would

be plated on each rectifier. In total, 26 :64 parts would be plated.

However, there were only four rectifiers in the tank, and it was desirable to use

only two of these-with the other two being used for a separate experiment. There-

fore, at first glance, \rye rryere faced with a 23-2 design at the SP level. On the positive

side, sufficient resources were available to run the experiment for 16 days, and to
plate two parts per day. These 16 days consisted of four four-day weeks and it was

desirable to block the experiment by week.

In constructing the design a decision was made to raise (elevate) one of the SP

factors, p, to the WP level (and to denote it by P). Thus, etching current was only

varied at the day level. On the one hand, by raising etching current to the WP level

it was recognized that less information would be available about this factor, because

it would now be tested against the WP error rather than the SP error. On the other

hand, a certain level of simplicity would be achieved, in that we could now think of

the experiment at the WP level as a full, unreplicated,2a design, run in four blocks.

As well, we would have less fractionation at the SP level, as we could now think of

the experiment at the SP level as a one-half fraction of a 22 design (although not

crossed with the WP design).

The design that was run was an unreplicated 2e+2)-(0+1) in 22 blocks. One factor

generator, r : ABC Pq, was used to generate the SP added factor r. Two pure WP

blocking variables, fu : ABC and þz - AB P, were used to generate the four blocks

and, as a consequence, one two-factor interaction (zfr), CP, was also confounded

with blocks.

Questions concerning the optimality of the design led to the current research. We
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\¡rere particularly interested in whether the chosen (factor and block) generators were

"optimal", and whether it was a good idea to raise p to the WP level (or whether

better designs could be constructed by leaving p at the SP level). We will revisit

these issues, in the context of the chrome-plating experiment, in Chapters 9 and 10.

Before doing this we will develop a more general theoretical framework in Chapters 2

-8.

L.2 Outline of Thesis

Chapter 2 provides an overview of FF, blocked fractional factorial (BFF) and FFSP

designs. This overview will provide the reader with a reasonable foundation for study-

ing more advanced designs in subsequent chapters.

Blocking FFSP designs is complicated by the presence of the two FFs underlying

the split-plot structure. We will demonstrate that there is more than one way to

block a FFSP design. In Chapter 3 we will show that one may induce blocking

at the WP level using three distinct, yet related, approaches. The first approach,

"pure WP blocking", requires that blocking variables be generated exclusively by WP
factors. The second approach, which we call "separation", uses blocking generators

that consist of SP factors alone, or SP factors in conjunction with WP factors. The

third approach, "mixed blocking", incorporates properties of both pure WP blocking

and separation.

In this context, the concept of separation appears to be new. The key point is that
the blocking generators, or "separators", are used to induce blocking at the WP level

by grouping all of the runs from the same block together. However, the motivation

for separation goes beyond the obvious intent of grouping treatment combinations.

In essence, the process of separation achieves "pseudo-replication" at the WP level

at the expense of further fractionation at the SP level (Brewster and Mcleod, 2000).

In Chapter 3 we also provide a straightforward extension of the minimum aber-

ration (MA) criterion to the blocked fractional factorial split-plot (BFFSP) design

setting. Our approach is based upon that of Sitter, Chen and Feder (1997) and en-

ables a practitioner to select "good" BFFSP designs for the estimation of (WP and

SP) main effects and two-factor interactions (2fi's).

When testing for the significance of an estimated split-plot effect one must test
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the given effect against the appropriate variance. If an incorrect variance is used,

erroneous inferences regarding the statistical significance of that effect may occur.

In Chapter 4, the variance forms for split-plot effects arising from the three blocking

approaches are constructed and compared. These variance forms imply general rules

for correctly assessing the significance of BFFSP design contrasts. These rules are an

extension of those initially developed for the FFSP setting (Bisgaard, 2000; Bingham

and Sitter, 2001).

Chapter 5 details methods by which one may algorithmically "search" for and

obtain two-level BFFSP designs ranked according to the MA criterion. Our search

algorithm is patterned after the search-table approach of FYanklin and Bailey (1977)

and the combined approach of Bingham and Sitter (1999a). Flom this search pro-

cedure we will see that for a given number of treatment factors, blocking variables

and degree of fractionation there may be many BFFSP designs possessing MA. To

further differentiate between the "goodness" of these MA designs additional optimal-

ity criteria (such as the number of clear SP main effects and 2fi's) will be presented

for ranking purposes. These additional optimality criteria may be used to distin-
guish between MA BFFSP designs possessing the same word iength pattern (\ /LP).

A catalog is then constructed containing 8, 16 and 32-run BFFSP designs ranked

according to the MA criterion and the aforementioned additional optimality criteria.
In experimental design it is well known that the analysis of variance (ANOVA)

approach provides the experimenter with a versatile statistical tool for studying the

relationship between a response variable and one or more (treatment) factors (Mont-

gomery, 2001 and references therein). The main task of an ANOVA is to quantify

and evaluate the importance of possible sources of variation in an underlying lin-

ear model. This is accomplished by forming a partition of the total sum of squares

and degrees of freedom associated with the response variable, g, into its component

parts. With this in mind, Chapter 6 provides an indepth look into the construction of
ANOVA models for the three blocking approaches. Considerable time is then spent

detailing appropriate methods for the testing of split-plot effects using the ANOVA

models.

While FF and FFSP designs have been widely used for some time, the theoretical

properties of "optimal" (that is, MA) FF and FFSP designs were, for the most part,

undeveloped until recently. Chen and Wu (1991) and Bingham and Sitter (1999b)
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introduced novel matrix representations for the defining contrast subgroups (DCSs)

of FF and FFSP designs, respectively. In Chapter 7 we take a theoretical iook at

BFFSP designs by developing a matrix representation for their DCSs that account

for the presence of blocking variables. These results represent an extension of those

for FF and FFSP designs. While adhering to the MA criterion, \,ye develop theorems

that allow BFFSP designs with many factors to be constructed from BFFSP designs

with significantly fewer factors. In addition, theorems are presented which place lower

bounds on a BFFSP design's maximum resolution. These results can be incorporated

in design search algorithms to reduce search times.

In Chapter 8 we formulate an approach by which one may construct and subse-

quently rank BFFSP designs for the purpose of robust parameter design (RPD). In

RPD, an experimenter's objective is to reduce the variability in a product or process

by a careful selection of factor level settings. We demonstrate that the MA criterion

developed in Chapter 3 is not suitable for ranking BFFSP RPDs since it is unable to

discriminate between the importance of effects having the same order. For example,

our MA criterion cannot distinguish between the importance of control x control and

control x noise 2fi's, whereas the latter are more important in RPD. Instead of using

the MA criterion in our ranking procedure, we construct an effect ranking scheme

that is a compromise between the notions of "likely significance" of effects and "ef-

fect interest". Our approach is an extension of that of Wu and Hamada (2000) and

Bingham and Sitter (2003) for FF and FFSP RPDs, respectively. Using our ranking

procedure 16 and 32-run optimal BFFSP RPDs are constructed. Examples are given

illustrating the superiority of our effect ranking scheme over that of the MA criterion,

when the objective is robust design.

Chapter 10 considers the effect of "elevating" a sub-plot factor to the whole-plot

level in BFFSP designs. We demonstrate that elevation may lead to a design with
higher estimation capacity. That is, an elevated design may be more appealing in

terms of our proposed design optimality characteristics (aberration, number of clear

effects, precision of effects). Underlying the elevation procedure is the assumption

that the experimenter is not overly concerned with the loss of precision for the

elevated factor as a consequence of running it at the WP level. Catalogs of 32-run

BFFSP designs are constructed containing elevated designs that potentially provide

the practitioner with superior estimation capacity.



Chapter 2

Design Preliminaries

The importance of experimental design in agricultural (Yates, 1935; Kempthorne,

1952; Fisher, 1960), industrial (Box, Hunter and Hunter, 1978; Wu and Hamada,

2000; Montgomery, 2001) and other scientific applications (Lindquist, 1953; Kirk,
1968) has been well documented. The main objective of experimental design has

been to develop methods by which one may simultaneously account for, or model, the

effect of a set of factors (variables) comprising some process under investigation. The

approach taken by today's proponents of experimental design methodology represents

a radical departure from the "one-factor-at-a-time" investigative approach that was

prevalent in many experiments during the early stages of the 20¿ä century. It is now

well known that the major pitfall of one-factor-at-a-time experimentation is that
it negates the opportunity to identify important interactions between experimental

factors.

The objectives of experimental design usually fall under (at least) one of the

following headings:

1. The deterrnination of which factors exert an important influence on a particular

process,

2. The deterrnination of factor settings by which the process is opti,mized. (In ex-

perimental design, optimization may take on several forms, such as maximizing

the yield or minimizing the variability of a process.)

The class of designs with n factors each at two levels has been given much attention

in the literature (see above references). These designs have been named "2" full

7
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factorial designs", since they consist of t* 2-:æ' : 2' observations or treatment

combinations. These factor combinations are varied together rather than one-at-a-

time. FYom this class of designs we obtain two-level fractional factorial (FF), btocked

fractional factorial (BFF) and fractional factorial split-plot (FFSP) designs.

It is our intent in this chapter to provide an overview of FF, BFF and FFSP de.

signs. This starting point will provide the required statistical background for dealing

with more advanced designs in subsequent chapters.

2.L Two-level Full Factorial Designs

A 2" full factorial design is comprised of all possible 2" combinations of the n factors,

where each factor has only two levels or settings. Therefore, ã 2n full factorial design

consists of 2n runs. When conducted, the 2" full factorial experiment will provide

information on all possible factorial effects, where a factorial effect is either a mai,n

effect or an interaction between two or more factors. A main effect refers to the

change in response produced by a change in the levels of one of the primary expeï-

imental factors of interest (Montgomery, 2001). An interaction between two factors

is said to occur if we find that the difference in response between the levels of one

factor is not the same at all levels of the other factor.

The classic example by which many authors illustrate the basic attributes and

analysis of a full factorial design is the 23 design (Anderson and Mclean,IgT4; Bing-

ham, 1998; Montgomery, 2001). We denote the three design factors by A, B and C.

By using the usual "-l-/- coding" for representing the high and low levels of the fac-

tors, we may list the 23 : I runs as the rows of the following array:
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This list of runs in terms of the coded factor levels is referred to as the design matri,r.

If the experimental design is displayed in terms of the actual factor levels the list of
runs is sometimes referred to as the planni,ng matrir.

One may display the entire set of columns corresponding to all main effects and

interaction effects by use of the full factorial desi,gn matri,r. For the 23 design, the

full factorial design matrix is given by

ABC

ABCABACBCABC
+++

+ï+
-r++

-T-l-+

where AB, AC, BC and ABC represent all possible two-factor interactions (2fi's) and

three-factor interactions (3fi's) of the 23 design.

An esti,mated main effect or interaction, denoted by ô, is given by

¿: 
*tY, 

.
r2n-r'

where x. is the column vector of +l- signs in the full factorial design matrix corue-

sponding to factor c, y is the vector of the response observations corresponding to

1

(2.1)
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the factor level settings in each row of X, and r is the number of repli,catior¿s of the
2" design.

The usual model for a 2" design may be summarized by

y : f(factor effects) * e,

where e is the random error term and /(.) is a linear function of the main effects and

interactions.

2.2 Two-level Fractional Factorial Designs

One drawback of 2" fall factorial designs is their drain on resources. As n, the number

of factors increases, it is readily apparent that the required number of experimental

runs may become prohibitive. That is, expense, time and labour requirements de-

manded by large 2" designs may be impossible to meet. By assuming that certain

high-order interactions (for example, 3fi's and 4fi's) are negligible one may obtain

information on all remaining main effects and interactions by running only a subset

or fracti,on of the 2" full factorial design. (The assumption that high-order interac-

tions typically exert a negligible effect on a process has been empirically justified by

many studies (Wu and Hamada, 2000) and is referred to as effect hi,erørchy.) These

considerations have cemented the popularity of two-level FF designs; consequentl¡

FF, rather than full factorial designs are the norm rather than the exception.

The analytic approach to FF designs (and that of factorial designs in general) is

guided by several principles as listed below:

1. The sparsi,ty of effects pri,nciple; When there are several variables the process is

likely to be driven primarily by relatively few of the main effects and low-order

interactions.

10

(2.2)

2. The projecti,on property: FF designs can be projected into stronger designs in

the subset of significant factors. If the number of significant factors is small,

these "stronger designs" may possess replicated treatment combinations, thus

allowing the formation of error estimates. (For a thorough description see Mont-
gomery (2001), pp.246-25l.)

Effect hi,erarchy: Main effects are more likely to be significant than 2fi's, 2fi's

are more likely to be significant than 3fi's, and so on.

3.
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4. Effect heredi,ty: Interactions involving significant main effects a e more likely to
be significant than interactions involving main effects that are not significant.

In general, one defines a 2n-k design to be a FF design with r¿ factors, each at two

levels, and consisting of 2"-k treatment combinations or runs. Since a2-k FF design

is a 2-k-th fraction of the 2" full factorial design, the main concern in constructing

FF designs is the correct choice of factor level settings to be run. The correct factor

level settings are determined by assigning k of the factors to interaction columns of.

the 2"-k full factorial design matrix. The first r¿ - k columns of the design matrix are

considered to be i,ndependenú and they determine the 2"-k treatment combinations

of the first n, - k, basi,c factors. It is the columns representing the interactions of the
first n - fr factors that enable the experimenter to determine the factor level settings

for the remaining k added (or ilepend,ent) factors.

Example 2.2.L Consider a 26-2 FF d,esign. Thi,s desi,gn requires 16 runs whereas a

26 fuII factori,al design would requi,re 6f . Hence, the FF design i,s a '2-2 : f, fracti,on"
oJthe26 d,esí,gn. Onewould, assi,gnfourbasi,cfactors, say A, B, C and D, to thefour
(i,ndependent) columns of the 2a desi,gn matri,r gi,uen i,n Fi,gure 2.1. One needs to

assign the two remai,ni,ng factors, say E and F, to i,nteractions i,naolui,ng A, B, C and

D. One possi,bi,li,ty is E : AB ønd F : ACD. Thi,s impli,es that the setti,ngs of factors
E and, F are completely determi,ned by the columns corcesponding to the i,nteracti,ons

AB and ACD, respectiuely.

From the properti,es of addition modulus 2 arithmeti,c it is seen that I : ABE
and I : ACDF where I i,s the identity column of l's (or *'s) and i,s obtained by

multi,plyi,ng both si,des of E : AB and F : ACD by E and, F, respectiuely. We can

combi,ne the preced,i,ng relati,ons by wri,ting I : ABE : ACDF where E : AB and, F
: ACD are lcnown as the generators of the 26-2 desi,gn. Ba taki,ng the prod,uct of
the generators we obtai,n

I:ABE:ACDF:BCDEF,

whi,ch i"s called the (treøtment) defining contro,st subgroup or DCS of the

desi,gn (Wu and Hømada, 2000), where ABE, ACDF and BCDEF form the set of
utords in the DCS. Note that rnany authors (Bor, Hunter and Hunter, 1978; He-

dayat, Sloane and Stufken, 1999; Montgomery, 2001) also refer to the DCS as the

defini.ng reløti,on of a desi,gn.

11
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Si,nce only a subset of the 26 runs are to be performed we are i,n essence obtai,ni,ng

"Iess than complete i,nformati,on" for some of the mai,n effects and i,nteracti,ons. For
erample, si,nce the settings of E and F are d,etermi,ned by AB and ACD, respecti,uely,

their factor effect estimates wi,ll be i,nili,sti,ngui,shable from these interacti,ons. That i,s,

E i,s øliased, with the Zfi, AB and, F i,s ali,ased with the ?fi, ACD.

Ali'o'si,ng i,s a d,i,rect consequence of running a FF design and i,s always unauoid-

able. Howeuer, son'Le forms of aliasing are consi,dered to be worse than others. For
erample, consider the ali,ased, effects, E : AB and F : ACD. Here E is aliased wi,th

a Zfi whi'Ie F i,s aliased with a ?fi,. In order to estimate the mai,n effects E and F the

i'nteractions AB and ACD must be assumed negli,gi,ble. Whether or not AB and/or
ACD are truly negli,gibte i,s the key issue. It was preui,ously menti,oned, that empiri,cal

eui,dence suggests that hi,gher order i,nteracti,ons are negli,gi,ble. Therefore, 'it 'is "eas-

ier" to clai'm that the Srt (ACD) i,s small and hence F i,s esti,mable, than to clai,m

that the Zfr (AB) is neslisible.

One lesson to be drawn from Example 2.2.L is that longer words in the DCS are

"better". That is, one would wish to have as many long words in the DCS as possible

since words consisting of only three factors (letters) cause main effects to be aliased

with 2fi's, words consisting of four letters cause 2fi's to aliased with other 2fi's, five

ietter words cause 2fi's to be aliased with 3fi's, and so on.

At this point it is useful to introduce the concepts of word, length, word length

pattern (WLP) and d,esi,gn resoluti,on. The number of letters in a word is its word

length and the vector

72

is called the WLP of the design, where A¿ denotes the number of words of length

i in the design, D. The shortest word length in a design's DCS (excluding I) is

called the resolution (Box and Hunter, 1961) of the design. The 26-2 FF design in
Example 2.2.I has WLP W : (0,0, 1, 1, 1,0) and thus is a resolution 3 design.

Flom the above discussion we understand that designs with larger resolutions

a¡e often preferred. However, knowledge of the resolution of a design is insufficient

in assessing the esti,mati,on capaci,ty of a design. For instance, designs with equal

resolution do not necessarily have equal WLPs and consequently may not have the

same alias structure. In order to differentiate between designs of equal resolution,

W : (At, Az,. . ., An), (2.3)
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Figure 2.1: The Design Matrix for the 2a Design.

ABC D
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Flies and Hunter (1980) developed a criterion entitled mini,mum aberration (MA).

In the context of FF designs, MA has the following definition:

Definition 2,2,L (Minimum Aberration) For two designs D1 and, D2, let r be

the smallest ualue such that A,(Dt) f A,(Dr). We say that Dt has less aberration

than D2 if A,(D) < A,(Dr). If there is no desi,gn wi,th less aberrati,on than D1, then

D1 has the MA (treatment) DCS and therefore i,s a "MA des,i,gn".

The MA criterion sequentially minimizes the number of words of length ,4¿ in the

WLP of a FF design. Since a MA design will have as few short words as possible

one will typically run a MA FF design rather than an equally sized FF design not
possessing MA-exceptions to this "rule" will be considered in later chapters.
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2.3 Blocked Two-level Futl Factorial Designs

Montgomery (2001) defines blocki,ng in experimental design to be a technique used

to increase the precision of an experiment. A block is the portion of the experimen-

tal material that is more homogeneous than the entire set of material. For example,

an experiment in a manufacturing process may require two days to complete all the

required runs. However, there could be differences between the days due to employee-

to-employee (work shift) variability. If we are not specifically interested in this effect,

we could think of "days" (work shifts) as blocks. Within a given day, we would expect

experimental conditions to be more consistent (homogenous) given that the employ-

ees remain constant through the day. However, between days we may assume a larger

degree of variability in the process due to an entirely different shifi of employees.

In general, blocking serves to reduce the variability transmitted from sources

other than the factors of interest in the underlying process as long as the within-block

variation is smaller than the between-block variation. This variability reduction will
increase the precision by which the experimenter may make subsequent statistical

inferences regarding the treatment factors.

Sitter et al. (1997) and Loeppky and Sitter (2002) summarize the approach to

blocking 2" designs. First, consider the simple scenario of running a 2n experiment

in two blocks of size 2'-1. Here one would assign a blocking variable, say P, to one of

the columns in the full factorial design matrix. This implies that the block is aJiased

with one of the effects and is said to be confounded with the effect. It is advisable to

choose blocking variables using the principle of effect hierarchy. With this in mind,

it makes sense to assign the blocking variable to the highest order interaction. This

will cause the runs of the 2" design to be grouped into two equally sized blocks of
size 2n-r. One block would be run at the high level of B and the other at the low

level of É.

Example 2.3,1 Suppose we wi,shed to run a 23 desi,gn i,n two blocks. Keepi,ng the

effect hi,erarchy princi,ple in mind, we could let B : ABC. This i,mpli,es that blocks are

confounded wi,th the Srt ABC. We could assi,gn the treatment combi,nations to bloclc

1 wheneuer ABC - - (that i,s, wheneuer the product ABC - -I) and, assign the

treatment combi,nations to bloclc 2 wheneuer ABC : + (that i,s, wheneuer ABC - 1).

We may summari,ze the assi,gnment of the I runs to the two bloclcs wi,th the followi,ng

I4
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23 design matrir, sor"ted by block number:

þ: ABC Bloclc

1

1

1

1

+r.
+r.
+r.
+r.

If we wish to run an experiment in 2- blocks we require rn blocking variables. To

construct the blocking variables \rye must confound the blocks with multiple effect

columns (from the full factorial design matrix) while using suitable replacement

rules (Addelman, 1962). For example, to run an experiment in four blocks, we would

use Table 2.1. Here, h, þz and fu82 represent the three blocking variables, each

assigned to a higher-order interaction. Note that the third blocking variable, þtþ2,
is automatically dete¡mined once pi and B2 are chosen since we take fu82 to be the

product of fu and 82.

Table 2.1: Running an Experiment in Four Blocks

15

Other references detailing approaches to blocking 2" designs include Kempthorne

(1952), Anderson and Mclean (1974) and Montgomery (2001).

h 0z þßz Block Indicator

-1-

+

1

2

3

4
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One model for a BFF design is

where e and e are the (mutually independent) factor and block effect error terms.

For this model, the main assumption is that block-by-treatment interactions are

negligible (Sitter et al., 1997 and Loeppky and Sitter,2002).

For full factorial designs optimal blocking schemes may be obtained by applying

the MA criterion to the block DCS (Sun, Wu and Chen, 1997). Sun et al. (1997)

denote the number of 'j-factor interactions that are confounded with block effects by

A¿(b).Because no main effect should be confounded with block effects, A1(ó) : g

and the definition of A¿(b) begins with z : 2. Therefore, the WLP of the block DCS

is given by

y : f(factor effects) * e f g(block effects) * e,

Because W6 is analogous to the WLP, W, for a FF design, \rye can appty the MA
criterion to rank-order any two blocking schemes for 2" full factorial designs.

Example 2.3.2 Suppose we wi,sh to arrange a 2a d,esi,gn i,n I blocks. Consid,er the

blocki,ng uari,ables h : AB and B2 : AC. The block DCS, denoted bA bt, i,s I :
ABh: AC7z: BChþ2. Consi,der an alternate bloclcing arrangenxent for the2a

desi,gn gi,uen bA þt : ABC and, þz: CD. The block DCS, b2, is I : ABCþ.:
CDþr: ABDþtþz.Ba simple appli,cation of the MA cri,teri,on we seethatWbL:
(3,0,0) and,W6r: (I,2,0). Therefore, b2 has less aberration than b1 si,nce A2(bù :
r < Az(br) :3.

2.4 Blocked Two-level Fractional Factorial Designs

The methodology by which one may construct optimal blocking schemes for 2" de-

signs has now been outlined. For 2n-k FF designs, the issue of blocking is consider-

ably more complicated due to the presence of two DCSs-the treatment DCS and

the block DCS. The following example from Wu and Hamada (2000) illustrates how

these two DCSs act jointly in determining the alias structure of factor effects and in

determining the overall (combined) DCS of the design.

16

W6 : (Ar(b),. . ., A"(b)).

(2.4)

(2.5)
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Example 2.4.1 Consider the 26-2 FF design in /¡ blocks, with treatment DCS, I :
ABCE : ABDF : CDEF o,nd block DCS I - ACDþt : BCDþz: ABfuþ* BA

mutti,plyí,ng each word, in the treatment DCS by AC Dh we haue ACDP1: BDEþ1:
BCFh: AEFT. Therefore, the block effect B1 i,s confound,ed, with the four ?fi,'s,

ACD, BDE, BCF and AEF. Si,milarly, BCDPI: ADEþz: ACFþz: BEF7z and,

ABþtþr: CEhþz: DFh7z: ABCDEFþú2. The combi,ned, DCS of the blocked,

26-2 FF desi,gns i,s

I : ABCE : ABDF : ACDT: BCDOZ:CDEF : BDET: ADEOZ

: BCFfu: ACFþz: ABþúz - AEFÊL: BEFP2: CEh7z

: DF7rþ, - ABCDEF7ß2.

Because of the presence of two distinct DCSs in 2n-k BFF designs there is no

clear choice for an extension of the MA criterion from the (blocked) 2" full factorial

design scenario. There have been recent attempts to address the problem by Bisgaard

(1994a, b) and more thoroughly by Sitter et al. (i997).

Sitter et al. (1997) define the length of a word in the DCS of a 2n-k BFF design

to be

where flc¿ and fiB¿ represent the number of factors and blocking variables in the word.

If a given word contains at least one 0t, (i.e., flþ¿ 21), then the indicator variable,

,[, implies that the word length is increased by 1.5. The motivation for introducing

fractional word lengths is two-fold. First, Equation 2.6 implies that block main effects

and block-by-block interactions contribute the same amount to the length of a word

in a BFF design's DCS. Second, the choice of 1.5 results in agreement with the word

ranking scheme ccc 11 ccb << cccc << cccb << ccccc << ..., where c and b

denote factor and blocking variables, respectively, and (( is interpreted as "less

desirable than". Sitter et al. (1997) note that the choice of 1.5 is arbitrary.Any
number between 1 and 2 would imply the previous ranking scheme. This definition

of word length results in the WLP of a BFF design being of the form

L7

flc¿ + (1.5)/Uþ¿>tl¡

where A¿ denotes the number of words of length z in the DCS, 3 < i < n * 7.5.

W : (As, As.s,. . ., An+t.5),

(2.6)

(2.7)
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Note that Equation 2.6 has now made it possible for a BFF design to have

fracti,onal resoluti,on. Also, from Equation 2.7 it is evident that designs having words

that alias or confound (factor or block) main effects with other main effects are

not to be considered since 77 allows only for those BFF designs that are of at

least resolution 3. The MA criterion can no\ry be easily applied to a BFF design via

sequential minimization of the WLP, W,, in Equation 2.7.

Example 2.4.2 To i,llustrate the aboue concepts we reproduce 0,n era,nxple from Sitter
et al. (1997). Consid,er blocking a28-2 FF d,esign in /¡ btocks. Thi,s impli,es that we

requi"re two bloclci,ng uariables, B1 and, 82. If the factor and blocking uariable generators

are chosen to be G : ABCD, H - ABEF, þt - ACE and, þz: BDF then the

DCS will be gi,uen by

I : ABCDG: ABEFH : ACET: BDFþz: CDEFGH _ ABCDEF\O2
: BDEGT: BCFHT: ACFG1z: ADEH7T: EGF0ß2

: CDH7úI: ADFGHT: BCEGH7T: ABGHþú2.

Thi,s desi,gn has (fracti,onal) resolution 4.5 with WLP, W : (0,0,0,4,2,5,1,2,0,L).

Another optimality criterion given considerable attention in the literature when

rank-ordering factorial designs is the total number of clea,r effects that a design pos-

sesses. A main effect or 2fr, is said tobe clear if it is not aliased (or confounded) with
any other main effects, 2fi's or block effects. Sun et al. (1997) rank-ordered both

blocked 2" full factorial and 2"-k BFF designs according to this criterion. It has

been observed that these optimality criteria (MA and total number of clear effects)

may lead to different "optimal" designs (Sitter et al., 1997).

18

2.6 Split-plot Designs

Split-plot designs arise in experimentation when randomization restrictions exist

while assigning treatments to experimental units. These situations occur primarily in

agricultural and industrial applications but are being observed in an increasing num-

ber of research areas in recent years (Silverstein, 1985; Algina, 1997). Kempthorne's

(1952) overview of the split-plot framework came at a time when the split-plot ap-

proach in experimental design was becoming popular among design practitioners.
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The split-plot designs described by Kempthorne (1952) were originally motivated

by agricultural experiments with the whole-plots (WPs) usually being large areas of
land and the sub-plots (SPs) being smaller portions of land within the larger areas

(see also, Yates, 1935). In recent years, authors such as Box and Jones (1992), Bing-

ham and Sitter (2001) and Montgomery (2001) have investigated the use of split-plot
designs within industry.

To motivate further theoretical developments we will first look at a small split-
plot experimental design. The example is taken largely from Milliken and Johnson

(1ee2).

Example 2.5.1 Consid,er a simple split-plot erperimentøl desi,gn i,nuolui,ng just two

multi-leuelfo,ctors, say A and B. The SP factor, say B, and, i,ts b leuels are completely

randomi,zed to the SPs withi,n the WP factor A. That i,s, for each leael of A we haue

a grouping of the b leuels of B. The number of WPs i,s a multi,ple of a, the number

of leuels of the WP factor A.

Suppose factor A has four leuels, føctor B has three leuels and there are ei,ght

WPs each consi,sti,ng of three SP erperi,mental uni,ts. The leuels of A are randomly

assi,gned to the WPs and the leuels of B are subsequently randomly assi,gned to the

SPs, withi,n the WPs, see Fi,gure 2.2. The randomizati,on restri,cti,on is that only one

WP treatment combi,nati,on takes place on each WP whereas all three SP treatment

Ieuels talee place withi,n a gi,uen WP.

Figure 2.2: A Simple Split-plot Experiment.
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A3

The larger WP experimental units are expected to be more heterogeneous "across"

than "within". Consequently, the between WP variability is expected to be larger

than the within WP variability and we write

ozwp > o?p-
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Also, since the WP treatments in a split-plot design are confounded with
and the SP treatments are not, it is wise to assign the factors that we

interested in to the SPs, if at all possible.

The model for the split-plot experiment in Example 2.5.1 is given by

A¿in : þ * A¿ I e¿¡ + Bn + (AB)¿n * e¿j*,

where 'i:7,2,3,4;i : L,2;k - I,2,3. The WP portion of the model is represented

by ¡¿ * A¿i e¿j and B¿ + (AB)ik I e¿jn represents the SP model portion. Note that
in a split-plot design there are two error terms in the model-one for the WPs, e¿¡,

and one for the SPs, e¿¡¿. Also, it is assumed that

e¿¡ ^ N(0,"'wr)

and

€.ijk ^ ,nr(0, ø!")'

Moreover, we assume all of the e¿¡ and e¿¡¡ are mutually independent. The structure

of the analysis of variance (ANOVA) table for the split-plot design in Example2.5.I
is given in Table 2.2.

Table 2.2: Stucture of the ANOVA Table for the Two-factor Split-plot Experiment

in Example 2.5.L.

20

the WPs

are most

Source of Variation df

WP

Since there are larger numbers of degrees of freedom (df) for SP error than there

a,re for WP error, and because the SP error is likely smaller than the WP error,

SP

A

Error (WP)

B

AB

Error (SP)

Total

3

4

2

6

ö

23



CHAPTER 2. DESIG¡ú PRELIMINARIES

we lvill typically have greater power for detecting statistically significant SP effects.

This greater power results because we have, in essence, more observations of the

individual SP treatments than we do for the WP treatments. This in conjunction

with the expectation that SP experimental units are more homogeneous than WP

units should motivate one to assign the factors of most interest to the SP units if at

all possible.

2.6 Two-level Fractional Factorial Split-plot De-

signs

Some characteristics of a simple split-plot design were outlined in the previous sec-

tion. At that point we did not set restrictions on the number of levels that the factors

possessed. We now turn our attention to factors that have only two levels. By do-

ing this we will be able to specifically consider 2n-k FF designs with a split-plot
structure.

2.6.L Full Factorial Split-plot Designs

Suppose the initial intent was to run a 2" design, but upon further consideration n1 of

the factors were deemed hard-to-uarA. To save resources (money, time or labour) one

can randomly choose one of the treatment combinations of the ni difficult-to-vary
factors and then run all of the level combinations of the rù2 r€mâining easy-to-u0,rA

factors in random order-this is done while holding the n1 factors fixed. In these

cases, we have randomization restrictions in the design of the experiment which

results in a split-plot structure.

For a 2" design with n1 WP (hard-to-vary) factors and n2 SP (easy-to-vary)

factors we are now faced with a full factorial split-plot design. The design matrix
for the 2n : 2nttn2 full factorial split-plot design is identical to that of ihe 2" húl
factorial design. The only difference is the order in which the runs are performed.

2.6.2 Fractional Factorial Split-plot Designs

Two FFs underlie the structure of an FFSP design-the n1 WP or hard-to-vary

factors arranged ã,s a 2nt-h FF and the n2 SP or easy-to-vary factors arranged as a

2t
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2n2-k2 FF. However, if one views the WP and SP designs separately, there are limited

design options (Bingham and Sitter, 1999a). Rather, it is better if WP factors are

included in the SP factor generators (Kempthorne,1952, p. 318). This approach often

allows one to increase the resolution of an FFSP design. A two-level FFSP design

is typically denoted by 2(nt+nz)-(&r*ez)' this notation parallels that of Huang, Chen

and Voelkel (1998) and Bingham and Sitter (1999a, 2001) and implies that there are

n: nr*n2 treatment factors,lr: lq f frz added factors and zz1 *nz-fu-lr2basic
factors from which the added factors are generated.

Example 2,6.1, Consi,der a 2(3+3)-(r+r) FFSP design. This d,esi,gn contai,ns three

WP factors (A, B and C) o,nd three SP factors (p, q and r). (We wi,II consi,stently

denote WP and SP factors with uppercase and lowerco,se letters, respecti,uely.) It is

impli,citly assumed thøt i,t i,s d,fficult to change the leuels of A, B and C, thus thei,r

WP d,esi,gnati,on.

Suppose that C - AB and r : Apq are the design generators. The DCS of the

FFSP design is

I : ABC : Apqr: BCpqr

and i,s of resolution 3. The desi,gn rnatrir is giuen i,n Fi,gure 2.3. Note that the WP

leuel of the desi,gn is a23-r FF, thus there are only /¡ distinct WP leuel combi,nati,ons

within the 16-run desi,gn rnatrir. The I leuel combi,nati,ons of the easy-to-uary factors
are run wi,thi,n each WP treatment combi,nati,on, thus creating the split-plot structure.

The FFSP setting may be modelled as

22

(Bingham and Sitter, 2001). The WP and SP error terms are e and e, respectively,

where it is assumed that e and e are mutually independent normal random errors.

That is, we have e - Iú(0, o2wà and e - l/(0, o?p), a"s in Section 2.5. Lastly, /(.)
and g(.) are functions of the WP and SP factorial effects.

2.6.3 Minimum Aberration and Rank-ordering FFSP De-

signs

Huang et al. (1998) extended the concept of MA to FFSP designs.

E : /(WP effects) -t e * g(SP effects) + e, (2.8)



CHAPTER 2. DESIG¡ü PRELIMINAHIES

Figure 2.3: A 2(3+3)-(1+i) f'f'Sp Design.
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Definition 2.6.1 (MA FFSP Design) Suppose that Dt and D2 are two

2@Ènz)-(kL+k2) ¡r¡rSP designs. Let r be the smallest i, such that A¿(Dy) * Ao@ù.
Then D1 i,s sai,d to haue less abercation than Dz iÍ A,(Dr) < A,(Dr). If no such i,

eri,sts, then D1 and, D2 are said to haue equal aberrati,on. A FFSP design is sai,d to

be a MA FFSP desi,gn i,f no other FFSP desi,gn has less aberrati,on.

Huang et al. (1998) proposed two methods for finding MA FFSP designs and

subsequently constructed an extensive catalogue of MA FFSP designs. However,

as they noted, their catalogue is incomplete. As an improvement to the existing

MA FFSP design search techniques, Bingham and Sitter (1999a) introduced a more

efficient algorithm that constructed the set of. all noni,somorphic (NI) two-level FFSP

designs. (Two designs, D1 and D2 are said to be NI if one cannot obtain D2 from

+++
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Dt by relabeling the factors of D1.) FYom this set of NI designs, Bingham and Sitter
(1999a) applied the MA criterion in Definition 2.6.1 to find the set of all NI 8, 16

and 32-run MA FFSP designs containing up to 7, 15 and 10 factors, respectively.

For fixed TLr¡Tù2,fr1 and fr2 it turns out there may be many NI MA FFSP designs

(Bingham and Sitter, 1999a). Bingham and Sitter (2001) describe how one can choose

between NI MA FFSP designs by considering which effects are compared to which

variance components. They base their selection procedure on work done by Bisgaard

(2000). Bisgaard (2000) showed that confusion regarding which error terms are to be

used when assessing the statistical significance of estimated split-plot effects could

be eliminated by considering the following rules (as summarized by Bingham and

Sitter, 2001):

1. WP main effects and interactions involving only WP factors are compared to
the WP error.

2. SP main effects and interactions involving at least one SP factor that are aliased

with either WP main effects or interactions involving only WP factors are

compared to the WP error.

3. SP main effects and interactions involving at least one SP factor that are not

aliased with either WP main effects or interactions involving only WP factors

are compared to the SP error.

Since there is typically greater power in detecting statistically significant SP effects

than WP effects, we wish to have as many SP efiects as possible tested against the SP

error. Bingham and Sitter (200i) provide tables of 16 and 32-run NI FFSP designs

ranked according to the MA criterion and by the total number of SP effects that are

tested against the SP error term. This procedure provides two criteria for ranking

"optimal" FFSP designs.

24



Chapter 3

BFFSP Designs and MA

Chapter 2 detailed the motivation (as well as the approach) for blocking two-level

full factorial and FF designs. In Chapter 2 we also provided a detailed introduction

to FFSP designs. For each design scenario in Chapter 2 we specifically considered the

MA optimality criterion for ranking the "goodness" of designs. This chapter extends

the material in Chapter 2 by considering the presence of blocking in two-level FFSP

designs. lVe also provide a straightforward extension of the MA criterion to the

BFFSP design setting. Our approach is based upon that of Sitter et al. (1997) and

enables a practitioner to select "good" BFFSP designs for the estimation of (WP

and SP) main effects and 2fi's.

3.1 Three Approaches to Constructing Blocking
Variables

The motivation for blocking a FFSP design parallels the discussion in Chapter 2

where we considered blocking a full factorial design. If it is thought that experimental

conditions will not remain homogeneous for ¿ll 2@t+nz)-(h+kz) runs of the FFSP

design, blocking may represent a practical design option. For example, if a single

batch of raw material is not large enough to permit ¿"ll 2@Ènz)-(er+&z) treatment

combinations to be run, then blocking may be used to account for variability between

batches. Industrial experiments may also be blocked using specific time periods (for

example, blocked by week). This enables researchers to account for variability that
occurs in a process over time, including variability due to changing environmental

25
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conditions or perconnel.

We will see in this chapter that blocking FFSP designs is complicated by the

presence of the two FFs underiying the split-plot structure. Moreover, \rye will demon-

strate that there is more than one way to block a FFSP design. We will show that one

may induce blocking at the WP level using three distinct, yet related, approaches.

The first approach, pure WP blocking, requires that blocking variables be generated

exclusively by WP factors. The second approach, which we call "separation", uses

blocking generators that consist of SP factors alone, or SP factors in conjunction

with WP factors. The third approach, mixed blocking, incorporates properties of
both pure WP blocking and separation.

3.1-.1 Pure Whole-Plot Blocking

Pure WP blocking requires that blocking variables be generated exclusively by WP
factors. However, this does not imply that the SP factors do not play a role in the

formation of the WP blocking variables. Rather, since factor generators and blocking
generators are formed simultaneously, the amount of fractionation at the SP level

will impact the selection of blocking generators.

For pure WP blocking, the i,th p:ure WP blocking variable is denoted by þ¿,i:
t,.. .,är. In each block,2nt-kr-br distinct WP treatment combinations are present,

I t h 1 nt - h - 7. (The rationale for the upper bound on the allowable number

of WP blocking factors is discussed in Section 3.2.2.) Associated with each WP

treatment combination are 2n2-k' SP treatment combinations. Therefore, if a design

possesses å1 WP blocking variables, the treatment combinations are grouped into 2bt

Wp blocks of size 2(nr-rnz)-(r.l+ftz)-bt.

For compactness of notation, it is useful to incorporate b1, the number of pure WP
blocking variables, into the exponent 6¡ 2@rrnz)-(kt*kz). One such representation is

given by 2@t+nz¡-(er*ez)*(br+o). The rationale for this notation, including the presence

of the zero in the exponent, will be given in Sections 3.1.2 and 3.1.3.

Example 3.1.1 Suppose that we wish to run a 2(3+3)-(0+1) trpSp desi,gn i,n 2r :2
bloclcs. In each block there wiII be four disti,nct WP treatment combi,nøti,ons and, cor-

respond,i,ng to each of the WP treatment combi,nati,ons, there wi,il be four SP treo,tment

combi,nati,ons. Thus there wi,H be 16 runs per block.

26
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Figure 3.1: Geometric Representation of the 2(3+3)-(0+1)+(1+0) BFFSP Design. The

eight corners of the larger cube represent the eighi treatment combinations of the

WP factors A, B and C. Associated with each WP treatment combination are four

treatment combinations, denoted by circles, of the SP factors,p, Q ffid r. Circles of
similar color signify treatment combinations belonging to the same block.

27

One possi,b¡" 2(t+t)-(0+1)+(i+0) BFFSP design i,s constructed by usi,ng h : ABC
as the pure WP blocki,ng generator o,nd r : ABpq as the SP factor generator. The

resulti,ng defini,ng contrast subgroup (DCS) i,s I: ABC\: ABpqr: Cpqrh.
Fi,gure 3.1 proui,d,es a geometric representati,on of the 32 runs of thi,s BFFSP d,esi,gn.

(The stando,rd, run order of the 2(3+3)-(0+1)+(1+0) design i,s gi,uen i,n Append,i,r A.) The

ei,ght corners of the large cube i,n Fi,gure 3.1 represent all possi,ble WP leuel combi,-

nati,ons. Associ,ated wi,th each WP leuel combi,nation are four SP leuel combinati,ons,

represented, by the ci,rcles on the corners of the smaller cubes. Note that there øre only



CHAPTER 3. BFFSP DESTG¡\IS AND MA

four SP treatment combi,nati,ons associ,ated wi,th each WP treatment combi,nati,on due

to the fractionati,on øt the SP leuel; recall, r : ABpq. In Figure 3.1, circles of si,mi,lar

color (black or whi,te) represent treo,tment combi,nations run withi,n the same block.

3.L.2 Separation

It is useful to recognize that blocking variables need not be generated solely by WP

factors. In fact, blocking variables may be generated by exclusively using SP factors

or by using SP factors in tandem with WP factors in blocking generators. We call

this method by which one includes SP and (possibly) WP factors in the blocking

generators to be separation, and the blocking variables formed in this manner to be

separators. With this definition, note that each separator must contain at least one

SP factor and may or may not contain any WP factors. To ensure that blocking at

the WP level is preserved, we envision that one would conduct the experiment by

first performing the runs in block 1, and then block 2, and so on-over the whole

experiment-not just at the SP level. Some of the runs that, without blocking, would

have been near to each other (because they were in the same WP) are now separated

in time (if blocking is being done in time).

In this form of blocking, the jth separator is denoted by õ¡, j : 7,. ..,b2. In each

block, 2u-kt WP treatment combinations are present, and associated with each WP

treatment combination are\nz-kz-bz SP treatment combinations, 1 ( b2 1 n2-lcz-L.
(The rationale for the upper bound on the number of separators is discussed in Sec-

tion 3.2.2.) The preceding formulae exemplify one of the consequences of separation.

Specifically, the process of separation achieves pseudo-repli,cati,on at the WP level at

the expense of further fractionation at the SP level (Brewster and Mcleod, 2000).

This pseudo-replication occurs since each separator results in a doubling of the num-

ber of runs at the WP level. The "pseudo" aspect of this replication process arises

since, for a given replicated WP treatment combination, the associated SP treatment

combinations may be different. In any ca^se, separation causes increased precision for

estimates of WP effects. We see these precision gains by first recalling that there are

2nt-kt WP runs per block. Therefore, for 2b, blocks, we will, over the course of the

experiment, have reset the WP treatment combinations 2bz2u-kt - 2nt-h*b2 times.

At the SP level, each additional separator causes a decrease, by a factor of two,

in the number of SP treatment combinations associated with each WP treatment
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combination, when compared to the pure WP blocking approach. Central to this

concept of pseudo-replication is the recognition that, at the WP level, the appropri-
ate analysis of a split-plot (or FFSP) design begins by averaging the responses over

the SPs contained within each WP. The use of the term pseudo-replication reflects

that, although we have replicated the treatment combinations for the WP factors,

the associated treatment combinations for the SP factors are not the same.

Previously, we introduced the notation u2@t*nz)-(kr-l-&z)*(br-l-0)" to refer to a two-

level BFFSP design having ó1 pure WP blocking variables. This notation signified

that blocking was accomplished exclusively through the use of WP factors. When

performing blocking via separation we refer to the BFFSP design with no WP block-
ing variables and ó2 separators as a 2(nt+nz)-çnr*fr2)*(0+bz) BFFSP design. Note that
the t symbol was chosen in part to remind the practitioner that separators affect the

way that we think about the amount of fractionation and replication in the design,

although they do not affect the total number of runs.

Example 3.1.2 To illustrate the process of separati,on we return to the 2(3+3)-(0+1)

FFSP desi,gn i,n Erample 3.1.1. Agai,n we wi,sh to group the 32-run design into two

bloclcs; howeuer, here we wi,ll accompli,sh this by usi,ng one sep&ro,tor i,nstead of one

pure WP blocking uariable.

One possi,ble ZQ+3)-(0+1)+(0+1) BFFS? desi,gn i,s formed, by usi,ng ù : ABq and,

r - ABCq as the separator and SP factor generator, respecti,uely. The DCS i,s gi,uen

by I : ABCpr : ABqù : Cpqrõt. The use of WP factors (A and B) and a

single SP factor (q) it demonstrated in the formation of ù. (Other generators for ö1

are of course possi,ble. The selecti,on, 61 - ABq, was si,mply made to erempffi the

proper-ti,es of separator generators. )
Figure 3.2 proui,d,es a geometri,c representation of the 32 runs of the2(3+3)-(0+1)+(0+1)

BFFSP design. (The stand,ard run order of the 2(3+3)-(0+1)+(0+1) desi,gn i,s gi,uen i,n

Appendi,n A.) As i,n Fi,gure 3.1, the eight corners of the large cube i,n Fi,gure 3.2

represent all possible WP leuel combinati,ons. Associøted with each WP leuel combi,-

nati,on are four SP leuel combi,nations, represented by the ci,rcles on the corners of

the smaller cubes. Note that there are only four SP treatment combi,nations associ,-

øted wi,th each WP treo,trnent combi,nation due to the frøcti,onati,on at the SP leuel;

recall, r - ABCq. In Fi,gure 3.2, circles of si,milar color (black or whi,te) represent

treatment combi,nati,ons run withi,n the same block. Obserue that all ei,ght possi,ble
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Figure 3.2: Geometric Representation of the 2(3+3)-(0+1)+(0+1) BFFSP Design. The

eight corners of the larger cube represent the eight treatment combinations of the

WP factors A, B and C. Associated with each WP treatment combination are four

treatment combinations, denoted by circles, of the SP factors,p, q and r. Circles of
similar color signify treatment combinations belonging to the same block.

C
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WP treatment combi,nations are present withi,n each bloclc, i,n contrast to the design

i,n Erample 3.1.1 where there were only four di,sti,nct WP treatment combinations per

block. As a result of separøti,on ue haue thus seen a two-fold increase i,n the number of
disti,nct WP treatment combi,nati,ons i,n each block of the desi,gn. Conuersely, withi,n

each blocle each WP treatment combi,nation has onlg two associated, SP treatment

combi,nati,ons, as compared, to four, in Erample 3.1.1. Thi,s d,emonstrates the further
fracti,onati,on that always occurs at the SP leuel when separo,ti,on ha,s talcen place.



CHAPTER 3. BFFSP DES/G¡üS AND MA

3.1-.3 Mixed Blocking

Mixed blocking is a natural extension of the previous two blocking methods in that

rrye now simultaneously use pure WP blocking variables and separators. Again the

'i¿à pure WP blocking variable and lhe jth separator are denotedby þ¿ and ô¡. Un-

der mixed blocking, the formation of b1 pure WP blocking variables and b2 separä,-

tors causes the subsequent 2@t*nz)-(kr*kz)*(år+¿z) gppsp design to be run in 2bt*bz

blocks, where L t h 1nt-lcr-l and 1 1bz 1nz-kz - 1. Each block will
contain 2nr-kt-¡l WP treatment combinations and associated with each distinct WP

treatment combination wili be 2nz-kz-b' SP treatment combinations, for a total of

(2at+uz)(2nt-e'-b')(2nz-kz-uz¡ :2@r+n2)-(krrkz) runs. Therefore, as expected, the to-

tal number of runs remains unchanged under mixed blocking.

Example 3.L.3 Suppose we wi,sh to run ø 2(3+3)-(0+r) design in four bloclcs by usi,ng

both a pure WP bloclcing uariable, By, and, ø separator, fi. One possi,ble 2(3+3)-(0+1)+(1+1)

BFFSP desi,gn i,s formed, by using r : ABq as the SP factor generator and fu : ABC
and' fi: ACpr as the pure WP blocking generøtor and separator, respecti,uely. The

DCS i,s gi,uen by I : ABqr : ABCh : ACprù : Cqr/t - BCpqù : Bprþðt :
APq0tõt'

Figure 3.3 prouides a geometri,c representation of the 32 runs of the2(3+3)-(0+1)+(i+1)

BFFSP design. (The standard run order of the 2(3+a)-(o+r)+(r+r) desi,gn is gi,uen in

Appendi,r A.) Each block contains eight runs (ci,rcles haai,ng i,denti,cal form represent

treatment combinati,ons run withi,n the same block) where each of the four di,sti"nct

WP treatment combi,nati,ons wi,thi,n a block haue two associated SP treatment combi-

nati,ons. Note that the attributes of separati,on carry di,rectly ouer to the mi,red bloclei,ng

scenari,o. By thi,s we rnez,n that, as 0, consequence of the separator, we agai,n obtøi,n

i,ncreased repli,cati,on of the WP treo,tment combi,nati,ons at the erpense of further

fracti,onati,on o,t the SP leuel.

3.2 MA for BFFSP Designs

31

To

we

be able to provide a formal definition of what is meant by a MA BFFSP design,

extend several concepts first introduced in Chapter 2. Recall that Sitter et al.
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Figure 3.3: Geometric Representation of the 2(3+3)-(0+1)+(1+1) BFFSP Design. The

eight corners of the larger cube represent the eight treatment combinations of the

WP factors A, B and C. Associated with each WP treatment combination are four
treatment combinations, denoted by circles, of the SP factors, p, g and r. Circles

having identical form denote treatment combinations belonging to the same block.
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(1997) define the length of a word in the DCS of a 2n-k BFF design to be

üø + (t.S¡f'w¿>-11,

where flc¿ and flB¿ represent the number of factors and blocking variables in the word.

The motivation for introducing fractional word lengths was two-fold. First, recall

that Equation 3.1 implies that block main effects and block-by-block interactions

contribute the same amount to the length of a word in a BFF design's DCS. Second,

the choice of 1.5 results in agreement with the word ranking scheme ccc 11 ccb <<

(3.i )
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cccc 11 cccb << ccccc <<..., where (( is interpreted as "less desirable than".

This definition of word length resulted in the WLP of a BFF design being of ihe

form

where A¿ denotes the number of words of length i in the DCS, 3 < i < n * 1.5.

By extension we define the length of a word in the DCS of 
^2(nÉnz)-('kr*'kz)+(br*bz)

BFFSP design to be

where ilc¿ and fr(þ¿ + ô¡) represent the number of factors and blocking variables in
the word. If in a given word we have that il(Ê¿+ ô¡) > t then the indicator variable,

.I, implies that the word length must be increased by 1.5. Equation 3.3 causes the

WLP of a BFFSP design to be of the form

W : (Ae, Az.s,. . ., An¡t.s),

where A¿ signifies the number of words of length z in the DCS, 3 < ? < n1*n2+ 1.5.

Example 3.2.1 Consi,der ¿¡r2Q+z)-(0+1)*(1+1) BFFSP desi,gn gi,uen i,n Erample 3.1.3.

The DCS of the designi,s I: ABqr: ABCh: ACprù:Cqrþt: BCpqù:
BprB$1 : Apqþ$t, which yi,elds the WLP, W : (0,0,L,4,0,2). Note that for the

salee of breuity we often truncate the uector W at the largest ualue of i, for whi,ch

A¿ * 0. In thi,s erample, the uectorW i,s thus truncated at A55 - 2.

The MA criterion, applied under the word length definition given in Equation 3.3,

amounts to the sequential minimization of As, As.s, A¿, Aq.s, As, As.s, Aa, . .. . FYom

this observation, \rye may extend the MA criterion to the BFFSP design setting.

Definition 3.2.1 (MA BFFSP Design) Suppose that Dy and D2 are two

2(u+nz)-(ktlkz)t(bt+bz) grrsp desi,gns. Let r be the smallest i, such that A¿(or) t
A¿(Dr),3 < i 1rr+nzlt.5. Then Dt is saidto haue less aberrati,on than D2

if A,(DI) < A,(Dr). If no such i, eri,sts, then Dt and D2 are so,i,d to haue equal

aberrati,on. A BFFSP desi,gn i,s said to be a, MA BFFSP desi,gn if no other BFFSP

desi,gn has less aberrati,on.

ilc¿ + (1.5)1tü(É,+d, )2rl,

33

þV : (As, Az.s, . . ., Anr¡n2¡r.s) t

(3.2)

(3.3)

(3.4)
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3.2.L A Limitation on the Word Length Definition

According to Chen and Cheng (1999), the word length definition (Equation 3.1) of
Sitter et al. (1997) has some limitations. They argue that words of length 6 should

be less desirable than words of length 5.5, even though the definition of word length

puts these words in the opposite order. Note that, if A6 + 0, then a number of 3fi's

are aliased with other 3fi's; whereas, if As.s * 0, then at least one (less important)

4fi is confounded with blocks.

Since our definition of word length (Equation 3.3) parallels that of Sitter et al.

(1997), it suffers from the same limitations. However, as our focus is on the estimation

of main effects and 2fi's, the definition remains a useful measure for assessing the

estimation capacity of BFFSP designs. As we shall see, in the catalog of MA BFFSP

designs presented in Chapter 5, all of the designs are of resolution 4.5 or less. Hence,

the issue raised by Chen and Cheng (1999) will not play any role, at least as far as

the shortest word in the DCS is concerned.

3.2.2 Ineligible and Impractical Designs

Designs with resolution "R ( 3 are deemed ineligible and will not be considered. This
justifies the restriction 1 ( är ( nt- lfi - 1 (Section 3.1.1), since if one generates åi

WP blocking variables where ó1 is greater than the upper bound, one is guaranteed

to obtain n < 3.In this case, the number of WP blocking variables is greater than

or equal to the number of WP basic factors.

There exist BFFSP designs having R > 3 yet are "impractical" to run. By an

impractical design we refer to a BFFSP design having as many distinct WP treatment

combinations per block as there are runs in the block. Clearly, if we are to change

the levels of the hard-to-vary WP factors for each experimental run \rye are defeating

the purpose of running the split-plot design in the first place.

Note that any BFFSP design with äz - n2 fr2 (one more than the upper bound

for b2; Section 3.I.2) will have as many distinct WP treatment combinations per block

as there are runs in a block. That is, any design with b2 - n2 fr2 will be impractical.

This notion of impracticality can be seen from the following vantage point. Recall that
for each additional separator there is a decrease, by a factor of two, in the number of

SP treatment combinations associated with each WP treatment combination while
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a two-fold increase in the number of distinct WP runs is realized. This relationship

may be represented notationally by 2(bz*nr-kr)r(nz-kz-bz) . Therefore, if. b2 : TLz - kz,

the SP portion of the design in essence "disappears", requiring us to reset the WP

factor level combinations at each run.

Table 4.5 in Appendix A provides the standard run order of an impractical

2Ø+z)-(0+r)+(2+1) BFFSP design, where bz:nz- lçz:1. It is clea¡ from Table 4.5
that at least one WP factor must be reset for eo,ch r:un, thus destroying the split-plot

nature of the design.
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Chapter 4

Variance Forms for Split-plot
Effects

In the analysis of designed experiments the error structure of the estimated facto-

rial effects (contrasts) should be considered by the experimenter. One may argue

that knowledge of the variance structure for the effects is especially critical in the

analysis of split-plot designs since WP and SP effects have different error structures

due to randomization restrictions. When testing for the significance of an estimated

effect one must test the given effect against the appropriate variance. If an incorrect

variance is used, erroneous inferences regarding the significance of that effect may

occur.

In this chapter, the variance forms for split-plot effects arising from the three

blocking approaches (Chapter 3) are constructed and compared. This research ex-

tends the methods of Bisgaard (2000) who provided general results ¡clt 2(nÈnz)-(kr+&z)

FFSP designs. As discussed in Chapter 2, Bingham and Sitter (2001) summarize the

results of Bisgaard (2000) as follows:

1. WP main effects and interactions involving only WP factors are compa,red to

the WP error.

2. SP main effects and interactions involving at least one SP factor that are aliased

with either WP main effects or interactions involving only WP factors are

compared to the WP erro¡.

SP main effects and interactions involving at least one SP factor that are not

36
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aliased with either WP main effects or interactions involving only WP factors

are compared to the SP error.

4.L Derivation of Effect Variances

Again, the intent of this chapter is to investigate the error structure of WP and SP

contrasts in BFFSP designs. To thoroughly demonstrate the construction of these

effect variances we need to consider the following four scenarios:

1. FFSP designs (as investigated by Bisgaard (2000)).

2. BFFSP designs with pure WP blocking.

3. BFFSP designs with blocking via separation.

4. BFFSP designs with mixed blocking.

4.L.L Variance Forms for FFSP Designs

The results in this section are a summary of the work done by Bisgaard (2000)

in the FFSP design setting. However, some notation in subsequent formulae has

been modified so as to provide a framework by which one may incorporate blocking

variables in later sections.

First, consider the following model for the FFSP setting:

ak(j) : /(WP effects) I e¡ * g(SP effects) * e¿1¡¡,

where j : lr... ,2nr-kt and k - 1,. .. ,2nz-kz, with the WP error terms, e¡, having

variance o2r, and the SP errors, e¡1¡¡, having variance o!.The model Lerm "E¡1¡¡"

refers to the response arising from the fr¿t' SP within the jth WP. The term "e¡"

refers to the random error arising from the jth \MP unit. Similarly, the term "ek¡)"

refers to the random error arising from the kth SP within the j¿¿ WP.

As noted, Bisgaard (2000) only investigated variance forms for FFSP designs. In

this setting, Bisgaard (2000) demonstrated that the variance of an estimated WP

effect (say, ,1) is given by

(4.1)
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var(Â) : v",{#(r*-"'"f-' *",*'ï""i__' **,r,) 
}

: # (r'*'-kz) 2u-tet o2 ¡ 2u-h2n'-o' 4)

: !=¡2nr-nro?,+ ol¡,

^r\- 

"u '

where f{ - 2fur+nz)-(krtkz). Bisgaard (2000) also showed that the variance of an

estimated SP effect (say, p) is given by

( n 2nr-kt 2nz-hz 
ìvo,r(þ): varli f Ð +.*r¡r ft ,- j=r te=r )

4: 
*2"t-nt2n'-n"oZ

4,: 
ño;'

Applying the above results tro u 2(e+a)-(0+1) FFSP design (with r : ABCpq) we

find that

var(Â) :T"'. *I"'"

Vt /^\ L 'rr\p) : go;

Note that if a FFSP design is replicated r times, the preceding formulae are easily

adapted by letting lt[ - 72@r+nz)-(h*kz). (The reader should observe that the use of

"r" to denote the number of replicates is not related to r : ABCpq in the preceding

paragraph.)

4.1,.2 Variance Forms for BFFSP Designs with Pure WP
Blocking

Recall that pure WP blocking requires that blocking variables be generated exclu-

sively by WP factors. An extension of the model in Equation 4.1 is now provided so
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as to account for the presence of the blocking variables:

Unç¡¡ : /(WP effects) * e¡ç¡ + ,q(SP effects) * en¡ù,

where, 'i : lr... ,2bti j :1,... ,2nr-kr-bt;k: !,... ,2n2-k2;ó1 is the number of pure

WP blocking variables; 2bt is the number of blocks. The model term "y¡ç¿¡¡" refers to
the response arising from the ft¿¡' SP within the jth WP which, in turn, is within the

'd¿h block. The term ""j(n)" refers to the random error arising from the jth WP unit
within the i,th block. Similarly, the term "ekeù" refers to the random error arising

from the lrth SP within the jth WP which, in turn, is within the i,th block.

Note the absence of an error term for block effects in Equation 4.2. Many au-

thors discourage the comparison of block means (Anderson and Mclean,IgT4; Mont-
gomery, 2001) due to concerns regarding the normality of the block error terms and

whether or not tests for block effects are meaningful, primarily because all of the ran-

domization takes place within blocks. For these reasons we present a simpler model

for the BFFSP design-one without a separate block error term. It can be shown

that excluding the block error term will not affect the variance forms of either the

WP or SP effects.

The derivation of the effect variances for a BFFSP design with pure \MP block-

ing is best demonstrated by way of example. Table 4.2 (in Appendix A) provides

the standard run order of the 2(3+3)-(0+1)+(1+0) BFFSP design having DCS 1 :
ABCh: ABpqr: Cpqrþt, a design first introduced in Chapter 3. In order to aid

the development of the effect variances, the error terms corresponding to each treat-

ment combination are also given in Table 4.2. Assuming a fired, effects model (where

factor levels are specifically pre-selected by ihe experimenter) we need only focus

on the "e's" and "€'s" \r¡hen calculating variances of estimated effects. For example,

consider a token WP main effect, say A. By adding the error terms in Table 4.2,

using the signs of ,4., we see that

1A : ,^(- "trtl 
l4e2g¡* 4esç¡ - 4eqt) 14e42, - 4eze) - 4ese) * Aeap¡) ¡ro'

1.444444

å( - I.0,,,, - I eku2) -rÐuu,,r, - t €nGÐ íI.n,r,, - t ek(22) -
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Ðrnrrrr+ t eneE))
b-1

k=l k=7 k=l k=l
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L.: 
¡(4ez¡7i-4qg¡ l4e1çr¡ l4eaç2¡ - 4e\t) -  en¡) - 4eze) - 4qp¡) t
1,4 4 4 4 4 4. / \F _ , \- \---a \-1 \---a \--
16(¿en\Ðt L'uGÐ+ Lct(zr) * L,uen)- L€*(u) - ) ,enÍ+)

k=] t:l k=L k:I k=L k=I
c+

r \---1 \
LrneÐ - Lek@) ).k=7 lc=l

This implies that,
(t

Var(A) : Var t l6Øezg¡ 
I 4es6¡ t 4e1p¡ i 4eaç2¡ - Aet¡)

t
1,4 4 4

4"rØ)* * ( )ì.u(,r) + I e¿(rs) * I.urnl +-- -ft=l k=l k=I
444ì

\a r r tl) ,enlÐ - l_€kez) - lenpsy ) |k=I lc=l &=1 )

8(4r) 2 32 '
162 -- L62-o

Io 1t: 

'o;+ 
8o;'

Similarly, consider a SP main effect, say p. Again, by adding the error terms in

Table 4.2, using the signs of p, we see that

m: 1 /.i-- \
16(Lclr(lr) - I.nt.l+

k=2,4 k=1,3

Ðt*,rn, -Ðe,t(r¿)*I
k=2r4 /c=1,3 |e=2r4

I.utrr,- Ð ertzel* I
k=2,4 È=1,3 k=2r4

å(f €,t(rr) r Ð'*t,rr +
Ib\s L

k=2,4 k:2,4

I.nrrrl +I€ft(24)- f
k=2r4 k=2r4 fr=1,3

I.u,rr, - I €keq-Ð
fr=1,3 ,k=1,3 fr=1.3

- 4e¿ttt - Aecr"t -_ \^/ -\-,

44rS
,Len?q - l- 6ft(11) -
k=l ,b:1

Ð
k:2,4

EKQÐ

ek!2) - Ð .o,rr, + Ð €fr(rs) - I .*,rr, *
k=1,3 k=2,4 ,t:1,3

- Ð eneÐl-Ð'urrrr- Ð qeÐ-r
,k=1,3 k=2,4 &=1,3

S\- l- eket) )
k:1,3

ekQ4)

Ð.*trrl + t eneÐr- I to(rr)+ Ð eneÐt
k=2,4 k-2,4 k=2,4 Ie=2,4

6/,(11) - Ð .u,,r, - t €ft(18) - I .u,rn, -
,b:1,3 È=1,3 k=1,3

f---a \ek(zl)- ).eneq).
k=LrB
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Note that the WP errors, ej(d), cancel because of an equal number of +'s and -'s
within each WP treatment combination. This result implies that,

var(þ) : ftrZ
Lo: g";'

In general, the variance of WP main effects or interactions involving only WP
factors (along with all of their aliases) will have the form,

( , / 2\ 2n141-\ 2bt znt

var(Ã) : var\*\r",-v,Ð t +ej(i.)+ Ð( " \ i:r j=L i=r

: = ¡2.n2-kzn2 ¿- ..2\

^r\- 

"ut"o/)

with l/ - 2h2nt-kt-br2nz-kz - 2(nÈnz)-(h*kz).

The SP main effects and interactions involving at least one SP factor that are

not aliased with either WP main effects or interactions involving only WP factors

will have variances of the form

: fi çrO--kz) 
2h Zu-kr-ur rr. ¡ 2ù 2nr-tq-bt 2nz-kz oz)

-fu-b1 2n2-k, \ ì

Ð ¡ **,,r,) |j=r h=t / )

/+,: 
ñoã,

where .lú : 2(nr+nz)-(kÈkz). (Note that if a FFSP design is replicated r times, the

preceding formulae are easily adapted by letting N - v2@r+nz)-(kt+kz).)

Even though the intermediate steps of the variance derivations differ between

FFSP designs and BFFSP designs with pure WP blocking, note that the final form

of the variance for WP effects (Vør(Â\ is identical. Similarly, the variance of SP

effects (Var(þ)) is the same for both FFSP designs and BFFSP designs with pure

WP blocking.

var(þ)_ v,,{#Ð*'-i_'

: 
#(ro'r",-'tr-br r',-u,o')

| 2n2-k2 ì

P- 
+'ronl
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4.L.3 Variance Forms for BFFSP Designs with Blocking via
Separation

Recall that, under separation, blocking variables (separators) *uy be generated by

exclusively using SP factors or by using SP factors in tandem with WP factors. Under

separation, the BFFSP model can be reformulated as follows,

where, i: lr...r2u';i : I,...,Znt-kt;k - !,... r2n2-lez-'r;b, is the number of
separators; 2bz is the number of blocks.

Table 4.3 (in Appendix A) lists the standard run order of the 2(3+3)-(0+1)+(0+1)

BFFSP design having DCS / : ABCpr : ABqù: Cpqrït (this design was first
introduced in Chapter 3). To assist in the development of the effect variances the error

terms corresponding to each treatment combination are also provided in Table 4.3.
We again assume a fixed effects model so that we need only to focus upon the

"e's" and "6's" rryhen calculating variances of the estimated effects. For example,

consider a token WP main effect, say ,4,. By adding the error terms in Table 4.3,
using the signs of A, we see that

1

A : ,^(-2e4t¡*2e2çt¡ - "'+ 2eay) -2e\r)+2eze) - "'*2esç2¡) ¡
IO

anç¿¡ : /(WP effects) I e¡çr¡ + g(SP effects) * enþj),

.222
Ll\-\a\--

16 \ - L€nGÐ + LekG2) - "' *,Lru!r)
,t=1 k=L k:I
2\-\"'+ ) .extzatl' '/

k=l

1

.,^(2"ro¡ + "'+ 2eeo) l2ere) * "'l2esç2¡ -2etÍ) 2ez\) -2ete) -rb'
1t2 2 2 2

...-2e,,n ) + ilIuu,rr, +...+Ð.u,rr, +Ð ene\* +t ehe') --v t \¿) / ' 16 \ É-1 k=l /c=1 ft=l
2222

\-a\-\\-1 \-a\
,Len(t) .Lenol - LekeL) - "' - )-eker)).

(4 3)

k=\

22
s-1 \--

- L€neÐ -f Lroer) -

k=l

k=l

k=7 h=I
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Therefore,

Note that under separation the coefficient of ofl has decreased from ] to |. (Com-

pare with the FFSP and pure WP blocking design scenarios.) The preceding result

demonstrates one of the consequences of separation, namely pseudo-replication, first

discussed in Chapter 3. Specifically, we recall that each separator results in a dou-

bling of the number of distinct runs at the WP level, causing increased precision for

estimates of WP effects. (Conversely, recall that each additional separator causes a

decrease, by a factor of two, in the number of SP treatment combinations associated

with each WP treatment combination, when compared to the pure WP blocking ap-

proach.) This doubling of distinci WP runs then results in a decrease, by a factor of

two, in the coefficient of øfl. Consequently, increased precision is achieved for testing

the statistical significance of WP effects.

Now consider a SP effect, say p.By adding the error terms in Table 4.3, using

the signs of p, we see that

var(Â) : 16(22) , 32 ,
I6to; + *oã

It 1t: 
4o;+ go;'

43

p:
"1(-cr(rr) 

*€z(rr)

ezrza))

1282: +ttt +ekt.il.t6???
?,=L 3=L lt=L

Note that the WP errors, ejþ)i cancel because of an equal number of +'s and -'s
within each WP treatment combination. This implies that

var(þ) : ft":

er(re) f 62(18) - €r(zr) -l- e2QÐ -'" - 6r(zs) l-

For BFFSP designs with blocking via separation, the variance of WP main effects

7,: 
so;'
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or interactions involving only WP factors (along with their aliases) will be of the form,

v ar (Ã) : v,, 
{# (r--"-, i^'"f'_' 

+e i Q) . t'E' 
*'-f_" 

*.-,,,, 
) }

: fi(r--r,-b o', + o!) ,

with N - 2br7nr-kz-bz2nr-tct - 2(nÈnz)-(h*kz). By examining the final form of
zîrVar(A), we see that the coefficient of o2, will decrease by a factor of two for each

additional separator. However, as discussed in Chapter 3 the allowable number of
separators is given by the inequality, I 1bz 1 n2 kz - L

SP main effects and interactions involving at least one SP factor that are not
aliased with either WP main effects or interactions involving only WP factors will
have varia¡rces given by

: 
# (rO"r-kz-bz) 2bz2nr-l;- o2 ¡ 2bz2u-tq 2nz-kz-bz oz)

( I !12nr4t 2nz4z-bz ìvar(þ): r*\;ÐÐ 
Ð 

+ekeilÌ

where N : 2(nr+nz)-(h+kz)

4.L.4 Variance Forms for BFFSP Designs with Mixed Block-

ittg

As we know from Chapter 3, mixed blocking is a natural extension of pure WP

blocking and separation in that we simultaneously use pure WP blocking variables

and separators in this blocking approach. Under mixed blocking the BFFSP model

is given by,

: 
#(rrr",-kt2nz-kz*bzoz)

4,: 
ñoã,

anç¡¡: /(WP effects) I e¡ç,¡ +,q(SP effecis) * enþÐ, (4.4)
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where, 'i: lr... ,2hlbzi j :1,... ,Znr-kt-¡r;le - 1,. .. ,2nz*kz-br;ó1 is the number

of pure WP blocking variables; ö2 is the number of separators; lb*bz is the total
number of blocks.

Table A..4 (in Appendix A) gives the standard run order of the 2(3+3)-(0+r)+(1+1)

BFFSP design having DCS, I : ABqr : ABCfu: ACprù: Cqrfu: BCpqù :
BprB$1: Apqþ$t (this design was first introduced in Chapter 3).

Before providing the general variarce forms for the mixed blocking approach,

we illustrate the variance derivations for a specific WP and SP effect using the

2(3+3) -(o+1)+(1+1) design.

Assuming a fixed effects model, consider the WP main effecf A. By adding the

error terms in Table A'.4, using the signs of Á, we see that,

1tA : ;( - 2e1g7'l2ez!) +2ez$) -2ea\)+2ete) -2eze) -2eze)+2e¿e) -10\

2e11s¡ t 2e21s¡ * 2et(z) - 2e+(s) t 2etØ) - 2ezØ) - 2etØ) + 2"ngl) +

1,222222, I _\1, \---1 \-a \- \- \--1
16l,- Lrurrrr* 

þ_€t(rz) 
* Luurttr- 

þ_€¡(r¿) 
* Lrurrtr- à€kez)-

222222

I t*,rr, - t en\zs) -I.o,rr, - t eke2)_-I.u,rr, - t ek(84) T
k=L k=\

2222

f .u,rr, - t ekØ2) -I.u(nrl + t ekØ4))

1t: * (rtr,t, * 2es¡¡ * 2e1p¡ + 2e+e) I 2e26¡ i 2es6¡ * 2e1g¡ * 2eag¡ -

2etÍ) - 2e+Í) - 2ez(z) - 2eze) - Zet63) - 2ea@) - 2ezØ) - 2"røl) +

1,2 2 2 2 2 2

å( t enlÐ *Ðuu,,r, + t eneÐ *Ðrurrnr+ t enqÐ tI.*rurl+th \z
k=l k=L k=1, k=l k=l k=I

k=l k=\

k=L k=L

k=I k=I

k=l k=l
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222222

I.*(nr) + Ð ek@A) -I.*,rr, - t ehl4) -Ðrnrrrr- t ekez) -

Therefore,

Ic=l

2222

I.utrrl - tck(84) - Ðrrrnr- Ð€e(ß)).

fr=1

k=l

fr=1

FYom the final form of Var(A) \rre see that the attributes of separation carry

directly over to the mixed blocking scenario. By this we mean that as a consequence

of the separator we again obtain increased replication of the WP treatment combina-

tions at the expense of further fractionation at the SP level. This pseudo-replication

will provide the experimenter with increased precision in testing for significance of

WP effects.

Now consider a SP main effect, say q. Again, by adding the error terms in Ta-

ble 4.4, using the signs of q, we see that

k=I

var(Ã): '#"2*#"2
L, 1,: 
4o;+ Bo;'

^ 1( \q - 16lr -er(rr) *€2(11) - e\tÐ*e2\z)- "'-€1(48) *ezØs)- erØA)¡ezøa))

,4421-
: 16??i,-r j-r k-r

Therefore,

var(Q) : ft":
L,: g";'

The general form of the variance for a WP effect is given by,
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var(Ã) :
( ,, / 2b¡*b2 2n1-k1-b1

Varlftlz"'-u'-h t I
|." \ i=r j:L

2b1*b2 2n1-k1-\ 2n2-h2-b2 \ ì

t Ð t +€e(¿j))f
i,=l j=I ,t:1 / )

4= 
{ 2, ø, - uz - bz) 

2b 
t *bz 2u - k r - b t ol ¡ 2b 

r * bz 
2n r - k t - b r 2n z - u, -, or"): 

^/rlr'" 
- --'¿''''-¿"' .'' 'ort¿--'-'¿-- "' --¿-''-' 

)

: ft(r--r,-hofl + or"),

with N - 2nz-kz-bz2u-h-h2btlbz - 2@r*nz)-(kr+,kz). 1¡. Sp main effects and inter_

actions involving at least one SP factor that are not aliased with either WP main

effects or interactions involving only WP factors will have variances of the form

{e¡ç¡ -r

Var(fl :

47

where ltf - 2(nr+nz)-(h*kz).

v,, 
{#' Ð' 

""' 
-fo" *' 

f__" 
r u u (,i ) }

# {r^. " 
2nr - k t - b r 2n' - r' - u' o3\

4,
ñoã,

4.2 Summary of Results

In this chapter we reviewed the work of Bisgaard (2000) for the construction of vari-

ances for WP and SP effects in FFSP designs. Following this methodology we derived

the variances for WP and SP effects in BFFSP designs. Specifically we considered

the three scenarios:

1. BFFSP designs with pure WP blocking.

2. BFFSP designs with blocking via separation.
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3. BFFSP designs with mixed blocking.

Table 4.1 summarizes the results and makes it readily apparent that when compared

to pure WP blocking, both separation and mixed blocking provide greater precision

for testing at the WP level.

Table 4.1: Variance Forms of WP and SP Effects in FFSP and BFFSP Designs.

Design

FFSP and Pure WF

Separation

Mixed Blocking

One may use the following rules in order to correctly select the appropriate error

term (WP or SP) for assessing the statistical significance of BFFSP design contrasts.

For effects not confounded wi,th bloclcs the rules are as follows:

1. WP main effects and interactions involving only WP factors are compared to

the \MP error.

2. SP main effects and interactions involving at least one SP factor that are aliased

with either WP main effects or interactions involving only WP factors are

compared to the WP error.

3. SP main effects and interactions involving at least one SP factor that are not

aliased with either WP main effects or interactions involving only WP factors

are compared to the SP error.

These rules are those originally developed for the FFSP setting by Bisgaard (2000),

and subsequently summarizeð by Bingham and Sitter (2001).

Blocking ft(znz-nzoz + 
"3)

!(2nz-kz-b2õ2 + .'2\N\- "rr t"o,/

WP Effects

ftç2"r-nr-ør02, + oZ)

SP Effects
4t
ño-"

A'
ño;
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Chapter 5

MA BFFSP Design Search

Until now there has been no formal attempt to construct catalogues of BFFSP designs

incorporating any one of the three blocking schemes discussed in Chapter 3. This has

prohibited a rank ordering of BFFSP designs using predefined opiimality criteria.

This chapter will detail methods by which one may "search" for and obtain two-level

BFFSP designs ranked according to the MA criterion. We shall also see that for

a given value of nl,nzilt,kz;bt,b2 there may be many 2(nt+nz)-(6+k2)+(h+b") OCSs

possessing MA. To further differentiate between the "goodness" of these MA designs

additional optimality criteria wiil be presented for ranking purposes.

5.1 An Introduction to Search Algorithms and Re-

In recent years, for the purpose of constructing catalogues of optimal FF, BFF and

FFSP designs several algorithms have been introduced to assist in searching through

all design possibilities.

Flanklin and Bailey (1977) introduced the search-table approach for identifying

FF designs with particular estimation properties. Chen, Sun and Wu (1993) intro-

duced a sequenti,al approøch for constructing complete sets of two-level and thre+level

FF designs ranked according to the MA criterion. Huang et al. (1998) presented an

ad-hoc method for finding MA FFSP designs while Bingham and Sitter (iS09a) com-

bined the existing search-table and sequential approaches to obtain a more efficient

search algorithm for constructing MA FFSP designs.
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The objective of this chapter is not to develop the most efficient algorithm (com-

putationally speaking) for searching for MA BFFSP designs. Rather, the aim is to
provide øn, algorithm by adapting portions of existing algorithms, used previously in

the search for "optimal" FF, BFF and FFSP designs, to the BFFSP setting.

5.1-.1- Search-Table Approach for FFSP Designs

Bingham and Sitter (1999a) provide an example that demonstrates an adaptation of
the search-table technique in the search for FFSP designs. We now summarize this

example using appropriate notational changes.

The search-table is a two-way table with 2(nÉnz)-(h*k2) - (rr- kr) - (nr- kr) -I
rows and lq*kz columns. The columns are headed by the hlkz WP and SP added

factors of the 2@t'+nz)-(nr+ez) ppgp design. The column headers are arrarrged so that
the WP added factors appear before the SP added factors. The products of the basic

factors serve as the row headers. The rows are sorted by level of the design (WP

followed by SP) then by word length. This enables the WP basic interactions to

appear before the products containing both basic WP and SP factors. Finally, the

elements of the table are the products of the row and column headers.

Example 5.1.1 For a 2(5+4)-(2+3) ppsp design with WP factors A, B, C, D and, E

and SP føctors p, 8, r and s, the search table is giuen i,n Table 5.1.

To preserue the spli"t-plot nature of the d,esi,gn we know that WP generators cannot

contai,n any SP factors and SP factors cannot be assigned to i,nteracti,ons consi,sti,ng

of only WP factors; consequently, these prohi,bi,ted, generators need not be consi,d,ered,

i,n the seørch process. Following Bi,ngham and Sitter (1999a) we use -'s in the

search-table to demonstrate the erclusi,on of prohi,bi,ted generators.

To construcfi s 2(s++¡-(z+z) desi,gn, one must talce a si,ngle generator from each of

the fi,ue columns of Table 5.1. The fi,rst possi,ble desi,gn høs generators 91 - ABD, 92 -
ABE, ge : APQ, fu: Apr and gs : Aps. One may then form the DCS for the desi,gn

by calculati,ng all 25 - | possi,ble products of the fiue generators. Subsequently, the

resoluti,on and WLP of the desi,gn may be obtai,ned from the DCS.

The second FFSP desi,gn consi,dered uia the search-table approach has 95: Bps,

while h through 94 rernain the same. Thus the search algori,thm proceeds from left to

ri,ght across columns ønd from top to bottom wi,thin a column.
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Table 5.1: The Search-Table for the 2(s+¿)-(2+3) Des'gn in Example 5.1.1.

AB

AC

BC

ABC

Ap

Bp

Cp

ABp

ACp

BCp

ABCp

ABD ABE

ACD ACE

BCD BCE

ABCD ABCE

Apq

Bpq

cpq

_ _ i::;
BCpq

ABCpq

The search-table requires that ,núr : (zu-h - (nr- frr) - 1)e' WP designs.and

N2- (Z@'+"ù-rkr*kz) - ((nr*rr)- (frr+ kr)) - (2u-n - (rr-kt)- 1) - t)*'se
designs be searched. Hence, ,AI1 x l/2 designs must be considered when constructing

all possible FFSP designs using the search-table technique.

Apr

Bpr

cpr
ABpr

ACpr

BCpr

ABCpr
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Aps

Bps

cps

ABps

ACps

BCps

ABCps

6.L.2 Design fsomorphism and Practical Considerations

Two FF designs Di and D2 à,rE said to be i,somorphic if we can obtain D2 from D1

by relabeling the factors of. Dt. For example, consider the simple case of two 28-2

FF designs. Suppose that D1 has generators 91 : ABCF and 92- CDE, while D2

has generatols p1 : ABCE and 92:CDF. These two designs are isomorphic since

D2 cÐ,n be obtained from Dt by relabeling F as E and E as F. It has been noted

(Chen et al., 1993) that isomorphic designs are essentially equivalent (for example,

two isomorphic designs will possess the same WLP). In the context of FFSP designs,

the WP or SP designations of factors must also be preserved for isomorphic designs.

The goal of Bingham and Sitter (1999a) was to obtain catalogs of noni,somorphi,c

2@*nz)-(kr+'tz) ppgp designs ranked according to the MA criterion. To do this,
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Bingham and Sitter (1999a) prescribed an isomorphism test for the split-plot setting

that entailed several computationally intensive steps. Bingham and Sitter (1999a)

noted that it was inefficient to search for nonisomorphic designs via the search-table

because of the large number of designs that the search-table required one to assess.

As a reasonable solution to this problem, Bingham and Sitter (1999a) proceeded to
develop a more efficient algorithm known as the combi,ned, øpproach.

Our intent is not to distinguish between nonismorphic BFFSP designs. Rather,

we will focus specifically upon the search for MA BFFSP designs without much

regard to their isomorphism status. Therefore, the search-table approach (despite its

computational deficiencies) will suffi.ce for our purposes.

5.2 The Search-Table Approach for BFFSP De-

signs

The three approaches to biocking FFSP designs will necessitate three variations of
the search-table. We will now consider each variation in turn.

6.2.L The Search-Table for Pure \ryP Blocking

Recall that pure WP blocking implies that blocking variables must be generated

solely by WP factors. With this in mind, we shall see that the dimensions of the

search-table are altered slightly when compared with the FFSP setting.

The number of rows in the search_table is 2(zr+øz)_(h*kz) _ (r, _ kr) _ (n, _ kz) _

1, the same number as in the unblocked setting. However, the number of column

headers now increases by ö1, the number of pure WP blocking variables, to ft1 -l kz*
ó1. Therefore, the search-table now requires that l/r : (znr-.q - (r,. - k) - 1)frt+ör

WP designs be searched. The number of SP designs to be considered, ÄI2, remains

unchanged from Section 5.1.1.

Example 5.2.1 Consi,der a2ø+2)-(L+1)+(1+0) BFFSP desi,gn. Sincetheblocki,ng uari,-

able, 81, i,s generated erclusi,uely by WP factors i,t appears as a column heo,der before

the SP added factor, q; see Table 5.2. Note that i,t would malce no d,ifference to the

search proced,ure i,f one was to shift the column headed bg fu to be i,n front of the

colurnn headed by the WP ad,d,ed, factor, D.
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Table 5.2: The Search-Table for lhe 2?+z)-(i+1)+(1+0) Design in Example b.2.1.

AB

AC

BC

ABC

Ap

Bp

Cp

ABp

ACp

BCp

ABCp

ABD ABþ,

ACD ÃCþ,

BCD BCþ,
ABCD ABCpI

lJl

The fi,rst BFFSP design for which the DCS and, WLP i,s calculated i,s the desi,gn

possessing generators h: ABD,72: ABþt and, g: ApQ.The second desi,gn

encounteredhas generators, gr: ABD,gz: ABfu ønd, ge: Bpq.Thus, as when

searchi,ng through øII possi,ble FFSP desi,gns, the algori,thm proceed,s from left to right

across columns and from top to bottom withi,n a column. The WLP of the desi,gn

bei,ng currently assessed is then compared, wi,th that of the preuious desi,gn(s). If the

current desi,gn has less aberration than preuious d,esigns, the preuious d,esi,gns can

be di"scard,ed,. Designs possessing the current MA WLP are retai,ned. The algori,thm

conti,nues until all ¡/r x l{z desi,gns haue been searched.

Apq

Bpq

cpq
ABpq

ACpq

BCpq

ABCpq
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5.2.2 The Search-Table for Separation

Recall that blocking via separation allows one to generate blocking variables by

exclusively using SP factors or by using SP factors in tandem with WP factors in

the blocking generators.

As with pure WP blocking, we see changes in the dimensions of the search-table

due to the presence of the separators. Again, the number of rows i" 2(nÉnz)-(h+kz) -
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(nt - fri) - (r, - nù - 1; however, the number of column headers becomes frr *
lcz I bz, where á2 denotes the number of separators. The sea,rch-table requires 

^I1 
-

(zu-ret - (r,. - kr) - 1)k' and Nz : (2@r+"r)-{kftkz) - ((r, ¡ nr) - (k, + kz))-

(zu4u - (r, - kt) - 1) - ,)o'*u'WP and Sp designs to be sorted through, respec-

tively.

Example 5.2.2 Consi,der a2(4+3)-(r+1)+(0+1) BFFSP desi,gn. The lone blocking uari,-

able, denoted by õ1, appel,rs as a column header øfter the column head,ed, by the SP

added factor, r, i,n Table 5.3. (Note that it would malce no d,i,fference to the search

procedure i'f one were to switch the ordering of these two columns.) Si,nce the gener-

ator for the separator must contai,n at least one SP factor, -'s 
,i,n the table i,ndi,cate

unusable generator candidates.

The algorithm proceeds i,n a n'Lz,nner si,milar to that for pure WP bloclcing. That i,s,

when sorti,ng through the d,esi,gns, one proceeds from left to ri,ght across the columns

and from top to bottom withi,n a column, whi,le choosi,ng a single generator from each

column. As before, DCSs are formed and WLPs for each desi,gn can be compared with

one another in the search for the separated desi,gn(s) haui,ng MA.

6.2.3 The Search-Table for Mixed Blocking

Recall that mixed blocking entails the use of both pure WP blocking variables and

separators.

It is for this third blocking approach in which we observe the most significant

changes in the dimensions of the search-table (when compared to the FFSP setting).

Although the number of rows remains unchanged, the number of columns is now

hllcztbt*å2. This implies that the number of WP and SP designs to be sorted thru
axe now ¡fl - (2u-h - (n, - kt) - 1)er+ur and ÄIz : (2@t+"r)-('kr*'tz) - ((r, ¡nr)-
(frr + kr)) - (2nr-rt't - (n, - kt) - 1) - 1) 

u'*", 
,uro.ctively. Therefore, 

^L 
x ¡rz split-

plot designs possessing mixed blocking must be individually examined. In comparison

with /Vi and ÄIz from the pure WP blocking and separation approaches, it can be seen

that the mixed blocking procedure will often require the largest number of designs

to sort through in the search-table.

Ð4
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Table 5.3: The Search-Table for ¡6u 2(a+e)-(1+1)+(0+1)

AB

AC

BC

ABC

Ap

Bp

Cp

Aq

Bq

Cq

pq

ABp

ACp

BCp

ABq

ACq

BCq

Apq

Bpq

cpq
ABCp

ABCq

ABpq

ACpq

BCpq

ABCpq

ABD

ACD

BCD

ABCD

Apt
Bpr

cpt
Aqr

Bqr

cqt
pqr

ABpr

ACpr

BCpr

ABqr

ACqr

BCqr

Apqt

Bpqr

cpqt
ABCpr

ABCqr

ABpqr

ACpqr

BCpqr

ABCpqr

Design in Example 5.2.2.

ôr

Ðo

APôt

BPôt

CPôt

Aqdt

Bqdt

Cqdt

PQôr

ABpdl

ACpôr

BCpôr

ABqdl

ACqô1

BCqô1

APqôt

BPqôt

cpqðr

ABCpô1

ABCqôi

ABpqô1

ACpqô1

BCpqdl

ABCpqô1

Example 5.2.3 Consider a

headi,ngs of the search-table,

Sry-run 2(4+3)-(1+1)+(1+1) BFFS7 desi,gn. The column

Table 5.f, consi,st of the WP and SP added factors as
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well as o, pure WP blocki,ng uariable and a single separator.

Tabte 5.4: The Search-Table for the 2(4+3)-(1+1)+(1+1) Design in Example 5.2.J.

AB

AC

BC

ABC

Ap

Bp

Cp

Aq

Bq

Cq

pq

ABp

ACp

BCp

ABq

ACq

BCq

Apq

Bpq

cpq

ABCp

ABCq

ABpq

ACpq

BCpq

ABCpq

ABD

ACD

BCD

ABCD

aPI

ÃBþt

ACþ,

BCþ,
ABCpI

Apt

Bpr

cpt
Aqt

Bqr

cqt
pqr

ABpr

ACpr

BCpr

ABqr

ACqr

BCqr

Apqr

Bpqt

cpqr
ABCpr

ABCqr

ABpqr

ACpqr

BCpqr

ABCpqr

Ðo

ôr

APôt

BPdt

CPôt

Aqôt

Bqôt

Cqôt

PQôr

ABpô1

ACpô1

BCpô1

ABqô1

ACqôr

BCqô1

Apqôt

Bpqðt

cpqôt

ABCpðr

ABCqô1

ABpqô1

ACpqôr

BCpqdl

ABCpqôr

The search algori,thm proceeds'i,n a m,anner si,mi,lar to that for the preuious blocki,ng
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schemes. Again, when sorti,ng through the designs, one proceeds from left to ri,ght

across the columns and, from top to bottom withi,n a column, whi,Ie simultaneously

choosing a single generator from each column. As before, DCSs are constructed, and,

WLPs are conxpa,red wi,th one another i,n the search for the desi,gn(s) wi,th MA.

5.3 Additional Optimality Criteria

Afier searching through all ,n[ x ÄI2 BFFSP design possibilities generated by the

search-table, we may obtain many MA designs. In order to further differentiate be-

tween MA designs, we introduce the following six additonal optimality criteria:

(a) The number of clear main effects

(b) The number of clear two-factor interactions

(c) The number of clear SP main effects

(d) The number of clear SP two-factor interactions

(e) The number of clear SP main effects tested against WP error

(f) The number of clea¡ SP two-factor interactions tested against WP error.

Each MA BFFSP design is assessed with respect to (a) - (f). Obviously, we would

like an MA BFFSP design to have large values for criteria (a) - (d) and small values

for criteria (e) and (f).

Ðl

6.4 A Catalog of MA BFFSP Designs

The tables in Appendix B contain MA BFFSP designs constructed via pure WP

blocking, separation and mixed blocking, respectively. All designs have between five

and eleven factors and blocking variables (combined) and consist of either 8, 16 or

32 runs in either two, four or eight blocks. Each MA 2(u+nz)-(h*kz)*(bt-rbz) gtr'psp

design is abbreviated "Desigv¡: TLrtnülrulízibuå2". Within the tables, the designs

are presented in ascending order of n : nt i nz * ór * b2, the total number of factors

and blocking variables. Note that the WLPs are truncated at the last non-zero value.

A-G and p-w are used to denote the WP and SP factors, respectively, with the last
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letter in each generator representing the added factor. The i,th and jth WP blocking

variable and separator are denoted by B¿ and ð¡. In columns (*) - (f) we have included

an assessment of each MA BFFSP design with respect to the six optimality criteria of

Section b.B. If an MA 2(nr+nz)-lrei *&z)Ì(br +bz) gpF Sp design possesses a WLp identical

to the design preceding it in the table, yet differs with respect to optimality criteria
(u) - (f), we denote it by a r(*" in the table. Note that any BFFSP design denoted by

a ((*" is superior with respect to at least one of the criteria (*) - (f), in comparison

with the preceding design. This allows a practitioner to choose between MA BFFSP

designs having identical WLPs, based upon the strength of the designs with regards

to criteria (u) - (f).

Example 5.4.1 Consi,der o2$+Ð-(0+3)+(1+0) BFFSP desi,gn. Table 8.3 i,n Append,ir

B lists two such MA BFFSP designs, each wi,th the same WLP. In order to choose

between these si,rnilar designs one should o,ssess the d,i,fferences between the two d,e-

si,gns with respect to the criteria in columns (") - ff) Usi,ng ui,teri,on (f ), the desi,gn

labeled, "f,f;0,3;1,0" is better than designl 4*t because i,t has zero, rather thøn three,

SP Zfi,'s tested against WP error. Howeuer, using cri,terion (d), d,esign tt*" is better

than desi,gn "f,f;0,3;7,0", because i,t possesses 10 rather thøn eight clear SP 2fi's.

The d,eci,si,on regard,i,ng whi,ch desi,gn to run møy i,n part be moti,uated, by the erperi-

menter's preference for an MA BFFSP d,esign tho,t i,s opti,mal wi,th respect to cri,teria

(d) or (f).
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5.4.L Overvieu¡ of the MA Design Search Algorithm

This section provides a brief overview of the structure of the program used to con-

struct the MA BFFSP designs in Appendix B.

The program, "searchmixed.cpp", consists of a main body of code that calls upon

four primary functions. These five program elements are now briefly described:

(I) Mai,n Bod,y of Program: This portion prompts the program user to enter all of

the relevant variables. For example, n1, TLz, lt¡ lcz,bt, and ä2 are all entered at

this stage. The construction of the search-table is also completed at this stage

for use in subsequent functions.

(2) Functi,on "SearchDCSWLP"; This function receives (from the main body of
the program) the generators for each of the potential MA BFFSP designs.
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Flom these generators, the DCS of the design is constructed using modulus 2

arithmetic. The DCS is then passed back to the main body of the program to
be used in subsequent functions.

(3) Functi,on "BFFSPWLP": At this stage the WLP is calculated for the BFFSP

design currently under consideration. The DCS used in the function's WLP
calculations is received via function "SearchDCSWLP".

(4) Function "BFFSPCornpa,reWLP": This function compares the WLP of the

current design (as calculated by function "BFFSPWLP") with the WLPs of
previous designs. Ifthe current design has less aberration than previous designs

the current DCS is retained and the others are discarded. If the current design

has aberration equal to the currently optimal design then both designs are

retained. Otherwise the design is discarded.

(5) Functi,on "PrintBFFSPDesigns": A considerable number of calculations are

performed by this function. It first receives all MA designs from function "BFF-
SPCompareWLP". Subsequently, all MA designs are a,ssessed with regards to
the six optimality criteria in Section 5.3. Those MA designs that are superior

in at least one of the six criteria are retained. Finally, a representative MA
design is printed from each group of MA designs that are superior in at least

one of the six criteria.

The search algorithm and all other programmable calculations were implemented

using Mi,crosoft6 Visual C++o 6.0 Professional Edition. Computer hardware con-

sisted of a Di,mensi,onrM 8100 Desktop Pentium 4 computer with a 1.40 GHz CPU.
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5.4.2 A Note on the Incompleteness of the MA BFFSP De-

If desired, implementation of the sea¡ch-table algorithm via the program "search-

mixed.cpp" will allow us to construct any 8, 16, or 32-run two-level BFFSP design.

However, upon examination of the MA catalog it is evident that not all possible 8,

16 and 32-run MA BFFSP designs are listed-there are several reasons for this.

First, many BFFSP designs are impractical by our definition (Section 3.2.2) and

therefore we have chosen to exclude these designs from the catalog. Second, ineligible

sign Catalog
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designs (designs with ,R < 3) are of little interest to an experimenter due to their
poor estimation capacity and therefore are excluded from the catalog as well.

Additional reasons for not including other 8, 16 or 32-run MA BFFSP designs in
Appendix B include:

1. If the design possesses a small number of clear SP main effects and 2fi's (for

example, 16-run designs with pure WP blocking having ntl nz* ár * b2 ) 7I
16-run separated designs having ntj- nz * br * b2 > LI).

If the design has a large number of clear SP main effects and 2fi's tested against

WP error (for example, 32-run mixed designs with r¿r *nz+hibz > 11).

Time considerations-constructing BFFSP designs can be time intensive. There-

fore, we do not include any designs with utnz*bt*b2 > Ll. However, with this

said, a practitioner may still request that an exclude¿ 2(nÉnz)-(,tr*fr2)*(br*bz)

design be constructed without the program being hindered in any way.

2.

3.

60



Chapter 6

Analysis of Variance for BFFSP
Designs

The analysis of variance (ANOVA) approach provides the experimenter with a ver-

satile statistical tool for studying the relationship between a response variable and

one or more (treatment) factors. The main task of an ANOVA is to quantify and

evaluate the importance of possible sources of variation (factor effects, error terms)

in an underlying linear model. Generally speaking, this is accomplished by forming

a partition of the total sum of squares and degrees of freedom (df) associated with
the response variable, y, into its component parts. ANOVA models allow for the

independent variables to be both qualitative (for example, day of the week, process

operator) and quantitative (for example, temperature, weight).

In this chapter we will examine the use of ANOVA models for assessing the

magnitude of factor effects in various two-Ieuel designs. This is done so as to provide

the practitioner with a statistical tool for ascertaining the important experimental

factors when investigating some process. We begin by considering ANOVA concepts

with application to 2k full factorial designs eventually proceeding to ANOVA models

fs' 2(nri-nz) -(,kr +,kz )+(ä1 +br) BFFSp designs.

6.1 ANOVA Models for 2k Designs

To illustrate the general approach for the analysis of 2ft designs via an ANOVA model

we summarize a¡r example given by Montgomery (2001).
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Example 6.1.1 In thi,s study the erperi,menter inuesi,gated the effects of three factors
(percent carbonati,on, operating pressure and line speed-each at two leuels) on the

fi,U hei,ght of a carbonated beuerage. Thi,s resulted, i,n a 23 desi,gn bei,ng performed. In
addi,ti,on, the erperimenter replicated the d,esi,gn twi,ce so that 16 obseruations were

obtai,ned. The fuII factori,al design matri,r (wi,th corresponding obseruations) i,s giuen

in Fi,gure 6.1. Percent carbono,tion, operati,ng pressure andli,ne speed, are denotedby

A, B and, C, respecti,uely.

Figure 6.1: The Design Matrix for the Replicated 23 Design.
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Sums of squares for esti,mated factorial effects are denoted, bA S S¿ and are obtained

by use of the equati,on,

-T

+
+
+

+
+ -r

-T-

+

cc^ _ (c"ù'
uuc- ¡r )

+

(6.1)
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where æ" denotes the column oÍ +/- si,gns for a speci,fic factor c, N : r2k (the total

number of runs) and r si,gnifies the number of ti"mes the design i,s repli,cated. For

erample, the sum of squares due to percent carbonation is giuen by

Sums of squares for the effects B, C, AB, AC, BC, anil ABC are obtai,ned i,n a

si,mi,lar fashi,on. The total sum of squz,res, SSrot, i,s calculatedby talei,ng the sum of

the squares of the deui,ati,ons of the i,ndiui,dual obseruati,ons from the ouerall mean, y.

Thi,s quanti,ty i,s easi,ly obtained by use of the computati,onal form for SSTo¿, gi,uen by,

(ceù'

I (,: 
G \\- -f "' - +)(-3 0. . .1 5)')

: (24)'
16

: 36.0.

16

where i, j and I denote the i,th, jth and lth leuels of factors A, B and, C, respecti,uely.

The resulti,ng ANOVA table is gi,uen i,n Table 6.1.

Note that the sum of squøres due to error (unerplained uariati,on i,n the response)

may be obtai,ned last, by subtracti,on, and i,s usually labeled SSE. If there had been

no repli,cation of the 23 desi,gn SSE could not haue been formally calculated. In such

ca,ses, sums of squores for higher-order i,nteractions are often "pooled" together in
order to obtai,n an estimate of SSE.

It i,s now useful to turn our attention to the three rightmost columns i,n Table 6.1.

The thi,rd, column i,n Table 6.1 displays the df associated, wi,th each Eource of uari,ati,on

in the ANOVA model. The df for any factorial effect i,s equal to the number of i,ts

treøtment leuels less one. Therefore, all factori,al effects in a two-leuel desi,gn will
possess 1 df. The total df for any two-leuel desi,gn is N - I, the total number of

obseruations less one. Here the df for the lone error term i,s obta,i,ned by subtracting

the toto,I number of factorial effects, 2k - L, from N - L.

For each source of uari,ati,on the fourth column displays the associ,øted mean

squares (MS). These are the sums of squares for each source of uariøti,on di,ui,ded

by thei,r correspondi,ng df. By diui,di,ng the MS of each effect with its corcespondi,ng

2222t
ssrot: ttllu?i*-+,

i=I j=l l=1 r=1
(6.2)
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Table 6.1: ANOVA for the Replicated 23 Design in Example 6.1.1.

Source of Sum of

Variation Squares

A

B

C

AB

AC

BC

ABC

Error

36.00

20.25

L2.25

2.25

0.25

1.00

1.00

5.00

Degrees of Mean

FYeedom Square

error term we form the rati,o,

Design Total

1

1

1

1

I
I
1

R

Equation 6.3 i,s the test støtistic for the null hypothesis (Hs) that "the main effect

or i,nteracti,on, denoted by ô, erer-ts no statistically signi,fi,cant effect on the response".

IÍ Ho i,s true, the røtio has the F distri,bution wi,th I o,nd, (r - I)zk df (Montgon'LerA,

2001). If Hs is false, then the erpected ualue of M S¿ i,s greater than the erpected ualue

of MSE. Therefore, under the alternati,ue hypothesi,s (H1) that "the main effect or

i,nteracti,on ererts a stati,sti,co,Ilg si,gnificant effect on the response", we reject Hs for
Iarge ualues of Equation 6.3. Formally, we haue a,n upper-tai,I cri,ti,cøl regi,on, where

we reject Ho xf,

36.00 57.60

20.25 32.40

72.25 19.60

2.25 3.60

0.25 0.40

1.00 1.60

1.00 1.60

0.625

64

Fo

n ssôldla ssê/L MSe
oo : 

ssT ldrr,,* 
: 

ssn¡ç¡ - t¡ro, 
: 

tuISE'

78.00 15

Fo ) Fo,r,1 r-r)2ht

a bei,ng the leuel of signi,ficønce for the hypothesis test.

(6.3)

(6.4)
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6.2 ANOVA Basics for Other Two-level Designs

Having been given an introduction to ANOVA concepts in the previous section we

now briefly summarize some ANOVA issues associated with 2"-e FF and BFF d+
signs.

Sums of squares calculations for factorial effects in 2n-k FF and BFF designs

proceed in a similar fashion to that in the 2k setting. Again, we denote sums of squares

for estimated effects by ,S,S¿, and they are calculated via Equation 6.1, repeated below

for the convenience of the reader:

Note that in the 2"-k FF and BFF setting N : r2n-k.

If we wish to estimate a main effect or interaction we change the denominator in
Equation 2.L to reflect the number of experimental runs in FF and BFF designs. As

a result of the fractionation, Equation 2.I becomes,

If a BFF design is run (thereby confounding higher-order interactions with block

effects) the calculation of sums of squares for blocks is straightforward-simply find

the sums of squares for those effects confounded with blocks. For example, suppose

we wish to run a 28-3 design in 22 :4 blocks, using blocking variable generators

fu : ABE and B2 : ABH. This implies that we will have 3 df for blocks, the third
df accounted for by the product, þtþ" : EH. By totaling the sums of squares of the

confounded effects (SS¡"ø + SSIEÈ + ,S.9EE) we will then have found SS6¿o"p, for
the 28-3 BFF design.

Formation and interpretation of ANOVA tables proceeds in a manner analagous

to that in Section 6.1. Montgomery (2001) and Cochran a.nd Cox (1957) provide

modern and classical references, respectively, to the topic of ANOVA in the two-level

design setting. These texts present ANOVA models for virtually all "introductory"
experimental designs.

,9,S¿:W

A- *lY
t- - rT-¡-t'

(6.5)

(6.6)
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6.3 ANOVA Models for Two-level FFSP Designs

Having presented the basic concepts of ANOVA models vre now enter the more com-

plicated arena of ANOVA for the split-plot setting. In this section, examples will
be given illustrating ANOVA models for two 2(nt+nz)-(kr+Èz) ppgp designs. This

overview is motivated by examples given in Bingham and Sitter (2001) and Mont-
gomery (2001). We wish to stress that despite the fact that the ANOVA results in

this section a e conceptually well established (Kempthorne, 1952; Hinkelmann and

Kempthorne, 1994) it is rare (see references in previous sentence) to find them out-

lined in their general form.

(For the interested reader, a thorough discussion of ANOVA for multi,-leuel split-
plot designs may be found in Hinkelmann and Kempthorne (1994). This text pro-

vides considerable insighi into the split-plot setting outside of the two-level factorial

framework in which rrye are now entrenched. Some results in the following sections

are motivated by this text.)

6.3.1- Two Approaches

Two slightly different approaches may be taken when constructing an ANOVA model

for a 2@'+nz)-(kt*kz) FFSP design. One approach is implicitly suggested by Bingham

and Sitter (2001). In this article they provide an example s¡ 
^ 

2(t+z)-(0+i) FFSP

design replicated four times. Their analysis description states that the df for WP

error is (r -L)2"'-rr. (Therefore, this implies that there wilt be (4-t722-0 : 24 df for

WP error.) They also state that the df for SP error is (r- 1)(2("t+"2)-(h*kz) -2nr-kr).
Fbom this we may infer the generai ANOVA model, as displayed in Table 6.2.

Similarly, Montgomery (2001) provides an example of a replicated 2Q+2)-(0+0)

split-plot design. In the subsequent analysis, df for replications is separated from

the df for WP error, implying the general ANOVA model outlined in Table 6.3. If
it is not expected that there will exist statistically significant differences between

replications we envision similar results from both ANOVA models. In this c¿Ne \rye

may think of the WP poriion to be run as a completely randomized design (CRD),

thus performing an ANOVA on the WP observations (averaged over the SP treatment

combinations) using the model of Table 6.2. If it is thought that replications wi,ll

account for a significant portion of the WP error, it is wise to separately calculate the
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Table 6.2: An ANOVA Model for the 2(nt+nz)-gr+rcz) pttt Design.

Source of Variation

WP

WP Total

SP

Effects

Error

sum of squares for replications (,S,9¿"or), thereby following the outline in Table 6.3.

A computational formula for finding SSn"p, is given by

Design Total

Degrees of FYeedom

Effects 2@r+nz)-(kt*kz) - 2nt-tct

Error (r - 1)(Z{"t+n2)-(h+kz) - 2u-l.4¡

2u-h - 1

(r - 7)2"'-r,'

where .B¿ equals the sum of the observations in the hth replicate, yþo, equals the

square of the total of all the observations and N : v2@t*nz)-(k*kz).

The SP portion of the design is typically viewed as a randomized block design

(RBD) with the "blocks" being ¡¡u r2u-k1 WP treatment combinations. To account

for the number of df for SP effects (2@r+nz)-@trkz) - znl-kr) we note that this is the

number of main effects and interactions involving at least one SP factor that are not

aliased with WP main effects or interactions involving only WP factors.

It is worthwhile noting that when split-plot designs are run outside of the two-

level factorial structure, \rye encounter other variations (besides the CRD and RBD

formats) by which one may need to analyze ihe WP and SP portions. Again, the text

by Hinkelmann and Kempthorne (1994) provides an informative discussion regarding

this topic.

,2u-h - 1

,2@Énz)-(tq+kz) - I

c1(1 a\ R'zh UTotÞ5R"p': Lñl+;;:@L+k; - T,h=l
(6.7)
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Table 6.8: An Alternate ANOVA Model for the 2(nt+nz)-(h +kr) FFSp Design.

Source of Variation

Reps

WP

WP Total

SP

Effects

Error

6.4 ANOVA for Unreplicated BFFSP Designs

At this point \rye may begin discussion regarding ANOVA models for BFFSP designs.

In this section we intend to concentrate our efforts upon the "simpler" unreplicated,

2@t1.nz)-(kt*kz)t(bt+bz) gFFSp design scenario. Aside frorn the simplicity of this set-

ting we shall see in this section that there are additional justifications for this initial
focus.

6.4.L Some Comments Regarding Unreplicated Designs

One reason for the relevancy of unreplicated designs is due to the prohibitive size of

two-level designs for even a "small" number of factors. For example, if (n1 * rr) -
(kr + kz) > 5 we are faced with an experiment consisting of at least 25 : 32 runs-
with just one replicate. Replicating a design of this magnitude only compounds the

size problem in terms of the strain on an experimenter's resources (time, money,

personnel).

A drawback of unreplicated designs is that they provide no estimate of WP or

SP error. A possible solution to this problem is to assume that some (if not all)

higher-order interactions are negligible thereby allowing one to combine their MS to

Degrees of FYeedom

Design Total

Effects 2@t+nz)-(kr-l-,tz) - 2nr-kt

Error (r - t)(Z{"r+n2)-(kL+kz) - 2u-rtr¡

r-I

2nt-kt - I
("-1)ç2u-nt-r)

r(2nr-nt - I)

,2@#nz)-(¡'*kz) - !
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estimate the two error terms. For split-plot designs, higher-order WP effects would be

pooled in order to form MSE6p, an estimate of ElMSEwp| Likewise, higher-order

SP effects would be combined so as to form MSE1V, an estimate of ElMSEspl.
This method of pooling MS is not an unreasonable solution given our assumption of

neglibility of effects of order three and higher. If one cannot assume the negligibility

of certain higher-order effects, the experimenter should consider the use of normal

probability plots of the effect estimates. For FF designs, Daniel (1959) provides the

classical reference to this topic and most current texts on experimental design devote

some discussion to this graphical tool. For FFSP designs, two normal probability plots

should be constructed, one for the WP effects and one for the SP effects (Box and

Jones, 1992; Bingham and Sitter, 2001).

6.4.2 The ANOVA Model for Pure \ryP Blocking

Table 6.4 displays the general ANOVA model for BFFSP desigrrs in which blocks

are generated solely by WP factors. This model contains several noteworthy char-

acteristics. First, recall that for å1 blocking variables we will have 2bt blocks. This

explains lhe 2b'- 1 df reserved for WP effects confounded with blocks. Second,

following the discussion in Section 6.2, SSs¿o",r, is found by totaling the sums of

squares of all effects confounded with blocks. Third, one notes that sums of squares

calculations for all effects will follow in the same vein as Equation 6.1 but with
l\ - 2@r+nz)-(h*kz)*(är*0) : 2@únz)-(kt+kz).

Fourthly, since we are assuming that the BFFSP design is not replicated we have

no formal estimate of error (signified by the solid line ('-f in the ANOVA table).

As previously mentioned, we could combine MS of higher-order effects to obtain the

estimates MSE6p and MSE1V. (Since \rye are assuming throughout this research

the negligibility of effects of order three and higher, this pooling of MS, though not

ideal, is not of serious concern.) Upon forming estimates of the respective error terms,

one may perform tests of significance for the main effects and 2fi's. Recall that in

a test of significance we first need to construct the test statistic, Fs, a ratio of MS,

(Section 6.1). For example, if one wished to test the significance of an estimated WP

2fi, say 1È, *" would form the test statistic,

,^ - MSra
- u - MSE*,
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Table 6.4: The ANOVA Modei for the 2@r-rnz)-(kr*ez)*(åt+o) BFFSP Design.

Blocks

Source of Variation

WP

WP Total

Pure WP Blocks

SP

Effects

Error

and then determine whether or not F0 > Fa,r,itf¡¡sB^, where dfusøø> is the to-

tal number of higher-order WP effects pooled together to form the error estimate,

M SEçp.
Fifthly, from Table 6.4 we see that there are 2@Ènz)-(kr*kz) - 2u-fra df reserved

for SP effects. These effects are all those main effects and interactions, comprised of

at least one SP factor, that are not aliased with WP main effects, pure WP blocking

variables or interactions involving only WP factors and/or pure WP blocking vari-

ables. In testing the significance of an estimated SP effect, say the zfr îq, we would

form the test statistic.

,o:!þ,
MSEgv'

and then compare whether or not .F'0 > Fa,rd,f¡¡sB^, where dfursngp is the total

number of higher-order SP effects pooled together to form the estimate, MSEgV.

Finally, suppose an experimenter is interested in testing for the statistical sig-

nificance of block effects. FTom the ANOVA table, one may be inclined to form the

ratio

n M Søu"t ,
- u - MSEfrÞ'

Design Total

Degrees of Fleedom

Effects

Error

2bt -l

2u-ler - 2b1

znt-frr - 2bt

2(nr+nz) -(ter *k2) - 2u -k t

2@Énz)-(h+k2) - I
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and subsequently compare it to Fo¡,¿¡*s'tîÞ However, as Montgomery (2001) points

out, in the context of randomized complete block designs (RCBDs), randomization

has been applied only to the treatmenls within blocks; therefore, the blocks place a

restriction on randomization. The impact of this randomization restriction is debated

in the literature. Box, Hunter and Hunter (1978) say that an F test for the com-

parison of block means (etrects) is meaningful provided the errors are normally and

identically distributed with constant variance; that is, if the errors are NID(0,o2).

Anderson and Mclean (1974) say that regardless of the distribution of the errors,

this test is still meaningless. Montgomery (2001) agrees in principle with Box, Hunter

and Hunter (1978) but notes that the assumption of normality for the error terms

is often questionable, so "an exact .t' test on the equality of block means is not a
good general practice". Although the discussion given in the preceding references

is with regards to RCBDs and other "simple" two-level designs possessing blocks,

these arguments carry over to the BFFSP setting since randomization of the treat-

ment combinations is performed wi,thi,n blocks as well. Consequently, in subsequent

analyses for unreplicated designs we will exclude formal f" tests for the comparison of
block means. We shall see in later sections that in the presence of design replication

vre may introduce an appropriate formal test for block effects.

Example 6.4.1 To i,llustrate the precedi,ng mod,el, we turn agai,n to the 2(3+3)-(0+1)+(1+0)

BFFSP design (as in Secti,on 3.1.1) haui,ng DCS I: ABCh: ABpqr -Cpqrþt.
By d,isplaying the design's ali,as structure i,n Table 6.5, we i,ndi,cate the appropri,ate

brealcdown of the df for all sources of uari,ati,on. Note that for the salce of breuity,

treatment x block i,nteracti,ons (whi,ch we assu,rne to be negli,gi,ble) haue been erclud,ed,

from the di,splayed ali,as structure.

The total df for blocks i,s 2L - I : !, the total df for WP effects ¿t 2(s-o) - 21 : 6

and the totat df for SP effects is 2(3+3)-(0+1) - 2(e-o) - 24, whi,ch i,s i,n agreement

wi,th Table 6.1.

6.4.3 The ANOVA Model for Blocking via Separation

Table 6.6 displays the general ANOVA model for the BFFSP design in which blocks

are generated via separation. The creation of ö2 separators will result in 2b' blocks

being formed, so 2b' - 1 df are reserved for block effects. Total df for SP effects is
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Tabte 6.5: Alias Structure of the 2(3+3)-(0+1)+(1+0) BFFSP Design in Example 6.4.1.

Blocks

W'P Effects

Alias Chain

h: ABC : Cpqr

A: Bpqr

B : Apqr

C : ABCpqr

AB : PQT

AC : BCpqr

BC : ACpqr

SP Effects

p: ABqr,

q: ABpr,

r: ABpq,

Ap: Bqr,

Bp: Aqr,

Cp: ABCqr,

Aq: Bpr,

Bq: Apr,

Cq: ABCpr,

Ar: Bpq,

Br: ApQ,

Cr: ABCpq,

df

ABp: qr

ACP: BCqr

BCP: ACqr

ABCp: Cqr

ABq: pr

ACq: BCpr

BCq: ACp,

ABCq: Cpr

ABT : PQ

ACr: BCpq

BCr: ACpq

ABCr: Cpq

Total WP df 6

2

2

2

2

2

2

2

2

2

2

2

2

then 2(n r+nz)-(h*kz) _2nt-kt*bz, the number of design points less the number of block

and WP effects.

The variation due to the separators has been delineated from the SP portion of the

Total SP df 24



CHAPTER 6. ANALYSß OF UARIA¡üCE FOR BFFSP DESIG¡üS 73

Table 6.6: The ANOVA Model for the 2@t+nz)-1ter-Fez)*(0+bz) BFFSP Design.

Source of Variatiorr

Blocks

WP
Separators

WP Total

SP

Effects

Error

Degrees of Fleedom

ANOVA table. This is done to emphasize that a,lthough the separators are blocking

variables containing at least one SP factor, we do not test for their significance

by use of the estimate, MSE1V, in the test statistic, ,F's. (Deriving the variances

of the separators by the methods introduced in Chapter 4 would confirm this.) Of

course, we do not wish to test for the significance of block effects anyways-this

follows from the comments made in Section 6.4.2 regarding the inappropriateness of

tests of significance for block means in the unrepli,cated design setting. (Section 6.5

will demonstrate how one may, in the presence of replication, correctly test for the

significance of block effects.)

Other calculations, including tests of significance for effects not confounded with

separators proceed in a manner analogous to that for designs with pure WP blocking

variables.

The most noteworthy change to our ANOVA model, as a result of separation,

occurs in the total number of df available at the WP level of the design. For each

additional separator we see a two-fold 'i,ncrease in the number of distinct WP runs-a
type of pseudo-replication (as explained in Chapters 3 and 4). We recall that this

pseudo-replication provides the experimenter with increased precision when calcu-

Design Total

Effects

Error

2b, -L

2nr-krl,bz _ 2bz

2u-krlbz - 2bz

2@t Inz) - (kt*k2) 
- 2nt-kt*bz

2@t*nz)-(k1+e2) - 1
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lating the variance of effects that are to be tested against the WP error. In Table 6.6

the benefit of separation is seen as an increase in available df for WP effects. The cost

of this WP run replication is seen at the SP level of the design. Specifically, at the

SP level each additional separator causes a decrease, by a factor of two, in the num-

ber of SP treatment combinations associated with each WP treatment combination.

In the SP portion of the ANOVA table, the net effect of separation is to reduce the

available df for SP effects by a factor of.2b,. Note that forming "too many" blocks via

separation will result in there being no SP effects. This will occur when bz : nz - kz,

imptying that we have 2(nt+nz)-(hrkz) -2r,i--kt*bz - 2(nt+nz)-(r,aÌkz) -2nr-h*nz-tez - g

SP effects. Of course, in the case where bz : nz - kz an impractical design will result

(see Section 3.2.2). Recall that we do not consider an impractical design to be a

viable experimental option.

Example 6.4.2 Consider ¡¡" 2(e+t)-(0+1)+(0+1) BFFSP desi,gn haui,ng DCS I -
ABCpr - ABqù : Cpqrù (this design w&s fi,rst i,ntroduced i,n Chapter 3). Ta-

ble 6.7 contai,ns the design's ali,as structure, thereby erhi,bi,ti,ng the proper di,stributi,on

of df between the sources of uari,ati,on. Note thøt some of the treatment x bloclc in-

teracti,ons ho,ue been i,ncluded in the displayed ali,as structure. We haue onlg includ,ed

treatment x block, i,nteractions i,n those alias chai,ns for whi,ch i,t would otherwise be

ambi,guous as to the desi,gn status (WP or SP) of the other effects in the chai,n. The

impli,cation i,n Table 6.7 i,s that any effect ali,ased with a treatment x bloclc i,nterac-

tion i,s i,n fact a WP effect. That is, in any tests of si,gni,ficance, the MS of these

aliased effects wi,ll be tested agai,nst M SE6p. (Thi,s can be confi,rmed by deriuing the

uari,ance forms of treatment x bloclc i,nteractions usi,ng the methods of Chapter 4.)
The total df Íor bloclcs (separators) i,s 2r - L : I, the total df for WP effects i,s

2(s-o+t) -21 :!4 andthetotal df for Sp effects is 2(3+3)-(0+1) -Z(3-0+t) - 16, which

is i,n agreement with Table 6.6.

6.4.4 The ANOVA Model for Mixed Blocking

In Table 6.8 we present the general ANOVA model for unreplicated BFFSP designs

possessing mixed blocking. In essence, this model serves as an amalgamation of the

models presented in Tables 6.4 and 6.6.

For mixed blocking there are 2bt*bz - 1 df associated with blocks. We see that

2b' - L df are reserved for pure WP blocking variables, 2b' - 1 df are reserved for
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Table 6.7: Alias Structure of the 2(3+3)-(0+1)+(0+1) BFFSP Design in Example 6.4.2.

Separators

WP Effects
ù: Cpqr : ABq

Alias Chain

A: BCpr,

B : ACpr,

C : ABpr,

AB : Cpr,

AC : Bpr,

BC : Apr,

ABC : PT,

SP Effects

q: ABCpqr : A861

Aq: BCpqr - B6t

Bq: ACpqr - Aõt

Cq: ABpqr : ABC6.

ACq: Bpqr : BCõt

BCq: Apqr : ACõr

ABCq: per - C6t

P: ABCr,
r : ABCq,

Ap: BCr,
Bp: ACr,

cp: ABr,
Ar : BCp,

Br : ACp,

Cr : ABp,

df

Pq: ABCqr

Aq, - BCpq

Bqr - ACpq

Cqr: ABpq

ABqr: Cpq

ABT : PQ

ACqr: BpQ

BCqr -- Apq

separators and the remaining (2u' - l)(zb'- 1) df are associated with those blocking

variables generated by the product of the pure WP blocking variables and separators.

Again, for unreplicated BFFSP designs with mixed blocking we suggest that one not

test for the significance of block effects. In subsequent sections, when design replicates

are considered, we will present a better approach for testing block means.

2

2

2

2

2

2

2

Total \MP df L4

2

2

2

2

2

2

2

2

Total SP df 16
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Table 6.8: The ANOVA Model for the 2(nt+nz)-1t r*&z)*(ör+bz) gFFSp Design.

Source of Variation Degrees of FYeedom

Blocks

Block Total

WP

Pure WP Blocks

Separators

Pure WP Blocks

WP Total

SP

2bt -!
2b, -I

x Separators (2u' - 1)(2ö' - 1)

Effects

Error

Design Total

Again, recall that for each additional separator we see a two-fold increase in the

number of distinct WP runs. In Table 6.8 the benefit of separation is seen as an

increase in available df for WP effects. The cost of this WP run replication is seen

at the SP level of the design. Specifically, at the SP level each additional separator

causes a decrease, by a factor of two, in the number of SP treatment combinations

associated with each WP treatment combination. In the SP portion of the ANOVA

table the net effect of separation is to reduce the available df for SP effects by a
factor of.2b'.

Example 6.4.3 The ali,as structure for the 2(3+3)-(0+r)+(1+i) BFFSP desi,gn with

DCS I : ABqr : ABCh : BCpqõt : Cqrþt : ACprù : BprþÅt : ApqBfi1, is

presented i,n Table 6.9. The resulti,ng brealcdown of df for each source of uari,ati,on i,s

i,n accordance wi,th the general ANOUA model in To,ble 6.8. As i,n Table 6.7, note that

son'te of the treatment x bloclc i,nteracti,ons haae been i,ncluded, in the d,i,splayed ali,as

structure. We haue only included treatment x block i,nteracti,ons i,n those ali,as chai,ns

Effects

Error

2b*bz _ 1

2n1-k1!b2 _ 2bt*bz

2ztr-kt*bz - 2bt*bz

2(nr+nz) -ç4 +k2) - 2nt -kt *bz

2@t+nz)-6r+k2) - I
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for whi,ch i,t would otherwise be ambiguous as to the desi,gn status (WP or SP) of
the other effects i,n the chain. The i,mpli,cati,on i,n Table 6.9 i,s that ang effect ali,ased,

with a treatment x block interacti,on is i,n fact a WP effect. That i,s, i,n any tests of
si,gni,ficance, the MS of these aliased, effects wi,ll be tested agai,nst M SE6p. (Thi,s cøn

be confirmed by deri,uing the uariance forms of treatment x block i,nteractions usi,ng

the methods of Chapter 4.)
The total df for block effects is 2t+L - 1 - 3, the total df for WP effects is

2(3-0+r) - 2(t+t¡ : 12 and the total df for Sp effects ¿, 2(a+a)-(o+1) _ 2(3-0+1) - 16,

whi,ch i,s i,n agreement with Table 6.8.

6.5 ANOVA for Replicated BFFSP Designs

On occasion, an experimenter may have adequate resources that allow design repli-

cates to be run. This occurrence is suffi.ciently commonplace, hence we devote this sec-

tion to considering the impact of replication upon the analysis 6f )(u*nz)-('tr*'tz)*(br+bz)

BFFSP designs.

Design replication causes the complexity of ANOVA models to increase. We will
use the results of Section 6.4 as a stepping stone for developing this more technical

setting.

6.5.1 The ANOVA Model for Pure WP Blocking: With Repli-

cation

Replicatin g a2(nr+nz¡-(er*,tz)*(br+0) BFFSP design implies that r2(nt+nz)-(h*kz) treat-

ment combinations will be run. Therefore, r2@r+nz)*(kftkz) - 1 df must be accounted

for in the ANOVA model (see Table 6.10).

Given that there are 2b' blocks per replicate this implies that there will be a total

of. r2bt blocks in the design. Therefore, the model will have r2bt - 1 df reserved for

block effects. In this model we extend the method described by Cochran and Cox

(1957) for distributing the df for blocks and replicates in a replicated full factorial

two-level design. In this reference, the authors explain that block df can be thought

to consist of the df for replicates, factorial effects confounded with blocks and the

interaction, replicates x blocks. Therefore, for a2@t+nz)-('kr+kz)+(or+o) 3pp5P design,
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Table 6.9: Alias Structure of the 2(3+3)-(0+1)+(1+1) BFFSP Design in Example 6.4.3.

Blocks

Alias Chain

WP Effects

þt: Cqr : ABC
õt: ACpr : BCpq

þtõt: Bpr : Apq

A: Bqr,

B : Aqr,

C : ABCqr,

AB : QT,

AC : BCqr,

BC : ACqr,

SP Effects

Total Block df

pq: ABpr : BCù : Aþót
pr : ABpq: ACù: Bþót
Apr - Bpq: Cù - ABpðr
Cpr : ABCpq - A6t: BC þ$t
BCpr : ACpq: ABù: C þÅt
ABCpr - Cpe : Bù : AC þðt

p: ABpqr,

q: ABT,

r : ABq,

Ap -- Bpqr,

Bp: Apqr,

Cp: ABCpqr,

Aq: Br,
Bq: Ar,

df

1

1

1

Total WP df

Cq: ABCr
Cr : ABCq

ABp: pqr

ACp: BCpqr

BCp: ACpqr

ABCp: Cpqr

ACq: Bç,
BCq: /ç,

we conclude that there are r - 1 df for replicates, zbt - l df for effects confounded

with blocks a¡rd (" - 1) (2u, - 1) df for replicates x blocks. These df quantities sum

to r2b, - 1 which is required.

The interaction, replicates x blocks, can be thought of as the error for which

t2

Total SP df 16
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Table 6.10: ANOVA Model for a Replicated 2(nr-rnz)-(kr*,tz)*(br+o) BFFSP Design.

Blocks

Source of Variation

Block Total

WP

Replicates

Pure WP Blocks

Error

WP Total

SP

Degrees of FYeedom

Effects

Error

r-I
zb'_ r
(" - 1) (zbL - L)

Design Total

the MS of those effects confounded with blocks are compared to. Consequently, in

the presence of replication, we are now able to correctly test for the significance

of block means; recall that this was not possible for unreplicated BFFSP designs.

Howevet, one should note that if the df for replicates x blocks is small, this test will
be insensitive in detecting block differences (Cochran and Cox, 1957).

Despite the ability to test for block effects the practitioner will likely choose not

to perform such tests. FYom a practical standpoint, the reason for blocking in the

first place is because of the desire to control for variation in the response due to

nonhomogeneous conditions in the experiment. Any test for block effects would most

likely only serve to confirm their significance.

The design replicates now allow the experimenter to calculate the "true" MSE

estimates (MSEwp and MSEsr) of the WP and SP error terms (o'wp aú o2rr).

No longer do we have to pool negligible higher-order interactions to form estimates

of ElMSEwr] and E[MSEsp] as we did in previous sections. That is, correct F-

rzb' - 1,

Effects

Error

2nt-kr _ 2br

(" - 1) (2nt-h - 2b,)

r(znr-n' - zbr)

2@r+nz) - çnr*k2) - 2nt - kt

(" - 1) (2@t+nz)-(n*k2) - 2nr-k)

,2(nt+nz)-(h+kz) _ 1
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statistics may now be constructed for testing the significance of treatment main

effects and interactions. As well, the large number of observations due to replica-

tion will improve the estimates of. of;u, and o2r, thus strengthening the power and

precision in inference.

Having presented the general ANOVA model, we now consider the approach to

analyzing the data. We will do this via a three.step process, where each of the three

steps corresponds to one portion of the ANOVA model in Table 6.10. The steps are

as follows:

1. To analyze the "block" portion of the BFFSP design, we view lhe r2b, blocks

as the experimental units. The experiment as a whole is seen as a RCBD, with

2b' treatments in each of the replicates. Note that since the blocks are the

experimental units, we perform the ANOVA on the block auerages. (That is,

average over the WP and SP treatment combinations within a given block to

obtain one observation for the RCBD.)

The WP portion is analyzed as a BFF with r2b' blocks, an ANOVA being run

on the WP auerages. (That is, average over the SP treatment combinations

associated with each WP treatment combination.) The 
^9,97o¿ 

from step 1 will
now be thought of as S,SB¿'"/," in the WP analysis.

The SP portion is also viewed as a BFF, this time possessing r?nt-frl blocks,

where the blocks are the WPs. The,S,Sa,¿ from step 2 will be viewed as 556¿o¿ç,

in the SP analysis.

2.

3.

6.5.2 The ANOVA Model for Blocking via Separation: With

A replicate¿2{',t*nz)-(ftr+fr2)+(o+Dr) BFFSP design has r2(nt+nz)-(h*kz) treatment com-

binations to be run. Again, we must account for the resulting ,2(nftnz)-(rcr+fr2)-1 flf
in the corresponding ANOVA model (see Table 6.11).

Similar to the BFFSP design with pure WP blocking, we have 2b' blocks per

replicate for a total of r2b' blocks in the design. This implies that r2b' - 1 df will

be reserved for the block portion of the design. The other df may be accounted for

Replication
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Table 6.11: ANOVA Model for a Replicated 2(nrrnz)-(kr*kz)*(0+bz) BFFSP Design.

Source of Variation

Blocks

Block Total

WP

Replicates

Separators

Error

WP Total

r-I
2b, -L
(" - t) (2b, - L)

Degrees of FYeedom

SP

Effects

Error

rzb, - 1"

by considering the discussion in Section 6.4.3 regarding unreplicated BFFSP designs

obtained via separation.

Again, as a result of the design replicates we may calculate M S Ey¡p and M S Esp

as estimates of o2*, and o2rr, respectively. F-statistics may then be constructed for

testing the significance of treatment main effects and interactions. Tests for signif-

icance of block effects may also be performed by use of the block error estimate,

replicates x separators.

As in Section 6.5.1, \rye now present the three-step approach to the analysis of a

2@inz)-(kr *,bz)*(o+Dz) BFFSP design:

1. To analyze the "block" portion of the BFFSP design, we view the rTb' blocks

as the experimental units. The experiment as a whole is seen as a RCBD, with

2b, treatments in each of the replicates. Note that since the blocks are the

experimental units, we perform the ANOVA on the block auerages. (That is,

average over the WP and SP treatment combinations within a given block to

Design Total

zu-hrlbz - zbz

("-t)(2u-h+bz-2b')

Effects

Error

r(zu-kr+uz - 2b")

2@Ènz) - (h Ik2) - 2n t -kt+bz

(" - i) (2(nt+nz)-(nr*,tz) - 2u-h+bz)

,2(nÈnz)-(kÈkz) - 1
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obtain one observation for the RCBD.)

2. The WP portion is analyzed as a BFF with r2b'blocks, an ANOVA being run

on the WP auerages. (That is, average over the SP treatment combinations

associated with each WP treatment combination.) The ,S,97o¿ from step 1 will
now be ihought of as ,9,9¡¿ o"t , irr the \MP analysis.

The SP portion is also viewed as a BFF, this time possessing ,2nt-kt*bz blocks,

where the blocks are the WPs. The,S,S7o¿ from step 2 will be viewed as SSB¡o"¡,,

in the SP analysis.

3.

6.5.3 The ANOVA Model for Mixed Blocking: With Repli-

cation

The ANOVA model for a Z(n'+nz)-(hrkz)r(bt*bz) BFFSp design with mixed blocking

is an amalgamation of Tables 6.10 and 6.IL. Any BFFSP ANOVA model discussed

thus far can be derived from the general model for mixed blocking (see Table 6.12 ).

Here we ln¿u¿ 2br-rbz blocks per replicate for a total of r2bt*bz blocks in the design;

therefore, r2bftbz - 1 df will be reserved for the block portion of the design. Also,

observe that r(znr-kt*bz - 2h+bz) df are available for the WP portion in Table 6.12.

The remaining design df are distributed among the SP effects and SP error.

The three.step approach to analysis is easily extended tro 2(nr-rnz)-(hrkz)t(h*bz)

BFFSP designs:

1. To analyze the "block" portion of the BFFSP design, we view ¡l1s r2b*bz blocks

as the experimental units. The experiment as a whole is seen as a RCBD, with

2h*bz treatments in each of the replicates. Note that since the blocks are the

experimental units, we perform the ANOVA on the bloclc auerages. (That is,

average over the WP and SP treatment combinations within a given block to

obtain one observation for the RCBD.)

2. The WP portion is analyzed as a BFF with r\b'+b' blocks, an ANOVA being

run on the WP o,aerl,ges. (That is, average over the SP treatment combinations

associated with each WP treatment combination.) The ,S,97o¿ from step 1 will
now be thought of as 

^9^96¿o"k, 
in the WP analysis.
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Table 6.12: ANOVA Modei for a Replicated 2@t+nz)-(rer*&z)*(br*bz) gfFSp Design.

Blocks

Source of Variation

Replicates

Pure WP Blocks

Separators

Pure WP Blocks

Error

Block Total

WP

WP Total

SP

Effects

Error

r-I
zbt -r
2b'-I

Degrees of Fleedom

x Sep's (2u' - 1) (2h - 1)

(" - 1) ç2ut+uz - t)

Design Total

Effects

Error

3. The SP portion is also viewed as a BFF, this time possessing ,2nt-h*bz blocks,

where the blocks are the WPs. The,SST'¿ from step 2 will be viewed as SSp¿o"¡r,

in the SP analysis.

rzbt+bz - 1

Znr-kt*bz - Zû*bz

(" - 1) (Znt-kr+bz - 2br+bz)

r(2u-frr+uz - 2bt+bz)

2@rlnz) - (ktikz) 
- 2u -ht*bz

(" - 1) (2@r+nz)-(ulk2) - znt-kÈbz)

,2(nftnz)-(h*kz) - L



Chapter 7

Results Analogous to Those for
FFSP Designs

Chen and Wu (1991) provided an approach to summarizing the DCSs of FF designs

through the use of matrices. Subsequently, Bingham and Sitter (1999b) extended this

matrix representation to the FFSP design scenario. These matrix representations

were then utilized in the development of theoretical results for twoJevel FF and

FFSP designs with emphasis on the resolution and MA criteria. In this chapter we

develop extensions to the matrix representation of FFSP designs by allowing for the

presence of blocking variables in the derivations. Notation is developed first through

an example while theoretical results are established by more detailed discussions in

subsequent sections.

7.L Matrix Representation of BFFSP Designs: No-

tational Development

Example 7.I.1 Suppose øn erperi,menter i,ntends to run ¿ 2(5+3)-(1+1)+(1+1) BFFSP

desi,gn. One possi,ble desi,gn has factor ønd blocking generators gi,uen by E : ABC, Pr :
BCD,r: Apq and,ù: Bpq.Theresulti,ng DCS forthi,s desi,gni,s I: ABCE -
BCD\: Apqr: Bpqù: ADE\: BCEpqr: ACEqSù: ABCDpqrþr:
CDpqB$1 - ABrfi : DÐpqr/t : ABDEqQ/ð, - CEr\ : ACDrþðt :
BDErByfi. The matrir form of the DCS for the 2þ+s)-(1+1)+(1+1) BFFSP design

is giuen in Table 7.1. As in Bingham and Si,tter (1999b), w¿ denotes the i,th word i,n

84
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the desi,gn's DCS. If a factor or blocki,ng uariable is present wi,thi,n w¿ i,t is i,d,entifi,ed,

with ø 1 i,n i,ts corcespond,i,ng column.

By looldng closely at Table 7.1 we see that columns "D" o,nd, "B¡" a,re i,denti,cal.

Also, colurnns 'þ" o,nd "q" are i,dentical. Instead, of writi,ng down these redundo,nt

columns one rnøA represent a BFFSP desi,gn bg prouiding the matri,r contøi,ni,ng only

the unique columns from the desi,gn's DCS matri,r as well as a frequency uector,

r.

Table 7.1: Matrix Representation of the DCS for fþs 2(s+a¡-(i+i)+(1+1) Design

U1

U2

U3

U4

U5

U6

U7

Ug

?Tg

uto

utt
Un

utz

utE

wr5

ABCDE0rpqrdr
111
01i
100
010
100
011
101
111
001
110
000
110
001
101
010

010
101
00 0

00 0

111
010
010
101
i01
00 0

111
111
010
101
111

00
00
11
11
00
11
11
11
11
00
11
11
00
00
00

00
00
10
01
00
10
01
10
01
11
10
01
11
11
11

Consequently, the 2(5+3)-(r+1)+(1+1) desi,gn rnl,A be sun'Lrnarízed by the reduced ma-

trir.
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11
01
10
01
10
01
10
11
00
11
00
11
00
10
01

101000
110000
000110
000101
011000
101110
101101
110110
110101
000011
011110
011101
101011
110011
011011

M1 :

and the frequency uector f : (1,L,1,2,L,2,L,!), where f¿ i,s the nunxber of factors
associ,ated with the ith column of }i,ft.

We may i,denti,fy which factors are WP factors, pure WP bloclei,ng uariables, SP

factors or separators by i,ntroduci,ng an ertension of the (spli,t-plot) frequencA n'10,-

tri,r fi,rst descri,bed by Chen and Wu (1991). For the 2(5+3)-(1+1)+(i+1) desi,gn in this

erample,

In our representati,on, (f 1,¿, fz,â, Ít,¿, Ía,)' i,mplies that column i, of My occurs (or

has a frequency of ) Íu * fz,¿ I fs,¿ i fa,¿ ti,mes. Of thi's number, h,¿ is due to WP

factors, lz,¿ is due to pure WP blocki,ng uari,ables, fz,¿ is due to SP factors and, fa,¿ i,s

due to separators. It can be shown that bg usingl:Ù/fl and f one could worlc "baclcu0,rds"

and reconstruct Table 7.1, the DCS of fl¿s2(s+t¡-(1+1)+(1+1) BFFSP desi,gn.

':Ii
1111
0010
0000
0000

000
000
270
001
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7.2 Development of a General Matrix Represen-

tation for BFFSP Designs

The objective of this section is to extend the general matrix framework found in the

literature (developed for the FF and FFSP settings) to that of the BFFSP design

scenario. Consequently, the results that follow in this and subsequent sections closely

parallel those found in Chen and Wu (1991) and Bingham and Sitter (1999b). In this

particula.r section we intend to simply adjust the existing general FFSP design matrix

representation by allowing for the inclusion of blocking variables.

Let Mz be a (Zd - 1) x (2d - L) matrix where

and d : ktilrzlh*b2. I¿ denotes the d x d identity matrix while the set of

columns of (1¿, B) form the vector space spanned by the columns of .I¿ over the finite

freld GF(z). Likewise, the rows of M2 form the vector space spanned by the rows

of. (I¿,.B) over the finite freld GF(2). Note that the identity column and row of 0's

has been excluded from M2 thereby reducing its dimensions from what otherwise

would have been 2d x 2d.If we replace the 0's and 1's in M2 with l's and -1's,

respectively, and add a column and row of 1's, M2 would be equivalent to a 2d x 2d

Hadamard matrix, ,F/2a. This equivalence with Hadama¡d matrices will provide us

with several useful properties for proving theorems in following sections. (For a brief

introduction to finite fields and Hadamard matrices, the reader is encouraged to read

the relevant sections of Durbin (2000) and Hedayat and Wallis (1978), respectively.)

Note that M1, in Section 7.1, is in a slightly different form than M2 in that it is
a subset of columns from M2, with a permutation of the columns and rows of M2.

These differences between M1 and M2 do not affect the inherent structure of the

corresponding BFFSP design.

When constructing a BFFSP design we must specify which factors are WP factors,

pure WP blocking variables, SP factors and separators. To assign these factors to

the columns of M2, wê may begin by partitioning the first d rows of M2 into the

following form,

*,: (';, ;"),
(7.1)

fnr+ur0Bt0Ct
0 Inr+a, 0 Bz Cz )

(7.2)
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Ikr+b, and I¡r',6, represent ihe (fr1 * å1) x (h + bù and (fr2 * å2) x (kz + b2) identity

matrices, respectively. Similar to that for (,I¿, B) in 7.L, the columns of (1¿r.,.¿,, .B1)

and (,I¿ra6r,Br) form the subspace spanned by the columns of /r,+¿, and,I¿r-.6, re-

spectively, excluding the identity columns of 1's. This implies that Bi will have

2ktrbr - (kt+åt)- 1 columns; likewise, Bz will contain 2kz-rbz - (kz+Ur) -I columns.

The remaining 2Èr+ezrbt*bz -2kÉù -2kz'rbz * 1 columns in (C1, C2)' form a subset

of the vector space spanned jointly by the columns of

- (rk,+b, o \I¿:l ¡vr¡vr 
l.

\ o In'+u' J

The complete, "expanded" matrix form for M2 is given by

where B, from 7.1, is,

M2:

f nr+br 0 Bt 0 Ct

0 Inr+u, 0 Bz Cz

BloBlhoBlcl
o BL 0 BLB2 BLC'

c| cL c'rB, cLB" c',rcr+cLc,

such that,

in Mz.

Reordering the columns of M2 in the style of Bingham and Sitter (1999b), we

obtain M: (Ár,,4.2), where,

( :' ;,'":),

B,B:
B'rB, o BlCr

o BLB| BLC'

C'rB, CLB, CIQ + CLCz

Ar:

0

Inr+b,

0

BL

CL

0

B2

0

BLB,

CLB,

(7.3)
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and

A BFFSP design is now able to be fully represented by the matrix M and its

corresponding split-plot frequency matrix,

Az:

Ikr+b, Br

00
Bl B'tB,

00
Cl C'tB,

':('!^ií,'rj

Ct

C2

8",C,

BLC,

ClCt + CLCz

where the frequencies in the i,th column of f correspond to the number of factors

a¡rd blocking variables assigned to the 'i¿h column of M. Of course, we must have

Ð lr,o: TtrrtÐ fr,o: ó,, Ð f4i: n2 andÐ f+,¿: br.

In Chapter 3 it was shown that SP generators may be comprised of both WP and

SP factors. In Chapter 3 we also demonstrated that separators may contain both

WP and SP factors. Because of this v/e may assign WP factors and WP blocking

variables to any of the 2d - L columns of M. However, WP generators and WP

blocking variables cannot contain SP factors. As a result, \4¡e may not assign the n2

SP factors andb2 separators to all of the columns of M. Therefore, /3,¿ and fE,¿may

only be nonzero for columns in l.1. The rationalization for rearrangrng Mz into the

form M : (At, Az) is now more apparent. The usefulness of the form of M will be

even greater appreciated when theorems are derived in the following sections.

7.3 Main Results

Ít,2, "') f1,2kz+tz-1, fl,2hz+tz) "', f¡za-r
lz,z, '.- ) f2,zkz*bz-rt fz,2bz+tzi --', fz,za-t

Íe,2, '.. ) fi,,2hz+bz_tt 0, ..., 0

ln,z, ...r ll,2kz+bz-tt 0, ...r 0

(7.4)

Now that we have developed a general matrix representation for BFFSP designs

we may formulate some useful theoretical results, keeping in mind the restrictions

on the assignment of both SP factors and separators to the columns of M. The

yet-to-be established results will provide means by which we may construct larger
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BFFSP designs frorn other, smaller BFFSP designs. In addition, resolution and MA
properties of these larger designs will be investigated.

The theorems presented in this chapter are analogous to the ones presented by

Chen and Wu (1991) and Bingham and Sitter (1999b) with respect to the FF and

FFSP settings, respectively. In those paperc, theoretical results were also motivated

by the corresponding general matrix representations for FF and FFSP designs. Be-

cause of this parallel, proofs will be developed in a fashion very similar to that of the

preceding references. Adaptations to the proofs will primarily occur when account-

ing for the presence of blocking variables, the revised form of the split-plot frequency

matrix, and the existence of fractional word-lengths in a BFFSP design's WLP.

7.3.L Adding Both \MP and SP Factors to an Existing BFFSP

Design

Theorem 7,t Let D(nr,nükt,kz;bt,b2) be o2(n*nz)-(ft1+e2)+(b1+br) BFFSP desi,gn

wi,th WLP W, and let lag(W,m) : (0,0,. .. ,0,W) be the lag uector of the WLP W

withm leadi,ng zerles. For01r 12kz*bz -I there erists a D(n1+2d -r -I,n2*
r;ky,k2;h,bz) wi,th WLP lag(W,2d), where d,: kttkz*h*bz.

Proof : Let Dlbe a D(n1,TLzlkt,kzibt,b2) BFFSP design represented by (M,f).
Also, let f* be a split-plot frequency matrix with 2d - 1 columns (./ü¿, li,¿,1i,¿, fi,)'
such that there are 2d -r - 1 columns in f* of the form (1, 0, 0, 0)' and r columns in f*
of the form (0,0, 1,0)'. Columns of the form (0,0, 1,0)' are assigned only to columns

in A1 while the 2d -r - 1 columns of the form (1, 0, 0, 0)' are assigned to the remaining

columns of M. Therefore, Ð(/t,¿+/i,) : hl2d -r - 1 and D(/r,o+/ä,,) : n2+r.
By ietting D2be a BFFSP design represented by (M,f *f-), rrye are in effect

adding r new SP factors and 2d - r - 1 new WP factors to D1. Clearly then, D2 is

a D(nv + 2d - r - L,nz * r; kt ,lnzlbr,br) BFFSP design' Since M is equivalent to a

Hadamard matrix, excluding the identity column and row of 1's, by a property of

such matrices we know that there are 2d-r 1's in each row of M (Hedayat, Sloane

and Stufken, 1999, p.La7). Now by assigning each of the2d - l new treatment fac-

tors to separate columns of M, each word in the DCS of D2 is 2d-1 longer than its

corresponding word in D1.

As first described in Section 3.2,\etW : (Az,At.s,Aa,A¿,.s,... tAnttnz+r.s) rep-
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resent the WLP sf ¿2@Ènz)-(ftr*Èz)a(br+bz) SppSP design. For an increase of.Zd-r in

the length of each word, we must then move each entry, A¿,2*2d-r:2d positions to

the right in W a,s a consequence of both the increased wordJength and the presence

of fractional resolution in the definition of W. We see that in comparison to W for

Dy, D2's WLP must have 2d leading zeros so that it becomes lag(W,zd).a

Example 7.3.L Consider a 16-run 2(2+3)-(0+r)+(1+1) BFFSP desi,gn wi,th generators

þt: AB, r: ABq, ù: Bpq and WLPW1. For thi,s desi,gn,Wr: (0,2,I,4).
tlsi,ng Theorem 7.1, we may ad,d a total ol 23 - L : 7 treatment factors to the

2(2+3)-(0+1)+(1+1) desi,gn, wi,th the restri,ction that at most 3 of the addi,ti,onal føctors

o,re to be SP factors. Usi,ng r :2, we i,nfer that there eri,sts a2(7+5)-(0+r)+(1+1) BFFSP

desi,gn with WLP, sayW2, suchthatWz - Iag(W1,2t) : (0,0,0,0,0,0,0,0,0, 2,1,4).

The larger design requires that 2,018 treatment combinati,ons be run; thi,s desi,gn i,s, for
all i,ntents and purposes, too large to be consi,dered for a real-li,fe erperiment. Later,

we will show how one n'LaU construct larger, yet more "reasonably-sized" BFFSP

desi,gns.

Theorem 7.1 allows us to add a combination of WP and SP factors to an existing

BFFSP design thereby providing an explicit method for constructing larger BFFSP

designs from smaller ones. Theorem 7.1 also allows us to simultaneously predict the

larger design's WLP. The restriction (0 1 r 1 2kzrbz - 1) on the number of SP factors

which we may add is a direct result of the fact that we must assign SP factors only to

the 2kz*bz - 1 columns of Ai. If we were to set r :0, we would be adding WP factors

exclusively. Having r : 0 would probably be of interest to an experimenter only

if there are considerably more WP factors than SP factors comprising the process

under investigation.

This approach to adding additional treatment factors to an existing BFFSP d+.

sign is limited in that it allows only for the addition of. basi,c (independent) treatment

factors. Since blocking variables arc alwags generated by other (WP or SP) factors

this construction method does not allow for the inclusion of additional blocking vari-

ables in an existing BFFSP design. This observation also holds for other theorems

provided in this section.

By the definition of a BFFSP design we must have that ktikz ) 1 and h*bz ) t.

Thus, by applying Theorem 7.1 we are adding a minimum of 22 - 1 : 3 basic

factors in forming the larger design. This implies that a larger design, constructed
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via TheoremT.!, will always possess at least 23 : 8 times as many runs as the smaller

BFFSP design from which it was formed.

Since Theorem 7.1 provides us with the WLP of the larger design, we then also

know that design's resolution. This knowledge could aid in the search for larger

MA BFFSP designs. That is, having constructefl ¿ 2@r+2d-r-r*nz*r)-(frr*'kz)*(br+bz)

BFFSP design, say D1, using Theorem 7.1,we have in effect obtained a lower bound

for the resolution of the MA BFFSP design with equal rlrt TL2,t Içu lç2, b1 and å2 values.

Therefore, we could compare D1's resolution with the resolution of other BFFSP

designs constructed perhaps via a computer algorithm. Designs with resolution less

than that of. Dr could then be immediately discarded since we now know that the

MA BFFSP design must have resolution at least that of D1. This would assist in

reducing search times for large BFFSP designs.

Having constructed a larger BFFSP design using Theorem 7.1, the following

theorem allows us to place a lower bound on this design's maximum resolution.

Theorem 7,2 Let R(rt,nzlkt,lcz;h,b2) be the marimum resoluti,on for a D(n1,n2;

lq,kz;bt,bz) BFFSP design. For01r 12kz-rbz -t, R(n1 +2d-r-\,n2 1
r; k1, k2;br, br) > 2d-1 * R(n1, nzi kt, k2; fu ,b2).

Proof : Let D1 be a maximum resolution D(n1, nzilrtlcz;buö2) BFFSP design rep-

resented by (M, f) with WLP W. Also, let D2 be a BFFSP design corresponding

to (M,f + f*), (f- being defined in the proof of Theorem 7.1). By Theorem 7.1,

D2 is a D(ry + 2d - r - l,nz * r;ll.¿,kz;h,bz) BFFSP design with WLP løg(W,2d)

having resolution R(nr,nzikt,kübt,bz) +2¿-t. Therefore, the maximum resolution

D(rt + 2d - r - I,nz * r;k1,kzlbt,ó2) design must have resolution greater than or

equal to 2d-r I R(q,nzikr,lczlbt,Ur).n

Theorems 7.1 and 7.2 assist in the search for large MA BFFSP designs. It would

be beneficial to have an erplicit form for the upper bound of the resolution, but

this is not possible. However, using methods very similar to Chen and Wu (i991)

and Bingham and Sitter (1999b) we show that the maximum resolution of a BFFSP

design is peri,odi,c. This result is summarized in the following theorem.

Theorem 7.3 For any fi,redTLr,rtr2¡lq,lç2,fu,b2 anil0 ( r <2kz*bz -L, there erists

L1 such that R(ny + I(2d - r - L),nz i lr; k1, kzibt,bz) : 2d-r + R(r, + (I - I)(zd -
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r - I),nz i (l - 7)r;kt,l+z;h,bz) Vl > LL. That i,s, there eri,sts L1 such thatVl > Lt

the marimum resolution of a BFFSP desi,gn i,s periodi'c.

Proof : The proof is by contradiction. Assume that there are infinitely many 11,¿

such that

> 2d-r t R(ry I (Ir,u - l)(20 - r - I),nz * (lr,¿- 1)"; ll'¿, lcz;h,bz) + L.

Assuming (7.5), we then have an increasing sequence of l1's, say {11,¿}po, such that

(7.5) is true. Now by TheoremT.2 we have that,

R(n, + (Ir,¿ - L)(20 -, - I), nz I (h,¿- i)"; kr, ler;h,bz)

22¿-t * R(n1* (lr,¿-2)(20 - r - r),nz* (lr,¿ - 2)r;kt,,kz;bt,br)'

Substituting this result into (7.5), we obtain,

R(rt + lr,¿(2d - r - L), nz * I¡¿r) l,.l', lcz;bt,br)

) 2 * zd-r + R(rt + (lr,u - 2)(20 -, - l), nz * (Iu¿ - 2)r; l,.t, lrzibr,br) + t.

Using (7.5) and Theorem 7.2,

R(r, + Ir,u(20 - r - 1), nz I l1,¿ri kt, kú bt,br)

>- (Ir,o - lr,¿-r)Zd-' + R(nr * lt,¿-t(20 -, - L), nz * h,¿-tri kt,, lcz;bbb2) + 2.

Eventually,

R(r, + tr,u(20 - r - !), nz I ft,¿r; kt, kz; h,bz)

Plotkin (1960) showed that there is an upper bound on the maximum resolution for

a 2n-k FF design. Specifically, fi R(n,k) is the maximum resolution for the 2"-h FF

design then

,k-I
R(n,k) S ,n _rn.

Because of the restriction on the assignment of SP factors and separators to the

columns of. At in M (Section 7.2),it is clear that R(ry,nzikt,lcz;bt,bz) < R(n,k)'

So, we have

( r.Ð/

R(nt + tr,o(20 - r - l), nz * 11,¿r; kt, lcz; bt,br)

) l¡¿2d-r I R(ny,nzilrukzlh,br) + ¿.

R(rr,nzi lçt, kz;bt,bù S #(n, + nr)

(7.6)

lr.r/
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for d, : lq i lcz * ór * ó2. It follows from (7.7) ihat

R(rt + Ir,u(2d - r - !), nz I 11,¿r; kt, lcz; br,bz)

= #øt I 11,¿(2d - r - r) + n2 I 11,¿r)

: #frr t t1,¿(2d - r) + n2)

: firrt * n2) i rt,¿2d-r.

Flom (7.8)

ld-r
lr,¿2d-t > R(rt I 11,¿(2d - r - !),nz i |y¿r;kt,kzibr,bz) - ;=(n, + rr) (7.9)

and from (7.6)

lr,u2d-t (7.10)

< R(rt I l¡¿(2d - r - !), nz * \,¿r ; kt, lcz; br, bz) - R(rr, nzi kt, lcz; bt, Ur) - i.

Therefore, using (7.9) and (7.10) and multiplying through by -1, we obtain,

,.d-r

F-(" + nz) 2 R(n'' nzi lt' kzibubz) + i'

This is not true foli -r oo thereby establishing the contradiction. tr

In the FFSP setting both the maximum resolution and MA criteria are peri-

odic. In Theorem 7.3 we showed that the maximum resolution of a BFFSP design is

periodic. In the following theorem, we establish periodicity of the MA criterion for

BFFSP designs.

Theorem 7.4 For any fi,red TlrtTùz,kt,kz,fu,b2 and,0 ( r 12kz*bz -7, there er-

ists e1, such that Vq > et, iÍ the MA 2{lnr+(ø-t)(zd-r-r)]'r(nz+(q-t)r)]-(Èftkz)*(bt*bz)

BFFSP d,esi,gn has WLP W , then the MA 2{l"r+ø{zd-,-1)l+(r¿z*qr)}-('kr+'kz)+(bL+b2) BFFSP

desi,gn has WLP lag(W,2d).

Proof : Let uor,o be the number of shortest length words in the DCS of the MA

2{lrn*n,;(zd-r-r)l+(nz*q1,¿r)J-(hrkz)t(bÈbz) BFFSp design, with q1,¿ 1gr,j, Vz < 7. Us-

ing Theorems 7.1 - 7.3 and the definition of MA for BFFSP designs (Section 3.2),

(7.8)
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onr,n has the propert¡, rnr,u ) onr,, for 91,¿ 1 qt,j. Therefore, there will exist a positive

integer u1, such that 'un,.o : ur for suffi.ciently large i. By the periodicity of maxi-

mum resolution (Theorem 7.3) the limit to the number of words of shortest length is

nonzero. Now recall that the MA criterion sequentially minimizes successively larger

words in a design's WLP. This fact in conjunction with adaptations of Theorems 7.1

- 7.3 would enable us to similarly construct sequences for the number of words with

the second shortest wordJength, the third shortest word-length and so on, with each

of these sequences having a nonegative integer as a limit. Note that if we have only

finitely many sequences there will be a finite Q, > Lt (Lt from Theorem 7.3) such

that for Q ) Qt, Wqr,, : lag(W,2dqr.,¿), where Wor,n and W arc the WLPs of MA

2{lnÈnÁ2d-r-1)l+(nz*qr,¿r)}-(&r*,tz)+(bfibz) ¿¡¡f, 2(nr+nz)-(frr+ft2)+(ôr+bz) dssigns, respec-

tively. The final justification for the 2d leading zeroes in Wor., follows an argument

identical to that in Theorem 7.1.

What we must now establish is that there are only finitely many sequences that

need to be constructed for a MA 2{lnt+u,;Qd-r-l)l+(nz*qt,¿r)}-(h+kz)r(b1-¡6r¡ BFFSp

design. To show that there are finitely many sequences we need to show that the

wordJengths lie in an interval of finite length for any q1,¿. tivially, we know that the

length of the shortest word in the DCS of any 2@r+nz)-(h*kz)*(br*bz) gF fSp design

must be bounded below by 1. In using Theorem 7.4we witl add q,¿(2d - 1) treatment

factors to the design. Therefore, the length of the shortest word must be bounded

below by 1-F 4,e(2d-r¡.
To establish an upper bound on the length of the longest word in the DCS of a

MA BFFSP design we begin by using an identity due to Brownlee, Kelly and Loraine

(1948) and adapt it to include the presence of WP factors, SP factors and blocking

variables. In the BFFSP setting this identity is,

which gives the sum of all the word-lengths in the DCS of a design. So, if the BFFSP

design has resolution .R, then given that there arc 2d - 1 words in the designs's DCS,

the longest possible word-length is

Dnlu : lnt * qt,¿(2d - r - t) * n2 I q1,¿r]2d-r,

Using Theorem 7.2, a MA Z{["r+q¡,¿(2d-r-r)]*(nz*sr,¿r)]-(,kr*&z)](ör+ôr) design has the

U < ln, + qr,¿(Zd - r - L) * n2 * q1,¿r]2d-t - (zo - 2)R.

(7.11)

(7.r2)
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following lower bound for its shortest word-length,

Let ,Rs be the maximum resolution for the design with 91,¿ : 0. Then from (7.12)

and (7.13), the longest word-length is bounded above by,

R(nt + q,¿(2d - r - \), nz I gt,¿ri lq, kübr,br)

) qr,¿Zd-t t R(n1, TLz, kt, k2; fu , b2).

U a lrt + qr,¿(2d - r - r) * n2 I q1,¿r]2d-' - (zo - Z)(qt,¿2d-t -¡,Ro).

This simplifies to,

u a (n, + n2)2d-L * qr,¿2d-' - RoQd - Ð.

Hence, the word-lengths of a MA 2{ln*atr(2"-r-1)l*(nz*qv,¿r)}-(h*kz)L(b#bz) design

must be in the range,

The length of this interval is independent of Q1,¿ and therefore of finite length. This

proves the theorem. n

Theorems 7.L - 7.4 allow for the possibility of generating large MA BFFSP de.

signs from smaller ones. However, MA designs constructed via these theorems will

often be too large for all practical purposes since we are required to add 2d - 1 basic

factors to the smaller BFFSP designs. Recall that the addition of 2d - 1 basic factors

implies that the larger design will always possess at least 23 : I times as many runs

as does the smaller BFFSP design from which it was formed (Section 7.3.1).

In the next section we will consider adding only basic SP factors to existing

2@Ènz)-(kt*kz)*(br*bz) designs. We will see that this provides an experimenter with

"not-as-large" BFFSP designs. In addition, since SP factors are typically of more

interest to the researcher from an inferential perspective, focusing exclusively on the

addition of SP factors is intuitive.

7.3.2 Adding Only SP Factors to an Existing BFFSP Design

In Section 7.2 we demonstrated that one cannot add SP factors to each column of

M, whereas with WP factors one may. In doing so, rile showed that one can add only

l1 + q1,¿2d-', (n, + nr)20-t I q,.,¿2d-t - Rr(20 - 2)].

96

(7.13)



CHAPTER 7. RESULTS ANALOGOUS TO THOSE FOR FFSP DES/G¡íS 97

0 ( r < 2kz*bz - 1 basic SP factors to an existing BFFSP design whereas up to 2d -I
basic WP factors may be added. We have previously mentioned that this could result

in the construction of very large BFFSP designs (Example 7.3.1 provided evidence

of this).

What may be of more interest to the experimenter is a method that accommo-

dates only the exclusive addition of SP treatment factors. We can guarantee the

existence of larger BFFSP designs by adding SP factors to all of the zkz+bz - L

columns of Al in M, without adding any additional WP factors. In this setting the

wordJengths of words in the DCS containing only WP factors and WP blocking vari-

ables will remain unchanged; changes in word-length will occur only in those words

containing SP factors and separators.

The theorems presented in this section will be analogous to Theorems 7.1 -7.4,
the primary difference here being that only basic SP factors are added to smaller

pre-existing BFFSP designs.

Theorem 7.5 Let D(rr, Ttz) (fi, kz;bt,bz) be s 2(nt+n2)-('kr*kz)*(br*b') BFFSP desi,gn

with WLP W. LetWwP be the WLP of D for the words contai,ni,ng only WP factors

and pure WP blocking uari,ables. Also, letWsP be the WLP of D for words contai,ni,ng

any SP factors or separators. There eri,sts a D(n1,n2l)kz+bz -L;lq,kz;h,b2) BFFSP

desi,gn wi,th WLP WwP + tag(WsP,2kz-rbz¡.

Proof : This proof follows in the manner of Theorem 7.1 but here we are adding

only SP factors.

Let Dt be a D(u,'tlzlkt,lez;bt,ó2) design represented by (M'f). Let f* be a

split-plot frequency matrix with 2d - 2kz*bz columns of the form (0,0,0,0)' and

2kzrbz - 1 columns of the form (0,0,1,0)'. This form for f* implies that we will be

exclusively adding SP factors to the existing design D1. Therefore, the 2kz*bz - L

columns of the form (0,0, 1,0)' are assigned to each of the 2kzrbz - 1 columns in

At of M (7.3). Now, denote the BFFSP design corresponding to (M,f f f*) as D2.

Since, D(.fr,o, +li,): Ttr¡Ð(fr,o,+li,): ór, Ð(.fs,¿,*ll,¿): ïLz*2kz*bz - 1 and

Ð(fn,o,+fi,): bz, then D2 is a D(n1,nz*2kz*bz - L;kt,kzibt,ó2) BFFSP design.

We must now demonstrate that the WLP of the D(rt,n2l)kzibz -l;lq,k2;b1,b2)
design is indeed WwP + Iag(WsP t2kz*bz¡. Similar to the matrices M, (7.1) and M,

/t. R^ \
Ms : I 'u'*o' u2 

I

\ BL nLn, )
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can be viewed as equivalent to a Hadamard matrix, without the identity column and

row of 1's. As a consequence of this equivalence, we conclude that there ¿¡¿ 2kzibz-r

l's in each row of Ms. One can also inferthe eústenceof 2k'*bz-1 1's in each of the

rows corresponding to (Ct ,CLB¡) in ,4,1 since these rows are nonzero linear combina*

tions of the rows of the "Hadamard" matrix, Ms, ov€r GF(z). We then see that by

assigning new SP factors to each of the columns in y',.1, the word-length of each word

in the DCS containing at least one SP factor or separator is increased by 2kz*bz-t.

(This implies that the wordJengths of words containing only WP factors or pure WP

blocking variables remains unchanged.)

Finally, letWsP : (Az, As.s, A$ A4.s, . . . , Anr+nr+r.s) represent the \ /LP of those

words in ¿ 2("r+"2)-(kr*,tz)*(bl+b2) BFFSP design containing any SP factors or sepa-

rators. For an increase oç 2kz*bz-r in the length of each of these words, we must then

move each entry, A¿, 2 * 2hz*bz-t - )kzrbz positions to the right in WsP as a conse-

quence of both the increased word-length and the presence of fractional resolution in

the definition of WsP . We see that in comparison to WsP for D1, WsP f.or D2 must

have 2br+k, leading zeroes so that D2's WLP becomes WwP + lag(WsP ,2kz+bz). a

Example 7.3.2 Consi,der a 16-run 2(3+2)-(1+0)+(0+1) BFFSP desi,gn with generators

C : AB and, fi : ABpq. For thi,s desi,gn W - (1,0,0,1,0, 1) where WwP -
(1,0,0,0,0,0) andWsP - (0,0,0, 1,0, L). Theorem 7.5 guarantees the eri,stence of a

Sp_run 2(3+3)-(1+0)+(0+r) BFFS7 design w¡th WLp, W : (1,0,0,0,0,1, 0,I), where

WwP remains unchanged andWsP - (0,0,0,0,0,1,0,1).

Theorem 7,6 Let R(nt,nükulrübrb2) be the mari,mum resoluti,on for a

2@t*nz)-(kr*,tz)*(br+bz) AppSp desi,gn and let Rtr(nr,nzikt,kz;bt,b2) be the mar¡-

mum resoluti,on for the words contai,ni,ng any SP factors or separators. Then RsP (n1,n2l

2hz*bz - L ; lq, lcz; bt, b2) ) 2xz+u" -r * Rt' (nr., nzi lt, k2; \, b2) .

Proof : Let Dl be a maximum resolution D(nt,nzilil,kz;br,b2) design represented

by (M,f) and let RsP (n1,TLükt,lcz;h,ö2) be the maximum resolution for the words

containing any SP factors or separators. Also, Iet D2 be a BFFSP design correspond*

ing to (M, f +f*), f* being defined in the proof of Theorem 7.5. By Theorem 7.5, D2

is a D(n1,nz * 2kzrbz - L;kt,lczih,br) design with WLP WwP + lag(WsP t2kz+b27.

Therefore, Rt'(n''.,nzikt,kz;h,b2) of a maximum resolution D(n1,n2 ! )kz+bz -
L;lr1,k2;h,bz) design must be at least 2kz-rbz-L I RsP(ny,nz',lt,kzibt,br).a
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Theorem 7.7 establishes the periodicity property for the maximum resolution

of words in a design's DCS containing any SP factors or separators. Theorem 7.7

and its proof follow in a fashion similar to that of Theorem 7.3.

Theorem 7.7 For any fi,redrtrr,TLz,kykz,fu andb2 there eri,sts L2 suchthatVl ) Lz,

Rt'(nr,nz * l(2kz+u' - I)ilct,kzibt,br) : 2kzrbz-r * RsP(n1,nz t (l - I)(znz+uz -
7);kt,kz;bt,b2). That i,s, there eri,sts L2 such thatVl2 Lz, the mari,mum resoluti,on

for words i,n the DCS of a BFFSP design contai,ning any SP factors or separators is

peri,odi,c.

Proof : The proof is by contradiction. Assume that there are infinitely many 12,¿

such that,

) 2kz*bz-t + RsP (n1,nz * (lz,¿ - t)(zn'+u' - r); kt, kz;bt,br) + L

Assuming (7.L4) we then have a¡r increasing sequence of l2's, say {12,¿}po such that

(7.14) is true. Now by Theorem 7.6 we have that,

Rt'(n,.,nz* (lz,¿ - 7)(zn'+u' - 7);lrr,k2;fu,b2)

> 2k2*b2-r + RsP (nr,nz I (lz,¿ - 2)(zn'+u' - t);lq,lcz;br.,bz).

Substituting this result inio (7.14) we obtain,

Rt" (nr,Tlz * l",u(2r'*" - r); kr,lr2;fu,b2)

) 2*2kzrbz-t + RsP(n1,nzl (lz,¿-2)(zkz+uz - 7);kr,lcz;bt,br) +t.

Using (7.14) and Theorem 7.6,

Rt' (nr, nz i lz,¿(2kzrb2 - L); kt, k2; fu , b2)

2 (tr,¿ - lr,¿-r)2k'*bz-1 * Rt'(nr,nz * Iz,¿-t(2kz+bz - l); kt,lczibt,br) + Z.

Eventuallv.

Rt'(rr,,n2 I 12,¿(2kz*bz - t); kt, k2;\,b2) (7.r4)

Rt'(rr,nz I lz,¿(Zkz*b2 - 1); kr, k2;fu,b2)

) lr,u2u'*u'-l + EsP(74,Tùz,kylczih,b2) + i.

(7.15)
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Now, Bingham and Sitter (1999b) showed that,

R" (rr,nz) rçt, kz) < y(n, + n ).,-2*,

It is obvious then that

R" (nr, nzi lrt, ltz; bt, bù S m(n, + nr).

It follows from (7.16) that

Rt'(rr.,nz I lz,¿(2kz*bz - l); kr, k2;fu,b2)

2kzibz-I
< Ñf6=(tt + nz I lz'¿(2kz+uz - 1))

2k2*b2-I: 
¡r+u, - 1(" + 

") 
t l2'¿)kz*bz-t '

Fbom (7.15)

12,¿rkz*bz-t

1 RsP (nv,nz i lz,¿(2kz*bz - 1); kt, k2;fu,b2)

and from (7.LT)

12'¿)kz*bz-t
,kzlbz-l

) Rt'(rr,nzllz,¿(2kz*b2 - 1);kt, kz;bt,br) - zo*, _t(nt+rr).

Therefore, using (7.18) and (7.19) and multiplying through by -1, we obtain,

,>kz|bz-l

ø;;=fu + n2) ) Rt'("'nzi lt4' lfzlh'b') + l'

This is not true foli -+ oo, thereby establishing the contradiction. tr

Theorem T.g Let D be a 2(nt+nz)-16*kz)*(bt*bz) Appsp desi,gn with WLP W . Let

WwP be the WLP of D for words contai,ni,ng only WP factors and pure WP blocki,ng

uari,øbles. Si,mi,larly, IetWsP bethe WLP of D for words contai,ni,ng any SP factors

or separators. For any firedïLL¡TL2¡lçt,lcz,fu andb2 there eri,sts Q2 such thatVq >

ez, if the MA 2{nÉlnz*(ø-r)(znz+tz-t)l}-(kr+,tz)+(ôr*bz) BFFS? design has WLP W,

then the 1¡41 2{nr+ln2{q(2kz*bz-l)l}-(frr+,bz)+(år+bz) BFFSP desi,gn has wLP wwP +
lag(WsP ,2kz+bz).

(7.16)

(7.18)

- Rt'(nr,nzikulcz;bt,Ur) - i.

(7.t7)

(7.1e)
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proof : Consider ¿ 2{nt+Ínz+qr,o72kz+bz-r)l}-(,kr+,kz)+(br*bz) BFFSp design. With each

unit increase in the value of 82,¡,, the words in this design's DCS possessing at least

one SP factor or separator will increase in length by 2kz+bz-r. Clearly then, when q2,¿

becomes large, the 2frr*br - 1 shortest words in the design's DCS will be those con-

taining only WP factors and pure WP blocking variables. Therefore, for sufficiently

large q2,¿, a MA BFFSP design must have its WP factors and WP blocking variables

arranged as a MA 2n1-tutb1 BFF. This is assumed for the remainder of the proof.

The remainder of this proof parallels that of Theorem 7.4.Let uor,obe the number

of shortest length words containing at least one SP factor or separator in the DCS of

1¡s 2{r¿r+[nz*q2,¿(2kz*bz-1)]]-(,tr+ez)+(ör+bz) BFFSp design where Qz,¿ 1 Qz,¡ Vi, < j. Using

Theorems 7.5 - 7.7 and the definition of MA for BFFSP designs (Definition 3.2.I),

uor,rhas the propert¡, unr,r) ,nr,, for q2,¿ 3 qz,j. That is, there is a positive integelu2

such that uqr,¿ : uz for suffi.ciently large 'i. By the periodicity of maximum resolution

(Theorem 7.7) the limit to the number of words of shortest length is nonzero.

Recall that the MA criterion sequentially minimizes successively larger words

in a design's WLP. This fact, along with results motivated by Theorems 7.5 - 7.7,

would enable us to similarly construct sequences for the number of words with the

second shortest word-length, third shortest word-length, and so on) with each of these

sequences having a nonegative integer as a limit. Note that if we have only finitely

many sequences there will be a finite Qz > Lz (tr2 from Theorem 7.7) such that for

q ) Qz,wfrÏ : lag(wsP,2k"*b'qr,¿), where wfrl andwsP arc the sP wLPs of MA

2{u*lnz+uz,¿(2kz+bz-1)l}-(kr+,bz)*(br+bz) and 2("t+"2)-(h+kz)t(br+bz) ¿ari*s, respectively.

The final justification for the 2kz+bz leading zeroes in Wfrl follows an argument

identical to that in Theorem 7.1.

What we must establish now is that there are only finitely many sequences that

need to be constructed for a MA 2{nrr[nz*øz,iQh2+b2-Ð]]-(,tr*Èz)a(Dr+å2) design. To do

this we show that the word-lengths of words containing at least one SP factor or

separator lie in an interval of finite length for any q2,¿. T[ivially, we know that the

length of the shortest word in the DCS of any 2@t*nz)-(kr*'tz)*(br*Dz) gFFSp design

must be bounded below by 1. In using Theorem 7.8 we will add ez,,i(2k'-rb' - 1) SP

treatment factors to the design. Therefore, the length of the shortest word must be

bounded below by 1 * Qz,¿(2kz+bz-t¡.

To find an upper bound on the longest word containing at least one SP factor or
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separator, we again utilize (as in Theorem 7.4) an adaptation of the identity due to

Brownlee, Keliy and Loraine (1948). This adaptation is,

where (7.20) gives the sum of all the word-lengths in the DCS of a

2{nrr[nz*ø2,¿Qh2+b2-r)]]-(kr+,tz)*(br+Dz) design. However, lrye are only interested in the

sum of the word-lengths containing at least one SP factor or separator. Therefore,

we need to subtract from (7.20) the sum of the word-lengths in the DCS arising from

those words consisting exclusively of WP factors and WP blocking variables. This

sum of the WP word-lengths is

Ðnlu: {n, t ln, + qr,¿(2k,+b, - t)l}zd-',

and when subtracted from (7.20) we obtain

the sum of the SP wordlengths. If the resolution of SP words is denoted by Rs',
the longest possible word-length, U, has an upper bound given by,

U

-l(20 - 1) - (zkr+bt - 1) - LlRt"

Ðnlu: {nt*lnr+ qr,¿(2k,+u, -t)l}zo r - nt2hr+ù-r,

Ðnln - nr2h*t,-r,

Using Theorem 7.6, a \¡[{ 2{nr+[n2{q2,¿(2bz*b2-1)]}-(,tr+,kz)*(br*bz) design has the follow-

ing bound for its shortest SP word-length,

(7.20)

Let .Ro be the maximum resolution for the design with q2,¿: 0. Then, from

and (7.23), the longest SP word-length is bounded above by,

U a {n, * lr, + qr,¿(2k,+' - t)l}zo-r - nr2ktr¡'-r

-l(Zo - 2å'*bt - L)l(qr,n2uzrbz-L + Ro).

-l(20-2h*lt-l)lat".

Rt' (rr, nz i qz,¿(2kz*bz - L); kr, k2; fu , b2)

) Qz,'i2k'+bz-r * Rt" (nr, nzi lt, k2; fu, b2).

(7.21)

(7.22)

(7.23)

(7.22)

(7.24)
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This simplifies to,

Hence, the SP word-lengths of a ¡44 2{nr+[rzz*q2,¿(zþz+bz-1)]]-(er+&z)+(br+bz) design must

be in the interval,

U a (n, + n2)2d-r - n1)kftb1-t * qr,¿Zkrlbz-t - Ro(20 - 2kr+br - 1).

l!+qr,¿2k'*bz-r,(rt + n")ro-t -nllkÈbr-t +qr,r2r'tbz-r - R (20 -2h*h - 1)].

The length of this interval is independent of Q2,¿ and therefore, is of finite length for

ãnV 82,¿ which proves the theorem. tr

7.3.3 Comments Regarding Theorems 7.4 and 7.8

In applying Theorems 7.4 and 7.8 it is required that one know the values of Q1 and

Q2, respectively, for which the MA criterion becomes periodic. It is useful to note that

Q1 and Qzwill vary for different values of.nl,TLztkr¡lr2,b1 ànd b2. This implies that
the MA criterion becomes periodic at different times for different BFFSP designs.

Therefore, establishing appropriate values for Q1 md Q, requires that one separately

consider each BFFSP design in the MA BFFSP design catalog.

The task of finding Q1 and Q2 is essentially a linear-integer programming prob-

lem. In the FFSP context, Bingham (1998) provides Q1 and Q2 values for a limited

number of FFSP designs. Extensions of this approach to the BFFSP setting should

be straightforward, albeit perhaps time consuming. It is not our intention, at this
point, to develop a solution to this problem and so it remains an open research area.



Chapter I

Optimal BFFSP Experirnents for
Robust Parameter Design

Wu and Hamada (2000, p.a36) define robust parameter design (RPD) as "statistical /
engineering methodology that aims at reducing the performance variation of a system

(that is, a product or process) by choosing the setting of its control factors to make it
less sensitive to noise variation." Control factors inherit their name as a consequence

of an experimenter's ability to control them while performing the experiment. In

RPD the majority of variability of a process around a target value or response is

thought to be caused by a second set of uncontrollable noi,se factors. Noise variables

are required to be controlled at the design level for the purpose of experimentation

but are assumed to be uncontrollable at the production level. It is this lack of control

at the production level that transmits variability to the process. Of primary interest

to the experimenter is the impact of noise variation on the selection of control factor

settings. In a¡r effort to ascertain control factor settings that are robust to noise,

interest often focuses upon the estimation of control x noise (CN) interactions. In

RPD, one wishes "to find the level settings of the control factors that result in the

flattest line across the levels of the noise factors" (Loeppky and Sitter, 2002). A flat

line for a control factor setting implies that the response is unaffected by the noise

factor.

The current drive for quality improvement via RPD owes itself largely to the

pioneering work of Genichi Taguchi in the 1980's (Taguchi and Wu, 1980; Taguchi,

1986; Taguchi, 1987). Although much of Taguchi's work has been constructively
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criticized, it in effect laid the foundation for the modern framework of RPD.

In recent years, RPD has undergone refinements. Myers and Montgomery (2002)

summarize methods by which one may use response surface models for the devel-

opment of a robust process or product. Wolfinger and Tobias (1998) present an

extension of the general linear mixed model methodology for simultaneously model-

ing location effects, dispersion effects and random effects in RPD. Wu and Hamada

(2000) present a thorough summary of the location and dispersion modeling approach

as well as the response modeling approach for RPD.

The papers by Box and Jones (1992) and Bisgaard (2000) are of high interest

in that they demonstrate the usefulness of split-plot designs for robust parameter

experimentation. In these papers the authors show that split-plot designs are of
considerable value in that they provide the experimenter with efficient estimates of
parameter effects while yet possibly allowing for savings in terms of experimental

effort. For exampie, Taguchi's approach to RPD required the use of cross arrays,

where a cross array is a cross-product of two designs-an inner array containing

the control factors and an outer array containing the noise factors. Many authors

have noted, including Box and Jones (1992), that "except in situations where both
these arrays are small, this arrangement may involve a prohibiiively large amount

of experimental work." fn an attempt to reduce such work, split-plot designs are

frequently performed.

Cox (1958) and Box and Jones (1992) note that split-plot designs are particularly

useful when one or more factors are classifi,cati,on (WP) factors. Cox (1958) defines

classification factors as experimental factors which are included in the design "to see

if they modify the action of other factors or indicate how the other factors lryork."

Main effects of the classification factors are not of particular interest but are included

to examine potential interaction with other factors. Cox (1958) also noted that lower

precision is acceptable in the estimation of these classification factors so that the
precision of the other factors and their interactions with classification factors may be

increa,sed. By thinking of the ciassification factors as noise (environmental) factors,

many researchers have opted for the use of split-plot designs in robust parameter

experiments.

Until now, the primary criterion we have considered when rank-ordering BFFSP

designs has been the MA criterion. Recall that the MA criterion (Definition 3.2.1)
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seeks to minimize short wordlengths in a design's DCS so that low-order effects

of interest may be clearly estimated. Although the MA criterion in Definition 3.2.1

provides an experimenter with reasonable designs for estimating key low-order effects,

we will demonstrate that it is unable to correctly rank-order designs for the purpose

of RPD. Deficiencies in the MA criterion may be brought to light when considering

the differing order of effect importance in RPD. For example, it is understood that
in RPD, the CN 2fi's are the 2fi's of primary interest in analysis. Recall that in
RPD we attempt to select control factor settings which dampen the influence of any

noise factors on the response or process. This selection of appropriate control factor

settings is often done by visual inspection of CN interaction plots. Consequently,

control x control (CC) and noise x noise (NN) interactions are not as highly valued

when selecting appropriate control factor level settings. Since the MA criterion, as

presently defined, cannot distinguish between CC, NN and CN 2fi's, it is not ideal

for rank-ordering robust designs.

In an attempt to resolve the deficiencies of the MA criterion in the two-level

FFSP RPD setting, Bingham and Sitter (2003) revise the notions of resolution and

MA. They then use their adapted definitions of resolution and MA to a,ssist in their
FFSP RPD ranking procedure. We reserve a more detailed discussion regarding their

approach for Section 8.1.2.

The primary objective of this chapter is to formulate a methodology by which

one may construct, and subsequently rank, "good" two-level BFFSP designs for the

purpose of robust parameter experimentation. In doing this, the following steps will
be taken:

1. Develop an effect ranking scheme.
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2. Given an effect ranking scheme, construct a program that searches for optimal

BFFSP RPDs.

3. Construct tables of optimal BFFSP RPDs.

8.1 Effect Orderings for FF and FFSP RPDs

This section provides an overview of two current approaches for ranking two-level

FF and FFSP RPDs. In this context we will consider research conducted bv Wu and
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Hamada (2000) and Bingham and Sitter (2003).

8.1-.1 Effect Ordering for FF RPDs

Wu and Hamada (2000, p.a62) acknowledge the inadequacy of current definitions

for resolution and MA for ranking FF RPDs. They suggest that for FF RPDs the

importance of effects should be arranged in the following descending order of impor-

tance:

(i) CN 2fi's, C and N main effects;

(ii) CC 2fi's and control x control x noise (CCN) 3fi's;

(iii) NN 2fi's.

The CN 2fi's and control main effects are the most important effects in the preced-

ing list because they may be employed in parameter design optimization procedures.

(These optimization procedures are detailed in Wu and Hamada (2000, pp.446-451)

and consist of the "two-step procedure for nominal-the-best problems" and the "t\ryG-

step procedure for larger-the-better and smaller-the-better problems".) The rationale

for including the noise main effects in (i) is that, although their levels cannot be ad-

justed in parameter design optimization, their magnitude (due to their low-order)

can make it difficult to assess the significance of other effects that are aliased with

them. F\rrther explanation for the preceding effect ordering may be found in Wu and

Hamada (2000, p.463).

The following example, given by Chen et al. (1993), illustrates the inadequacy of

the resolution and MA criteria for ranking FF RPDs.

Example 8.1.1 Consi,der a 26-2 FF desi,gn where A, B and C are three control

factors andr, s andt are three noise factors. The resoluti,on 4 MA desi,gn, D1, has

DCS I : ABCr : BCst : Arst, such that the si,r n'ùe's, A, B, C, r, s and t are clear.

Now consi,der the resolution 3 d,esi,gn, D2, with DCS I : ABCr : rst : ABCst. This

lower-resoluti,on desi,gn gi,elds the followi,ng ni,ne clear effects-L, B, C, As, Bs, Cs,

At, Bt and Ct. Assuming the uali,dity of the precedi,ng effect orderi,ng pri,nciple, D2

has hi,gher estimation capaci,tg thøn the MA d,esign, D1, si,nce I effects are of ranlc

"(i,)" for D2 whereøs only 6 effects are of rank "(i,)" for D1.

r07
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8.1-.2 Effect Ordering for FFSP RPDs

For screening experiments we know that the hierarchical ordering principle states that
lower-order effects are more likely to be important than higher-order effects and that
effects of the same order are equally likely to be important. We have also seen that in
RPD, not all effects of the same order are of equal interest (for example, CN Vs. NN
2fi's). In the context of FFSP RPDs, Bingham and Sitter (2003) construct an effect

ranking scheme that is a compromise between the notions of "likely significance" of
effects and "effect interest". To understand the compromise between these two issues

Bingham and Sitter (2003) first provide the following rankings (see Table 8.1).

Table 8.1: Effect Rankings for FFSP RPDs

Ranking LikelySignificance

(i) C, N
(ii) cc, cN, NN
(iii) ccc, ccN, cNN, ¡r¡/¡/

The "likely significance" ranking, in Table 8.1 may be explained by way of the

hierarchical principle. The "interest" rankings of Table 8.1 are justified by Bingham

a¡rd Sitter (2003) as follows. First, these authors note that in RPD, the effects of
primary interest are the control main effects, the CN 2fi's and the CC 2fi's. Knowledge

of the statistical significance of the control main effects and the CC 2fi's gives the

practitioner the ability to improve the process mean by appropriately adjusting the
levels of the significant control effects. In addition, the ability to dampen the effect

of the noise factors on the response variability is obtained by a judicious selection

of control factor level settings as prescribed by the CN interaction plots. Since the

levels of the noise effects cannot be set in practice, they cannot be directly used to
improve the process. Consequently, effect estimates of noise main effects and their
interactions are of less interest. F\rrther discussion regarding the usefulness of CC,

CCN and CNN interactions in FFSP RPDs is included in Bingham and Sitter (2003).

Flom Table 8.1, Bingham and Sitter (2003) form their proposed effect rank-

ing scheme, presented in Table 8.2, with word-lengths in parentheses. This ranking

scheme provides a compromise betweeen the two issues of likely effect significance
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and effect interest.

Table 8.2: compromise Ranking scheme with Associated word-lengths

Using the wordlengths from Table 8.2, wordJengths of larger words may be

found. With these redefined word-lengths one can simply use the usual definitions of
resolution and MA to form catalogs of MA FFSP RPDs. Bingham and Sitter (2003)

obtain MA FFSP RPDs for the following two scenarios:

1. Noise factors as wP factors (that is, control factors as sp factors);

2. control factors as wP factors (that is, noise factors as sp factors).

By way of example these authors demonstrate the superiority of their RPD MA
criterion over the usual MA criterion for FFSP screening experiments.

The following example illustrates one instance where the RPD MA criterion se-

lects a FFSP RPD with higher estimation capacity than what would have otherwise
been selected using the usual MA criterion for screening experiments.

Example 8.1.2 Consi,d,er a 2(3+5)-(0+3) RPD with n1 : J control factors and, n2 : 5

noi,se factors. One MA FFSP d,esi,gn, Dy has DCS I : ABCpr : ABCqs : Apqt
: pqrs : BCqrt - BCpst : Arst. Usi,ng the new word,-Iengths, the MA FFS? RpD,
D2, has DCS I : pqr : ABCps - ABCqt : ABCqrs - ABCprt - pqst : rst. In
D2 aII CN 2fi"s are clear i,f three factor and higher i,nterøctions a,re negti,gi,ble. In
comparison, the words Apqt and Arst i,n the DCS of Dt cause all CN Lfi,'s inuolui,ng

A to be ali,ased wi'th NN Zfi's, whi,ch are not of i,nterest but are potenti,ally signi,ficant.

Length Effects

(1) C, N
(1.5) c N
(2) CC, NN
(2.5) CCN, CNN
(3) CCC, ¡r¡r¡/
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8.2 Effect Ordering for BFFSP RPDs

Thus far we looked at the methodology of Wu and Hamada (2000) and Bingham and

Sitter (2003) for ranking FF and FFSP RPDs. We will noïy present an approach for

ranking BFFSP designs for the purpose of robust parameter experimentation. In
advance of implementing a mathematical or computer algorithm that searches for

optimal BFFSP RPDs, we must first develop an effect ranking scheme. This effect

ranking scheme should allow one to discriminate between BFFSP RPDs of varying

estimation capacity. Table 8.3 presents, in descending order of importance, a ranking

scheme for the ordering of low-order effects in BFFSP RPDs. In addition, Table 8.3

includes the ranking of the optimality characteristic, effect precision, associated with
each of the low-order effects.

Table 8.3: Effect and Effect Precision Rankings for BFFSP RPDs

Ranking Effects I Efrect Precision

(")

(b)

(.)
(d)

(.)
(Ð

C

CN
CC
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The number of clear C main effects tested against WP error.

The number of clear CN Zfr's tested against WP error.

The number of clear CC 2fr's tested against WP error.

Some discussion regarding the ranking scheme of Table 8.3 is necessary. First, by

the hierarchical principle, control main effects should be ranked ahead of the CN and

CC 2fi's. Control main effects and CN 2fi's are both of high interest, the former for

adjusting the mean of a process and the latter for identifying control factors to make

the process robust to noise variation. CC 2fi's a¡e also used to adjust the mean of a

process but are less likely to be significant than control main effects-therefore, in

terms of importance, \rye rank CC 2fi's below control and CN effects.

It may also be advantageous to the practitioner to have some knowledge of the

precision of these important low-order effects. For this reason, we wish to evaluate

each BFFSP design for the number of clear low-order (C, CN and CC) effects that

are tested against the WP error. Since control main effects are of highest importance
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we wish to see fewer of these effects tested against WP error than we would for CN

and CC 2fi's. Moreover, since CN 2fi's are the primary 2fi's of interest in RPD we

also wish to have few clear CN 2fi's tested against the WP error. For these reasons,

the number of clear CC 2fi's tested against WP error is of lowest rank in Table 8.3.

While developing the optimality criteria for ranking BFFSP RPDs, we chose not
to use an adaptation of the MA criterion. (Recall that Bingharn and Sitter (2003)

adapted the MA criterion in the search for optimal FFSP RPDs.) The rationale for
this choice is two-fold. First, there is some ambiguity in determining what are "ap-
propriate" word-lengths for words in the DCSs of RPDs. In the presence of blocking

factors this ambiguity is further magnified. Second, the MA criterion is not able to
distinguish between effects of varying precision. Instead, we choose to use a sequen-

tial search algorithm in conjunction with the ranking scheme of Table 8.3 in order to
select those BFFSP designs having large numbers of clear low-order effects (C, CN

and CC) but with few (or none) of them being tested against the WP error.

8.2.1- Implernentation of the Effect Ordering for BFFSP RPDs

This section outlines one approach for implementation of Table 8.3 in the search for
optimal BFFSP RPDs.

For a given BFFSP design with (n,1, nzilfi,lrzibt,b2),lhe optimal BFFSP RPD is

obtained by sequential completion of the following steps:

(i) Obtain the set o¡ 2(nftnz)-('tr*ez)*(är+är) BFFSP designs such that the number

of clear control main effects is maximized. Denote this set by D1e¡;

(ii) Ffom D1r¡, obtain the set of BFFSP designs such that the number of clear CN

2fi's is maximized. Denote this set by Dçt¡ì

(iii) Ffom D1¿¡, obtain the set of BFFSP designs such that the number of clear CC

2fi's is maximized. Denote this set by Dçm¡i

(iv) Flom De¿¿), obtain the set of BFFSP designs such that the number of clear

control main effects tested against WP error is minimized. Denote this set by

Dç,).

(v) Flom Dço¡, obtain the set of BFFSP designs such that the number of clear CN

2fi's tested against WP error is minimized. Denote this set bV DOl.
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(vi) Ffom D1,¡, obtain the set of BFFSP designs such that the number of clear CC

2fi's tested against WP error is minimized. Denote this set by D6t7.

It is extremely likely that the final design set, Dlrt¡, will contain more than one

optimal BFFSP RPD. For brevity, the optimal BFFSP RPD catalog will include

only one representative design from D1,e¡ for a given value of (n1,nzikt,le2;fu,b2).

The following example provides an optimal BFFSP design for the purpose of a
robust parameter experiment. Its superiority in terms of estimation capacity over

that of a MA BFFSP design (developed for screening purposes) is demonstrated.

Example 8.2.1 Consi,der a 2(2+3)-(0+1)+(0+1) BFFSP erperi,ment wi,th TLz : J con-

trol factors. The opti,mal (representati,ue) BFFSP RPD, D1, has DCS I : ABpqr :
ABpfi - Qrù such that all si,r CN Zfi,'s (Ap, Aq, Ar, Bp, Bq and Br) are clear.

In compari,son, the (representati,ue) MA BFFSP design, D2, wi,th DCS I : ABqr:
Bpqù: Aprù yields only two clear CN ?fi's. For the purpose of robust erperimenta-

ti,on, D1 i,s by far superior since i,t has sir clear CN 2fi's. Note that the MA cri,teri,on

selects D2 si,nce i,t has fewer shorter word,s than D1.

When constructing BFFSP RPDs, two cases will be considered. They are:

1. Noise factors as WP factors (that is, control factors as SP factors);

2. Control factors as WP factors (that is, noise factors as SP factors).

For case (2), criteria (d) and (f) of Table 8.3 need not be explicitly calculated since

in this ca"se all control main effects and CC 2fi's are WP effects. These effects are

then, by definition, automatically tested against WP error.

8.2.2 A One-Number Optimality Criterion for BFFSP RPDs

For practitioners that do not wish to use the sequential approach for optimal BFFSP

RPD selection we noïv present an alternative selection criterion. This criterion is a

one-number design summary statistic and is a (weighted) function of criteria (a) -

(f) in Table 8.3.

Let r¿e¿s¿ denote the one-number summary statistic where

1L2

frtotat : w1fr6I wzï1tt¡ + uzreiã) | w&ç,u¡ i wst6¡ * warpt¡. (8.1)



CHAPTER 8. OPTIMAL BFFSP EXPERIMENTS FOR RPD

The variables z1r¡, ... ,r(ai) are the values for criterion (a) - (f) (Table 8.3) that a
specific BFFSP design possesses. The weights, ,tr1,.. . ,,u)6, reflect the importance

that the experimenter wishes to place upon the six optimality criteria. Since larger

numbers for criteria (u) - (.) are desirable, it is intuitive to have 1rL,'tl)2t ?rr3 ) 0 where

wt ) uz ) u.'3. (The latter inequality arises due to the priority ordering given to
control main effects, CN interactions and CC interactions in Table 8.3.) In contrast,

smaller values for criteria (d) - (Ð are desirable so it is useful to have the restriction

'tt)4,'tt)5,tu6 ( 0 where w4 1 ws 1 wa. Wiih these restrictions on the ru (l I ? < 6)

we then select the BFFSP design that maximizes r¡o¡o¿.

The only occasion where a weight, tu¿, should equal zero is when the exper-

imenter has no interest in the associated criterion. For instance, if the objective

was only to count the number of clear control main effects and CN 2fi's that a
2@Ènz)-(h-rk'z)t(6t¡6,) gF pSp design possesses, a weight selection or w1 : lD2 : I
and t¿r3 - 'tt)A : ws -- ?lJ6 : 0 would be appropriate. That is, in this case no consid-

eration would be given to optimality criteria (.) - (t).
Given the variety of expressions that fr¿6¿6¿ rÍrãy take, it is envisioned that the

optimal BFFSP RPD determined by the one-number summa y statistic could be

di'fferent than the design selected by the sequential approach of Section 8.2.1. An
example illustrating this possibility is given in Section 8.3.

Finally, when cornparing BFFSP RPDs having control factors at the WP level,

it is reasonable to set u)4 : 'tr6 : 0 since in this case we know in advance that all
control main effects and CC 2fi's will be tested against WP error.

8.2.3 Overvie\M of the RPD Search Algorithm

This section provides a brief overview of the structure of the prograrn used to con-

struct optimal BFFSP RPDs.

The program, "RPDsearchmixed.cpp", consists of a main body of code that calls

upon four prima,ry functions. These five program elements a e now briefly described:

(I) Mai,n Bod,y of Program: This portion prompts the program user to enter atl of
the relevant variables. For example, n1, TLz, lil¡ lcz, bt, and b2 are all entered at

this stage. In addition, the user is prompted to enter the weights, wi, (7 < i S 6)

if calculation of r¡o¿o¿ is desired.
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The construction of the search-table is also completed at this stage for use in

subsequent functions. (See Chapter 5 for a detailed description of the search-

table in the context of BFFSP screening experiments.)

(2) Functi,on "SearchDCSWLP": This function receives (from the main body of

the program) the generators for each of the potentially optimal BFFSP RPDs.

FYom these generators, the DCS of the design is constructed using modulus 2

arithmetic. The DCS is then passed back to the main body of the program to

be used in subsequent functions.

(3) Functi,on "Ali,asStructu,re": A considerable number of calculations are per-

formed by this function. This function first receives the DCS of the BFFSP

design currently under consideration. It then calculates the number of clear

low-order (C, CN, and CC) effects, using ihe DCS from "SearchDCSWLP".

For each design, this function also calculates the number of clear C, CN and

CC effects that are to be tested against WP error. Finally, the one-number

optimality criterion (Section 5.2.2) is calculated.

(4) Functi,on "Comparison": This function receives, from "AliasStructure", the

number of clear low-order effects that a BFFSP design possesses. Also, it re.

ceives information regarding the precision of the low-order effects as well as

the value of r¿o¿o¡. Flom these values comparison is made with the values of
other BFFSP designs previously calculated. Using Table 8.3 as its guide, this

function then selects a representative design that is optimal with respect to

these criteria. Note that the optimal designs selected according to Table 8.3

and x¿o¿o¿ may differ.

(5) Functi,on "Pri,nt": This function prints the DCS of the optimal design(s). As

well, this function prints information regarding rtotot, the number of clear low-

order effects, and the precision of the clear low-order effects for the optimal

BFFSP robust parameter design(s).

The search algorithm and all other prograrnmable calculations were implemented

using Mi,crosoft6 Visual C++o 6.0 Professional Edition. Computer hardware con-

sisted of. a Dimens'isnrM 8100 Desktop Pentium 4 computer with a 7.40 GHz CPU.
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8.3 Using the Optimal BFFSP RPD Catalog

Appendix E contains BFFSP RPDs that are optimal with respect to the sequential

ranking scheme of Table 8.3. These designs were constructed via pure WP block-

ing, separation and mixed blocking. All designs have between 6 and 10 treatment

a¡rd blocking variables and consist of 16 or 32 runs in either 2 or 4 blocks. Each

2@r+nz)-(nt'*kz)t(ù*bz) Rpl is abbreviated "Desig¡¡: TLrtnzlkt,lczibt,b2" in order to
distinguish between different designs. Within the tables, the designs are presented

in ascending order using n : U * nz + bt * bz, the total number of treatment and

blocking variables. A - G and p - v are used to denote the WP and SP factors, re-

spectively, with the last letter in each generator representing the added factor. The

Greek letters, B¿ and ô¡, denote tbe i,th and, jth pure WP blocking va,riable and sepa-

rator, respectively. In columns (a) - (f) we have included a summary of each optimal
BFFSP RPD with respect to the six optimality criteria of Table 8.3. In column (g)

we have included the value of the one-number optimality criterion , rtutat, having used

the total number of clear C mai,n effects and CN Zfi's as our one-number statistic. (If
a different one-number criterion is of interest to the practitioner the search program

may be rerun using a different weighting scheme for x¿o¿o¿.)

Recall that when constructing BFFSP RPDs we are considering the following two

scenarios:

1. Noise factors as WP factors (that is, control factors as SP factors);

2. Control factors as WP factors (that is, noise factors as SP factors).

Consequently, for a given number of runs, each 2(r¿r+nz)-(k#kz)t(br*bz) design is as-

sessed first by assuming that the noise factors are at the WP level, and then in a

separate table, by assuming that the control factors are at the WP level. In the latter
case Irye do not explicitly calculate criteria (d) and (f), since in this ca,se all C main

effects and CC 2fi's will naturally be tested against WP error. Therefore, when con-

trol factors are run at the WP level we simply present an assessment of the designs

with respect to criteria (a), (b), (.), (e) and (g).

For certain values of nl,nzilh,lçzìh,å2 a BFFSP RPD may be optimal with
respect to the sequential ranking scheme (Table 8.3) but not with respect to the one.

number criterion, rtutur.In such cases $¡e present two optimal designs-the design
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that is optimal according to Table 8.3 and the design that is optimal by r¿o¡o¿. The
latter design is denoted by ¿ "*" and, in the appropriate table, follows immediately

a,fter the 2@t+nz)-(kr*,kz)*(ä1-¡b2) design that is optimal according to the sequential

ranking scheme.

Example 8.3.1 Consi,d,er a 2Q+4)-(0+2)+(1+0) design wi,th n2 : 4 control factors.
Thi,s 16-run desi,gn i,s li,sted i,n Table 8.1. Its generators are gi,uen as þt - AB,
r: ABp ands: ABq. This d,esi,gnhas four clear C mai,n effects (cri,teri,on (a)) and,

cri,teri,a (b) - (il all haae zero ualues. using the sequential effect rønki,ng scheme, thi,s

desi'gn represents the "best" that one can do when the goal i,s robust erperi,mentati,on.

That i,s, all other 2(u*nz)-(hrkz)r(bt'rbz) designs in Dpq, selected, ui,a the sequential

ranking scheme, wi,Il haue four cleør C mai,n effects. In ad,dition, all desi,gns i,n Dpr,¡

will haue zero ualues for criterio (b) - (il.
We haue preuiously mentioned that the opti,mal BFFSP RPD selected by the one-

number cri,teri,on could be di,fferent then the optimal desi,gn selected by the sequentiøI

approach. Such an euent occurs here. Using the one-number cri,teri,on (where rtutat :
xçi,¡*rç,i¡, the total number of clear C main effects and, CN Tfi,'s) we obserue that the

2(2+4)-(0+2)+(1+0) d,esignwi,th generators By- AB, r: ABpq and, s- ABryQ, has a

total of siÆ clear C and CN effects-two more than tho,t of the preui,ous desi,gn. (Note

that thi,s design i,s opti,mal with respect to r¡o¿o¿ despi,te the fact that r is ali,ased, with

s.) Thi,s "alternatiue" opti,mal design is d,enoted wi,th a "*" and follows, ,i,n Table 8.1,

i,mmed,iately after the design tho,t i,s opti,rnal according to the sequenti,al effect ranki,ng

scheme.

The designs listed in Appendix E do not form an exhaustive list of all possible

16 and 32-run BFFSP RPDs. Obviously one could consider designs with values of

n (where n:u*nz+h*bz) larger than those considered here. Indeed, even for

values of r¿ between 6 and 10, not all nl,nzilrulez;bt,ó2 design combinations have

been a,ssessed. The intent of the catalog is to provide a substanti,al portion of those

16 and 32-run optimal RPDs that experimenters will find useful to perform.

In comparison to the number of designs investigated in the context of MA BFFSP

screening experiments, we anticipate that there are more T,¡_¡,tlzilq,lcz;ô1, ó2 combi-

nations to consider in the robust design setting. This arises due to the fact that in
RPD we no longer restrict ourselves to designs with Ã ) 3. In the optimal BFFSP
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RPD catalog, many of the designs have .R ( 3 and would not have been included in
the MA BFFSP design catalog.

Finally, since impractical designs (Section 3.2.2) can occur in the RPD setting we

require that 1 1 bz 1 nz - kz - 1, as we did for MA BFFSP screening experiments.

However, since in robust design \rye no longer have the restriction that .R ) 3, we no

longer require that á1 have an upper bound of. n1 - h - I for resolution purposes.

Example 8.3.2 For erample, consid,er a 2ß+2)-(0+1)t(3+0) desi,gn wi,th n2 : 2 con-

trol factors. Suppose the generators are 0t: A, þz: B, þs: C and q: ABCq.

The DCS of the design i,s I - Aþr: B0r: C0r: ABCpq: ABþtþz: ACþtþs:
BC þzþz : ABC /tþrþs : BCpqþt : ACpqþz : ABpq\e : Cpqþßz : Bpqþtþe :
Apqþrþs: pQhþzþy, implying that all control main effects ønd CN Zfi,'s øre cleør.

Therefore, despi,te the confoundi,ng of noi,se mai,n effects wi,th blocles, we haae con-

structed a reasonable RPD. Clearly, i,f we were using the restriction R ) 3, (implyi,ng

b¡ 1 n1- h - L) this design would not be eligible.

8.4 Limited Theoretical Results for RPDs

When selecting 
^2(nr*nz)-(er*kz)a(òr*br) 

design for the purpose of robust experimenta-

tion, information regarding the estimation capacity of the design is typically required.

In particular, knowledge about the number of clear low-order effects is crucial in se-

lecting the appropriate design. It was seen, in Section 8.2.1, that our search program

(implemented via computer) provides us with such knowledge. The objective of this

section is to provide a glimpse of the theoreti,cal development necessary to ansïyer

questions regarding the estimation capacity of a given RPD. Specifically, we will
consider the diffi.culty in determining, without the aid of a computer, the number

of clear CN 2fi's that a given RPD possesses. To do this, we will consider "simple"

cases from the FFSP and BFFSP RPD scenarios. It is hoped that the reader will
appreciate the need for further research in this area.

The following theorem describes conditions under which all CN 2fi's will be clear

for a FFSP design.

Theorem 8.1 Consi,der a 2@t+nz)-(kr+kz) ppgp desi,gn i,n cross 0,rr0,a form such

that2(nt+nz)-(h*kz) - 2(nr-kt¡ 62@z-kz), where all le2 ad,d,ed, Sp factors o,re generated,
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eæclusiaely by SP factors. If both the WP and SP o,rcz,As are of resoluti,on at least

3, then all nrnz CN Zfi's wi,ll be clear.

Proof : This proof follows from that of Theorem 10.1 (ii) in Wu and Hamada (2000,

pp. 460-461).

Without loss of generality, l¿1 2@t-kt) : d,N, the noise array and let 2(nz-kz) -
d,ç, the control array. Let, u7,... ,uzkt-1 denote the words in the DCS of d¡,, and

urt. . . ¡uzkz-r denote the words in the DCS of ds. Then d,¡¡Ød,ç,which is ¿2(nÈnz)-(ftr+kz)

design, has 2h+kz - 1 words in its DCS of the form

ü¿, U¡, UåU¡ t

where 'i,:L,...,2k, - l and j:7,...,2k, -1.
First, note that any of the n1n2 CN 2fi's can only appear in u¿u¡ among the

words in 8.2. Because d,ç and d¡y must both be at least resolution 3, z¿ and u¡ have

at least length 3. Also, since u¿ only involves noise factors and u¡ involves only control

factors, this implies that u¿u¡ haß length at least 6. Therefore, any CN 2fi is aliased

wiih four-factor or higher-order interactions. Also, a CN 2fi can be aliased with some

3fi's that involve at least one control factor and at least one noise factor. (See the

following example.) Therefore, by definition, each CN 2fi is clear. tr

Example 8.4.L Consi,der ¿ 2(3+3)-(1+r) 7FSP desi,gn with n1 : 3 noi,se fo,ctors. IJ
the added factors are C : AB and r : pq thi,s i,mplies that the DCS i,s of the form I
: ABC : pqr : ABCpqr. It is obui,ous that all CN 2fi,'s are clear. (For erample, Ap

- BCp : Aqr - BCqr, implyi,ng that Ap i,s clear.) Furthermore, note that all CN

2fi,'s are clear regardless of whether the noi,se factors o,re run at the WP or SP leuels.

The following theorem describes conditions under which all CN 2fi's will be clear

for a BFFSP design.

Theorem 8.2 Consi,d,er a2(nr+nz)-(kÉkz)r(Dr*bz) BFFSP desi,gn i,n cross array form
such that 2@t+nz)-(k*kz)t(bt*bz) - 2(u-kr)*br 6 2@z-tez)*bz, where aII kz added Sp

factors and, b2 separators are gener&ted eæclusi,aely by SP factors. If both the WP

and SP arra,ys are of resoluti,on at least 3, then all ntnz CN ?fi,'s will be clear.

Proof : Without loss of generality, ls1 2@r-kt)*Dr - dp, the noise array and let

2(nz-kz)*bz : dc, the control array. Let u1r. . . ,'ì12k1*b1-, denote the words in the
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DCS of dry and nr¡... ,'ù2k2+¡b2_y denote the words in the DCS of d6. Then d¡,¡Ødc,
which is a 2("+"2)-(er+kz)+(br+bz) ¿sritn, has 2kr+kz*h*b2 - 1 words in its DCS of the
form

where,i : lr...,2kr*û - 1 and j : I,...,2k2*bz -L.
First, note that any of the nyn2 CN 2fi's can only appear in u¿u¡ among the words

in 8.3. Also, since d,ç and diy must both be at least resolution 3, u¿ and u¡ have at
least length 3. In the BFFSP setting, notice that u¿ may involve both noise factors

and pure WP blocking variables. Similarly, u¡ may involve both control factors and

separators. F\rrthermore, using Equation 3.3, any word containing a blocking variable

in the DCSs of d,ç or d,w must be of length at least 3.5. This implies that u¿u¡ has

length at least 5.5. Therefore, any CN 2fi is aliased either with treatment x block
interactions (which we assume to be negli$ble) or with three-factor and higher-order

interactions. Regardless, we conclude that each CN 2fi is clear. tr

Example 8.4.2 Consider a 2@+4)-(0+i)+(1+1) d,esi,gn wi,th ry : J no,ise factors. [Is-
i,ng the generators h : ABC, s : pq and õt. : ?r u)e are ensured tho,t d,¡v and, d,ç

bothhaue resoluti,on of atleast 3. The DCS i,s gi,uenby I: ABCh:pqs:prõ1:
ABCpqsfu: ABCprþÅt - qrsfi: ABCqrsþðt. One can ueri,fy that øil CN Zfi's

are ali,ased with ei,ther treatment x bloclc interacti,ons or wi,th i,nteractions haui,ng at
least three factors. Therefore, all CN Zfi,'s are clear. â

Theorems 8.1 and 8.2 apply only to those "rare" FFSP and BFFSP RPDs in
which the added SP factors and separators are generated erclusi,uely by SP factors.

Considerable difficulty arises in predetermining the number of clear CN 2fi's in those

FFSP and BFFSP RPDs having WP factors in their SP factor and separator gen-

erators. The following theorem describes one scenario where a single WP factor is

present within the generator of a lone SP added factor. This result is presented to
give the reader an idea as to the complexity in predetermining the number of clear

CN 2fi's in FFSP and BFFSP RPDs.

Theorem 8.3 Consider a 2@r+nz)-(kr+kz) ppgp d,esi,gn with lq ) 0 and, lcz : I
such that the ad,d,ed, SP factor has one WP factor i"n i,ts generator. For a d,esi,gn wi,th

resolution 3 i,n both d,s and, d¡¡, there can be at most TLúLz - 2 clear CN Tfi,'s.

u¿,4¡1UiU¡t
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Proof : Withoui loss of generality 1¿1 2@t-kr) ar,fl 2@z-rer) represent d,¡¡ and, d,s,

respectively. Let rtrrt... ,'uzt-r denote the defining words in the DCS of d¡¡ and u1

denote the lone word in the DCS of d,ç. Then d,¡¡ x d,ç has 2er+t - 1 words in its DCS
of the form

where ,i: Lr. . . ,2k, - 7.

Letting L(u¿) denote the length of the word u¿, we have min ,L(u¿) : J, ,i :
!, . . - ,zkt -\. Also, ,L(ø1) - 3. Then, since u1 contains one wP factor (by assumption)

this implies that two CN 2fi's are "automatically" unclear.

If the noise (WP) factor in u1 is common to a noise factor in one of the z¿ then
min L(u¿ur) : min L(u¿)+ L(a1)-)- 3+3 -2- 4, so that additional CN 2fi's
may be unclear. Therefore, to minimize the number of unclear CN 2fi's arising from
the four letter words we must have that min L(u¿ut) ,  .This only occurs if the
noise factor in tr1 is not present in any of the u¿ having length 3. In this case, the
only two unclear CN 2fi's arise from ur â,nd we have at most n1n2-2 clear CN 2fi's. tr

For FFSP designs having kz ) I with several WP factors in each of the added SP

factor generators, any theoretical results will require very technical derivations. The
level of required mathematical sophistication is further magnified when considering

the presence of pure WP blocking variables and separators. In the context of BFFSP
RPDs, the use of our search algorithm (implemented via computer) is absolutely
necessary in order to circumvent tedious theoretical derivations. Little, if any, work
has been completed in this theoretical research area.

'LL¿, U1, U¿U1,

L20
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Chapter I

The Chrome-Plating Experiment
Revisited

We now wish to address the optimality questions pertaining to the case study first
described in Chapter 1. To do this, design issues surrounding the chrome-plating

experiment will now be investigated in detail.

9.1 Three Competing Designs

Three design scenarios will be considered in this chapter, as illustrated in Figure 9.1.

One can think of E as having been obtained from D by elevation of p to P and 5
as having been obtained from D by separation. D uses four rectifiers and eight days,

whereas E and ,9 use two rectifiers and 16 days. All of the designs use the same

number of runs, and all are blocked by week. For each scenario the MA design was

obtained (using the search-table approach outlined in Chapter 5).

For scenario D two generators are required-one SP factor generator and one WP
blocking variable generator. The MA design has r : ABpq as the factor generaror

md Ér : ABC as the pure WP blocking generator.

For scenario E three generators are required-one SP factor generator and two

pure WP blocking variable generators. The MA elevated design has r :ACPq as the
SP factor generator and B1 : ABC *d þr: ABP as the blocking generators.

Again, for scenario ,9 three generators are required. This time, however, one of
the blocking variables is formed via separation. The MA design has r - ABq as the
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Figure 9.1: The Three Competing Scena.rios, Illustrating Elevation and Separation

Scenario D

2(3+3)-(o+1)+(1+o) in

8 days; 4 rectifiers; 2 blocks

WP factors ABC;

SP factors pqr

Scenario E

2(4+2)-(o+r)+(2+o)

16 days; 2 rectifiers; 4 blocks

WP factors ABCP;

SP factors qr

r22

factor generator and fu : ABC and ô1 : ACpq as the blocking generators .

9.1.1- Comparison of Designs

Table 9.1 summarizes the advantages and disadvantages of the three designs, with

emphasis on main effects and 2fi's only. The presence of at least one asterisk (* or *
*) implies that the effect of interest is tested against the WP error for ihat design.

Note that two asterisks appear under Design D. This reflects the fact that the WP

error in Design D is larger tha¡r that in the other two designs, because Design D

utilizes only eight days at the WP level. (The variance forms of WP and SP effects

for Designs D, E and ,9 are presented in Table 9.2.) The two horizontal lines in

\

Scenario ó

2(3+3)-(o+1)+(1+1)

16 days; 2 rectifiers; 4 blocks

WP factors ABC;

SP factors pqr
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Table 9.1 are used to set apart the effects, p, Ap, Bp and Cp. This is done to remind

the reader that under elevation, these are WP effects.

Table 9.1: Precision of Effect Estimates and Alias Structures for the Three Designs

Effect Design D Design E Design S

A xx * *

B r* * *

AB ** * *q,
c ** * *

AC ** * *

BC ** * *

p*
Ap*
Bp*
Cp blocks

I23

q

Aq

Bq

Cq

pq

r
Ar
Br

Cr

pr

qr

Consider Design D. On the one hand, it can be seen that all main effects and 2fi's

are clear in that they are not aliased with other main effects, 2fi's or blocks. On the

other hand, the WP error in design D is larger than that in the other two designs,

as noted above and as also seen in Table 9.2.

It would appear that design E is better than design ,5, because there is too much

Br

Ar

Bq

Aq

x

*AB
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Table 9.2: Variances of Estimated Effects for Designs D, E and ,g

aliasing in ,9. It is interesting to note that the experiment that \ryas run was very

similar to design .Ð. The only difference Ìvas that the actual 2(4+2)-(0+r)+(2+0) exper-

iment used r - ABCPq as the factor generator, rather than r - ACPq. Without
realizing it at the time we had used the MA design for the unblocked design-and
then blocked it-instead of considering all generators at the same time as dictated
by the search-table approach. A useful lesson was learned.

9.L.2 Practical Considerations

A few practical issues arose in the chrome.plating experiment that are worthy of
comment. These deal with center points, blocking and the use of factors that involve

concentrations.

Firstly, the actual experiment used 20 days, rather than 16, with the additional

days corresponding to center points in the quantitative factors. These points were

useful for a number of reasons with the most important of these being that the center

points corresponded to current operating conditions.

Secondly, as the experiment proceeded some of the benefits of blocking became

evident. For one thing blocking allowed the design to be rescued at one point. This

happened on the Monday of the second week, when the bath temperature was sup-

posed to be at its high level. It turned out that, starting from a cold start on Monday

morning it was not possible to reach the high temperature when the parts were to be

placed in the tank. The design for the third week, which had a low bath temperature

on Monday, was interchanged with the design for the second week. A decision was

also made to begin heating the bath on Sunday for the third and fourth weeks, in
order to reach the high temperature sooner. Another advantage of blocking was that

Design WP Effecis SP Effects

D io'z, + io! i"3

E,S io'z. + !o! o!
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interim analyses could be performed at the end of each of the weeks. This could have

led to changes in the experimental design, or even to termination, although this did
not happen in this experiment.

Thirdly, there was another restriction on randomization that is common in sit-

uations involving concentrations. Basically, it is relatively easy to increase the con-

centration of a solution, but much more diffi.cult to decrease it. This is because

decreasing the solution requires that some of the solution be discarded and, in the

chrome-plating example, the expense associated with disposal was prohibitive. For

this experiment a compromise was reached. It was decided that the bath would be

discarded at the end of each week, but that the concentrations (in chrome and sul-

phate) would increase throughout the week. (Each Wednesday thus corresponded to
a center point in the WP factors.) Ii was recognized that because we did not ran-

domize over the two concentration factors, if something \¡/ere to change during the

week (for example, degradation of the bath) we would have difficutty with inference

concerning the concentrations. However, the feeling was that the one week blocks

were short enough to prevent such difficulties.

For proprietary reasons, we do not provide analytical results from the chromç
plating experiment. One of the approaches that we used, however, involved the con-

struction of two normal probability plots for each response variable-one for the WP

effects and one for the SP effects (as determined by the rules in Section 4.2). This

analytical approach is typical for FF and FFSP experiments (Daniel, 1959; Box and

Jones,1992; Bingham and Sitter,2001; Loeppky and Sitter, 2002). The results ob-

tained from the screening experiment enhanced understanding of the chrome.plating

process, and led to further experimentation involving the key factors.

Finally, it shouid be noted that the actual experiment contained two additional

factors-plating time and surface preparation. These factors were easier-to-vary than

A, B, C, p, q and r and were considered to be sub-subplot factors. By utilizing
4 rectifiers, à 22 design in the sub-subplot factors could be performed daily using

one part per rectifier for each combination of plating time and surface preparation.

However, since the focus in this chapter (and thesis) is on BFFSP designs, we choose

to forgo any further discussion pertaining to the sub-subplot factors.
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Chapter 10

Elevation

In Chapter 1 the notion of eleuati,or¿ \ryas introduced in context of the chrome-plating

experiment. In this case study, we saw that elevation of a SP factor afforded a full,

unreplicated 2a design at the WP level over the course of the 16 day experiment. This

16-run design at the WP level was viewed a,s more appealing than an 8-run 23 design

at the WP level because of the increased precision for the WP effects provided by the

8 additional runs in the 2a design. Also, in the chrome.plating experiment elevation

provided a means by which less fractionation could be imposed upon the SP level.

Recall that the experimenters were originally faced, in essence, with a 23-2 design at

the SP level due to the availability of only two rectifiers (the SP experimental units)

per day in the tank. Instead of running a tf 8th fraction at the SP level, elevation of a

SP factor implied that a 22-1 SP design could be performed daily on the two rectifiers.

Thus, by means of elevation, less fractionation vyas incurred at the SP level. (For an

indepth discussion concerning specific design issues in the chrome-plating experiment

refer to Chapter 9.)

In contrast to Chapters 1 and 9 this chapter investigates the concept of eleva-

tion from a broader perspective. Two elevation approaches are defined and for each

approach the impact of elevation on the estimation capacity (aberration, number

of clear effects, precision of effects) of selected MA BFFSP designs is documented.

It will be shown that elevation is but one approach by which an experimenter may

increase the estimation capacity of an existing BFFSP design. Estimation gains may

also be realized by means of separation. This chapter investigates potential advan-

iages/disadvantages realized by elevation or separation of selected MA BFFSP de.
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signs. Catalogs of designs are presented detailing caßes in which elevation and/or

separation may yield superior design choices for an experimenter.

Note that research concerning elevation cannot proceed without satisfaction of
one primary assumption-the existence of. a uersati,le f.actor. A versatile factor is

a SP factor, say p, thal may be elevated to the WP level, say P, without causing

the experimenter to be unduly concerned with the ensuing loss of precision for the

elevated factor as a result of running it at the WP level.

10.1 Elevation Vs. Separation: As Motivated by

In this chapter's introduction we alluded to the fact that there are two approaches

to elevating a2(u+nz)-(kÈkz)*(br+Dz) ¿ssign. The first approach to be evaluated is

depicted in Figure 10.1 which is a generalization of the methodology undertaken in

the chrome-plating experiment (Figure 9.1). Figure 10.1 depicts the scenario in which

an elevated and a separated design are both investigated as possible alternatives to

an initial design. One feature of this approach is that the number of WP treatment

combinations per block remains constant across the initial, elevated and separated

designs. This methodology follows that of the chrome.plating experiment where the

initial, elevated and separated designs (Scenarios D, E and S in Figure 9.1) all had

four WP treatment combinations per block. The advantage of fixing the number of

WP treatments in blocks, across designs, is that the WP variability, øfl, can then

be thought as constant across designs. That is, fixing the number of WP treatment

combinations in a block allows the experimenter to assume that each design possesses

the same degree of homogeneity among the WP experimental units. The assumption

of constancy of o2, across designs will allow for an accurate comparison of WP effect

precision between designs.

A mathematical description of the elevation and separation procedures in Fig-

ure 10.1 is now detailed. Firstly, let the set of all possible BFFSP designs be denoted

by D : {dld - 2@r*nz)-(ftr*,kz)*(år+az)} - {dld: (rr,rr;lq,kz;br,br)}. Mappings

for both the elevation and separation procedures can then be defined utilizing this

notation. For elevation, let fø, be the mapping such that fB, : D ----> 2, where

før@) : før(nr,nr;lq,lcz;bt,br) : (nt*1,n2-7;lq,lczih*7,bù. This notation im-

the Chrome-Plating Experiment
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plies that elevation raises one versatile SP factor, in ¿2(nt+nz)-(kr+kz)*(bt*bz) ¿6s1go,

to the WP level such that the resulting design will have one additional WP factor

and one fewer SP factor. By increasing the number of WP factors by one, there is a

subsequent doubling of ihe number of WP treatment combinations in the elevated

design. To ensure that the number of WP treatment combinations per block is equal

to that of the initial design, one additional pure WP blocking variable is required

in the elevated design. Therefore, b1 is increased by 1 as depicted in the bottom left

hand box of Figure 10.1.

Figure 10.1: Elevation Vs. Separation: As Motivated by the Chrome-Plating Exper-

iment.
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Initial Design

\¡l¡. 2(nr +nz ) - (,tr *,tz )+ (br *bz )

ry)L;n2)2;
å1 ) 0; bz> 0;

frt > 0; k2) 0;

MA 2( (n. r +i){(n 2 - r))- (,tr +,tz)t((br +l)+bz)

rz1 ând ålincrease by 1;

n2 decreases by 1;

bz, lçt,fr2 remain constant

lø, /

Elevation

Let /s symbolize the mapping which occurs under separation. Here, f s : D 1D,
where f s@) : f s(nl,nzikukz;bt,bz) = (nt,nt;lq,lcz;h,bz * 1). Under separation,

no SP factor is elevated; rather, pseudo-replication of the WP treatment combina-

\rs

Separation

\¡l/* 2(nr+nz) - (er *,tz)+(br *(öz *1))

ó2 increases by 1;

all other va¡iables remain

constant
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tions is achieved with the presence of an additional separator (Chapter 3). (Note

lhat b2 is increased by 1 as illustrated in the bottom right hand box of Figure 10.1.)

The additional separator causes each WP treatment level setting to be reset twice as

often, hence the replication. Also, observe that the presence of the additional sepa-

rator implies that there will be twice as many blocks, 2b#(bzrt), as compared to the

initial design. This doubling of the number of blocks ensures that the number of WP

treatment combinations per block is equal to that of the initial design. Fbrthermore,

from the comments in the previous paragraph \rye may infer that both the elevated

and separated designs have an equal number of WP treatment combinations per

block.

It can be seen that the initial, elevated and separated designs in Figure 10.1 are

fundamentally the "same". By this vre mean that from a practitioner's perspective

each design could be run just as easily as another. To see this, consider the following.

Firstly, all three designs require the same number of runs. Therefore, the initial,
elevated and separated designs all require the sarne number of experimental units

and intuitively they should then require an identical amount of resources (time,

money, personnel) to complete.

Secondly, the presence of an additional WP factor in the elevated design will not

increase the complexity of the experiment. Note that the elevated factor is inherently

an easy-to-vary factor, evidenced by its placement at the SP level in the initial design.

Therefore, raising this ea,sy-to-vary factor should not impose any additional strain

upon the resetting of the other WP treatment levels.

Thirdly, as lvas mentioned previously, the restriction that the number of WP

treatments per block be fixed across the three designs enables a "fair" comparison of

ofl, the WP variability. This constancy of WP variability across the designs prevems

"apple and orange" comparisons in terms of precision of estimated WP effects. This

point will be expounded upon in subsequent sections.

10.1.1 Some Comments and an Example

Before proceeding to an example some additional general observations regarding the

implications of Figure 10.1 are in order. Firstly, elevation always requires that an

initialdesign possess n1>. L andn2> 2.If the initialdesign has n2 :1, this implies

that the elevated design has n2 - 0 which in turn implies that the elevated design
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is not a split-plot design. In this case, the elevated design could be thought of as a

two-level BFF design, a scenario not of interest in this research.

Secondly, it has been noted that elevation of one SP factor or the presence of one

additional separator doubles the number of runs at the WP level. This increase in WP

runs serves to increase the precision of the WP effect estimates, a result developed

first in Chapter 4 in the context of separation and in Chapter g in the context of the

elevated chrome-plating design. The important point here is that the elevation and

separation procedures yield an i,dentical increase in precision for the estimation of

WP effects. More will be said about this point after the following example.

Example 10.1.1 Suppose experimenters i,n a manufacturi,ng conxpa,ny i,ni,tiallg con-

templøte runni,ng ø 2(3+5)-(1+2)+(0+1) desi,gn. The sz-run design, perhaps too large to

be completed i"n one shift, i,s to be run in two bloclçs. After careful consi,deration of
the desi,gn, suppose that the erperi,menters o,re not satisfi,ed with the degree of pre-

ci,si,on at the WP leuel that thi,s desi,gn prouides. An effort should then be made to

erplore methods by whi,ch the preci,sion of the yet-to-be esti,mated, WP effects mag be

increased.

Note tho,t ¿¡" 2(t+s)-(1+2)+(0+1) d,esi,gn already i,nclud,es one separ&tor (b2 : 7¡

but assume that the resulting I WP runs a,re not sufficient for achi,eui,ng a sati,s-

factory leuel of preci,sion for the WP effects. In thi,s setting, considerati,on of a de-

si,gn i,ncorporating an eleuated, factor, or perhøps an addi,tional separator may lead

to a better design choi,ce. Followi,ng the general approach outlined i,n Fi,gure 10.1,

the two desi,gn alternati,ues are the 2ø+4)-(r+2)+(1+1) eleuated desi,gn (Desi,gn A) and,

¡¡r" 2(t+s)-(1+2)+(0+2) design (Design B)-note the ad,d,itional separator i,n the latter

design. All three designs haue four WP factor combinati,ons per block so accurate

compari,sons of WP errors o,cross designs can be made.

Table 10.1 assists in summarizing the advantages and/or disadvantages of the

three designs in Example 10.1.1. Specifically, Table 10.1 provides the following sum-

mary:
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]. Lists all factor main effects and 2fi's for each design.

Differentiates between clear and unclear treatment effects.2.

3. Provides the alias chain for each unclear treatment effect.
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Table 10.1: Precision of Effect Estimates and Alias Structures for the Initial, Elevated

and Separated Designs in Example 10.1.1.

Effect

A
B
AB
C

AC
BC
D\r
AD\At
BD\Br
cD\ct
p

,dp

Bp
Cp

Dp\pt

Initial Design

- -BC

- -AC

--c
- -AB

--B
--A

rs

pq

Design A

-CD, blocks

-BD, qr

-AD, ps

-BC, Ps

-AC, qr

-AB, blocks

Ds

Cs

Bs

As

Cr

Dr

Ar
Br

Design B

-BC

-AC
_C

-AB

-B

-A

blocks

-P9' rS
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Aq
Bq
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r
Ar
Br
Cr
Dr
S
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Bq

pt

\qt Bp

st

\rt As

qt

Cq

Cq

Dq

Aq

Bq

pt

Cp

Dp

Cp

st
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Efrect Initial Design Design A Design B
Cs Bp rt
Ds\st Ar Ap Cr

pq - -Bt rs, Ct
pr - -qs

ps -AD, BD -qr
qr -AC, BD -ps

qs - -pr
rs At pe, Ct

Table 10.1 (Cont'd)

4. Distinguishes between those effects that are tested against the WP and SP

errors.

5. Gives indication to the size of a design's WP error.

Note that to correctly read Table 10.1 one must replace ú with D (and vice

versa) within the appropriate effects when moving between the initial and elevated

designs. (That is, we are explicitly assuming that treatment factor ú is the versatile

SP factor in the 2(3+5)-(1+2)+(0+i) design.) Using Table 10.1 ihe following observations

are noted:

132

1. The initial design has less aliasing of SP main effects and 2fi's. In fact, the

initial design has 13 clear SP 2fi's whereas the elevated and separated designs

have only 4 and 9, respectively.

Effects tested against WP error are indicated by either one dash t) or two

dashes (- -). The presence of two dashes reflects a larger WP error for the

corresponding main efiect or 2fi. The elevated and separated designs both have

smaller WP errors (that is, greater precision) than the initial design; therefore,

their WP errors are denoted by only a single dash.

2.

3. The 2Ø+4)-(r+2)+(1+1) elevated design has the "best" alias structure at the WP
level. In this design, all WP main effects are clear. All WP main effects are

unclear in the initial and separated designs.
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4. Overall, the elevated design has the worst alias structure in that it possesses

only 12 clea¡ WP and SP main effects and 2fi's. The initial and separated

designs have 18 and 14 clear WP and SP main effects and 2fi's, respectively.

tO.L.z The Initial, Elevated and Separated BFFSP Design

Catalog

In this section we outline the construction and use of the BFFSP design catalog, Ap-
pendix C, containing MA initial, elevated and separated BFFSP designs. For a given

initial \¡ly'* 2@t+nz)-(er*kz)*(br+bz) ¿ssign, the catalog provides a corresponding MA
2(nr+r)+(nz-1))-(,tr*,t2)+((bl+1)+b2) elevated design and a 1t¡l¡-2(nr+nz)-(kftkz)t(ör+(bz+1))

separated design. Each group of three associated designs is referred to as a "triple",
where the elevated and separated designs represent alternative choices available to

an experimenter in light of an initial design.

For brevity, the initial designs that we will consider represent only a subset of
the 32-run MA BFFSP designs already tabled in Appendix B. Also, we will not

investigate the 8 and 16-run design scenarios here. It is envisioned that this catalog

of triples contains a large number of the 32-run BFFSP design possibilities facing

an experimenter and thereby is considered an extensive although not an exhaustive

listing. Each initial MA design in a triple must possêss ??1 ) 1 and n2 ) 2. These

restrictions are aconsequence of the discussion in Section 10.1.1, where we explained

that if these inequalities do not hold a split-plot design will not be formed by our

elevation procedure.

When selecting an initial \¡f1. 2@r+nz)-(kr+'kz)1(br+üz) flssign from Appendix B,

to use in Appendix C, we take the MA design having the highest ranked esti-

mation capacity-if there are muitiple MA designs listed for a specific value of

T\, TLü lt, lcz; br bz.

Appendix C contains separate tables of triples for each of the following scenarios:

1. The initial design is a MA 2(nt+nz)-(h +'tz) pp5p design.

2. The initial design is a MA 2(nÉnz)-(kr*'tz)t(br*0) BFFSP design with pure WP

blocking.

3. The initial design is a MA 2(u*nz)-(kr*'tz)*(e16r¡ BFFSP design with separation.
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4. The initial design is a MA 2@t*nz)-(kt*kz)t(bt*bz) gFfsp design with mixed

blocking.

All designs have between six and ten factors and blocking variables (combined) and

consist of 32 runs in either two, four or eight blocks. Each 2("'+nz)-(h*kz)+(br*bz)

BFFSP design is abbreviated "Design : TLrtnült,lez;bt,ö2". Within the tables the

designs are presented in ascending order of. n: h t nz * ár * b2, the total number

of factors and blocking variables in the i,ni,tiøl design. As in the MA BFFSP design

catalog, the WLPs are truncated at the last non-zero value. A-G and p-w are used

to denote the WP and SP factors, respectively, wiih the last letter in each generator

representing the added factor. The 'iúh and jth WP blocking variable and separaror

are denotedby 0¿ and ô¡. In columns (u) - (t) we have again included the assessment

of each BFFSP design with respect to the six optimality criteria of Section 5.3.

One distinguishing feature of this catalog is that, within a design triple, each

design has the same number of WP treatment combinations per block. As previously

discussed, this design characteristic provides the user with the ability to accurately

compare WP errors across associated designs.

The following example provides the reader with an introduction to the use of the

"initial, elevated and separated BFFSP design catalog".

Example LO.L,2 In Erample 10.1.1 we enui,sioned an erperimenter choosi,ng be-

tween ¡¡, 2ß+s)-(1+2)+(0+1), 2g+q-G+2)+(1+1) or¿ 2(t+s)-(1+2)*(0+2) desi,gns. In that

erample we proui,d,ed, Table 10.1 to assi,st i,n the selecti,on process. Howeuer, i,n most

cz,ses & table of such detai,I i,s not necessa,rA. Rather, the practi,ti,oner should refer to

Append,i,r C to qui,ckly determine whether or not eleuation and/or separati,on prouide

desi,gns with greater esti,mation capacity than that of the i,ni,ti,al d,esi,gn.

To find, the i,ni,tial, eleuated and separated desi,gns of Erample 10.1.1, scøn Ta-

ble C.3 (in Append,i,r C) until you reach those desi,gns haui,ng n: ïLr*nz*hlbz :9.
In thi,s catalog n reflects the number of uari,ables i,n the ini,ti,al design. (Note that the

eleuated and separated desi,gns wi,ll always haue a ualue of n one greater than that

of the i,ni,ti,al desi,gn. Thi,s i,s due to the presence of the addi,ti,onal blocking uari-

able i,n these desi,gns.) After locating the correct triple (denoted by 3,5;I,2;0,L and

4,4;I,2;I,1 and 3,5;L,2;0,2) one can rnake the necessary comparisons. As detailed

i,n Erample 10.1.1, the i,ni,tial desi,gn outperforms the eleuated and separated desi,gns

i,n terms of the total number of clear main effects and 2fi,'s (cri,teri,ø (a) and, (b)).
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Howeuer, the eleuated design i,s "opti,mal" with respect to the number of clear WP

mai,n effects (1. Nei,ther the i,ni,ti,al or separated desi,gns haue any clear WP mai,n

effects.

What i,s not obuious from cri,teri,a (a) - (Í) i" the cøtalog is that the eleuated

and separated, desi,gns possess a smaller WP error than the i,nitio,l design. These

preci,si,on gai,ns are, to ø large ertent, the moti,uati,on behind, consi,dering the eleuated

and separated designs i,n the first place. The eract form of the WP error i,n eleuated,

and separated BFFSP designs i,s proui,d,ed, in Secti,on 10.1.3.

Again, one should be aware that not every possible 32-run design triple is present

within the catalog. We have chosen to include only those triples in which the elevated

design is superior in at least one of the criteria (") - (f), compared to the separated

design. To include elevated designs which are inferior in all six of the criteria would

only serve to lengthen the catalog. As a result, some triples that one might expect

to be present in Appendix C have been completely omitted. The implication of these

omissions is that, for the given 32-run initial design, no elevated design could be

constructed that was superior to the corresponding separated design in any of the

criteria, (") - (f).
Finally, one may have observed the presence of horizontal lines within the tables

while working through Example 10.1.1. The horizontal lines are used to distinguish

between triples having identical values for n: nt i nz * h * bz.

1-0.1-.3 Additional Comments

In this section we formalize several of the implications of the elevation and separation

procedures, as outlined in Figure 10.1.

Firstly, elevation causes twice as many disti,nct WP treatment combinations to

be run as there would have been otherwise. Separation provides a pseudo-replication

of existing WP treatment combinations. Therefore, elevation and separation yield

small(er) variances for effects at the WP level of the design. This result can be seen by

considering the general variance form of a WP effect, Var(,A) : ft(z"2-nz-bz o2 + o'"),

where ,4, is a given WP factor (Chapter  ). We observe from this variance structure

that if a SP factor is elevated, then the exponent n2 - lcz - bz will decrease by 1, due

to the unit reduction in n2. Also, if separation occurs, nz- kz- åz will again decrease
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by 1, due to a unit increase in bz. Either approach produces a smaller numerator in

the coefficient of øfl, thus decreasing the size of the WP error.

Secondly, we anticipate that the overall alias structure of elevated and separated

designs will, in general, be worse than that of the corresponding initial design. This

observation arises from the fact that the elevated and separated designs require

one additional blocking variable than the initial design. This additional variable has

the effect of increasing the degree of aliasing within the DCSs of the elevated and

separated designs. Anticipated consequences of gteater aliasing among factor effects

include fewer clear SP main effects and 2fi's. A scenario evidencing this possibility

was given in Example 10.1.1.

Thirdly, despite the fact that the overall alias structure of an elevated design

may be \ryorse than that of the initial design, one may actually observe a decrease

in aliasing at the WP leuel. This possibility (of which Example 10.1.1 is a case in

point) arises due to the presence of the additional WP factor in elevated designs.

Therefore, if interest in the WP factors is high, elevation may provide a means for

higher estimation capacity at the WP level of a BFFSP design.

LO.z Elevation: Another Approach

The introduction of this chapter mentioned that two approaches to elevation were

to be considered. The distinguishing feature of the elevation procedure described in

Section 10.1 is that each (initial, elevated and separated) design in a triple had equal

numbers of WP units per block. This condition was imposed so as to maintain a fair

comparability of ofl across the designs. If one relaxes this condition another elevation

procedure can be described, as outlined in Figure 10.2.

There are two primary differences between Figures 10.1 and 10.2. Firstly, the

approach outlined in Figure 10.2 does not consider design triples but rather pairs of

designs only. That is, in this section there is no direct comparison of separation with

elevation. The decision to only compare initial and elevated design pairs is driven by

practicality (size of design catalog) rather than by theory.

Secondly, the elevation approach of Figure 10.2 considers only those design pairs

in which the number of WP units per block di,ffers between the initial and elevated

designs. Conditions are stipulated in Figure 10.2 that allow these differences to occur.
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Figure 10.2: Elevation: Another Approach

Initial Design

\{[ 2(nr +zz) -(ft r *Èz)*(är *Þz)

n1>-I;n2)2;
ö1 ) 0; b2) 0;

fr1 ) 0; k2) 0;

Elevated Design

MA 2( ("r +r) +(nz - r)) -( h +kz)+(b'1+bt2)

n1 increases by 1; n2 decreases by 1;

bl + b'r: ár * b2, so b\,bt, either both

vaxy or both stay the same
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In defense of holding h I bz fixed across design pairs we present the following

two arguments:

1. Changing the total number of blocks from a proposed (initial) design may im-
pede, from a practicai standpoint, completion of the experiment. For example,

suppose a 32-run BFFSP experiment is desired. If only two shifts (blocks) of
workers are available for the experiment, an increase in ó1 * óz between the

initial and elevated designs may be infeasible from a personnel perspective.

2. Although o2. will probably differ across designs if the number of WPs per

block differs across designs, this difference could be small if the difference in

the number of WPs per block is small. For example, if the initial design has 4

WPs per block and the elevated design has 8 WPs per block, the dissimilarities

between the designs' o2rs may be small if WPs tend to be homogenous with

Íe" I
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one another.

The elevation procedure of Figure 10.2 may be described as follows. As in Sec-

tion 10.1, let the set of all possible BFFSP designs be denoted by D : {dld :
2@Ènz)-(ktrtcz)*(h*bz)\ : {dld : (rr,rr;lq,lez;br,br)}.Let f6" be the mapping

such that før,D 4D, where lnr(d): fBr(rt,rr;kt,lrzih,bz): (nr*l,nz-
t;k1,k2;b'r,bL). This notation implies that elevation raises one versatile SP factor, in
u 2@*nz)-(&r*kz)*(br*b') design, to the WP level such that the resulting design will
have one additional WP factor and one fewer SP factor. By increasing the number of

WP factors by one, there is a subsequent doubling of the number of WP treatment

combinations in the elevated design. Since ,fE2 causes twice as many WP treatment

combinations to be formed there is an increase in precision at the WP level. This

result parallels that for the mapping.fa,. However, unlike Íør, lø, does not produce

elevated designs with the same number of WP units per block as the initial design.

Therefore, å1 is not necessarily increased by 1 under this elevation approach.

The following example illustrates one scenario where elevation, via fB, provides

a design with appealing estimation qualities.

Example 10.2.L Consider the resoluti,on 3, ¡4¡ 2F+z)-(2+1)+(1+0) design (Append,i,r B).

Thi,s d,esi,gn has 3 clear SP main effects and 18 clear SP 2fi's. Howeuer, no WP

main effects or Zfi's are clear. Thi,s laclc of esti,møti,on ability at the WP leuel may be

unattrøctiue to an erperimenter i,f some i,nformati,on regardi,ng WP effects i,s desired,.

Eleuati,on of thi,s d,esign to a MA 2@+2)-(2+r)+(1+0) desi,gn allows ail 6 WP main ef-

fects to be clearly estimated. In addi,tion, there is i,ncreased preci,sion for esti,mating

the uari,ance of these mai,n effects due to the i,ncreased number of WP runs. More

precisely, under eleuation the uariance of a WP effect decreases from lo2. + lo2" to

1"7"+ lo! (see Secti,on 10.1.3 for the general uari,ance form of a WP effect).

The pri,mary drawback of eleuo,ti,on i,n thi,s scenari,o is that one fewer SP main

effect and fi,ue fewer SP Ùfi,'s are esti,mable i,n ¿¡, 2(a+z)-(2+1)+(1+0) design. When

eleuati,on i,s performed this sauifi,ce i,n terms of the total number of clear SP mai,n

effects and ?fi's is often obserued. Speci,fi,cally, i,n the eleuated desi,gn i,t should, be

antici,pated that there wi,ll be one fewer clear SP main effect (due to eleuati,on of

the SP factor). In ad,di,tion, all Zfi,'s i,nuolui,ng the uersati,Ie SP factor and other WP

factors i,n the i,ni,ti,al desi,gn wi,ll "disappear" due to eleuation.
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1-0.2.1 The Initial and Elevated BFFSP Design Catalog

In this section we outline the construction and use of the BFFSP design catalog,

Appendix D, containing MA initial and elevated BFFSP design pairs. For an ini-
tial MA 2(u*nz)-(h*kz)r(h*bz) design, the catalog provides a corresponding MA
2((nr+t)+(nz-1))-(frr*ez)t(b\*b'z) elevated design as implied by the mapping fn* The
elevated design in a pair represents an alternative to the iniiial design. Therefore,

this catalog provides one method by which a practitioner may choose a design that
best satisfies the estimation demands for a particular BFFSP experiment.

Appendix D contains only those 32-run initial and elevated design pairs in which

the elevated design is superior in at least one of the criteria (") - (f).To include ele.

vated designs which are inferior in all six of the criteria would unnecessarily lengthen

the catalog. As a result, some pairs that one might expect to be present in Ap-
pendix D have been completely omitted. The implication of these omissions is that,
for the given 32-run initial design, no elevated design could be constructed that wa^s

superior in any of the criteria, (") - (f).
When selecting an initial þl/- 2@t+nz)-(h+kz)r(br+bz) dssign from Appendix B,

to use in Appendix D, we take the MA design having the highest ranked esti-

mation capacity-if there are multiple MA designs listed for a specific value of
rLt, TLzi lct, lçz; bt, bz.

For the mapping defined by Íø,, the following list enumerates all possible elevation

scenarios for 32-run BFFSP designs:

1. Elevation of a BFFSP design with pure WP blocking to another BFFSP design

with pure WP blocking,

2. Elevation of a separated BFFSP design to another separated BFFSP design,

3. Elevation of a separated BFFSP design to a BFFSP design with pure WP

blocking,

4. Elevation of a BFFSP design with pure WP blocking to a separated BFFSP

design.

All designs have between seven and ten factors and blocking variables (combined)

and consisl of J2 runs in either two or four blocks. Each 2(nr+nz)-(kr*kz)t(bt*bz) gF 1r Sp

design is abbreviated "Desigv¡_ TLrtnülh,lrzlbt,ó2". Within the tables the designs
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are presented in ascending order of n : Th * nz * ór * b2, the total number of factors

and blocking variables. As in the MA BFFSP design catalog, the WLPs a¡e truncated

at the la"st non-zero value. A-G and p-w are used to denote the WP and SP factors,

respectively, with the last letter in each generator representing the added factor. The

i,th and i'h WP blocking variable and separator are denoted by B¿ and ô¡. In columns

(") - (t) we have again included the assessment of each BFFSP design with respect

to the six optimality criteria of Section 5.3.

The following example provides the reader with an introduction to the use of the

initial and elevated BFFSP design catalog.

Example LO.2.2 Consi,d,er agai,nfl¡s2(s+z¡-(2+1)+(1+0) and2$+2)-(2+i)+(1+0) designs

in Erample 10.2.1. Thi,s initi,al and eleuated desi,gn pai,r may be found i,n Table D.l
i,n Appendi,r D. The aalues for uiterio (o) - (f ) øre li,sted, for both d,esi,gns. Agai,n,

the eleuated2G+2)-(2+1)+(1+0) desi,gn prouid,es the erperi,menter wi,th a su?terior d,esi,gn

choi,ce i,f there i,s si,gni,ficant i,nterest in the WP mai,n effects (refer to the di,scussi,on

i,n Example 10.2.1).

What is not di,rectly obuious from Appendi,r D i,s that an eleuated desi,gn possesses

a smaller WP error than i,ts correspondi,ng i,niti,al desi,gn. These preci,sion gai,ns should

not be i,gnored si,nce they are, to a large ertent, the moti,uati,on behind consid,eri,ng

eleuation in the first place. The general form of the WP error i,n eleuated, designs i,s

proui,ded i,n Secti"on 10.1.3.

LO.2.2 Additional Comments

L40

This section highlights the primary advantages/disadvantages of elevation via fB,.
The key advantages are:

]- Precision gains at the WP level: Elevation of a versatile SP factor causes twice

as many distinct WP treatment combinations to be run. The consequence of

the additional runs on the form of the variance for a WP factor is the same as

that for elevation under the mapping, før.

Decreased aliasing at the WP level: The additional WP factor may produce

WP generators with greater word lengths. Consequently, more WP effects may

be clear in the elevated design.

2.
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3. Consistency in the number of blocks between initial and elevated designs: The

advantage of fixed blocks is more practical than statistical. For example, if
the number of blocks (work shifts, batches of material) ca.nnot be practically

changed, elevation under f ø, may be reasonable.

The key disadvantages are:

1. Possible dissimilarities in øfl between the initial and elevated designs: Unless

the WPs are reasonably homogeneous, the WP errors of initial and elevated

designs may be incongruous.

2. Elevation of a WP factor typically results in fewer clear SP main effects and

Zfr's.

L47
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APPENDIX A. STANDARD RU¡\I ORDER OF SELECTED DESIGNS T43

Table 4.1: Standard Run Order of the 2(3+3)-(0+1) f'f'Sp Design.

Run

1

2

3

4

5

6

(

x

I
10

11

t2

13

L4

15

16

17

18

19

20

2L

22

23

24

25

26

27

28

A BCp qr

-+
++
+

+

+

-r

Error Term

ei -t- 61(1)

e1-t e2g7

el + €3(1)

er + ele)

e2 + €\2)

e2 + e2(2)

e2+ qQ)

e2 * eapy

e3 * €113¡

e3 + €2(B)

e¡ -F 68(8)

Q f ea6¡

e4 + e\4)

e4 + e2Ø)

e4 + €ee)

e4 t e4¡41

e5 * 611s¡

e5 + e2$)

es + €3(5)

es i ea6¡

e6 f 6116¡

e6 + €2(6)

e6 + €8(6)

e6 -l- €a16¡

e7 * e47¡

eT + eze)

ez t e(7)

e7 * eag¡

I-T-

-r

+

+
-+
-T -r -r

-+
++
+

+

+
+

-r

+
+

+

-+
++
r

+
--r
++
-T-
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Table 4.1 (Cont'd)

Run A B C p q r ErrorTerm

29 + + + + e6*É11s¡

30 + e6*É21s¡

31 - + - ês+68(8)

32 + + + esf€¿rsl



APPENDIX A. STANDARD RUN ORDER OF SELECTED DESIGNS I45

Table 4.2: Standard Run Order of the 2(3+3)-(0+1)+(1+0) BFFSP Design.

Run

1

2

3

+

o

6
F7
I

8

9

10

11

72

13

14

15

16

77

18

19

20

21-

22

23

24

25

26

27

28

ABCp

-t-

Qrþt
-+

-T -r

Biock Error Term

1 e1(1) * er(rr)

1 e1(1) * ez(n)

1 er(r) * ce(n)

1 e1(1) f e¿(rr)

r eze) * er(rz)

1 ez(r) + €2G2)

1 ezÍ) * cs(rz)

r e2$) i e¿,Gz)

1 es(1) * €i(rs)

1 e¡(i) * €z(re)

1 e¡(r) t ee(re)

1 eg(l) * €¿(ra)

1 ea\) * er(r¿)

1 ea,$) i ez$t)

I e4G) * ee(r¿)

L e4$) * e¿(r¿)

2 ere) f ei(zr)

2 ere) + e2er)

2 ete) * €e(zr)

2 e\z) I e¿eÐ

2 e2@) * e\zz)

2 eze) I ezez)

2 eze) I esez)

2 eze) I eaez)

2 qe) + €1(28)

2 qe) I ezez)

2 %e) * es(zs)

2 q@) -f eq,ee)

+
+

+

-+
T-T

+

-1-

+

+

-1-

-+
++
+

+
-r

+
+
+
+
+
+
+
+
+
+

-r

-+
++
+

+

+
--r

+
+

.T.

+

-r

+
-ï
-T- -l- +
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Table 4.2 (Cont'd)

Run A B C p q r h Block ErrorTerm
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Table 4.3: Standard Run Order of the 2(3+3)-(0+1)+(0+1) BFFSP Desien.

Run

1

2

3

4

5

6

7

8

9

10

11

L2

13

L4

15

16

17

18

19

20

2L

22

23

24

25

26

27

28

ABC

-r

pq

-1-

-+
++
-+
++

I

-T-

+

-r-

1-

ôr

-r -r

Block Error Term

1 el(r) * cr(rr)

1 ei(r) f ez(rr)

1 ez!) * er(rz)

r e2G) * ezoz)

1 eg(l) + €1(18)

1 ea(l) + €2(r3)

L e4G) * er(r¿)

\ e4G) * ez!t)

1 e5(1) * er(rs)

1 e5(1) + 62(15)

t e6G) * cr(ro)

1 e6(i) * ez!a)

I ezg) * er(rz)

7 e7$) I ezÍz)

1 eg(l) * er(re)

1 e8(t) f ez(rs)

2 ete) * €r(zr)

2 ere) + eze:)

2 eze) * e\zz)

2 eze) I ezez)

2 eze) * cr(ze)

2 qe) I ezes)

2 eae) i eteq)

2 e¡e) + €ze4)

2 ese) * e\zs)

2 ele) I ezes)

2 e6e) * er(zo)

2 e6e) * ezea)

+
+
-r

+

+
-1-

+

+

--1-

-r -T-

+

-r

+

+
-l-

T

+
+

-+
-T- -T-

+
+
-r
-1-

+
+
-l-

+
+
-r

+
-1-

+

+
+
+
+

+

-r

+

+
+
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Table 4.3 (Cont'd)

Run A B C p q r þt Block ErrorTerm

29 - + + + + 2 ele)*e\zz)
30 + + 2 eze)+e2ey)

31 + + + - + - + 2 ele)*er(ze)

32 + + + + 2 ey@)i-ezee)
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Table 4.4: Standard Run Order of the 2(3+3)-(0+r)+(1+1) BFFSP Design.

RunABCpqr 0, d1 Block Error Term

1 e1(1) -F 6r(rr)

1 er(i) f ez(rr)

r e2G) I et!z)

L e2G) * ez!z)

1 ee(r) * €r(r¡)

1 eg(l) + €2(iB)

1 ea,r) * €r(r¿)

t e4G) * ez$t)

+ - 2 e\z)le\zt)
+ - 2 e\z)*ezet)
+ - 2 eze)*e\zz)

+ - 2 eze)tezez)

+ - 2 eqz)*e\ze)

+ - 2 eze)*ezes)

+ - 2 e¿e)le\za)
+ - 2 eqz)*eze+)

- + 3 el(B)f€r(sr)

- + 3 ei(B)+62(81)

- + 3 e2G)*€r(ez)

- + 3 e2@)*ez@z)

- + 3 eB(B)*€r(s¡)

- + 3 es(s)*€z(e¡)

- + 3 e4(s)*6r(e¿)

- + 3 e¡e)lez@E)

+ + 4 e\¿)le\at)
+ + 4 e\ÐlezØÐ
+ + 4 eze)*e\¿z)

+ + 4 eze)iezØz)
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Table 4.4 (Cont'd)

Run A B C p q r h ô1 Block ErrorTerm
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Table 4.5: Standard Run Order of the Impractical2e+2)-(0+1)+(2+1) BFFSP Design.

Run A B C D p q þ, 0, ðr Block ErrorTerm
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Table 4.5 (Cont'd)

Run A B C D p q þt þz ô1 Block ErrorTerm
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APPENDIX B. CATALOG OF MA BFFSP DESIG¡\TS

8.1 Catalog of MA 8-Run BFFSP Designs

Pure \MP Blocking

t54
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APPENDIX B. C,\TALOG OF MA BFFSP DESIG¡\IS

Table 8.1: MA 8-Run BFFSP Designs via Pure WP Blocking.

n Design WLP and Generators

5 2,2;0,1;\,0 02L
AB þu ABpq

6 2,3;0,2;1,0 2272
ABþt, ABpq, Bpr

7 2,4;0,3;L,0 4 3 3 40 0 0 0 0 1

ABþr, ABpq, Bpr, Aps

NOTE: fþs 2(zr*zz)-(Ër*åz)a(ör+b') designs are labeled as "Design = TLrtrLZiktrlez;b1, b2" and are

ordered by the number of treatment and blocking factors, n : U * nz +h *bz.
To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The ztå WP blocking variable is denoted by p¿. Finallg the

last letter in each generator represents the added factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

(u) (b) (.) (d) (.) (Ð
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8.2 Catalog of MA 16-Run BFFSP

Pure \MP Blocking

156
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Table 8.2: MA 16-Run BFFSP Designs via Pure WP Blocking.

n Design WLP and Generators

6 2,3;0,1;1,0 01011
AB þr, ABpqr

3,2;0,1;1,0 0012
ABC pb ABpq

4,1;1,0;1,0 0 2I
ABCD, ABP,

7 2,4;0,2;I,0 023002
ABh, Bpqr, Apqs

3,2;0,L;2,0 03031
ABh, ACþr, ABCpq

3,3;0,2;1,0 0034
ABC pb ABpq, ACpr

4,L;1,0;2,0 0 6 1

ABC D, AB þ,, AC þ,
4,2;L,1;7,0 023002

ABCD, ABh, ACpq

(u) (b) (.) (d) (") (f)

59390

54220

54t40

r57

NOTE: |¡¿ 2@t*nz)-(Èr*Ëz)*(ör+ö') designs are labeled as "Design : nr,n2;h,kz;b1, b2" and are

ordered by the number of treatment and blocking factors, n : h * nz + h * bz.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The i¿ä WP blocking variable is denoted by p¿. Finally, the

Iast letter in each generator represents the added factor.
(a) The number of clear main effects.

(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table 8.2 (Cont'd)

n Design

8 2,5;0,3;1,0 037004
ABh, Bpqr, Apqs

ABqt

3,3;0,2;2,0 063006
ABþr, ACþ2, ABpq

ACpr

3,4;0,3;1,0 007 7 0 0 0 0 0 0 01

ABC h, ABpq, ACpr

BCps

4,2;l,L;2,0 0 7 3 0 0 4 0 0 0 1

ABCD, ABþ,, ACO,

ABpq

4,3;I,2;I,0 0 3 7 0 0 4 0 0 0 1

ABCD, ABþr, ABpq

ACpr

5,2;2,1;I,0 22332200 0 0 01

ABC D, AB E, AC þ.,.

BCpq

9 2,6;0,4;L,0 0 4140 0 8 0 0 0 4 I
ABh, Bpqr, Apqs

ABqt, ABpu

3,4;0,3;2,0 0I70 012 0 0 03
ABþr, ACþ2, ABpq

ACpr, BCps

3,5;0,4;1,0 317 7 440013 01

ABC fu, ABCpq, ABpr

ACps, BCpt

WLP and Generators (") (b) (.) (d) (.) (Ð
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Table 8.2 (Cont'd)

Design

4,3;I,2;2,0 0 9 7 0 0 12 0 0 0 3

ABC D, AB 0,, AC þ,
ABpq, ACyr

4,4;I,3;L,0 04L4 0 08 0 0 041
ABCD, 480,., ABpq

ACW, BCps

5,3;2,2;I,0 337 3 44041 101
ABCD, ABE, AC 0,.

ABpq, ACpr

6,2;3,1;1,0 446 440 0 40 41
ABCD,, ABE, ACF
BC h, BCpq

WLP and Generators (") (b) (.) (d) (.) (Ð

10 2,7;0,5;t,0 44t4488 0 844I 4

ABþr, pqr, ABpqs

ABqt, Bpu, Apu

3,5;0,4;2,0 397 9 412012 13 0 3

ABþu ACþ2, ABCpq

ABW, ACps, BCpt

3,6;0,5;1,0 62I0 8 8I4 426I4
ABC pL, ABCpq, ABpr
ACps, BCpt, Cpu

4,4;L,3;2,0 012740024 0 0 0 i2 1

ABC D, AB h, AC þ,
ABpq, ACpr, BCps

4,5;I,4;I,0 4414 4I8 0 844L 4

ABCD, ABþt, ABCpq

ABpr, ACps, BCpt
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Table 8.2 (Cont'd)

n Design WLP and Generators (r) (b) (.) (d) (.) (f)

10 5,4;2,3;L,0 44L4488084414 0 0 0 0 0 0

ABCD, ABE, ACO,

ABpq, ACW, BCps

6,3;3,2;L,0 6410684482812 0 0 0 0 0 0

ABCD, ABE, ACF
BCp7, ABCpq, BCp,
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8.3 Catalog of MA 32-Run BFFSP

Pure .WP 
Blocking
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Table 8.3: MA 32-Run BFFSP Designs via Pure WP Blocking.

n Design WLP and Generators (u) (b) (") (d) (") (Ð

7 2,4;0,I;7,0 0100011
ABþr, ABpqrs

3,3;0,1;1,0 000111
ABC h, ABpqr

4,2;01;L,0 000111
ABC Dh, ABCpq

4,2;L,0;1,0 0 2I
ABCD, ABþ,

8 2,5;0,2;7,0 01112101 7 L4 5 74 0 0

ABþt, Bpqrs, AÛpqt

3,3;0,1;2,0 0300031 6 L2 3 72 0 0

ABh, ACþ2, ABCpqr

3,4;0,2;I,0 001222 7 15 4 13 0 0

ABC 0u ABpqr, ACpqs

4,2;0,I;2,0 010312 6 L4 2 I 0 1

ABC\, ABD/4, ACDpq

6144t400

6153t200

6152901

692900

t62

NOTE: a¡s 2(nt+nz)-(Ër*ft2)t(ör+Dz) designs are labeled as "Design : nttnz;lqrkziä1, ä2" and are

ordered by the number of treatment and blocking factors, n:U*nz+h*bz.
To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The i,tk WP blocking variable is denoted by p¿. Finally, the

last letter in each generator represents the added factor.
(a) The number of clear main effects.

(b) The number of clear two.factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interacbions.

(e) The number of clea¡ SP main effecis tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table 8.3 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (.) (Ð

I 4,2;\,0;2,0 061
ABCD, ABh, ACþ,

4,3;0,2;1,0 00I222
ABCDh, ABCpq, ABDpr

4,3;L,L;L,0 02102002
ABCD, ABþr, ACpqr

5,2;2,01,0 22t2
BCD, ACE, ABP,

5,2;1,,L;L,0 00I222
ABDE, ACDpb BCDpq

6,1;2,0;1,0 0034
ABCE, ABDF, ACDPL

9 2,6;0,3;1,0 0 132 42020t
AB0r, PQrs, ABpqt

692900

71531002

71531500

2712LL00

71521,I 01

761600

Bpru

3,4;0,2;2,0 031422020L 7 L2 4 12 0 1

ABþr, ACþ2, ABpqr

cpqs

3,5;0,3;1,0 003344000001 8 13 5 11 0 0

ABC h, ABpqr, ACpqs

BCqt

4,2;0,L;3,0 06041103 6 I 2 I 0 1

AB0u ACþ2, AD1s

ABCpq

4,3;0,2;2,0 0116240001 7 74 3 10 0 2

ABC h, ABD p2, AC Dpq

BCDpr
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Table B.3 (Cont'd)

n Design

I 4,4;0,3;7,0

WLP and Generators

00334400000i
ABDpb ABCpq, ACDpr
BDps

ABCDh, ABCpq, ABDpr
AC Dps

4,3;7,L;2,0 0 6 1 1 20 0 40 0 0 1

ABCD, ABþ,, ACþ,

ABpqr

4,4;7,2;I,0 02314202 0 0 01
ABCD, ABþt, ABpqr

ACpqs

5,2;7,L;2,0 0 215 2400 0 0 01

ABCE, ABD7L, ACD02

BC Dpq

5,3;1,2;1,0 0 0 3 3 4400 0 0 01

ABCE, ABD/L, ACDpq

BC Dpr
5,3;2,1;1,0 22122t22 0 0 0 0 01

ABC D, AB E, AC þ,
BCpqr

6,1;2,0;2,0 0 3 3 8 0 0 0 0 0 1

ABCE, ABDF, ACDP\

BCDp2

(u) (b) (.) (d) (.) (Ð

134

164

134100

153 150

134

x Indicates a design with rzl,nzikt,kz;bt,bz and WLP identical to the design immediately

preceding it in the table; the distinguishing design cha¡acteristic lies in (at least) one of the columns

labeled (a) - (f).

7152t7

130

133

183 180
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Table 8.3 (Coni'd)

Design

6,2;2,L;7,0 0 03443 00 0 00 0 01

ABCE, ABDF, ACDPI

BC Dpq

2,7;0,4;L,0 0 1 6 4 83 04 0 3 1 0 0 1

AB0t, pQrs, ABpqt

ABpru, Bqru

3,5;0,3;2,0 0 3 3 8 440 40 5

AB h, AC þr, ABpqr

Cpqs, ABCqt

3,6;0,4;1,0 0 0 6 4 88 0 0 0 014
ABC h, ABpqr, ACpqs

BCqt, BCpu

4,3;0,2;3,0 0 7 1 8 2 6 0 6 0 1

cD7t, BD1z, ADp,
ABDpq, ACpr

4,4;0,3;2,0 0 1 3 10 4 8 0 0 0 3 0 2

ABCph ABD/2, ACDpq

BCDpr, ABps

4,4;I,2;2,0 07 32 4408 010 2

ABC D, AB þ,, AC þ,
ABpqr, ACpqs

4,5;0,4;L,0 0 06488 000014
ABCD\, ABCpq, ABDpr
AC Dps, BC Dpt

4,5;1,3;1,0 0 2 6 2 8 40 40 2I2
ABCD, ABh, ABpqr

ACpqs, BCqt

10

WLP and Generators (u) (b) (.) (d) (.) (f)

13

165

13

10 10

10 10

t2

13 13
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Table 8.3 (Cont'd)

n Design

10 5,2;1,1;3,0 010 1524080001
ABCE, ABCDpb ABp,
ADþs, ABDpq

5,3;I,2;2,0 02 59 0 426 0 2 01
ABCE, ABDT, ACD12

ABC Dpq, ABpr

5,4;1,3;1,0 00 6 48I00 0 014
ABCE, ABD\, ACDpq

BCDyr, ABps

5,4;2,2;L,0 22 4 46 2 220 4L 2

ABCD, ABE, ACÊ,

ABpqr, ACpqs

6,L;2,0;3,0 015 3 0 0120 0 01

ABCE, ABDF, ABCDPT

AB0z, ACþ,

6,2;2,1;2,0 0 3 510 022 4 0 3 0 2

ABCE, ABDF, ACDPI

BC D p2, ABC Dpq

6,3;2,2;1,0 00I70 0 6 6 0 0 0 3

ABCE, ABDF, ACDPT

ABC Dpq, ACpr

6,3;3,1;1,0 43 3 53 04005031
ABCD, ABE, ACF
BC þt, BCpqr

7,2;3,I;I,0 0 0 10 8 0 0 44 0 0 1 4

ABCE, ABDF, ACDG

BC D pL, ABC Dpq

WLP and Generators (u) (b) (.) (d) (.) (Ð

11

166

11

11 11
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8.4 Catalog of MA 8-Run BFFSP Designs

Separation
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Table 8.4: MA 8-Run BFFSP Designs via Separation.

Design WLP and Generators

1,3;0,1;0,1 0 2I
Apqr, pqõ1

6 I,4;0,,2;0,1 22L2
pqr, Apqs, Aq6t

7 1,5;0,3;0,1 433 40 0 0 0 0 1

pqr, Apqs, Aqt, Apõ1

NOTE: !\¿ 2Øt*nz)-(kr+Éz)t(ör+ö,) designs are labeled as "Design : TLrtr¡2iktrkz;b1, ä2" and are

ordered by the number of treatment and blocking factors, n : nr * nz + fu i b2.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The jth separator is denoted by ô¡. Finall¡ the last letter in
each generator represents the added factor.

(a) The number of clear main effects.

(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interacbions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against \MP error.

(") (b) (.) (d) (.) (Ð

168
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8.5 Catalog of MA 16-Run BFFSP Designs

Separation
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n Design

Table 8.5: MA 16-Run BFFSP Designs via Separation.

6 1,4;0,1;0,1 0012
pQrs, Apqõ,

2,3;0,1;0,1 0012
ABqr, Bpq6,

WLP and Generators

Bpqr, Apqõ,

3,2;1,0;01 100101
ABC, ABpqõ1

7 L,4;0];0,2 0274
pers, pqõ1, Aprõ2

1,5;0,2;0,1 0034
pQrs, Apqt, Apr6t

2,4;0,2;0,1 0034
ABqr, ABps, Bpqõt,

3,3;1,1;0,1 t172LI
ABC, ABpqr, Bpq6t

(u) (b) (.) (d) (.) (f)

t70

NOTE: !\¿ 2@'-lnz)-(kr*Èz)*(ör+ö') designs a¡e labeled as "Design : T¡rtrL2llq,kz;b1, b2" and are

ordered by the number of treatment and blocking factors, n : h * nz + h * bz.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to denote

the WP and SP factors, respectively. The jth separator is denoted by ô¡. Finallg the last letter in
each generator represents the added factor.

(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
* Indicates a design with rzl,nzlkt,lczlh,bz and WLP identical to the design immediately

preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (f).

4
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Table 8.5 (Cont'd)

n Design

8 1,5;0,2;0,2 0 3 38000 0 0 1

p7rs, Apqt, pq6t

Apr6z

1,6;0,3;0,1 007 7 0 0 0 0 0 0 01
pQrs, Apqt, Apru

Aqr61

2,5;0,3;0,L 007 7 0 0 0 0 0 0 01

Bpqr, Apqt, ABqt

ABpõ1

3,4;I,2;0,1 2 L 3 42 2 0 0 0 t
ABC, ABpqr, Bpqs

Aq6,

9 1,6;0,3;0,2 09700120003
p7rs, Apqt, Apru

PQù, Fr6z

7,7;0,4;0,1 0 414 0 0I0 0 0 4 i
p7rs, Apqt, Apru

Aqru, pqõy

2,6;0,4;0,1 0 414 0 0 8 0 0 0 41

Bpqr, Apqs, ABqt

ABpu, pqõ1

3,5;1,3;0,1 3LT 7 440013 01

ABC, ABpqr, Bpqs

Aqt, Apõy

WLP and Generators (u) (b) (.) (d) (.) (Ð

t7L
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Table 8.5 (Cont'd)

10 L,7;0,4;0,2 012L4002400012 1

pQrs, Apqt, AWu

Aqru, pQõu trrõz

1,8;0,5;0,1 44L4 4 8I0 844I4
pQrs, pqt, Apqu

Apru, Aqrw, prõ1

2,7;0,5;0,1 4414 4 8 8 0 844I4
pqr, ABpqs, ABqt

Bpu, Apu, Bpqõ,

3,6;1,4;0,1 44L4 4 8 8 0 84414
ABC, ABpqr, Bpqs

Aqt, Apu, pq61

Design WLP and Generators (") (b) (.) (d) (.) (Ð

t72
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8.6 Catalog of MA 32-Run BFFSP Designs

Separation
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n Design

Table 8.6: MA 32-Run BFFSP Designs via Separation.

1,5;0,1;0,1 000111
Apqrt, pQs6t

2,4;0];0,1 000111
ABpqs, pQr6t

3,3;0,1;0,1 000111
ABCqr, ACpq61

3,3;1,0;0,1 10000101
ABC, ABpqrõ1

4,2;L,0;0,L 001002
ABCD, ABpq61

WLP and Generators (u) (b) (.) (d) (.) (f)

8 1,5;0,1;0,2 00t402
pqrt, pqsfi, Aprsõ2

1,6;0,2;0,1 001222
pqrt, Aprsu, qrs6¡

15

NOTE: !l1s 2Øt-lnz)-(Èr*Ëz)4(är+ô') designs are labeled as "Design : r¡r¡r¡2lkt,kz;bL,bz" and are

ordered by the number of treatment and blocking factors, n:h*n2 ]-lnibz.
To save space the WLPs are truncated at the last non-zero value. A-G and p-w a¡e used to denote

the WP and SP factors, respectively. The jth separator is denoted by ô¡. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two.factor interactions tested against WP error.
x Indicates a design with n1,n21k1,k2;b1,b2 and WLP identical to the design immediately

preceding it in the table;the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (t).

15

L74

15

15

t4

L2

T2

L2

15 15
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Table 8.6 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (") (Ð

8 2,4;0,L;0,2 001402
pQrs, ABpq6¡ Bprõ2

**

ABrs, Aprõ¡, ABpqõ2
**

ABrs, Bpqrfi, Apr62

2,5;0,2;0,1 00L222
pQrs, ABpqt, ABprõ-

t*

ABrs, ABpqt, Apqr61

3,4;0,2;01 00I222
ABCpr, ABCqs, ABpq61

**

ABCpr, ACqs, BCpqõ1
**

ABpqr, ACpqs, BCpq61

3,3;1,0;0,2 100303
ABC, ABpqïy Bprõ2

3,4;1,1;0,1 I002I2L
ABC, ABpqrs, Bpq6,.

4,3;L,\;0,1 001222
ABCD, ABpqr, ACpq61

5,2;2,0;0,1 20100202
ABC D, ABE, ACpqõ1

694800

694905

694914

71551400

71551502

71541200

71541305

71541323

31231203

41841802

71531515

27I21101

175
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Table 8.6 (Cont'd)

n Design WLP and Generators

I I,6;0,2;0,2 00370400000 1

pqrt, pqsu, prs61

Aqrs62

1,7;0,3;0,1 0 0 3 3 4400 0 0 01

pqrst, Apqru, Apqsu

Aprs61

2,5;0,2;0,2 00 3 704000 001
ABrs, ABqt, Bqr61

ABp62

(u) (b) (.) (d) (.) (f)

766600

2,6;0,3;0,L

pQrs, Bpqt, Apqõ,

ABpr62

003344000001
pqrs, ABpqt, ABpru
Bqrõ1

ABps, ABrt, Bpqru

Apqrõ1

L76

28

ABps, ABqrt, Apru

Apqõ,

3,5;0,3;0,1 0 0 3 3 4400 0 0 01
BCpr, BCqs, ACpqt

ABpqõ1

13 L2

13

ABCpr, ABCqs, Apqt

Bpqõt

13

13 13

11

10
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Table 8.6 (Cont'd)

n Design \ /LP and Generators
g >r,

ABpqr, ACpqs, BCpqt

ABCq61

3,4;1,1;0,2 101606001
ABC, pQrs, ABpqõ1

Bpr6,

3,5;1,2;0,1 L0233 3 1 1 0 i
ABC, ABpqrs, Bpqt

Bprõ1

4,4;L,2;0,t 0 0 3 3 440 00 0 0 i
ABCD, ABpqr, ACpqs

BCq61

5,3;2,L;01 20I32420 0 0 01
ABCD, ABE, ACpqr

ABpqõ1

10 1,6;0,2;0,3 05 1 12 260203
Aqrst, Aprsu, Apqsït

rs62, Arõ3

+

BCpr, ABCqs, ABpt

ACpq61

(") (b) (.) (d) (.) (Ð

81351307

177

13513

t24 t20

135 130

13413

Arst, Apqsu, Arõ1

Aps62, Apqrõ3

18318

126 L22

t2 6L2
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Table 8.6 (Cont'd)

10 1,7;0,3;0,2

Design WLP and Generators

0131048000302
Aqrst, prsu, Apqsu

Aq6r, Apr6,

pqrst, Apqru, Apqsu

pqfi, Aprsõ2

1,8;0,4;0,1 0 0 648I0 0 0 014
Aqrst, Aprsu, Apqru

Apqsw, pqrsõ1

2,6;0,3;0,2 0131048 0 00 3 02
pers, AÙpqt, ABpru

Bqrõ1, Aqrõ2

2,7;0,4;01 0 0 648 8 0 0 0 014
ABps, ABqrt, Apru

Bpqru, Apqõ,

(") (b) (") (d) (.) (Ð

L2

t78

L2

72

pQrs, ABpqt, ABpru

Bqru, Aqrõ1

3,6;0,4;0,1 0 06 48I00 0 0 i 4

ABpqr, ACpqs, BCpqt

ABCqu, ABCp61

t2

12

BCpr, Bpqs, ACpqt

ABCqu,, ABp61

3,5;7,2;0,2 1 1 3 I 28021 3 0 1

ABC, pqrs, ABpqt

Bpq6t, ABprõ2

72
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Table 8.6 (Cont'd)

10 3,6;1,3;0,1 10556522120 101
ABC, pQrs, ABpqt

Bpru, ABqrõ¡

4,5;1,3;0,1 0 0 6 48I0 0 0014
ABCD, ABpqr, ACpqs

BCqt, BCpõ1

5,4;2,2;0,1 20 446 6220212
ABCD, ABE, ABpqr

ACpqs, BCqõ1

6,3;3,1;0,1 40 4 42 6 222212
ABCD, ABE, ACF
ABCpqr, Apqõ,

Design WLP and Generators (u) (b) (.) (d) (.) (Ð

179

11 11

15 15
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8.7 Catalog of MA 16-Run BFFSP Designs

Mixed Blocking
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Table 8.7: MA 16-Run BFFSP Designs via Mixed Blocking.

n Desisn WLP and Generators (u) (b) (.) (d) (.) (Ð

7 2,3;0,L;L,7 0274
ABþr, ABqr, Bpqõ,

2,4;0,2;L,l 0 3 3 8 0 0 0 0 0 1

AB0r, ABqr, ABps

Bpq6,

2,5;0,3;1,1 0 9700120 0 0 3

ABh, ABpr, ABqs

Apqt, ABpqõ1

2,6;0,4;1,1 012740024 0 0 012 1

ABþt, Bpqr, Apqs

ABqt, ABpu, pqõ1

10

543402

NOTE: lhs )Øúnz)-(Ér*Èz)*(ör+ô,) designs are labeled as "Design : flrtTL2jkt,kz;b1,b2" and. are

ordered by the number of treatment and blocking factors, n : nL * nz + h * bz.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to
denote the WP and SP factors, respectively. The iúä and jth WP btocking variable and separator

are denoted by p¿ and ô¡, respectively. Finally the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two"factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two.factor interactions tested against WP error.
x Indicates a design with n1,n21k7,lc2;b1,bz and WLP identical to the design immediately

preceding it in the table; the distinguishing design ctraracteristic lies in (at least) one of the columns

labeled (a) - (t).

181
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Table 8.7 (Cont'd)

n Design WLP and Generators (") (b) (.) (d) (.) (Ð

11 2,7;0,5;L) 4I214L28240244L2L12 0 0 0 0 0 0

AB0r, pqr, ABpqs

ABqt, BW, Apu

Bpqõ,
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8.8 Catalog of MA 32-Run BFFSP Designs

Mixed Blocking
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n Design

Table 8.8: MA 32-Run BFFSP Designs via Mixed Blocking.

2,4;0,1;I,1 010312
ABþr, ABpqs, Apqr61

3,3;0,1;1,1 001402
ABC h, ABqr, ACpq61

4,2;1,0;L,L 021004
ABCD, AB/L, ACpqõ1

WLP and Generators

I 2,4;0,1;7,2 0308031
AB0t, ABpqrs, Bpq6,

Bpr6,

2,5;0,2;1,7 0 1 1 6 2 40 0 0t
ABþt, pqrs, ABpqt

Bprõt

3,3;0,1;2,1 04061301
AB/u AC0r, ABCqr

PQ6t

(*) (b) (.) (d) (.) (Ð

T4

L84

NOTE: !\¿ 2@t*nz)-(ßi*ft2)*(ôr*å") designs are labeled as "Design : nrlnz;l.l rkz;är, ä2" and are

ordered by the number of treatment and blocking factors, n: U * nz+h *bz.
To save space the IVLPs are truncated at the last non-zero value. A-G and p-v are used to

denote the WP and SP factors, respectively. The i,th and jth WP blocking variable and separator

are denoted by p¿ and ô¡, respectively. Finall¡ the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effecbs.

(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

74

L2 T2

T4 T4

11 11
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Table 8.8 (Cont'd)

n Design WLP and Generators (") (b) (.) (d) (.) (f)

9 3,4;0,2;I] 003704000001 7 6 4 4 0 0

ABCfu, BCpr, BCqs

BPqõt'

ABCh, ABqr, ACqs

BCpqõ1

4,2;L,0;2,L 06140004
ABC D, AB h, AC þ,
ABCpq6l

4,3;L,l;l] 0 215 2 400 0 0 01
ABCD, ABþr, ABpqr
ACpqõ1

5,2;2,01] 2 2 I 3 0 40 20 0 0 1

ABC D, ABE, AC þ,
ABpqõ1

2,5;0,2;1,2 0 5112 260203
ABh, ABqrs, pqrt

Aprfi, pqõ2

10

185

ABþr, ABps, Apqrt

Aprõr, Bpqõ,

2,6;0,3;7,1 013 i048 00 030 2

ABþt, pQrs, ABpqt

ABpru, Bqrõ1

15

* Indicates a design with n1,n2;k1,k21b1,bz and WLP identical to the design immediately
preceding it in the table; the distinguishing design characteristic lies in (at least) one of the columns

labeled (a) - (t).

15

11 11

T2 12

12 L2

L2 L2
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Table 8.8 (Cont'd)

n Design WLP and Generators

10 3,4;0,2;2,1 05 1 12 260203
ABþ,, ACþ,, ABCqT

ABCps, pqõ1

3,5;0,3;1,1 0131048 0 0 0 3 02
ABC h, ABpqr, ACpqs

BCqt, BCp61

ABCþy, BCpr, ACps

ABCqt, Cpq6,

4,3;I,7;2,! 0 7 3 8 0 4 0 8 0 1

ABCD, ABh, ACp2

ABqr, ABCpqïl
4,4;I,2;7,L 025 80 52800 0 00 i

ABC D, AB þr, AC qr

BCps, ABCpqõ1

5,3;2,L;1,7 2237 2604 0 4 01
ABCD, ABE, ACþ,

BCqr, ABCpqït

(u) (b) (.) (d) (.) (Ð

7L247200

186

12510

725 120
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Table C.1: 32-Run Tliples: Initial Design is an MA FFSP Design

n Design WLP and Generators (") (b) (.) (d) (.) (Ð

6 2,4;0,1;0,0 0000001 6 15 4 14 0 0

ABpqrs

3,3;0,1;1,0 000111 6 15 3 72 0 0

ABC/L, ABpqr

2,4;0,7;0) 000111 6 15 4 14 0 1

ABpqs, pQrõt

3,3;0,1;0,0 0000001 6 15 3 72 0 0

ABCpqr

4,2;0];L,0 000111 6 15 2 I 0 1

ABC D p!, ABCpq

3,3;0,1;0,1 000111 6 15 3 72 0 3

ABCqr, ACpqõ1

3,3;1,0;0,0 1 3 12 3 72 0 0

ABC
4,2;I,01,0 02t 6 9 2 I 0 0

ABCD, ABþ,.

3,3;1,0;0,1 10000101 3 L2 3 12 0 0

ABC, ABpqrõ1

NOTE: !\¿ 2@t*nz)-(ßr*Èz)*(àr+ü') designs are labeled as "Design : nL)n2;lq,kz;b1,b2" and. are

ordered by the number of treatment and blocking factors, n: nr*nz*h*ä2. The initial, elerr¿ted

and separated designs appear first, second and third, respectively within a triple.
To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to

denote the WP and SP factors, respectively. The i,th and jth WP blocking 'øa.riable and separator

are denoted by p¿ and ô¡, respectively. Finall¡ the last letter in each generator represents the added

factor.
(a) The number of clear main effects.

(b) The number of clear two-factor inte¡actions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against lVP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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Table C.1 (Cont'd)

n Design WLP and Generators (") (b) (.) (d) (u) (Ð

7 3,4;1,1;0,0 1000101 4 18 4 18 0 0

ABC, Apqrs

4,3;I,1;I,0 02102002 7 15 3 15 0 0

ABCD, ABþu ACpqr

3,4;1,7;0,1 t002l2l 4 18 4 18 0 2

ABC, ABpqrs, Bpqõt

4,3;1,1;0,0 00102
ABCD, BCpqr

5,2;1,7;7,0 00I222
ABDE, ACDpr, BCDpq

4,3;11;0] 001222
ABCD, ABpqr, ACpq61

5,2;2,0;0,0 2 0 L

BCD, ACE
6,I;2,0;L,0 0034

ABCE, ABDF, ACDP\

5,2;2,0;0,L 20100202
ABCD, ABE, ACpqõ1

8 3,5;0,3;0,0 00304 I 13 5 13 0 3

BCpr, ACps, ABpqt

4,4;0,3;I,0 003344000001 I 13 4 I 0 0

ABD\, ABCpq, ACDpr
BDps

3,5;0,3;0,1 003344000001 I 13 5 11 1 3

BCpr, BCqs, ACpqt

ABpqõ1

71531500

71527I01

71531515

2rr2r700

761600

2TL2TLO1
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Tabie C.1 (Cont'd)

n Design \ /LP and Generators (r) (b) (.) (d) (.) (f)

8 3,5;1,2;0,0 1020301 5 13 5 13 0 0

ABC, Aqrs, Bprt
4,4;L,2;1,0 023142020001 8 13 4 13 0 0

ABCD, ABh, ABpqr

ACpqs

3,5;1,2;0,1 1023331101 5 13 5 13 0 2

ABC, ABpqrs, Bpqt

Bpr61

4,4;1.,2;0,0 00304 8 13 4 13 0 1

ABCD, BCW, ACpqs

5,3;L,2;I,0 003344000001 I 13 3 I 0 2

ABCE, ABDpb ACDpq

BC Dpr
4,4;!,2;0,L 003344000001 8 13 4 13 1 6

ABCD, ABpqr, ACpqs

BCqõ1

5,3;2,1;0,0 20t0202 3 18 3 18 0 0

BCD, ACE, ABpqr

6,2;2,1;1,0 00344300000001 8 13 2 L3 0 1

ABCE, ABDF, ACDPL

BC Dpq

5,3;2,1;0,1 201324200001 3 18 3 18 1 6

ABCD, ABE, ACpqr

ABpq61
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Table C.1 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (") (Ð

9 2,7;0,4;0,0 0060800000i I 8 7 8 0 1

ABps, ABqrt, Apru

Apqu

3,6;0,4;1,0 006488000014 I 8 6 6 0 0

ABC pr, ABpqr, ACpqs

BCqt, BCpu

2,7;0,4;0,7 006488000014 9 8 7 I 0 2

ABps, ABqrt, Ayru
Bpqru, Apqõ,

3,6;0,4;0,0 00608000001 I I 6 8 0 4

BCpr, ACps, ABCqt

cpqu

4,5;0,4;1,0 006488000014 I I 5 8 0 4

ABCDpr, ABCpq, ABDpr
AC Dps, BC Dpt

3,6;0,4;0,1 006488000014 9 I 6 8 L 4

ABpqr, ACpqs, BCpqt

ABCqu, ABCpõ1

3,6;1,3;0,0 105060201
ABC, Aqrs, Aprt
Bpqu

4,5;1,3;1,0 026284040212 9 I 5 8 0 0

ABC D, AB h, ABpqr

ACpqs, BCqt

3,6;1,3;0,1 10556522120101 6 I 6 9 0 1

ABC, pQrs, ABpqt

BWu, ABqr61

696900



APPENDIX C. INITIAL, ELEUATED A¡\ID SEPARATED DESIG¡\IS

Table C.l (Cont'd)

n Design

9 4,5;1,3;0,0 0060800000i
ABCD, BCpr, BCqs

ACpqt

5,4;1,3;1,0 0 0 648 80 0 0 014
ABCE, ABDpr, ACDpq

BCDpr, ABps

4,5;1,3;0,1 0 0 648 80 00 014
ABCD, ABpqr, ACpqs

BCqt, BCpõ1

WLP and Generators

5,4;2,2;0,0 20 40 6 0 2 0 0 01
BCD, ACE, ABPT

cpqs

6,3;2,2;I,0 0 0 9 70 0 6 60 0 03
ABCE, ABDF, ACDPI

ABC Dpq, ACp,

5,4;2,2;0,1 20 446 62202L2
ABCD, ABE, ABpqr

ACpqs, BCq61

(") (b) (.) (d) (.) (Ð

985802

792

6,3;3,1;0,0 4030 3 04000001
BCD, ACE, ABF
ABCpqr

7,2;3,1;7,0 0 0 10 8 0 0 4 400 I 4

ABCE, ABDF, ACDG

BCDpr, ABCDpq

6,3;3,1;0,1 40 442 6222 212
ABCD, ABE, ACF
ABCpqr, Apqõt

11 11

11 4

327

i1

2T

153 15



APPENDIX C. INITIAL, ELEUATED AND SEPARATED DESIG¡üS

Table C.2: 32-Run Tliples: Initial Design is an MA BFFSP Design with Pure WP
Blocking

n Design

7 2,4;0];I,0 0100011
ABþu ABpqrs

3,3;0,1;2,0 0300031
AB0t, ACþ2, ABCpqr

2,4;0]l] 010312
ABh, ABpqs, Apqr61

WLP and Generators

3,3;0,1;1,0 000111
ABC h, ABpqr

4,2;0,1;2,0 010312
ABC h, ABD p2, AC Dpq

3,3;0,1;1,1 00t402
ABC fu, ABqr, ACpq61

(") (b) (.) (d) (.) (Ð

NorE: !l1s 2(nt*'n2)-(ftr*Éz)*(br+ä') designs are labeled as "Design : h)n2;ktrkz ä1, b2" and are

ordered by the number of treatment and blocking factors, n : nri-nz*h* bz. The initiaÌ, elevated

and separated designs appear fi.rst, second and third, respectively, within a triple.

To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to
denote the WP and SP factors, respectively. The i,th and jth WP blocking variable and separator

are denoted by þ¿ and d¡r respectively. Finally the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effecbs.

(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

61441400

193

t2

L4

T2

15

t4

T4

t2



APPENDIX C. INITIAL, ELEUATED A¡üD SEPARATED DESIG¡üS T94

Table C.2 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (.) (Ð

8 3,3;0,1;2,0 0300031 6 12 3 L2 0 0

ABþu ACþ2, ABCpqr
4,2;0,I;3,0 06041103 6 9 2 I 0 1

AB h, AC þ,, AD þE

ABCpq

3,3;0,L;2,L 04061301 6 11 3 11 0 2

ABþr, AC0z, ABCqr

P8õt

3,4;0,2;1,0 001222 7 15 4 13 0 0

ABC h, ABpqr, ACpqs

4,3;0,2;2,0 0116240007 7 74 3 10 0 2

ABC\, ABD\¡, ACDpq

BC Dpr
3,4;0,2;L] 003704000001 7 6 4 4 0 0

ABC fu, BCpr, BCqs

BPqõt

4,,3;l,L;L,0 02102002 7 15 3 15 0 0

ABCD, ABþt, ACpqr

5,2;\,1;2,0 021524000001 7 15 2 7L 0 1

ABCE, ABDfu, ACDP|
BC Dpq

4,3;I,L;L] 02152400000i 7 15 3 15 1 15

ABC D, AB þt, ABpqr

ACpqõ1



APPENDIX C. INITIAL, ELEUATED A¡.TD SEPARATED DESIG¡üS 195

Table C.2 (Cont'd)

n Design WLP and Generators (") (b) (.) (d) (u) (Ð

8 5,2;2,0],0 2 21 2

BCD, ACE, ABP,

6,1;2,0;2,0 0338000001 7 6 1 6 0 0

ABCE, ABDF, ACDPI

BCDp2

5,2;2,0;11 221304020001 2 17 2 II 0 1

ABCD, ABE, ACþ,
ABpq61

9 3,5;0,3;1,0 003344000001 8 13 5 11 0 0

ABC h, ABpqr, ACpqs

BCqt

4,4;0,3;2,0 0131048000302 I 72 4 8 0 0

ABC\, ABDI¡, ACDpq

BCDpr, ABps

3,5;0,3;1,1 0131048000302 I 72 5 10 7 2

ABC h, ABpqr, ACpqs

BCqt, BCp61

2rr27700

4,3;L,I;2,0 061120040001 7 15 3 15 0 0

ABCD, ABþ,, ACO,

ABpqr

5,2;I,L;3,0 010 1524080007 7 11 2 7L 0 1

ABCE, ABCDT, ABP,
ADþy, ABDpq

4,3;7,1;2,1 0738040801 7 6 3 6 0 2

ABC D, AB þ,, AC P2

ABqr, ABCpqïl



APPENDIX C. INITIAL, ELEUATED A¡üD SEPARATED DESIG¡üS

Table C.2 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (") (f)

9 4,4;I,2;1,0 023 7 42020 0 0 1

ABCD, AB/t, ABpqr

ACpqs

5,3;L,2;2,0 0 2 5I0 426 0 2 01

ABCE, ABDT, ACD7|
ABC Dpq, ABpr

4,4;I,2;7,I 0 2 5 80 52 8 0 0 0 0 01
ABCD, ABþ,., ACqr

BCps, ABCpqõy

5,3;2,1;1,0 22722L22 0 0 0 0 01

ABCD, ABE, ACþ,,

BCpqr

6,2;2,I;2,0 0 3 510 0224 0 3 0 2

ABCE, ABDF, ACDPI

BC D p2, ABC Dpq

5,3;2,\;L,L 2237 260 4 0 4 01
ABCD, ABE, ACþ,,

BCqr, ABCpqõ1

81341300

196

4

183180



APPENDIX C. INITIAL, ELEUATED A¡üD SEPARATED DESIG¡üS

Table C.3: 32-Run tiples: Initial Design is an MA BFFSP Design with Separation

n Design

7 1,5;0,1;0,1 000111
Apqrt, pQsõt

2,4;0,I;7,I 010312
AB0r, AÛpqs, Apqrõt

1,5;0,1;0,2 00I402
pqrt, pqsõ¡ Aprsõ2

WLP and Generators

3,3;1,0;0,1 10000101
ABC, ABpqrõ1

4,2;I,0;L,l 027004
ABCD, ABpl, ACpqõ1

3,3;1,0;0,2 100303
ABC, ABpq61, Bprõ2

(u) (b) (.) (d) (.) (f)

NOTE: a¡s2ftt+nz)-(ßr*ßz)a(ör+öz) designs are labeled as "Design :rLLtrù2ik1,k2;b1,b2" and are

ordered by the number of treatment and blocking factors, n: U*nz*h*ä2. The initial, elevated

and separated designs appear fi.rst, second and third, respectively within a triple.
To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to

denote the WP and SP factors, respectively. The í,th aÐd jth WP blocking variable and separator

are denoted by þ¿ and ô¡r respectively. Finally the last letter in each generator represents the added

factor.
(a) The number of clear main effects.
(b) The number of clea¡ two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against IVP error.
(f) The number of clear SP two-factor interactions tested against WP error.

61551500

t97

T4 74

L2 L2

0

12 T2



APPENDIX C. INITIAL, ELEUATED A¡\ID SEPARATED DESIG¡üS 198

Table C.3 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (.) (Ð

8 1,5;0,1;0,2 00L402
pqrt, pqsõ¡, Aprsõ2

2,4;0,\;I,2 0308031
ABþr, ABpqrs, Bpq6,

Bprõ2

1,5;0,1;0,3 0308031
Apqrst, Apqõ1, A162

Apsõs

1,6;0,2;0,1 00L222 7 15 6 15 0 0

pqrt, Aprsu,qrsõ1

2,5;0,2;1,1 0116240001 7 L4 5 L4 0 0

ABh, pQrs, ABpqt

Bprõ1

I,6;0,2;0,2 003704000001 7 6 6 6 0 0

pqrt, pqsu, prs61

Aqrsõ2

695900

6t24t204

2,5;0,2;01 00L222 7 15 5 L4 0 0

pgrs, ABpqt, ABprõ1

3,4;0,2;1,1 003704000001 7 6 4 4 0 0

ABCpb BCyr, BCqs

BPqõt

2,5;0,2;0,2 003704000001 7 6 5 6 1 2

ABrs, ABqt, Bqrõ1

ABp62

6L25t2I4



APPENDIX C. INITIAL, ELEUATED A¡üD SEPARATED DES/G¡üS 199

Table C.3 (Cont'd)

n Design WLP and Generators (r) (b) (.) (d) (.) (f)

8 3,4;1,1;0,1 100212L
ABC, ABpqrs, Bpqõt

4,3;1,1;Ll 02L524000001 7 15 3 15 1 15

ABCD, ABþr, ABpqr

ACpqõ1

3,4;1,,L;0,2 101606007 4 L2 4 72 0 0

ABC, pQrs, ABpq61

Bpr62

9 I,6;0,2;0,2 003704000001 7 6 6 6 0 0

pqrt, pqsu, prs61

Aqrsõ2

2,5;0,2;I,2 05112260203 7 12 5 L2 1 0

ABpt, ABqrs, pqrt

Aprõ¡ pq62

1,6;0,2;0,3 05112260203 7 12 6 L2 2 0

Aqrst, Aprsu, Apqsfi
rsõ2, Arõt

41841802

1,7;0,3;0,1 003344000001 8 32 7 28 0 0

pqrst, Apqru, Apqsu

Aprsõy

2,6;0,3;L,l 0131048000302 I 12 6 12 0 0

ABþr, PQrs, ABpqt

ABpru, Bqr61

I,7;0,3;0,2 0131048000302 8 L2 7 72 1 0

Aqrst, prsu, Apqsu

Aq6r, Apr62



APPENDIX C. INITIAL, ELEUATED A¡úD SEPARATED DESIG¡üS 2OO

Table C.3 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (.) (Ð

9 3,5;L,2;01 1023331101 5 13 5 13 0 2

ABC, ABpqrs, Bpqt

Bpr61

4,4;1,2;L,l 02580528000001 8 4 4 4 0 4

ABCD, ABþr, ACqr

BCps, ABCpqõt

3,5;I,2;0,2 113928021301 5 I 5 I 1 1

ABC, pQrs, ABpqt

Bpq6t, ABpr62



APPENDIX C. INITIAL, ELEUATED A¡.ID SEPARATED DESIG¡üS 2OL

Table C.4: 32-Run tiples: Initial Design is an MA BFFSP Design with Mixed Block-

iog

n Design WLP and Generators (") (b) (.) (d) (") (Ð

I 2,4;0,7;I,1 010312
ABþr, ABpqs, Apqr61

3,3;0,L;2,L 04061301
ABþr, ACþ2, ABCqr

PQõt

2,4;01;1,2 0308031
ABþt, ABpqrs, Bpq6t

Bprõ2

9 2,5;0,2;l] 0116240007 7 14 5 14 0 0

ABh, pQrs, ABpqt

Bprõ1

3,4;0,2;2,1 051i2260203 7 72 4 72 0 0

AB0r, ACþr, ABCqr

ABCps, pqõ1

2,5;0,2;1,2 05112260203 7 72 5 L2 1 0

ABfu, ABqrs, pqrt

Aprõ1, pq62

6L447401

6 11 3 11 0 2

6124L204

NOTE: a¡s 2Øtlnz)-(ßr*Èz)i(ör+ö') designs are labeled as "Design : TLrtTL2iky,k2;b1rö2" and are

ordered by the number of treatment and blocking factors, n : nL]-nz*bt* å2. The initial, elevated

and separated designs appear first, second and third, respectively, within a triple.
To save space the WLPs are truncated at the last non-zero value. A-G and p-w are used to

denote the TVP and SP factors, respectively. The i,th and jtk WP blocking variable and separator

are denoted by p¿ and ô¡, respectively. Finally, the last letter in each generator represents the added

factor.
(a) The number of clear main effects.

(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.

(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effecis tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.
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APPENDIX D. INITIAL A¡üD ELEUATED DESIG¡üS

Table D.l: 32-Run Pairs: Elevation of an MA Initial Design with Pure WP Blocking
," 

"" 
*O

n Design \ /LP and Generators

7 3,3;0,1;1,0 000111
ABC h, ABpqr

2,4;0,L;L,0 0100011
ABþt, ABpqrs

8 3,4;0,2;L,0 0 0I2 2 2

ABC h, ABpqr, ACpqs

2,5;0,2;I,0 01112101
ABh, Bpqrs, ABpqt

4,2;0,I;2,0 010312
ABC h, ABD p2, AC Dpq

3,3;0,1;2,0 0300031
ABþr, ACþr, ABCpqr

(u) (b) (.) (d) (.) (Ð

6153L200

NOTE: a¡¿ 2@t+nz)-(Èr+fr2)+(ör*öz) ¿urittrs a¡e labeled as "Design : TLi-¡TL2ilq,kz;ä1, b2" and are

ordered by the number of treatment and blocking factors, n : h I nz + h * bz. The elevated and
initial designs appear first and second, respectively within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The z¿Þ WP blocking variable is denoted by p¿. Finally, the
last letter in each generator represents the added factor.

(a) The number of clear main effects.
(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

203

L4 T4

15

T4

13

T4

L4

12 L2



APPENDIX D. INITIAL A¡\ID ELEUATED DESIG¡úS

Table D.1 (Cont'd)

n Design

9 3,5;0,3;1,0 0 0 3 3 440 00 0 0 1

ABC fu, ABpqr, ACpqs

BCqt

2,6;0,3;1,0 0 1 3 2 420201
ABþu p7rs, ABpqt

Bpru

WLP and Generators

4,3;0,2;2,0 0 1 1 6 2 40 0 0 7

ABCfu, ABD/2, ACDpq

BC Dpr

3,4;0,2;2,0 0 3 1 4 22 0 2 0 L

ABþr, ACþ2, ABpqr

cpqs

6,2;2,I;I,0 0 0 3 443 0 0 0 0 0 0 01
ABCE, ABDF, ACDPI

BC Dpq

5,3;2,I;I,0 22I22722 0 0 0 0 01

ABCD, ABE, ACþ,

BCpqr

10 3,6;0,4;1,0 0064880000 14
ABC fu, ABpqr, ACpqs

BCqt, BCpu

2,7;0,4;L,0 01648 3 040 310 01
ABþ,., pers, ABpqt

ABpru, Bqru

(u) (b) (.) (d) (") (Ð

8 13 5 11 0 0

204

L26 120

L43 100

124 720

132 130

18 3180



APPENDIX D. INITIAL AND ELEUATED DES/G¡úS

Table D.1 (Cont'd)

10 4,4;0,3;2,0 0 1 3 10480 003 02
ABCpb ABD]2, ACDpq

BCDpr, ABps

3,5;0,3;2,0 0 3 3 I 4 40 40 5

ABþt, ACþ2, ABpqr

Cpqs, ABCqt

Design WLP and Generators

4,5;0,4;I,0 0 0 6 4 I 8 0 0 0 0 1 4

ABCDpb ABCpq, ABDpr
ACDps, BCDpt

3,6;0,4;1,0 0 064 8 8 00 0 014
ABC fu, ABpqr, ACpqs

BCqt, BCpu

(") (b) (.) (d) (.) (f)

6,3;2,2;I,0 0 0I700 6 6 0 0 0 3

ABCE, ABDF, ACDPI

ABC Dpq, ACpr

5,4;2,2;1,0 2 2 4462 22 0 4I2
ABC D, AB E, AC þ,
ABpqr, ACpqs

t2

205

10

7,2;3,7;1,0 0 0 10 I 0 0 4 40 0 I 4
ABCE, ABDF, ACDG

BC Dh, ABC Dpq

6,3;3,1;1,0 4335 30400 5031
ABCD,, ABE, ACF
BC 0t, BCpqr

10

11 11

2l 2T



APPENDIX D. INITIAL A¡üD ELEUATED DESIG¡üS

Table D.2: 32-Run Pairs: Elevation of a Separated MA Initial Design to a Separated

MA Design

n Design

7 4,2;\,0;0,7 001002
ABCD, ABpqïl

3,3;1,0;0,1 10000101
ABC, ABpqrõ1

WLP and Generators

8 4,3;1,1;0,1 00I222
ABCD, ABpqr, ACpqõ1

3,4;1,1;0,1 I00212L
ABC, ABpqrs, Bpqõ,

9 4,4;I,2;0,\ 00 33 440000 0 1

ABCD, ABpqr, ACpqs

BCqõ1

3,5;7,2;0] 1023331101
ABC, ABpqrs, Bpqt

Bprõ1

(u) (b) (.) (d) (.) (Ð

206

t2

NorE: !l1s 2@tlnz)-(Ér*'tz)*(br+D') designs are labeled as "Design : h1n2;kt,kz;b1, b2" and are

ordered by the number of treatment and blocking factors, n : u * nz + h * bz. The elevated and

initial designs appear first and second, respectively within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to denote

the WP and SP factors, respectively. The jtà separator is denoted by ô¡. Finally, the last letter in

each generator represents the added factor.
(a) The number of clear main effects.

(b) The number of clear two-factor interactions.
(c) The number of clear SP main effects.

(d) The number of clea¡ SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

t2

15

18

15

18

13 13

13 13



APPENDIX D. INITIAL A¡üD ELEUATED D.ES/GNS

Table D.2 (Cont'd)

10

Design

2,6;0,3;0,2 0131048 0 00 3 02
pQrs, ABpqt, ABpru

Bqr6¡ Aqr62

L,7;0,3;0,2 0131048 0 003 02
Aqrst, prsu, Apqsu

Aq6t, Aprõ,

WLP and Generators

4,5;1,3;0,1 00 6 48 8 00 0014
ABCD, ABpqr, ACpqs

BCqt, BCpõy

3,6;1,3;0,1 10 5 5 652212 0101
ABC, pQrs, ABpqt

Bpru, ABqr61

(") (b) (.) (d) (.) (Ð

T2

207

72

T2 12



APPENDIX D. INITIAL A¡\ID ELEUATED DESIG¡üS

Table D.3: 32-Run Pairs: Elevation of a Separated MA Initial Design to an MA
Design with Pure WP Blocking

n Design WLP and Generators (u) (b) (.) (d) (.) (f)

8 3,3;0,1;2,0 0300031
ABh, ACþr, ABCpqr

2,4;01;0,2 00I402
pQrs, ABpq61, Bprõz

4,2;L,0;2,0 0 6 1

ABC D, AB h, AC þ,
3,3;1,0;0,2 100303

ABC, ABpqõ¡ Bprõ2

9 3,4;0,2;2,0 031422020L 7 t2 4 L2 0 1

ABh, ACþ2, ABpqr

cpqs

2,5;0,2;0,2 003704000001 7 6 5 6 1 2

ABrs, ABqt, Bqr61

ABpõ2

6L237200

694800

208

NOTE: !\¿ 2(ntln2)-(Ér+Èz)+(ðr*bz) ¿.rittrs a¡e labeled as "Design : rtr¡rù2iktrkz;b1, å2" and are

ordered by the number of treatment and blocking factors, n: nL * nz *h *bz. The elevated and

initial designs appear first and second, respectively, within a pair.

To save space the WLPs are truncated at the last non-zero value. A-G and p-v are used to
denote the WP and SP factors, respectively. The i,th and jtk WP blocking variable and separator

are denoted by p¿ and ô¡, respectively. Finallg the last letter in each generator represents the added

factor.
(a) The number of clear main effects.

(b) The number of clear two.factor interactions.
(c) The number of clear SP main effects.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main efiects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

692900

3L237203



APPENDIX D. INITIAL A¡.ID ELEUATED DESIG¡üS

Table D.3 (Cont'd)

n Design WLP and Generators (u) (b) (.) (d) (.) (Ð

9 4,3;I,I;2,0 061120040001 7 15 3 15 0 0

ABCD, ABh, ACþ,

ABpqr

3,4;11;0,2 101606001 4 12 4 12 0 0

ABC, pQrs, ABpqõ1

Bpr62

10 4,4;I,2;2,0 073244080102 8 13 4 13 0 0

ABCD, ABOU ACþ'
ABpqr, ACpqs

3,5;I,2;0,2 113928021301 5 I 5 I 1 1

ABC, pQrs, ABpqt

Bpqõr, ABprõ2

209



APPENDIX D. INITIAL A¡üD ELEUATED DESIG¡üS

Table D.4: 32-Run Pairs: Elevation of an MA Initial Design with Pure WP Blocking

to a Separated MA Design

n Design

7 3,3;0,1;0,1 000111
ABCqr, ACpqõ1

2,4;0,L1,0 0100011
ABþu AÛpqrs

WLP and Generators

I 3,4;0,2;0,1

2,5;0,2;7,0

00r222

9 3,5;0,3;0,1 0033 44000001
BCpr, BCqs, ACpqt

ABpq61

2,6;0,3;1,0 0 L32 42 0 20 L

ABft, pers, ABpqt

Bpru

ABCpr, ABCqs, ABpqõ1

0111270r
AB/u Bpqrs, ABpqt

(u) (b) (.) (d) (u) (Ð

15

210

T4

NOTE: !\s 2@r1-nz)-(Ér+'tz)4(år+åz) designs are labeled as "Design : utnz;ktrkz;b1, b2" and are

ordered by the number oftreatment and blocking factors, n: u*nz+h*bz. The elevated and

initial designs appear first and second, respectively, within a pair.

To save space the WLPs are truncated at the last non-zero va.lue. A-G and p-v are used to
denote the WP and SP factors, respectively. The ¿úä and jth WP blocking variable and separator

are denoted by p¿ and ô¡r respectively. FinaIIy the last letter in each generator represents the added

factor.
(a) The number of clear main effects.

(b) The number of clear two-factor interactions.
(c) The number of clear SP main effecis.
(d) The number of clear SP two-factor interactions.
(e) The number of clear SP main effects tested against WP error.
(f) The number of clear SP two-factor interactions tested against WP error.

L2

L4

15

t4

T2

t4

13 11

t2 72
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Table D.4 (Cont'd)

n Design WLP and Generators (*) (b) (.) (d) (.) (Ð

10 3,6;0,4;0,1 006488000014 9 I 6 8 L 4

ABpqr, ACpqs, B1pqt
ABCqu, ABCp\t

2,7;0,4;1,0 07648304031001 I T T T 0 0

ABþr, pers, ABpqt

ABpru, Bqru

2L7
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8.1 Catalog of Optimal 16-Run BFFSP RPDs via
Pure WP Blocking: Control Factors as SP

Factors
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Table E.1: Optimal 16-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as SP Factors

n Design Design Generators
6 2,3;0,1;1,0

3,2;0,1;1,0

4,1;1,0;1,0

7 2,4;0,2;1,,0

+

3,2;0,7;2,0

3,3;0,2;1,0

BC h, ABCpq

BC D, BC þ,

AB h, ABpr, ABqs

AB0r, ABpqr, ABpqs

BC h, BC þr, ABCpq

BC þt, BCpq, ACpr

BC h, Apq, BCpr

ABC, ABþt, Apqr

BCD, BCh, ACpq

BCD, BCþ,, BCþ,

3

2

1

4

3,3;1,1;1,0

4,2;I];L,0

4,\;L,0;2,0

6

6

4

0

3

1

0

0

21-4

0

0

0

0

NOTE: !11¿ 2@t-ln2)-(Ér+Èz)+(åi*ö¿) designs are labeled as "Design : r'aln2lktrkz;b1, ä2" and are
ordered by the number of treatment and blocking factors, n : u * nz + ù * bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The i,th WP blocking
variable is denoted by p¿. Finallg the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two-factor interactions.
(d) The number of clear C main effects tested against WP error.
(e) The number of clear CN two-factor interactions tested against WP error.
(f) The number of clear CC two-factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one.number criterion in the event that

the design immediately preceding it in the table is not.

0

0

0

0

0

1

0

0

261001

300000

o

8

5

4

6

8

3

4

I

6

5

3

2

1

6

4

4

0

0

0

0

0

0

0

0

0

0

0

0
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Table E.l (Cont'd)

r¿ Desisn Desisn Generators (a) (b) (.) (d) (u) (Ð (s)

Apqt

E ABfu, ABpqr, ABpqs 6

ABpqt

3,3;0,2;2,0 BCh,BCþz,BCpq 3 0 0 0 0 0 3
ACpr

4 BC h,, BC p2, Apq 4
BCpr

3,4;0,3;1,0 BCþr,BCpq,ACpr 4 0 0 0 0 0 4
ABps

4,2;I,I;2,0 BCD,BCh,BCÊ, 2 4 0 0 0 0 6
ACpq

4,3;I,2;I,0 ABCD,BCþuBCpq 3 0 0 0 0 0 3
ACpr

5,2;2,1;L,0 BCD,BCE,BCþ, 2 4 0 0 0 0 6
ABCpq

9 2,6;0,4;1,0 ABþuABpr,ABqs 6 0 0 0 0 0 6

Apqt, Bpq

3,4;0,3;2,0 BCþr,BCþz,BCpq 4 0 0 0 0 0 4
ACpr, ABps

3,5;0,4;1,0 BCþt,BCpq,BCyr 3 0 0 0 0 0 3

ACps, ABpt

* BC 81, Apq, Apr 4
Aps, ABCpt

3,5;1,3;1,0 ABC,ABþuApqr 2 4 0 0 0 0 6

Apqs, Apqt

215
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Table E.1 (Cont'd)

n Desisn Desisn Generators (u) (b) (.) (d) (.) (Ð (s)
9 4,3;7,2;2,0 ABC D, BC þt, BC 0, 3 0 0 0 0 0 3

BCpq, ACpr

4,4;L,3;I,0 ABCD,BCh,BCpq 4 0 0 0 0 0 4
ACpr, ABps

5,2;2,L;2,0 BCD,BCE,BCþ, 2 4 0 0 0 0 6

BC þr, ABCpq

5,3;2,2;I,0 ABCD,ABCE,BC/t 2 4 0 0 0 0 6

BCpq, ACpr

6,2;3,1;I,0 BCD,BCE,BCF 2 4 0 0 0 0 6

BCþr, ABCpq

216
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8.2 Catalog of Optimal 32-Run BFFSP RPDs via
Pure \MP Blocking: Control Factors as SP
Factors
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Table E.2: Optimal 32-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as SP Factors

n Design Design Generators (a) (b) (.) (d) (") (Ð (e)
7 2,4;0,\;L,0 ABþt, ABqrs

3,3;0,1;1,0 BC þu BCpqr

3,3;1,0;1,0 ABC, ABp,

4,2;0,7;L,0 C D h, BC Dpq

4,2;L,0;I,0 BCD, BCþt

8 2,5;0,2;7,0 ABþt, ABqrs, ABprt 5 10

3,3;0,1;2,0 BCþu BCþ2, BCpqr 3 I

3,4;0,2;1,0 BCþt, ABCpr, ABCqs 4 72

3,4;1];I,0 ABC,, AB/t, Apqrs 4 12

4,2;0,I;2,0 CDh, CDþ2, BCDpq 2 I

486000t2

39300012

39300072

28100110

2L8

4,2;\,0;2,0 BCD, BCþu BCþ,

NOTE: !¡s 2@trnz)-(ßr*Ëz)*(ôr+ü') designs are labeled as "Design : nrlnz;kt,kz;btrbz" and are
ordered by the number of treatment and blocking factors, n:h*nz+h*bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The íth WP blocking
r¡ariable is denoted by p¿. Finallg the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two-factor interactions.
(d) The number of clear C main effects tested against WP error.
(e) The number of clear CN two-factor interactions tested against WP error.
(f) The number of clear CC two-facior interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one.number criterion in the event that

the design immediately preceding it in the table is not.

28 00

00

00

00

00

00

00

010

015

0L2

016

016

110

01028
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Table E.2 (Cont'd)

n Design
4,3;0,2;L,0

4,3;1,1;1,0

4,3;2,0;L,0

5,2;l,I;7,0

6,1;2,0;1,0

2,6;0,3;L,0

CDh, CDpq, ABDpr
Generators

BCD, BCþu ACpqr

ABC, ABD, ABP,

cDE, CDh, ABDpq

CDE, BDF,, CDþ,

AB0u ABqrs, ABprt
ABpqu

3,4;0,2;2,0 BCþt, BC0z, ABCpr
ABCqs

3,5;0,3;1,0 BCþr, ABCpr, ABCqs
pqt

3,5;L,2;I,0 ABC, ABfu, Aqrs
Aprt

4,3;0,2;2,0 CDh, CDþr, CDpq
AB Dpr

4,3;l,l;2,0 BCD, BCþt, BCþ,
ACpqr

4,4;0,3;I,0 CDþt, CDpq, ABDpr
ABCps

4,4;I,2;I,0 BCD, BCþt, ACpr
BPqt

4,4;2,7;1,0 ABC, ABD, AB0,
Apqrs

R

T2

6

10

6

12

2

3

3

1

0

0

0

0

0

0

0

0

2I9

0

0

0

0

0

0

2

0

0

1

0

0

11

15

I

t2

7

18

T2

10

10

16

L2

15

15

11

15

L2

13

12
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Table E.2 (Cont'd)

n Design
9 5,2;1,1;2,0 CDE, CDpb CD

AB Dpq

5,3;L,2;L,0 BCDE, CDþr, CDpq
AB Dpr

5,I;2,0;2,0 BCD, ACE, BCþt
BC þ,

5,2;2,0;2,0 BCD, ACE, BCþt
BC þ,

5,3;2,1;1,0 BCD, ACE, BC0t
ABpqr

6,\;2,0;2,0 CDE, BDF, CDpt
CDP,

6,2;2,L;L,0 CDE, BDF, CD/,
ABCpq

Design Generators (b) (c

220

r) (s)

10

15

10

72

12

18

74
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E.3 Catalog of Optimal 16-Run BFFSP RPDs via
Pure -WP Blocking: Control Factors as \MP
Factors
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Table E.3: Optimal 16-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as WP Factors

n Design
6 2,3;0,1;1,0

3,2;0,1;1,0

4,1;1,0;1,0

7 2,4;0,2;!,0

3,210,1;2,0

3,3;0,2;1,0

3,3;1,1;1,0

4,2;L,L;1,0

ì<

4,L;1,0;2,0

I 2,5;0,3;1,0

3,3;0,2;2,0

Design Generators
ABh, ABpqr

ABC h, ABCpq

ABC D, BC þ,

ABþr, ABpr, ABpqs

ABC h, ABC 82, ABCpq

ABC h, ABCpq, ABCpr

ABC, ABfu, pqr

ABC D, BC þ,, BCPq

ABCD, BCfu, APq

ABC D, BC h, BC þ,

(r) (b) (.) (.) (s)
26

222

3

tl
=

2

3

3

3

4

00

30

00

00

30

30

30

00

6

4

4

6

3

6

0

NOTE: !\¿ 2@t*nz)-(ßr*Èz)+(br*äz) dssigns are labeled as "Design : TtLtrLzjkt,kzibt,bz" and are
ordered by the number of treatment and blocking factors, n : U * nz + h * bz.

A-G and p-v axe used to denote the WP and SP factors, respectively. The i,th WP blocking
variable is denoted by p¿. Finallg the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two.factor interactions.
(e) The number of clear CN two-factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one-number criterion in the event that

the design immediately preceding it in the table is not.

ABþt, ABpr, ABps, ABpqt

ABC h, ABC p2, ABCpq, ABCpr

8

9

õ

6

9

6

I

4

I

R

6

6

4

2

3

/l
=

4

3

00

00

30
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Table E.3 (Cont'd)

r¿ Design Design Generators (a) (b) (c) (e) (g)
8 3,4;0,3;1,0 ABC h, ABCpq, ABCpr, ABCps 3 3 3 0 6

4,2;L,7;2,,0 ABC D, BC h, BC þ2, BCpq

* ABCD, BCþr, BCB2, Apq

4,3;1,2;1,0 ABCD, BCfu, BCpq, BCpr

4 ABCD, BCþt, APq, Apr

5,2;2,I;7,0 ABCD, ABCE, BC/r, ABCpq 3

9 2,6;0,4;I,0 ABþt, ABpr, ABps, ABpt 2

ABpqu

4 ABB1, Apr, Aqs, Apqt
pqu

3,4;0,3;2,0 ABC h, ABC p2, ABCpq, ABCpr
ABCps

3,5;0,4;1,0 ABCh, ABCpq, ABCpr, ABCps
ABCpt

3,5;1,3;1,0 ABC, ABþr, per, pQS

pqt

40004

I

223

4,3;I,2;2,0

*

600

400

ABCD, BCþr, BCþ2, BCpq
BCpr

ABCD, BCh, BCþ2, Apq
Apr

ABCD, BCþr, BCpq, BCpr
BCps

ABCD, BCh, Apq, Ap,
Aps

4,4;\,3;7,0

7

4
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Table E.3 (Cont'd)

n Design Design Generators (r) (b) (.) (.) (S)

ABCpq

5,,3;2,2;1,0 ABCD, ABCE, BCþt, ABCpq 3 3 0 0 6

ABCpr

6,2;3,7;7,0 ABCD, ABCE, ABCF, BCþt 3 6 0 0 I
ABCpq
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8.4 Catalog of Optimal 32-Run BFFSP RPDs via
Pure \MP Blocking: Control Factors as \MP
Factors
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Table 8.4: Optimal 32-Run BFFSP RPDs via Pure WP Blocking: Control Factors
as WP Factors

n Design
7 2,4;0,L;\,0

3,3;0,1;1,0

3,3;1,0;1,0

4,2;0,1;I,0

4,2;I,0;7,0

I 2,5;0,2;1,0

3,3;0,1;2,0

3,4;0,2;L,0

3,4;1,1;1,0

4,2;0,L;2,0

4,2;t,0;2,0

4,3;0,2;L,0

Design Generators
AB/t, ABqrs

ABC pL, ABCpr

ABC, ABþ,

BC Dh, BC Dpq

ABCD, BC0,

ABh, ABqrs, ABprt

ABC pb ABC þ2, ABCpr

ABCfu, ABCpr, ABCqs

ABC, ABh, Apqrs

BC Dh, BC Dp2, BC Dpq

ABCD, BCþ,, BCþ,

CD0t, CDpq, ABDpr

(u) (b) (c) (e) (s)
28

39

09

48

48

2r0
39

3L2

012

48

48

48

226

NOTE: \l1s 2(ntrnz)-(ß1+ß2)*(ó1*äz) flssigns are labeled as "Design : rLrtll2jlq,lcz;b1, ä2" and are
ordered by the number of treatment and blocking factors, n : u * nz + h * bz.

A-G and p-v are used to denote the WP and SP factors, respecbively. The i,th WP blocking
variable is denoted by p¿. FinaIIy, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two.factor interactions.
(c) The number of clear CC two.factor interactions.
(e) The number of clear CN two-factor interactions tested against WP error.
(S) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one.number criterion in the event that

the design immediately preceding it in the table is not.

10

t2

9

T2

t2

12

t2

15

12

L2

t2

L2



APPENDIX E. CATALOG OF OPTIMAL BFFSP RPDs

Table E.4 (Cont'd)

n Design Design Generators (a) (b) (.) (.) (S)

4,3;1,1;1,0

4,3;2,0;1,0

5,21L,I;L,0

6,1;2,0;1,0

9 2,6;0,3;1,0

3,4;0,2;2,0

3,5;0,3;1,0

3,5;I,2;7,0

4,3;0,2;2,0

*

4,3;I,7;2,0

4,4;0,,3;7,0

*

ABCD, BCþr, BCpqr

ABC, ABD, ABþ,

BCDE, CDh, ACDpq

BCDE, ACDF, CDþ,

ABh, ABqrs, AByrt, ABpqu

ABC h, ABC 02, ABCyr, ABCqs

ABC h, ABCpr, ABCqs, ABCpqt

ABC, ABþt, qrs, prt

CDh, CDþr, CDpq, ABDpr

CDh, CDþ2, Apq, BCDpr

ABCD, BCþr, BCþ2, BCpqr

CDþt, CDpq, ABDpr, ABCps

CDh, Apq, BCDpr, ABCDps

ABCD, BCþr, BCpr, BCpqs

ABCD, BCþr, Apr, Aqs

ABC, ABD, ABþr, ABqrs

BC DE, C D þ,, C D þ,, AC DPq

BCDE, CDh, CDpq, ABDpr

4

0

5

6

2

3

3

0

4

227

L20

60

104

60

120

t23

153

150

85

0

0

0

0

0

0

0

0

0

4,4;!,2;L,0

*

4,4;2,7;L,0

5,2;1,1;2,0

5,3;I,2;I,0

16

6

15

L2

I4

15

18

15

T2

13

16

t2

15

T2

15

8

15

72

4L200

4850

0

5

5

8

10

F7
t

0

4

4

0

0

0
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Table E.4 (Cont'd)

n Design

5,\;2,0;2,0

5,2;2,0;2,0

*

Design Generators
BCDE, CDþu Bpq, ADpr

ABCD, ABCE, BCþ,, BCþ,

ABC D, ABC E, BC þ,, BC þ,

BC D, AC E, BC h, BC O,

ABC D, ABC E, BC þ,,, ABCPT

BCD, ACE, BCh, ABpqr

BCDE, ACDF, CDþI CDþ'

BCDE, ACDF, CDþU ABDP

5,3;2,!;L,0

6,I;2,0;2,0

6,2;2,L;I,0

b) (c

3300

3600

228

13

6

I

10

72

15

6600r2

6120018
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8.5 Catalog of Optimal 16-Run BFFSP RPDs via
Separation: Control Factors as SP Factors



APPENDIX E. CATALOG OF OPTIMAL BFFSP RPDs

Table E.5: Optimal 16-Run BFFSP RPDs via Separation: Control Factors as SP
Factors

n Desisn Design Generators (") (b) (.) (d) (.) (Ð (s)
6 1,4;0,1;0,1 Apqrs,Aqrfi 4 4 5 0 0 1 8

2,3;0,1;0,1

3,2;1,0;0,1

7 1,,4;01;0,2

I,5;0,2;0,L

*

2,4;0,2;0,,I

*

3,3;1,1;0,1

4,2;2,0;0,I

8 t,5;0,2;0,2

AÛpqr, ABp61

ABC, Apq6,

Apqrs, Aqr61, Aqrõ2

Aqrs, Aprt, Apq6t

Aps, Apqrt, Ap6t

ABpr, ABqs, Apq6,

ABpqr, ABpqs, ABp61

ABC, Apqr, Apõ1

ABC, ABD, Apqõt

Aqrs, Aprt, Apqõt
Apqõ,

230

NorE: !\¿ 2@t*nz)-(Ër*ßz)*(Dr-fbz) d$igns are labeled as "Design : h,n2;ktrkz;b1,b2" and are
ordered by the number of treatment and blocking factors, n : U * nz + h * bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The jth separator is denoted
by ô¡. Finall¡ the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two.factor interactions.
(d) The number of clear C main effects tested against WP error.
(e) The number of clear CN two.factor interactions tested against WP error.
(f) The number of clear CC two-factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clea¡ C main effects and CN two-factor

interactions.
x Indicates a design that is optimal with respect to the one'number criterion in the event that

the design immediately preceding it in the table is not.

4
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Table E.5 (Cont'd)

n Design Design Generators (a) (b) (.) (d) (.) (Ð (s)

Apõ,

1,6;0,3;0,1 Aqrs,Aprt,Apqu 6 0 0 0 0 0 6

Apqrõ1

2,5;0,3;0,1 ABpr,ABqs,Apqt 5 0 0 1 0 0 5

Bpqõ,

>F ABpqr, ABpqs, ABpqt 6

ABp61

3,4;L,2;0,7 ABC,Apqr,Apqs 2 4 0 0 0 0 6

APq6t

4,3;2,L;0,L ABC,ABD,ABpqT 3 6 0 1 2 0 I
ABp61

5,2;3,0;0,1 ABC,ABD,ABE 2 4 1 0 0 1 6

APq6t

9 1,6;0,3;0,2 Aqrs,Aprt,Apqu 6 0 0 0 0 0 6

Apqrõ1, Apqr62

I,7;0,4;01 Aqrs,Aprt,Apqu 7 0 0 1 0 0 7
pqru, Apõ1

2,6;0,4;0,1 ABpr,ABqs,Apqt 6 0 0 2 0 0 6

Bpqu, Apõ1

3,5;1,3;0,1 ABC,Apqr,Apqs 2 4 0 0 0 0 6

Apqt, Apqõ,

4,4;2,2;01 ABC,ABD,ABpqT 2 4 0 0 0 0 6

ABpqs, Apqõ,

5,3;3,1;0,1 ABC,ABD,ABE 3 6 0 1 2 0 I
ABpqr, ABp61

23L
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Table E.5 (Cont'd)

n Design Design Generators (a
I 6,2;4,0;0,L

ABF, Apq6t
, ABD, ABE 2

232
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8.6 Catalog of Optimal 32-Run BFFSP RPDs via
Separation: Control Factors as SP Factors
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Table E.6: Optimal 32-Run BFFSP RPDs via Separation: Control Factors as SP
Factors

n Design Design Generators
7 1,5;0,1;0,1 Aqrst, Aprs61

2,4;0,1;0,1

3,3;0,1;0,1

3,3;1,0;0,1

4,2;L,0;0,I

8 1,5;0,1-;0,2

I,6;0,2;0,I

2,4;0,1;0,2

2,5;0,2;0,7

3,4;0,2;0,I

3,3;1,0;0,2

3,4;I,t;0,1

ABqrs, Aprõ1

ABCpr, Apq6t

ABC, Apqr61

BCD, Apqõ1.

(u) (b) (.) (d) (.) (Ð (g)

Aqrst, Aprs6y, Aprs62

Aqrst, Aprsu, Apq6t

AÙqrs, Apr6t, Apr6z

ABqrs, ABprt, Apq6t

ABCpr, ABCqs, Apqõ,

ABC, Apqrfi, Apqrõ2

ABC, Apqrs, Bqr61

5

4

3

3

2

5

6

A
=

5

4

3

4

5

8

I

I

8

5

6

8

10

12

I

T2

100

60

30

30

10

100

90

60

40

00

30

60

234

U

0

0

0

0

0

0

0

0

0

0

0

NOTE: lhs 2@1']-nz)-(kr*'Bz)*(àr*D') designs are labeled as "Design : rtrrtTL2ikt,kz;b1, b2" and. are
ordered by the number of treatment and blocking factors, n : h I nz + h * bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The jth separator is denoted
by ô¡. Finall¡ the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two.factor interactions.
(c) The number of clear CC two'factor interactions.
(d) The number of clear C main effects tested against WP error.
(e) The number of clear CN two.factor interactions tested against WP error.
(f) The number of clear CC two-facior interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one-number criterion in the event that

the design immediately preceding it in the table is not.

010

\L2

3t2

012

110

010

012

rt2
015

016

0t2

2t6



APPENDIX E. CATALOG OF OPTIMAL BFFSP RPDs

Table 8.6 (Cont'd)

rz

8 4,3;1,1;0,1 BCD, ACpqr, ABpfi 3 L2 3 1 4 1 15

5,2;2,0;0,1 BCD,ACE,Apq6t 2 L0 1 0 0 1 L2

9 1,6;0,2;0,2 Aqrst,Aprsu,Apq6, 6 6 I 0 0 0 L2
Apqõ,

1,7;0,3;0,1 Aqrst,Aprsu,Apqsu 7 7 6 0 0 0 74
Apqr61

2,5;0,2;0,2 ABqrs,ABprt,Apq6t 5 10 4 0 0 0 i5
Apqõ,

2,6;0,3;0,1 ABqrs,ABprt,ABpqu 6 12 0 0 0 0 18
Apqrõ1

3,5;0,3;0,1 ABCpr,ABCqs,Apqt 5 10 0 1 2 0 15
Bpqõ,

3,4;I,l;0,2 ABC,Apqrs,Bqrfi 4 72 6 0 0 2 16

Bqrõ2

3,5;7,2;0,L ABC,Aqrs,Aprt 5 10 0 0 0 0 15

Apq6,

4,4;7,2;01 BCD,ACpr,Bpqs 4 I 2 1 3 1 13
Bqõt

5,3;2,7;01 BCD,ACE,ABpqT 3 15 3 1 5 1 18

ABCpõ1

235
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8.7 Catalog of Optimal 16-Run BFFSP RPDs via
Separation: Control Factors as \MP Factors
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Table E.7: Optimal 16-Run BFFSP RPDs via Separation: Control Factors as WP
Factors

n Design
6 1,4;0,1;0,1

2,3;0,1;0,1

3,2;1,0;0,1

L,4;0];0,2

I,5;0,2;0,L

2,4;0,2;0,L

3,3; 1 ,1 ;0 ,1

4,2;2,0;0,I

L,510,2;0,2

1,6;0,3;0,1

2,5;0,3;0,1

3,4;1,2;0,I

Design Generators

ABpqr,, ABp61

ABC, Apqõ,

Apqrs, Aqr61, Aqrõ2

qrs, prt, Apqõt

ABpqr, ABpqs, Apq6,

ABC, pQr, pQ6t

ABC, ABD, Apqõt

(a) (b) (c) (e

I

2

0

1

I

2

0

0

1

1

2

0

237

4

6

6

4

5

4

I

4

5

6

/l
=

6

qrs, prt, Apq6r,, Apqõ,

qrs, prt,, pqu, Apqrïy

ABpqr, ABpqs, ABpqt, Apqõt

ABC, pQr, pQs, Apq6t

0

1

0

0

0

1

0

0

0

0

1

0

NOTE: !\¿ 2Øt*n2)-(ßr+Ëz)+(ör+àz) designs are labeled as "Design : TLr¡TL2ikt,kz;är, ö2" and are
ordered by the number of treatment and blocking factors, n : nr * nz + h * bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The jth separator is denoted
by ð¡. Finally, the last letter in each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two'factor interactions.
(c) The number of clear CC two-factor interactions.
(e) The number of clear CN two.factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two.factor

interactions.
* Indicates a design that is optimal with respect to the one-number criterion in the event that

the design immediately preceding it in the table is not.

0

2

0

0

0

0

3

0

0

0

0

0

(s)
5

8

6

5

6

6

I

4

6

F7
I

6

6
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Table E.7 (Cont'd)

n Design Design Generators
8 4,3;2,L;0] ABC, ABD, ABpqr, ABpfi 0 6 0 2 6

5,2;3,0;0,! ABC, ABD, ABE, Apq6t 0 4 0 0 4

9 1,6;0,3;0,2 qrs, prt, pqu, Apqrfi 1 6 0 0 7
Apqr62

7,,7;0,4;0,L qrs, prt, pqu, pqra 1 7 0 1 8

Qr6t

2,6;0,4;01 ABpqr, ABpqs, ABpqt, ABpqu 2 4 1 0 6

APq6t'

* Apr, Aqs, Apqt, pqu 7
APõt

3,5;1,3;0,1 ABC, pqr, pqs, pqt 0 6 0 0 6

APq6t

4,4;2,2;0,1 ABC, ABD, ABpr, ABpqs 0 4 0 0 4
APõt

5,3;3,1;0,1 ABC, ABD, ABE, ABpqr 0 6 0 2 6

ABpõ1

6,2;4,0;0,L ABC, ABD, ABE, ABF 0 4 0 0 4
APqõt

(a) (b) (") (") (

238
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8.8 Catalog of Optimal 32-Run BFFSP RPDs via
Separation: Control Factors as WP Factors

239
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Table E.8: Optimal 32-Run BFFSP RPDs via Separation: Control Factors as WP
Factors

n Design Design Generators (") (b) (.) (.) (e)
7 1,5;0,1;0,1 Aqrst,Ars\ 1 5 0 0 6

2,4;0];0,L ABqrs, Apr61

3,3;0,1;0,1 ABCpr, Apq6,

3,3;1,0;0,1 ABC, Aqr6y

4,2;I,0;0,1 ABC D, Apqõt

I,5;0,1;0,2 Aqrst, Ars61, Ars62

\,6;0,2;0,L Aqrst, Aprsu, Arsõ1

2,4;01;0,2 ABqrs, Apr6r, Aprõ,

2,5;0,2;01 ABqrs, ABprt, Apqõ,

3,4;0,2;0,1 ABCpr, ABCqs, Apq6t

3,3;1,0;0,2 ABC, Aqrõ1, Aqrõ2

3,4;Il;0,1 ABC, Apqrs, Aqr61

281010

393012

09009

240

NOTE: lbs 2@t*nz)-(Èr*Èz)t(ör+ö') designs are labeled as "Design : TLrtTt2iktrlcz å1, à2" and are
ordered by the number of treatment and blocking factors, n : h * nz + fu -l b2.

A-G and p-v are used to denote the WP and SP factors, respectively. The j¿ä separator is denoted
by ôi. Finally, the last letter in each generator represents the added factor.

(a) The number of clea¡ C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two.factor interactions.
(e) The number of clear CN two.factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two.factor

interactions.
* Indicates a design that is optimal with respect to the one.number criterion in the event that

the design immediately preceding it in the table is not.

4

1

1

2

2

3

0

0

80012

5006

6007

81010

101072

123015

9009

I20012
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Table E.8 (Cont'd)

n Design
8 4,3;1,1;0,1

5,2;2,0;0,I

*

I 7,6;0,2;0,2

1,7;0,3;0,1

2,5;0,2;0,2

2,6;0,3;0,1

3,5;0,3;0,1

3,4;l,L;0,2

3,5;L,,2;0,1

4,4;L,2;0,1

*

5,3;2,I;0,7

*

Design Generators
ABCD, BCpqr, BCp6y

ABCD, ABCE, Apqõt

BCD, ACE, ABpõy

Aqrst, Aprsu, Ars61, Arsõ2

Aqrst, Aprsu, Apqsu, Arsõy

ABqrs, ABprt, Apq6r, Apqõ,

ABqrs, ABprt, ABpqu, Apqrït

ABCpr, ABCqs, ABCpqt, Apqõt

ABC, Apqrs, Aqrfi, Aqr62

ABC, qrs, prt, Apqõ,

ABCD, BCpr, BCpqs, Apõ1

ABCD, Apr, Aqs, Ap61

ABCD, ABCE, ABCpr, Apq6t

BCD, ACE, ABpqr, ABpõ1

(a,) (b) (") (.) (s)
120

247

1

1

2

2

3

0

0

4

16

I

10

7

8

L2

l4

18

t2

15

L2

15

72

15

60

70

10 1

L2 1

153

720

150

80

0

0

U

0

3

0

0

0
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8.9 Catalog of Optimal 16-Run BFFSP RPDs via
Mixed Blocking: Control Factors as SP Fac-
tors
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Table E.9: Optimal 16-Run BFFSP RPDs via Mixed Blocking: Control Factors as

SP Factors

n
F7
I

Design
2,3;0,1;1,1

3,2;t,0;I,I

I 2,4;0,2;L,l

*

Design Generators
ABh, ABpqr, Apõ1

ABþt,, ABpqr, ABp6y

ABC, ABh, Apq6t

AB/t, ABpr, ABqs
Apq6,

ABþt, ABpqr, ABpqs
Apqõt

3,3;1,1;1,1 ABC, ABh, Apq,
APõt

2,5;0,3;1,! ABþr, ABpr, ABqs
Apqt, ABpq61

a

3

c

3

d

243

1

3,4;t,2;L,L

e

0

AB þr, ABpqr, ABpqs
ABpqt, Apqõ,

ABC, ABþr, Apq,
Apqs, Apqõt

f

NOTE: ll¡¿ 2@t+n2)-(Ér+Èz)*(ör+ö') designs are labeled as "Design : TLr¡TL2ilqrkz;bt,bz" and are
ordered by the number of treatment and blocking factors, n:h*nz+h *bz.

A-G a¡rd p-v are used to denote the WP and SP factors, respectively. The i¿h and ¡úå WP
blocking variable and separator are denoted by þ¿ and ôj,respectively. Finallg the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two-factor interactions.
(d) The number of clear C main effects tested against WP error.
(e) The number of clear CN two-factor interactions tested against WP error.
(f) The number of clear CC two-factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two-facior

interactions.
* Indicates a design that is optimal with respect to the one-number criterion in the event that

the design immediately preceding it in the table is not.

1

4

0
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Table E.9 (Cont'd)

n Design Design Generators (u) (b) (.) (d) (.) (Ð (s)

Apqt, Bpqu, Apõ1

3,5;1,3;1,1 ABC,ABþ1,,Apqr 2 4 0 0 0 0 6

Apqs Apqt, Apqõ,
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8.1-0 Catalog of Optimal 32-Run BFFSP RPDs
via Mixed Blocking: Control Factors as SF
Factors
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Table E.10: Optimal 32-Run BFFSP RPDs via Mixed Blocking: Control Factors as

SP Factors

n Design
8 2,4;0,1;l,I

3,3;0,1;1,1

3,3;1,0;1,1

4,2;I,0;L,l

I 2,5;0,2;L,L

3,4;0,2;1,L

3,4;Il;!,7

4,3;7,L;L,I

5,2;2,0;I,7

Generators

BCþr, ABCyr, Bpqõ,

ABC, ABþt, Apqr61

BCD,, BCþt,, Apqõt

ABh, ABqrs, ABprt
Apq6t

BCþu ABCyr, ABCqs
Apqõ,.

ABC, AB0t, ABpqrs
Aqrõy

BCD, BCþt, ABCpqr
ACpõ1

BCD, ACE, BCþ,
Apqõ,

, ABqrs, 4

3

3

2

5

4

b) (c

8

9

I

ð

10

T2

6

3

3

1

/l
=

0

246

0

0

0

0

0

0

(.)

NOTE: a¡¿ 2Øt+nz)-(Èr*Éz)+(ör+ä') designs are labeled as "Design : rLL¡r¡2iktrkz;b1, ö2" and are
ordered by the number of treatment and blocking factors, n : nr * nz + h * bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The i,th and j¿Þ WP
blocking variable and separator are denoted by p¿ and ô¡,respectively. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clear CC two-factor interactions.
(d) The number of clear C main effects tested against WP error.
(e) The number of clear CN two-factor interactions tested against 'WP error.
(f) The number of clear CC two.factor interactions tested against WP error.
(g) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one-number criterion in the event that

the design immediately preceding it in the table is not.

0

0

0

0

0

0

1

3

0

1

0

0

12

t2

T2

10

15

16

T2

T2

i0

16

15

L2
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Table E.10 (Cont'd)

n Design
10 2,6;0,3;l,L

ABpqu, Apqr6,

3,5;0,3;1,1 BCh, ABCpr, ABCqs
Apqt, Bpq6t

3,5;1,2;Il ABC, ABfu, Aqrs
Aprt, Apqõt

4,4;L,2;I,L BCD, BCþt, ACpr
Bpqs, ACqõ1

5,3;2,L;I,7 BCD, ABCE, BCþ,
ACpqr, ACp61

Design Generators
AB|t, ABqrs , ABprt 720

100

100

247

015

152

015

13

018
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E.11 Catalog of Optimal 16-Run BFFSP RPDs
via Mixed Blocking: Control Factors as \MP
Factors
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Table E.11: Optimal 16-Run BFFSP RPDs via Mixed
WP Factors

n Design
7 2,3;01;L,!

OF OPTIMAL BFFSP RPDs

3,2;L,0;L,L

2,4;0,2;L,L

3,3;1,1;1,1

2,5;0,3;1,1

Design Generators
ABþt, ABpqr, ABpõ1

ABC, ABþt, Apqõt

ABþt, ABW, ABpqs, Apõ1

ABC, AB0r, pqr, ABp61

ABh, ABpr, ABps, ABpqt
Apõ,

3,4;I,2;1,L ABC, AB0r, per, pes
Apq6,

10 2,6;0,4;l,t ABþt, AByr, ABps,, ABpt
ABpq, Ap61

3,5;1,3;1,1 ABC, ABþu pqr, pqs
pqt, Apqõ1

Blocking: Control Factors as

(u) (b) (.) (.) (s)
2

0

2

0

2

0

NOTE: lhs 2@t*nz)-(ßr+Éz)+(ôr+öz) flssigns are labeled as "Design : nL)nz;lq,lcz1b1,b2" and are
ordered by the number of treatment and blocking factors, n : U * nz + h * bz.

A-G and p-v are used to denote the WP and SP factors, respectively. The i,th and j¿Þ WP
blocking variable and separator are denoted by P¿ and ô¡,respectively. Finallg the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two-factor interactions.
(c) The number of clea¡ CC two.factor interactions.
(e) The number of clear CN two.factor interactions tested against WP error.
(S) One number optimality criterion: Total number of clear C main effects and CN two-factor

interactions.
* Indicates a design that is optimal with respect to the one.number criterion in the event that

the design immediately preceding it in the table is not.

6028

249

6

4

8

4

6

0

0

0

0

0

06

06

28
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E.Lz Catalog of Optimal 32-Run BFFSP RPDs
via Mixed Blocking: Control Factors as 

.WP

Factors
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Table E.12: Optimal 32-Run BFFSP RPDs via Mixed Blocking: Control Factors as

\MP Factors

Design
2,4;01;1,L

3,3;0,1;1,1

3,3;1,0;1,1

4,2;!,0;I,l

2,5;0,2;L,I

3,4p,2;I,r

3,4;1,1;1,1

4,3;I,1;1,\

5,2;2,0;L,L

*

Design Generators
AB]u ABqrs, Aprõt

ABC fu, ABCpr, Apqõ,

ABC, AB/t, Aqrõ1

ABCD, BCh, Apqõt

ABþt, ABqrs, ABprt, Apqõ,

ABC h, ABCpr, ABCqs, Apq6t

ABC, ABþu Apqrs, Aqrõ1

ABCD, BCþr, BCpqr, BCp61

ABCD, ABCE, BCþt, Apq6t

BCD, ACE, BCþt, Apq6,

ABþt, ABqrs, ABprt, ABpqu
Apqrõ1

(") (b) (c) (e) (s)

10 2,6;0,3;I,L

2

3

0

I
+

2

3

0

4

3

251

8

I

I

8

10

T2

72

L2

6

0

3

0

0

0

3

0

0

0

NorE: !¡s 2(n#nz)-(Ër*Èz)*(br*ó') designs are labeled as "Design = u)n2;k1,k21b1,b2" and are
ordered by the number of treatment and blocking factors, n: U+n2+h *bz.

A-G and p-v are used to denote the WP and SP factors, respectiveìy. the i,th and ¡úå WP
blocking variable and sepa,rator are denoted by p¿ and d'j,respectively. Finally, the last letter in
each generator represents the added factor.

(a) The number of clear C main effects.
(b) The number of clear CN two.factor interactions.
(c) The number of clear CC two'factor interactions.
(e) The number of clear CN two.factor interactions tested against WP error.
(S) One number optimality criterion: Total number of clea¡ C main effects and CN two.facior

interactions.
* Indicates a design that is optimal with respect to the one.number criterion in the event that

the design immediately preceding it in the table is not.

0

0

0

0

0

0

0

4

0

IU

L2

I

t2

L2

15

t2

16

9

10

74T2
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Table E.12 (Cont'd)

n Design Design Generators
10 3,5;0,3;1,1 ABC pb ABCpr,

ABCpq6t

3,5;1,2;L,7 ABC, ABþr, qrs, prt

4,411,2;I,I

Apq6,

ABCD, BCþr, BCyr, BCpqs
Apõt

ABCD, BCh, Apr, Aqs
Apq6,

ABCD, ABCE, BCh, ABCPT
Apq6t

BCD, ACE, ABh, ABpqr
ABpõy

5,3;2,1;l,l

:r

pqt 3153

252

150015

012

15

0L2

15
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