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ABSTRACT

The recent advent of large scale, high-speed co;nputers has
Produced an "information revolution." One of the consequences of this
has been the need for the development of filing systems which are capable
of handling large volumes of data and permitting efficient information
retrievel. In this research, first a review is given for a number of
different types of filing schemes which have been recently discussed
in the literature, with a number of appropriate generalizations being
included. Then attention is turned to a general model and filing
systems based on certain types of combinatorial configurations. A method
of forming one type of configuration is provided through the development
of a sequence of theorems indicating how to select a certain subset of
m flats from a finite projsctive geometry which cover all (t-1)-f1ats,
vhere m >(t-1). The construction of another type of configuration is
achieved through the development of suitable methods of extending some
of the properties of certain small orthogonal arrays and partially
balanced arrays to larger schemes. The two types of constructions may
be combined to yleld mlti-stage filing systems which permit efficient

retrieval for an appropriate set of queries.




SUMMARY

The development of large-scale, high-speed electronic computers
has provided mankind with a means of comprehending large volumes of data;.
Because of this, a number of questions have receatly arisen concerning
how one may best file such information im the memory storage area of a
computer in order to facilitate its use in the computer system. One
criterion for evaluating the efficiency of any filing scheme is the
tj.me required for the retrieval of information pertinent to various
queries of interest. The purpose of this research is to indicate the
application of combinatorial mathematics to some of the problems
associated with the construction of various types of efficient computer
f£iling systems.

The basic component of a file is an element called a record, The
information contained in a record is expressed in terms of data fields
which represent various levels of attributes which are associated with
the record. Moreover, each record is uniquely identified by an accession
number. In the case of a computerized filing system, the accession
number of each record is stored in a unique element of one or more dig=
joint subsets (called buckets) of the computer memory. The construction
of these buckets determines the difficulty with which information, as
expressed in terms of queries, can be retrieved, The cqueries which are
of interest here are those which can be expressed in terms of a set of

given levels of some particular subset of attributes.
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Until recently, the best known type of filing scheme has been the
first-order inverted filing system. It is formed by letting one bucket
correspond to each level of each attribute. A record is them stored in
each of the buckets associated with the levels of attributes which it
Possesses. Such systems allow efficient retrieval of Quer:lcs specified
in terms of only one attribute; indeed, one simply retri,ovu all records
in the bucket corresponding to the level of that particular attribute
specified in the query. However, to retrieve a query iavolving two
attributes, one must first extract all records in each of the two cor:
responding buckets, and then find the recbrds ‘common to the two groups
by matching the accession mﬁbers. This matching process can require a
large amount of computer time. Moreover, the time increases as the size
of the file increases since there are then more records to be examined
in the matching., With queries involving more than two attributes, this
retrieval problem becomes progressively more serious.

Because of the previously cited disadvantages of the first-order
inverted filing system, a need arose for the development of schemes per-
mitting more efficient information retrieval. In recemt years, research
directed at the application of combinatorial mathematics to the design of
filing schemes was started at the IBM Thomas J. Watson Research Center.
Abrahsm, Ghosh, and Ray-Cheudhuni [1]% used the theory of finite g~
ometries to form systems which allow efficient retrieval of certain types

of queries involving pairs of binary attributes. With these, attributes

1 A number in square brackets refers to the bibliography listed

at the end.
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corresponded to points and buckets to lines. The retrieval of a query
involving a pair of attributes may be Qchieved by identifying the bucket
corresponding to the unique line through the appropriate points. Abraham
and Ghosh [28] used deleted finite geometries to construct similar types
of filing schemes permitting efficient retrieval of queries involving
multiple-valued attributes. In section (1.4) of this thesis, Theorems
(1.4.1), (1.%.2), and (1.4.6) are given as some straightforward general-
izations of the results that have been obtained from this finite gecmetry
approach.

Chapter II is concerned with a general mathematical model for filing
systems which was motivated by Ray-Chaudhuri [43] . One type of scheme
suggested by this model is based on the comstruction of certain types of
combinatorial configurations. When two-fold queries are of interest,
these configurations may be formed from certain balanced incomplete
block and group divisible designs. More generally, in the case of t-fold
queries, the selection of a certain subset of m-flats from a finite pro-
jective geometry which cover all (t-1) flats, where m > (t-1), may be
used. One of the primary results of this research is the development of
a general system of such covers for t = 2,3,k, These are constructed
in Theorems (2.4.2)=(2.4.8).

Tn Chapter III, another method of forming combinatorial configura-
tions is presented. It is based on developing algorithms for extending
the covering properties of certain orthogonal arrays and partially
balanced arrays associated with a small number of atiributes to arrays
involving larger numbers of attrihutes. The suggested methods have the

desirable property that the mumber of subsets required for the coverings
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increases at a noticeably slower rate than the number of attributes when
the number of attributes is sufficiently large.

The filing schemes based on the combinatorial configurations of
Chapter III suffer from the disadvantage that each bucket pertains to a
very large number of queries. In order to meske the relationship between
query and bucket more specific, multi-stage filing systems similar to
those formilated by Ray-Chaudhuri [43] may be used. These are discussed
in Chepter IV. Ome of the consequences arising from the use of multi-
stage systems is that the retrieval time for any query becomes linearly
related to the number of buckets at each stage.

Finally, the bibliography has been extended to include a large
number of references pertaining to the different topics associated with
the design of the types of filing systems discussed. 'This seemed

appropriate since such a comprehensive set of references does not exist

elsevhere in the literature.
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CHAPTER I

INTRODUCTION

1l.1. The importance of efficient filing systems .,

With the advent of large=-scale computer systems, the years
since World War IT may in one sense be referred to as the "Inform-
ation Revolution." In meny ways, its effect on the culture of
the world may be as dramatic as that of the "Industrial Revolution" of
the 18th and 19th centuries. The lives of many individuals have
already been influenced through its production of changes in the employ-
ment needs of businesses and services, its treatment of the bookkeeping
details of many types of financial transactions, its capabilities as a
means of solution to many computationally difficult problems in
scientific research. Today, more different types of information are
being obtained from more individuals by more firms, survey groups,
utilities, and governmental agencies than ever before. Such data are
felt to be of some importance to the interested groups, and computer
technology provides methods for comprehending and using their content.

As a result of the existence and availability of vast stores of
information, the question naturally arises as to how one may best file
such informetion in order to facilitate its use in a computer system.
Filing represents a method of preserving information. The success of
any filing scheme can be measured in terms of the ease with which it

is possible to retrieve the information pertinenf to a given query or



task. In the case of large-scale, high-speed electronic computers,
the memory storage area can be used to hold well-organized files which
can be designed so that information regarding any particular query of
interest can be retrieved very rapidly. This fact provides the basis
for the formulation of the problems of designing computer filing systems
for efficient information retrieval. The actual construction of such
files poses a variety of questions, some of which can be attacked by
methods of combinatorial mathematics. The description of several
different ways of achieving efficient systems represents the purpose
of the present research.

To illustrate the situation, let us first consider as an example
an information storage system which is called a tumor registry. The
ultimate aim of such a scheme is to provide for a large number of
hospitals and clinics a centralized mechanism which will allow medical
researchers to readily obtain data pertaining to the medical histories
of individuals having various types of cancer. Such histories would
reflect background information like socio-economic status and previous
medical experience(s), the basic characteristics of the tumor(s) involved,
the medical treatment and outcome; also included would be information
from various follow-up studies. Because many of the variables pertaining
to one type of cancer do not necessarily pertain to other types (for
example, smoking may be considered relevant to lung cancer but not to
breast cancer) and because different hospitals mey have different ways
of collecting and recording similar data, the construction of a central
date system appears at first to be an overwhelming task involving all
variables relevant to all types of cancer and accounting for their

definitions by different medical groups.
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The problem may be simplified to some extent by adopting a variable-
oriented point of view. By this we mean that the design of the file
will be hinged to some extent on the types of queries, as expressed in
terms of levels of variables, for which the system will be expected to
provide information. For example, a study of the effect of a certain
type of chemotherapy on middle-aged non-smokers with cancer of the
larynx may be of interest. To carry out such research, we need to locate
a1l individuals in the file who are relevant to this investigation.
Suppose that all individuals have been uniquely identified by com=-
binations of numbers reflecting the hospitals treating them and their
own patient numbers within the respective hospitals. Let a system of
cells be constructed in such a way that to each cell there corresponds
o combination of levels of variables. In such cells, one then stores
the patient identification numbers of all individuals whose histories
satisfy the definition of the cell. If such a file has been constructed
in a systematic way, then the cells pertaining to the different types of
queries of interest can be located efficiently and quickly. Once this
is done, the identification numbers stored there can be printed and the
corresponding individuals then located. When this is achieved, their
records can then be obtained from the files of the respective hospitals,
énd the relevant data extracted and analyzed.

Tn the example posed earlier, the variables and levels in the query

are _
Variable Level
17 treatment Shemotherapy of given type
2. disease type cancer of the larynx
5. age middle-aged

k., does individual smoke? no



To conduct the study, one has the filing system locate (by & computer
operation) the cell relevant to the query and print out the identifi-
cation numbers of the individuals there, after which he proceeds as
outlined above. The point of this example is to reveal how & variable-
oriented filing system can expedite the retrieval of.data pertinent to
research problems which can be expressed as queries involving variable
levels. As a result of such efficient retrieval, the use of the
different types of variable-oriented filing schemes to be discussed in
what follows has a potentially great value to the design of centralized
data systems like tumor registries.

In the next section we shall assign precise definitions to some
of the concepts arising in a technical discussion of filing systems.
Then we shall consider some of the well-known filing systems currently
in existepce, as well as some others which have been proposed from re-
search conducted at the IBM Thomas J. Watson Research Center. In addi-
tion, the concepts of retrievel time and redundancy will be introduced

as two criteria for evaluating the efficiency of a system.

1.2, A technical characterization of a filing system.

Most of the 'ter minology here arises from this author's interpreta-

tion of the papers of Buchholz [20], Abrahem, Ghosh, and Ray-Chaudhuri [1],

and Ray-Chaudhuri [43]. The basic component of a file is an assembly
of information which is called a record and which uniquely corresponds
to a particular individual or item of interest. Each record has two
basic parts. The first is an identification sequence 1ike a serisl
number, patient number, Social Security number, etc., which is uniquely

associated with the record or the subject giving rise to it. This




number is sometimes called the primary key since it represents the
primary identifier. The second part of the record consists of a number
of data fields which correspond in a one-to-one fashion to a number of
attributes or information variables. These are sometimes called

secondary keys. In this research, we will assume that, for any in-

dividual, each of the attributes can take exactly one of finitely many
different values. The different values which an attribute may have
will be called levels. Hence, what appears in the data fields of a
record is precisely the appropriate combination of levels of attributes
associated with the individual. Thus, in the example of the preceding
section, if the number of patients in the registry is 900, and the
numbers of levels of the four variables are 15, 40, 7, 2, respectively,

a record of interest might be

Patient Variable
number 1 2 3 L
. Chemo- Tancer of  Middle-
Verbal record: 32l therapy the larynx aged No
Decimal record: 324 10 23 5 0

Once the records of a collection of individuals have been obtained,

they can be stored in some permanent memory. This may take the form of

a block of filing cabinets, a card catalogue, or tape. The location of

a record in the permanent memory is called its accession number. One

aspect of the basic problem of file organization is the definition of
the correspondence between accession numbers and primary keys. This

process, which is called key transformation, has been discussed by a

number of researchers in computer systems. For additional details and
bibliography, the reader is referred to Buckholz [20]. Here we shall

assume that the accession numbers have already been assigned (for



example, one may take them, in some instances, to coincide exactly with
the primary key, or one may be able to assign them serially).

The computerized aspect of a filing system arises from the storage
of the accession number of a record in several different addresses of the
fast-memory of a high-speed electronic computer; e.g., magnetic disks.
Usually, this fast memory may be conceived of as partitioned into a
number of disjoint subsets called buckets. The construction of these
buckets determines the difficulty with which information, as expressed
in terms of gueries, is retrieved from the filing system., Here, a query
will be taken to mean a set of given levels for some particular subset
of attributes. The principal criterion for evaluating the efficiency

of a computerized filing system is the retrieval times required to

determine the accession numbers appropriate to different types of queries.

One way of decreasing retrieval time for any given query is to provide
a rule which associates with the query a bucket containing the relevent
accession numbers. However, for such a filing scheme to be efficient
with respect to a wide class of queries, some accession numbers will be
stored in more than one place. This redundancy is the price paid for
efficient retrieval and need not cause worry as long as the totality
of addresses is large enough to embrace the system. However, if the
fast-memory is not particularly large, redundancy becomes a problem
that must be adequately handled in the construction of the filing
system. Apart from the restrictions ivmlied by this, the value of any
filing system will ultimately be evaluated by the retrieval time re-
quired to locate the records pertinent to the members of a class of

queries.




Finally, we should indicate that the concepts of retrieval time
and redundancy are not as precise measures of efficiency as they appear
to be. Unfortunately, the definitions of both terms can be considered
vague when viewed from a theoretical point of view., This results from
the dependence of these quantities more on the properties of the
particular computer involved than on the filing system. The implica-
tions of these remarks to the problem of comparing different filing

systems will be seen later.

1.3. The inverted filing systems.

At present, one of the most widely used filing systems is knowm as

the simple or first order inverted filing system. The structure of such

filing schemes is characterized by a correspondence between levels of
attributes and buckets; i.e., if Aij'represents the j-th level of the

i-th attribute, where i =1,2, ..., vand j=1, 2, ..., n,, then a
v
is associated with each A, ., giving N, = Z n, buckets in
J ij 1 iz
all. The buckets {Mij} represent disjoint sets of addresses in the

bucket M,
i

fast memory of a computer. The accession number of a record is stored
at one of the addresses cpntained in Mij provided that the individual
involved possesses the j-th level of the i~-th attribute. In doing
this, we necessarily must assume that each of the sets Mﬁj contains
sufficiently many addresses as to allow the storage of the accession
numbexrs for all the records of individuals having Aij' Since, in many
instances, accession nurbers will be of a somewhat small dimension to
store (e.g., they will seldom involve more than ten decihal digits)
this assumption is not too unrealistic for most large-scale computers.
The first order inverted filing system is very efficient in

retrieving queries which are specified in terms of one level of one



attribute. For example, to retrieve all records with All’ the computer

first determines Mil as the bucket corresponding to All and then proceeds
to print the accession numbers located there. These accession numbers
may then be used to extract sequentially from the slow permanent memory
each of the records with All' The determination of the appropriate
bucket Mﬁj for the query Aij is achieved by letting a bucket identifica-

tion number correspond to each bucket. For example, the bucket identi-

i-l
fication number associated with M, may be taken as wy,, = £ n_ + jJ,
ij i; y O
where n, = 0; thus, the w's are 1,2,..., Ny. Similarly, W&J may be

used as a query identification number corresponding to the query Ai

3
Hence, to determine the appropriate bucket for a given query, all that
is involved is first the computation of the query identification
number Wij and then a comparison of wkj with all the bucket identi-
fication numbers in the natural serial order until a match occurs.
The addresses of the corresponding bucket (which contains the relevant
accession numbers) are linked to the location of the bucket identi-
fication number by a process called chaining. Loosely speaking, this
means that once a positive decision has been reached at the address of
the bucket identification number, the computer is instructed to proceed
to the chained address which, for example, may be the first element of
the bucket. It then proceeds as in@icated before.

The dominant component of the retrieval time associated with a
single attribute query is the time required to match the bucket and
query identification numbers. If 1, represents the time required for

b

each comparison, then for the query A,, with query identification

iJ
number vgj, the matching time is approximately V&ij’ If all the

single attribute queries Aij are equally likely, the average retrieval

® @
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I 1 o , :
time is Tl,a " K, %i W = (N1 + l)'rb /2. Alternatively, in some

instances, a binary search technique can be applied to this matching

problem instead of the serial comparison discussed above. By this we
mean that the query identification number is first compared with the
middle bucket identification number (say [ (Nl +1) / 2 1-, vhere [u]-
denotes the greatest integer not exceeding u) to determine whether it is
larger or smaller. , If it is larger, then a comparison is made with
the 3/b-point; otherwise, with the 1/k-point. This successive halving
of relevant sub-intervals is continued until the desired match occurs.
An upper bound for the time required by the binary search is approxi-

mately T [logaNl]+ 7, where [u]+ denotes the smallest integer

1,m =
greater than u. Although Tl,m is of smaller order than Tl,a’ the
binary search technique may not always be feasible. Hence, both of
these retrieval time functions are used to express the efficiency of
the system.’

Finally, oite should note that the redundancy of the simple
inverted filing systen 1is Rl = v, This follows from the fact that the
accession number of a record is stored in exactly one of the n, buckets
Mi' associated with the i-th attribute, since the corresponding in-
dividual must possess exactly one of those n, levels. Since there are
v attributes in all, each accession number appears in v addresses.

From what has been said previously, the first order inverted
filing system appears to be a reasonably satisfactory scheme. Un-
fortunately, serious complications arise for it when the information
retrieval problem involves multiple attribute queries. In particular,

to retrieve a query involving two attributes, the system must first

extract all records in each of the two corresponding buckets and then
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find the records common to the two sets by matching the accession
numbers. For example, to retrieve the query {All’Azl} first the
buckets Mil and le must be identified and then the set of accession
nurbers belonging to M n ﬁ% must be determined, where ﬁ. denotes
11 1 ij
the set of acession numbers stored at Mﬁj' It is this latter part of
the retrieval procedure that can require a large amount of computer
time, for it requires that each accession number in ﬁll be compared
with each of those in ﬂ%l until a decision can be reached as to whether
it belongs to Mll n b%l. If the accession numbers in each of the
buckets are serially ordered, then the time required to match the two

lists determined from a two-fold query can be reduced by applying the

binary search technique mentioned earlier. In particular, if my

individuals had All and m?l hqdzAél, then at most [logam21]+ comparisons

need be made to.determin§ whether a given accession number‘in ﬁll has a
match in &El (the non-existence of a match is determined when no
match has oécurred and no further cuts are possible). Thus, the upper
bound on the total time required for the matching is mll[l°g2m21]+ Ta
where T, is the time required for each comparison. Adding to this the
time required to identify Mil and Nbl’ we find an upper bound for the
retrieval time to be 2[log2 N1]+Tb + mll[log2 m21]+7a. The important
point to note here is that the time required for this matching is an
increasing function of the size of the file, because as more and more
records are added to the file, the numbers of individuals m, 4 with

Aij fori=12, ..., vand J =1, 2, ..., n, all increase. Hence,
quantities like mll[logamEl]+ all increase. This fact represents the

most striking disadvantage of the inverted filing system for retrieving

records pertinent to two-fold queries. With queries involving more than
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two attributes, this problem becomes progressively more and more serious.
For example, to retrieve the query {All’Aal’ coey Atl}’ where t < v,

the set ﬁll N ﬁ%l N ... n ﬁ%l must be determined by successive matching.
As a result, if the future demands upon a filing system will involve

the frequent retrieval of multiple attribute queries, then a need

arises to consider schemes which are more appropriate for handling these
than the first order inverted filing system.

A direct generalization of the simple inverted filing system is
the second order inverted filing system, the construction of which is
oriented at the retrieval of queries involving two attributes. In
this scheme, a bucket Mij;i'j' is made to correspond with a distinct
pair of levels of different attributes Aij and Ai'j" with i, i' = 1,2,

eesy vand i' > i3 §j = 1,2,...,0.3 ' =14,2,...,n,,. This gives a

v v
total of N. = £ X n.n,, buckets in all. An accession number is
2 ga1iti TR
stored in Mﬁj-i'j' provided that the individual involved possesses the
b

j-th level of the i-th attribute and the j'=-th level of the i'=th

attribute. As in the case of the single-attribute buckets, the

Uty
the fast memory as to contain the accession numbers of all records of

} are assumed to be sufficiently large disjoint subsets of

individuals having both Aij and Ai'j"
By definition, the second order inverted filing system enables
two-fold queries to be retrieved efficiently. In the example of the

query iA A21} discussed earlier, all that is involved is the identifi-

1Y’

cation of the bucket M11'21' As before, query identification numbers
2

and bucket identification numbers can be assigned. For example, the

identification for tAij’Ai'j‘} may be taken as the ordered pair (Wij’wi'j')



i-1 itel
where wij = z n, + 3, Wﬁ'j' = aio no o+ 3, n = 0. After the
bucket has beiF located by matching its identification number with
that of the query, chaining is then used to proceed to the relevant
addresses. By arguments similar to those used before, the average
retrieval time is T2,a = (Né + 1)1 /2, assuming the possible two-fold
queries are equally likely. If‘th9 (Wij’wi'j’) are viewed as ordered
nurbers and the binary search technigue is applied, then an upper

bound for the search is essentially T2,m = [logaNé]+Tb. Both Té,a

and‘Tz ” are independent of the size of the file. Hence, for files
>

in which the number of records is large when compared to N., the

l)
Second order inverted filing system is more efficient at retrieving
two-fold queries than the simple inverted filing system.

The second order inverted filing system can also be used to
handle single attribute queries. This is accomplished by associating
with the single attribute a series of two-fold queries, the components
of which are the given attribute level and all levels of some other
attribute. For example, to retrieve {All}, the procedure can be to
retrieve {All,A2l}, (A A22}, cer (A0 Aena}’ vhere the fact that the

buckets Mll;21’ Mil;22’ ceny Mi1;2n2 are consecutive can be exploited

by the use of a chaining option on the single attribute queries. By an

extension of this argument, the following correspondence can be con-

structed.
Single Attribute Query Paired Are All
Involves Levels of Levels of
Attribute Attribute
1 2
2 3
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v=l v

\ 1
To handle queries involving the v-th attribute, of course, the pairs
{Avj’ Alj'} would have to be reversed, because of the condition i < i'
in the bucket identifications. Although this procedure appears some-
vhat complex, efficient chaining reduces the search to the location of
the bucket corresponding to the first element of the sequence of pairs.
Hence, the quantities T2,a and T2,m approximately express the magnitude
of retrieval time in this system for both uni~fold and two-fold queries.
Since Né > Nl, the second order inverted filing system is not as
efficient for single attribute queries as is the simple inverted
filing system. This essentially represents one of the prices paid for
the much increased efficiency with respect to two-fold queries.

Another disadvantage of the second order inverted filing system
is the much increased redundancy associated with it. Since each in-
dividual record must possess exactly one of the possible values of
each pair of attributes, its accession number will appear in (Z) = Xﬁ!él)
different buckets. Hence the redundancy of this scheme is R2 = Xi!él),
which exceeds Rl for v > 3.

If one is willing to increase the redundancy somewhat further,
uni~fold queries may be handled more efficiently by supplementing the
second order inverted filing system with the Nl buckets of the simple
inverted filing system. The number of buckets for the combined system
is NC = Nl + Né. One then sets up a structure of identification numbers

as before, This scheme may be readily used to retrieve uni-fold queries

essentially as efficiently as the simple inverted filing system and two-



1k

fold queries essentially as efficiently as the second order inverted
filing system., The price of this additional efficiency is the in-
crease in redundancy, wvhich now has become Rc =v + Xﬁxgl) .

As one would naturally suspect, once interest arises in three-
fold and higher-order queries, the second order inverted filing system
is no longer efficient since retrieval involves matching of accession

numbers; and hence the time required for it depends directly on the

size of the file. In particular, to retrieve {All, Asys A3l}, the buckets

Mil;El and Mil;}l must be identified and then the set of accession
numbers belonging to ﬁll;2l n ﬁil;Bl determined. The consequences of
this are essentially the same as were observed in the case of two-fold
queries with the simple inverted filing system. The problem of course
becomes progressively more serious as the order of the query to be
retrieved increases.

One could consider the concepts of third and higher order inverted
filing systems. However, when this is done, the redundancy can become
intractably large. Indeed, for the t=-th order inverted filing system,
Rt = (Z), which increases rapidly for increasing t up to v/2. Also the

number of buckets, N, = . Z B, Ny c.en., becomes

t . R i
1l< 12< o< it 1 2 t

quite large, causing the matching of query and ﬁucket identification
numbers to require much more time. These problems suggested the need
for other types of filing systems which are efficient for the retrieval
of multiple-attfibute queries. In the remaining sections we shall
consider some of the constructions possible by using various methods

of combinatorial mathematics.
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1.4, Filing schemes based on finite geometries.

One of the first attempts to apply the me.thods of combinatorial
mathematics to the construction of efficient filing systems involved
the use of the structure of finite geometries. In this section we
shall consider the results obtained from this approach by Abraham,

Ghosh, and Ray-Chaudhuri [1], and Ghosh and Abrahem [28].

First, let us briefly summarize the properties of the two types
of finite geometries: the finite projective geome'bi':}, denoted. by PG(N,q),
and the finite Euclidean geometry, denoted by EG(N,q), where q is an
integer power of some prime integer p. A more complete discussion is

given in, for example, Carmichael [22] or Bose [3].

1.4.1. The finite projective geometry PG(N,q).

The points of PG(N,q) are represented by (N+1)=tuples x' =
(xo, Xpy eees x.N), vhere X, X, «+s Xy belong to the Galois field
GF(q), a finite system of q elements on which are defined two arithmetic
operations (addition and mltiplication) that satisfy the same basic
axioms characteristic of the rational numbers. In addition, the
vectors x' and ox' = (pxy, pxlg,'...,pr), where p is any non-zero
element of GF(q), are regarded as the same point, and (0, 0, ..., 0)
is not regarded as a point. Hence, there are (qN+l -1)/(q = 1) points
in PG(N,q).

An m-dimensional flat space, called an m-flat, is defined to be
the set of points satisfying the (N - m) linearly independent homo-
geneous equations Ax = Q, vhere A is a ﬁlli-rarﬂt (N -m) x (N + 1)
matrix of elementé from GF(q). Alterna.tivély, all points whose corres-
ponding row vectors lie in the vector space generated by the rows of A

constitute an (N-m-1)~flat, which is called the dual of the m-flat. In
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this sense, a point is referred to as a zero-flat; a line, a one-flat;

a plane, a two-flat; etc. The number of points belonging to any
(N-m-1)-flat is (qN"'m - 1)/(q = 1) where the fact that two possible
non-null combinations of the rows of A are not allowed to be propor-
tional is accounted for by the division. Let §(N, N-m-1, q) denote
the nunber of distinct (N-m-1)-flats in PG(N,q). Then &(N, N-m-1, q)
equals the number of ways of choosing (N-m) independent points in
PG(N, q) divided by the number of ways of choosing (I - m) inde-

pendent points in PG(N - m - 1, q); i.e.,

N N+ -m-
raE, o .£><31-él _ény o i
- (N,N-m-1,q) = > g=1 J\ g-1 =l g- N gol 91/
» 3 ) - - - - - .
i el fny o h @I
g1/ g-1 / \ gq-1 =1/ " " q-1 q-1

L

- (1) (1) -+« (g™21)

N- N-m=1 (1.k.1)
(@ B1) (™ E) ++ (g1) o
With the above framework in mind, we may note that the function ¢
satisfies the following relations:
¢(N, m, q) = e(N, N-m-1, q)
(L.k.2)

@(N) -1, Q) 1,
The first equality results from the duality of m-flats and (N-m-1)-flats;
the second represents a definition so that the first is valid for any

integer m such that 0 < m < N.

1.4.2, The finite Euclidean geometry EG(N, q).

The points of EG(N, q) are represented by N-tuples x' = (xl,v coey xN) ,
vhere xl, Xpy eees X belong to GF(q). Each of the possible N-tuples
corresponds to a distinet point, (0, 0, ..., 0) included. Hence, there

are ql\I points in all.

An m-dimensional flat space is defined to be the set of points
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satisfying the (N - m) linearly independent non-homogeneous equations
A X =2y vhere 4, is an (N = m) meatrixandg.olsan(N-m)xl
vector with elements from GF(q). On the other hand; a dual (N - m)~flat

may be obtained as the set of points whose corresponding row vectors

lie in the vector space generated by the rows of ‘Avl' ~ Thus, the number

of points in such an (N - m)-flat is qN -

The Euclidean geometry EG(N, q) may be extracted from the pro-

jective geometry PG(N, q) by deleting the so-called (N - 1)-flat at
infinity x4 = 0 and all points and flats contained in it. Hence, the
number of m-flats in EG(N, q) equals the number of m-flats in PG(N, q)
Jess the number of m-flats contained in the (N - 1)-flat x, = 03 i.e.,
& (N, m, )-Q(N-l m, q) = Ms(N-1, m -1, q).

The various m=flats can be partitioned into parallel bundles by
allowing the associated vectors & to assume all possible values. In
this way, there are qN-m m-flats in each such parallel bundle and
g (N -1, m =1, q) distinct parallel bundles in all. Finally, each

point in EG(N, q) lies in exactly one of the m-flats belonging to any

parallel bundle.

1.4.3. Balanced multiple filing schemes,

Let us assume that there are v = pn attributes, each of which can
take s = pm velues, where p is a prime integer. Suppose further that

there is interest in a filing system capable of efficient retrieval of

queries involving pairs of levels of different attributes. This problem

may be attacked by using finite geometries.
Let u, ¢, and N be any integers nchmtncsnndul- (n+n)

In particular, we may always take w = 1, ¢ = m, and N = (m +n). Consider

& parallel bundle of c-flats im the Fuclidean gecmetry D3(N,q) vhere q = P
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t each c~flat in the bundle be identified with a unique attribute,

dand let each point on any given one of these c-flats be icentified with

a unique level of the associated attribute This correspondence is a
well defined one since each point in EG(N,q) belongs to exactly one

of the c-flats in the parallel bundle., In addition because there are

I=c !
aq

= pn= v c-flats in the bundle and since each c-flat contains qc =p =8
points, all levels of all attributes have been accounted for. The

buckets of a filing system may be identified in a one-to-one way with

the set of all lines in the geometry except those lying within any one

of the v = qN-c c-flats in the given parallel bundle. Hence, the

nuiber of buckets b is given by

b=d™ a1, 0, @) - " (® s (el 0, @) 3 (L.h.3)
=d" " {s(1-1, 0, @) - #(c-1, 0, q))

N c
- N-l cq -1 -1
s e A

(- ®) /(g - 1)

= Ty /(g - 1)

= w(v = 1)8%/g(q-1)
Since through any two points there passes exactly one line, it follows
that to each two-fold query there corresponds exactly one bucket., More=-
over the fact that g points lie on any line means that any given bucket
pertains to q(q-1)/2 different queries. As a result, one may note that
all v(v-1)52/2 possible two-fold queries are accounted for by verifying
the relation

ba(a-1)/2 = v(v-1)s?/2. (1.4.4)

Hence, we have the following theorem.
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Theorem gl.h.lz. There exists a filing system oriented toward two-fold
queries for the case v = pn and n, = n2 eee =D =8 = pm, where p is

a prime integer. It is based on b = v(v-1) sa/q(q-l) buckets, each of
which pertains to pairs formed from q levels of different attributes;
here q = pu, u being an integer which is a common divisor of m and n.

In the actual filing system described above, the accession number
for a record of an individuasl is stored in a given bucket if he péssesses
any two of the levels of attributes to which the bucket perteins. The
actuasl filing is further refined by partitioning each bucket into a
number of sub-buckets so that to each of the two-fold queries associated
with a bucket, there corresponds & sub-bucket. The sub=-buckets may be
ordered by using the implied ordering on pairs of attributes that may
be derived from an ordering of the attributes. For example, if a
bucket pertains to Aal’ A55, A72, A81l’ the ordering for the sub-buckets
corresponds to '

{Appshssds (Agyy BArpds hgyihgds Thssihnpds (Assubgls Agnshg ).
The actual sub-bucket which will contain the accession number of a
record is the first one in the ordering for which the individual has
the associated pair. In this way, any given record is stored at most
once in any bucket.

To retrieve the query {Ai 5 Ai' J'} , first the appropriate bucket |
is identified by determining the unique line through the points corres-
ponding to .A.i 3 and Ai' gt After this is done, the sub-bucket
is located by matching a query identification number with a sub-bucket
jdentification number in a fashion similar to that indicated in the

preceding sub-section. All records associated with this sub-bucket

are then retrieved. However, not all records satisfying this query
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are accounted for by this sub-bucket. In fact, for each Ai"j" assoclated
with the bucket and such that i" < i, individuals having Ainjn, Aij’
and Ai'j' are stored in the sub-bucket corresponding to {Ai"j"’ Aij}'

Such records are retrieved by having their respective sets of addresses
chained to the sub-bucket associated with {Aij’ Ai'j'}' Similarly,
chaining must also be made to sub-buckets corresponding to {Ai"

,j”,

Av“y”]mweﬂ<i“'<L Some of the details involved here

will be illustrated later in an example.

Filing systems like the one described above have been called second

order balanced multiple filing schemes by Ghosh and Abraham [38). They

considered the case associated with Theorem (1.4.1) when ¢ = 1, u = m,
and (n/u) is an integer.

Another type of balanced multiple filing system may be based on
the projective geometry in which the BEuclidean geometry previously

considered is embedded. Consider the projective analogue of the

parallel bundle of c~flats together with a parallel bundle of c-flats
lying in the (N-1)-flat at infinity such that all the c-flats involved
intersect in the same (c-1)-flat contained in the (N-1)~flat at infinity.
By duality, the number of distinct c-flats passing through a common
(c-1)-flat is the same as the number of (N-c-1)-flats lying in an (N-c)-
flat and hence equals ¢ (N-c, N-c-l,q) =& (N-c,0,q). To each of these
c-flats, let there correspond a unique attribute. The number of points
lying in any given one of these c~flats but not in the common (c=1)=flat
is ¢ (c, o, q)=8(c-1, o, q) = q°. To each of these points, let there
correspond a unique level of the associated attribute. If the lines in
PG(N,q), other than those in the previously specified c-flats are taken

to represent the buckets of a filing system, then by an argument similar
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to that given for theorem (1.k.1l), we have

Theorem (1.4.2). There exists a second order balanced rultiple filing

system for the case v = & (N-c, O, q) and Ny =0y = ... =D =S, where
s q? = pm and where g = pu, p being a prime integer. It is based on

2
b= ;(:;i S buckets, each of which pertains to pairs formed from (q+1)

i

levels of different attributes. Moreover, to any two-fold query there
corresponds exactly one bucket.
One may verify the expression for b from

b = ‘I‘(N: 1, Q) - Q(N"C: 0, Q.){(D (C: 1, Q) - Q(c"l) 1, Cl)} - Q(c'l) 1, cl)

=(qN*1-1)(qN-1) . G I W BN
(o®-1)(g-1) (a-1) (a-1) (£-1) (q-1)

(BN Ny (Cor) f (gr) (@ - oS ¢ (o7 - 1))
(¢ -1) (q-1)

ON+1 N+1 N c N+l ¢ N
(= gt =g +1) =(q -1) (g “ =g + g =1)

(®-1) (q-1)

2N+1 N+1 N+c+1 2¢c N+c c N+1
(g - g (q -q

N c N
- g +1) - +q C =g =g —+4q =q +1)

(@ -1) (a-1)
_ (q2N+1 ) OL1\I+c+1 _ e, qaf)
(& -1) (q-1)

2¢c, 2N-2c+1 Nectl, . Nec
(g -qg _“®g +1)

— g

(&€ -1) (a-1)

2¢c, N-c+1 N-c
g (g -1) (g -1)

(® - 1) (q - 1)

N-c+l H~c 2c
gt a1 gd T =1) q
- q-1 q-1 a(q + 1)
)
= v(v-1)s“/a(qtl)
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For the case ¢ = 1, the result given in Theorem (1.21;.2) coiné¢ides with
that obtained by Ghosh and Abraham [28].

Records are stored in the buckets and sub-buckets of the
filing system associated with Theorem (1.4.2) according to rules
sinilar to those described for Theorem (1.4.1.). The retrieval
procedure for any two-fold query involves solving a set of equations
to identify the bucket, matching to determine the sub-bucket, and
chaining as indicated before. Let us now look at an example of the
mechanical aspects of the filing schemes obtainable from Theorems

(L.4.1) and (1.4.2).

Example (1.4t.1). Suppose there are v = 7 attributes, each of which

assumes S =22 =4 levels. Let g =2. Thenl =5 = qc gives ¢ =2,
and7 = v = §(N-c, 0, q) = 3(N~2, O, 2) gives N = 4, Consider the line
at infinity in PG(4,2) defined by the equations

=0, x, =0, x, =0 .

%o 1 2
The seven planes through this line and their corresponding attributes

are
Al: xo=0,x=0
A2:'xo=0, ¥y = 0
A3: xO=O,xl+x2=0
AL].. }&=0,X2=O
AS: x1=0, iy t =0
A6:x2=0,xo+xl=0
A x +x, =0, X +x2=0

7" 70 2

The points associated with the levels Ai of the attributes are as

J

follows:
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All: 00100 A21: 01000 ABl: 01100 Ah1: 10000
A12: 00101 A22: 01001 A52: 01101 Ah2: 10001
A15: 00110 A25: 01010 A55: 01110 AHE: 10010
Alh: 00111 A2h: 01011 ABh: 01111 Ahh: 10011

A51: 10100 A61: 11000 A7l: 11100

A52: 10101 A62: 11001 A72: 11101

A53: 10110 A65: 11010 A7§: 11110

ASH: 10111 A6h: 11011 A7h: 11111

The buckets of the filing scheme correspond to the lines in the
geometry which do not lie entirely in any one of the seven planes
associated with Al’ voey A7. Bucket identification nunbers can be
formed by sequencing the row vectors of the matrix of coefficients
associated with the defining equations. However, the equations
corresponding to a line not always unique., On the other hand, they
can be reduced to a unique row-echelon form in which
i. the first non-zero coefficient on the left hand
side of each equation is unity.
ii. if the first non~zero coefficient in the CO-th equation

i < <l00 ,< L
is xub; then uy Uy wy

iii, +the coefficient of X, is zero in every equation except the a-th

a

Tt is this form of the matrix of coefficients which will be used to assign

the buckét identification numbers. For exarple, the line defined by

Xy = 0, x3,= 0, X, = 0 is in row-echelon form and may be identified by

the number 100000001000001., This line passes through the points

Ay :00100, A,,:01000, A:l:OllOO. Sub~bucket identifiecation numbers
~

1 21
may be assigned by sequencing the points corresponding to the pairs of

attribute levels associated with the sub-buckets. For example, the

sub-bucket pertaining to (All,Agl} can be denoted by 0010001000. The
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sub~buckets in any given bucket can be ordered on the basis of their

identification numbers. For the bucket under consideration, this is

{All, Ay} 0010001000
{47 ABl} 0010001100
{An0, A5} 0100001100

The storage procedure for the accession number of a record having

any two of All’ A21, A31 is

Part (i) of Sub-bucket 0010001000 if All’ A21, but not A31;

Part (ii) of Sub-bucket 0010001000 if A A s and A

110 2 315
Sub-bucket 0010001100 if ’An, Agy, but not A, ;
Sub=bucket 0100001100 if A21, A31, but not All'

The sub-buckets 0010001100 and 0100001100 are chained to Part (ii) of

sub-bucket 0010001000 because the records there satisfy all three of

the different possible two-fold queries associated with the bucket.

What has just been indicated can be used to formulate the storage

procedures for the other buckets.

Let us now consider what is involved in the retrieval of a query,
say {A35, A7h}' First, we need to determine the unique line through
(01110) and (11111), This is done by solving the equations

2 tag t ey =0,
a, ta, +a, ta, +a =0,

¢} 1 2 3 L
A solution is

=~ I~ 7 — 1 r -
% 1 0 0
8y 0 1 0
= K
&y 0] a, + 0 aq 1 8y
a 0 1 1
3
8 1 0 0
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and hence the line is given by Xq + X, = o, Xy + x5 = 0, X, + x3 =0
which is in row-echelon form and has the identification number
100010101000110. This nunmber is then compared against an ordering of
bucket identification numbers until a match occurs. In this way, the
relevant bucket is located. The points lying on the above line are
A33: 01110, Auzz 10001, and A7h: 11111. The sub=-bucket 0111011111
is located by matching and all accession numbers from it are extracted.

Then the relevant part of the sub-~-bucket 0111010001 is reached by

chaining and the retrieval procedure is completed.

1.4.4. Retrieval time for balenced mltiple filing schemes.

Ghosh and Abreham [28] cite four basic components for the re-
trieval time in filing schemes based on finite geometries. These are
Tl = time needed to solve the algebraic equations

to determine the bucket identification number.

T = time needed for matching the bucket identifica=-

2
tion number.

T5 = time needed for matching the sub~bucket
identification number.

Th = time needed for tracing sub-bucket chaining

when necessarye.
Let Ty be the time needed to compare two identification numbers. The
quantifies Tl’ Ty,» and T are assumed to be parameters of‘the particular
system involved. If the bucket and sub-bucket idemtification

nunbers have been ordered as previously indicated, then the average

retrieval time is given by

- [( g Y+ 1 ]1@/2vfor EG(N,q) system
+

Toa=T *T () Gt {

G,a [ (qgl) +1 ]1@/2 for PG(N,q) system
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where b has the value appropriate to the system. The binary search
technique is not overly useful here because the upper bound associated
with it for T, + T; is 15 [ log, (v(v-l)s/2) 1, = 71, [ logy(H,) 1,
vhich is the same quantity given for the second order inverted filing
system. However, if the matching time for determining the bucket is
some quantity s < T, , then the binary search technique is practical.

In this case, the following upper bound is of interest.

!G,n ShHh+o,* eG[logsz * { q+l

where b has the value appropriate to the system. Note that both TG a
2

and !G n do not depend on the number of records in the file..
2

l.k.5, Redundancy in balanced multiple filing schemes.
Suppose that there are M records, where M is an integer mltiple

of sv, and that each of the possible 8’ records occurs equally often;

i.e., we assume a uniform distribution of records. Let the redundancy

of the balanced multiple filing scheme be defined as the average number
of times each record appears in the file. In this sense, an exact
expression will now be derived for the redundancy. The basic approach
used represents a slight extension of that of Ghosh and Abraham [28]
vwho obtained approximate results.

Let the attribute levels corresponding to the different points on
a line be denoted (a.l, 8oy ecey ar) where the subscript ordering is
derived from the original ordering of the attributes. Iet (ai, a J)
denote the number of records stored in the sub-bucket corresponding to
the a,, a 3 combination of attributes. ILet [ai, a J] denote the number of

records having a2, 8‘;]' Then we have the following results

TG[log2( g )] + for EG(N,q) system

rg[loga( - )]+ for PG(N,q) system

‘ ’
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(a'l)a'z) = [8.1,3.2] = M/82
(8g525) = [ayr85] = [og 80851 = (W/s) - (W/e”)

(9-1; a-)_'.) = [3-1, a')-l»] - [8.1: 3'2: a')_',] e [al’ 5'3: 9'1‘_] + [al’ 8.2, a‘}) all-]
- (we2)-2(w/s>) + (ws")

(ap,a) = [al,ar]-}[al,aa,ar] =eee= [ag,8, s8] + [a),8,,85,8 ]
toeve + (<1) [agrBpeee8y] '

= M(s-1)™" Sr

(8085) = [app8s] - [a,85,85] = M(s-1)/s"

(o) = [agay] - [a05m] - [a850,] + [a005,0,]

= M( s-l)a/slL

(.52:9'1.) = [a2’ar] - [a'l’a2’a'r] = s = [a'2’ar;l’ar] + [31:3'2:3318'1.]
# eee + (F1)° [a580,00.2.]
= Ws_l)r-z SI‘
(-53: a'h) = [a :91'_] - [3-1, ayau] - [3'2: 3333')_._] + [5118'2,&313'1‘]
= M(s-1)%/s"
(‘;1’ 2,) = E“r-i;'arj - Lapa,yoe] = eee -"Eaf-.a,'?r”.r 8, +
[a:l’%’ar-l’ar] *oeae ¥ ("':.L)“‘[:al"8'2"""a’r:|

= M(s-1)""2/s"

Thus, the total number of records associated with any bucket is

given by

¢ = W (r-1) @D + (r-2)@-BTP + o #3011 + 20D 4 1)

-2
= (P 2 (3+1) (1-2)
J=0
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= M CL ru-l {l (?_‘g'l__)r-l}/{l _ S_;]; }'}

= M E:CE T(s-1) {1 - G%—)r'l}]

= ML 1 - (rse1)(s-1)7" /8T

The redundancy RG = Cb/M, whgre b is the number of buckets, is given by

R, = {1 - (ﬁz—'i)(l - LN,

For the scheme of Theorem (L.k.1l), we have
- {1 - Cgrs-)(l s)q-l}{v v-(]l.-i)a

while for the scheme of Theorem (1.L4.2), we have

oo GGG -

In particular, for Example (l.L4.1), we have

Fpg = { '(g;ll"t)( - i‘)e} (1@%1_@)) = 17.5.

Since 17.5 < (g) = 21, the above system is less redundant than the
second order inverted filing system appropriate to the example.

1.4.6 Balanced filing schemes,

Before the development of the balanced rmltiple filing schenes
which were discussec¢ in the preceding sub-sections, Abraham, Ghosh, and
Ray-Chaudhuri [1] considered a situation in which only one level of
any given attribute was of interest with respect to retrieval. In
some sense, attributes may be viewed as having two levels here;
namely "presence" of the relevent level and "sbsence" of it., However,

retrieval only pertains to the concept of "presence". When this is

done, queries may be specified by simply listing the combination of

attributes involved. Here, we shall let A ...,AV

l) A2)
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denote the particular attributes (levels)‘. Filing schemes which
permit efficient retrieval of queries involving pairs of these
attributes may be constructed by using finite geometries. Let the
points of a finite geometry (either some PG(N, q) or some EG(N,q))
correspond to the attributes in a one-one fashion. . The buckets of
the filing system are uniquely identified with the lines of the
geometry. Since only one line passes through any pair of distinct
points, exactly one bucket corresponds to any query involving two

attributes. The following theorems apply.

Theorem (1.4.3). Given that retrieval pertains to only one level of

v =% (N, 0, q) attributes, there exists a filing system based on PG(N,q)
vhich is oriented toward two-fold queries. It comsists of b =9 (N, 1, q)
buckets, each of which is relevant to pairs formed from (q+l1) different
attributes. Moreover, to any two-fold query there corresponds exactly

one bucket.

Theorem (1.4.4). Given that retrieval pertains to only one level of

v = qN attributes, there exists a gt‘iling gystem based on EG(N, q) which

is oriented toward two-fold queries. It consists of b = qN'l § (N-1, O, q)
buckets, each of which is relevant to pairs formed from q different
attributes. Moreover, to any two-fold query there corresponds ex-

actly one bucket.

The above theorems are given in Abraham, Ghosh, snd Ray-Chaudhuri [1]

They called the filing system based on them balanced filing schemes.

The mechanics of the balanced filing schemes are basically the
same as those of the balanced multiple filing schemes. The buckets

are divided into sub-buckets which are ordered. Similar storage and
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retrieval procedures are employed, with chaining being used when
necessary. As a result, the expression for average retrieval time
is given by TG,a while an appropriate upper bound is given by TG,m'
Finally, by means of an argument similar to that given in sub-section
1.4.5, the redundancy is

Ryp = (1= (r+1) (1/2)% 3o

vhere a uniform distribution of records is assumed in the sense that

each of the 2 possible records occurs equally often.

1.4.7. Some other filing schemes based on finite geometries.

The balanced filihg Schem& descPibed in the precéding sub-section

is directed at retrieval of two-fold queries. If there is imterest in

queries involving three attributes (again, with each having only one
pertinent level), matching of accession numbers as described in the
case of the second order inverted filing system will have to be
performed. Alternatively, one may attempt to develop third order
balanced filing systems. Unfortunately, such schemes are quite
difficult to form. However, Abraham, Ghosh, and Ray-Chaudhuri [1]
suggest the following simple construction based on the geometry
EG(N,2).

Let each point of EG(N,2) correspond to an attribute. The
buckets will be identified with the planes of the geometry. Since
each line in this geometry contains only two points, no three points
are collinear, and hence any three points determine a unique plane.

Thus, we have the following theorem.

Theorem 1.4.5. Given that retrieval pertains to only one level of

v =2l attributes, there exists a filing system based on EG(N,2)

which is oriented toward three-fold queries. It consists of
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p=2"2 g (N=1, 1, 2) buckets, each of which is relevant to triples
formed from four different attributes, Moreover, to any three-fold
query there corresponds exactly one bucket,
The redundancy of the above scheme is
Ry = b {1/8 + 3(1/8 - 1/16)} = (5/16)n.
Comparing RG,3 with the redundancy of the third order inverted

filing system R3’ we have

_ NN 1) (N eye
(Ry/Ra,5) 5 1) @V 1) 28

(8/6) (48/5) = 64/5

In other words, the third order inverted filing system contains

nearly 13 times as much redundancy as the third order balanced
filing scheme,

Another type of third order balanced filing scheme may be based
on the structure of a homogeneous, non-degenerate quadric in PG(3, q)
where q > 2. The properties of these surfaces are discussed in Bose
[5], Primrose [35], and Ray-Chaudhuri [41]. To construct the filing
system, let there correspond to each attribute a point belonging to
the quadric surface alxi + 8K X, + 8%, 2. X0%3 where ¢ (xl, xé) =

a.x 2
171
belonging to GF(q). Such a quadric contains v = (q? + 1) points no
three of which are collinear. The buckets will be identified with
the planes which pass through at least three of the points on the
quadric. Since any plane either intersects the quadric in a conic

section with (q+l) points or in a single point, the number of buckets

2
is given by (L 3 1)/(25Y) - (P +1) =263, 2, @) - o L.

Hence, we have the theorem.

2 . .
+ 8y 5% %) + asX, is gn'irre&ucible quadratic form with coefficients
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Theorem (1l.4.6). Given that retrieval pertains to only one level

of v = q2 + 1 attributes, vhere g = pu > 2, there exists a filing

system based on a quadric in PG(3, q) which is oriented toward three-
fold queries, It involves b = q(q2 + 1) buckets, each of which is
relevant to triples formed from (q+l) different attributes. More-

over, to any three-fold query there corresponds exactly one bucket.

Example (1.4.2). Suppose v = 10. Let the attributes correspond to

the points of the quadric X+ xi = x_ x, in PG(3, 3) as follows

0 2°3
Al ¢ 0010 A6 s 1022
¢ 0001 A7 ¢ 1121
A3 : 0111 A8 : 1112
Ah ¢ 0122 A9 ¢ 1212
A5 : 1011 Al o’ 1221

Hence, the buckets and the attributes associated with them are

Xy =0 Al’AE’AB’ALL J'co +x, 4 2x2 =0 : ‘4\2,A3,A5,A7
x, = 0 \ Al’Ae’A5’A6 X * 2x1 + %, =0 : A2,A3,A6,A9
Xy + 2X1 =0 Al’Az’A'?’AB XO + 2xl + 2x2 =0 : A2’A1+’A5’A10
Xy T % =0 A‘_L’A2’A9’Alo Xy + %, ¢+ x5 =0 : Al’AlL’A6’A7
Xy + 2x2= 0 A2,A5,A8,A9 xo + xl + 2)(5 = 0 : Al’AB’AS’AB
xo + x2 =0 A2,A ’A7’A10 X, + 2xl + x5 =0 : Al’A5’A6’A10
Xy * 2x3 =0 Al’AS’AT’AlO xo + 2xl + 2x5 =0 : Al,A ,A5,A9
Xy + Xz = 0 Al’A6’A8’A9 Xo t Kyt 2x3 =0 : A3’A ’A8’A9
X o+ 2x2 =0 A2’A3’A8’A10 Xy * 2x2 + X3 = 0 : A3,A ’A7’Alo
x;L + %y =0 ByshyBoshy X+, 205 = 0 t Ag, A, Ag A
Xl + fax5 =0 Al’AB’A7’A9 Xy + 2x2 + x3 =0 - AS’A6’A7’A9
X + x5 =0 A A ’A8’A10 Xy + X, + Xy * x3 =0 AB’AS’A9’A10
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X, + 2x3 = AS’AI&’AS’A6 X, + X + 23':‘,a + 2x3 =03 'AM’A6’A9"A10
x2+x3=0 S A7,A8,A Ao xo+2xl+x2+x3=0 :Ah’AS’A'T’A
x0+x1+x2=O):AA,6,8 x+2x1+2x2+215=O:A,A6,A7,A8
The coefficients of x y ¥ ¥ mj may be used to form fou.r-hgit bucket
identification numbers. Similarly, each bucket may be divided into
four sub-buckets which cen b¢ labelled by sequencing the coordinates
of the points involved. The actual storage and retrieval proc.:edlures
are essentially the same as those indicated previously.
By an argument similer to that given for the second order

balanced filing system, one may verify that the redundancy for the

system associated with Theorem (1.4.6) is
2 2 gtl
RG d X =X } (1/2)L|-b
3 x = 1/2

2 1~-x
b{1 - [1 + (q*1) + ( 2 ) 1(1/2)%

dx” .

This quantity is substantially less than R3 as can be seen by
considering their ratio.

The principal disadvantage of the second order and third order
balanced filing systems is that they do not handle lower order queries
efficiently. As was exhibited in the case of first order queries in
the second order inverted filing system, some modifications can be
introduced so that a lower order query is transformed into a number
of the appropriate higher order: queries which are then subsequently
retrieved. However, this is more complicated to do for the filing
schemes considered in this section. A better approach would be to
increase tﬁe redundancy somewhat by supplementing the higher order

filing scheme with the relevent lower order schemes. For example,
to handle three-fold snd lower order queries, one could combine a



third order balanced filing scheme with a second order balanced filing
scheme and a first order inverted filing scheme. The query type would
then direct the system (to the appropriate component it should refer
to0) in order to perform retrieval.

Alternatively, the above situation may be approached by using
another type of filing system which is oriented toward retrieval of
more general type queries. Abraham, Ghosh, and Ray-Chaudhuri (1]

introduced the concept of generalized balanced filing scheme in the

following theorem.

Theorem (1.4.7). Given that retrieval pertains to only one level of

v attributes, there exists a filing system which is oriented toward
queries involving any t or fewer attributes. The buckets are identi-
fied with the O-flats, l-flats ..., and (t-1)-flats of a finite pro-

jective geometry. As a result,

min(t-1,N)
v=% (N, 0, q), b= X% & (N, a, q) if PG(N,q) is used,
o=0
N min(t=1,1)
v=gq, b= I qN @ §(N-1,0-1, q) if EG(I, q) is used.

=0

The accession number of a record is stored in a bucket corresponding
to a m-flat if the individual has at least (m+l) attributes such that
the associated points all lie in the m-flat and form a basis of it.

A series of sub-buckets and chaining is used to determine the exact
location. To retrieve a u-fold query, the m~-flat of minimum di-
mension which contains all the u points associated with the query is
Getermined., This identifies the bucket. The relevant sub-buckets

are then located and retrieval is completed. A complete description of

—m

R B N mi
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the above type of filing system is given in the previously cited
reference.

Although the generalized balanced filing scheme is capable of
efficiently handling a general class of queries in the sense that
retrieval time does not depend on the size of file, the system does
have some disadvantages., In particular, the redundancy is quite
high because each record will be stored in a large number of buckets.
Secondly, the system is quite complex and mey be difficult to im-
plement. Another type of general filing system which avoids some

of these problems will be discussed in the next chapter.

1.4,8., Some further remarks.

In the ' preceding sub-sections, some filing schemes have been
constructed for particular values of v and, as in sub-section 1.4.3,
the number of 1levels of the attributes s. For certain other
situations as, for example, a case where v does not assume one of
these particular values or where the n, are different from each other,
an appropriate system can be constructed by using a geometry in which
the desired properties of the scheme can be enbedded. In particular,
for the case of the balanced filing scheme, we can use the appropriate
geometry with the smallest number of points provided the number of
points is at least v. For additional details concerning this, one is
referred to Abraham, Ghosh, and Ray-Chaudhuri [1] and Ghosh and

Abraham [28].



CHAPTER II

A GENERAL, MATHEMATICAL MODEL AND SOME RELATED FILING SYSTEMS

2.1. A mathematical model for filing systems.
In this section, a mathematical model for filing systems will be

formlated. The approach used is similar to that of Ray-Chaudhuri [43]
for the case in which retrieval pertains to only one level of each of

v attributes.

As in the previous chapter, let A,. denote the J-th level of the

i3

i~th attribute where i =1, 2, ..., v$ J =1, 2, ..., n A file F is

i.
denoted by the triple F = (8, 0, £ ) where
a. & represents the population of individuals.

b. Q represents the set {All’ coey Alnl’ cooy Avl’ ceey Avn3
of attribute levels.

c. T is a function from 9§ to subsets of Q such that £(I) denotes
the gset of attribute levels possessed by individual I. Since
each individual has exactly one level of each attribute, it is

n
clear that |f(I) n A,.] = 1 for each i vwhere A, = ul a,, ana
io i0 =1 iJ
| ¢ | is the number of elements in the set C.
The storage procedure S for the filing scheme is characterized by the
triple 8 = (J, M, o ) where
a. J represents the population of individuals.
b. M represents a set of positive integers corresponding to the

set of possible addresses.

c. 0 is a 1=l function from J to disjoint subsets of M; the
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subset of/I) contains the addresses where the accession number
of I's record is stored.

The third and most important aspect of the filing scheme is the re=~

trieval procedure R. This may be identified with the triple R = (G, M, r)

where

&, Let G represent a cless of subsets from O such that each A in G
contains at most one  element from each group Aio (since any
individual can pos»sess«o_nly one lt_e}velvof__any g.ttribute); then
we may take G"to.vrepresent‘. the class of querles.

b. M represents the set of addresses available for storage‘.

e, 1 is a function from G to subsets of M with the subset r (A)
being such that if £(I) contains A, then lo(t)nr(a)| = 1; in
other words, only one of the addresses, where the accession
number of ',l-jI's record is stored, is related to the retrieval
of the query A.

The filing system is said to be of order t if for each A belonging to
G, the relation [A| <t holds.
To illustrate the applicability of this model, let us consider a

system called the extended inverted fiugg__gxsfbem by Ray-Chaudhuri. In

this scheme, to each subset A in G, there corresponds a subset MA of M
such that M, n MA' is empty where A' is any other subset in G. The
accession number of I's record is stored in M, if f(I) contains A,
Hence, the set off) contains an element corresponding to each of the
subsets A in G which is contained in f(I'). The size of this set in-
dicates the redundancy associated with the storage of T's accession
nunber. The retrieval rule for the query A is simply r(A) = M, . The

retrieval time essentially reduces to the time required to locate the
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bucket MA by matching identification numbers in a fashion similar to
that indicated in Chapter I. As a result, it is directly related to
the mumber of subsets in G. Finally, vhen G is such that [A| < t,

the extended inverted filing system becomes identical with the t-th

order inverted filing system considered earlier.

2.2. Combinatorial configurations and combinatorial filing systems.
A combingtorial configuration (2, k, G, b) consists of a master

set 0 ( the set of attribute levels), a class of subsets G (the queries),

and blocks B., B

Y T2
i, |Bl< k

ii. for every A in G, there exists an h such that A C Bh .

» wees By (which are certain subsets of Q ) such that

If |A | < t for each A in G, then the configuration is said to be of
order t and is denoted as an ( @, k, t, b) scheme. The actual con;
struction of (Q, k, t, b) configurations with minimum b is a very
difficult problem in combinatorial mathematics. For the case of t =2
and n,o=n, =...=n =8, such arrays are equivalent to certain
group divisible (GD) designs used in statistical research. Some of the
possible solutions obtainable here will be indicated later. However,
in most situations, such optimal schemes are largely unknown and
perhaps can be found only through systematic trial and error. As a
result, in the later sections of this research, we shall be mostly
concerned with the development of schemes which are easy to construct
and seem practical in the sense that b 1s not excessively large.

A combinatorial filing system may be based on a combinatorial
configuration as follows. Let the blocks Bl, 32’ coey Bb be arranged
in serial order. For each A in G, define 7 (A) = h if A is contained

in Bh but is not contained in Bh' for h' < h. Hence Bh is
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the first block which contains A. Let ah denote the collection of all
subsets A of O such that 7 (A) = h. To each combination of A and h,
let there correspond sufficiently large disjoint subsets Mh, A of M.
The accession number of the I-th individual's record is stored in an
element of Mh’ 5 if and only if the largest set which f(I) has in

common with B, is the subset A in G5 i.e., if £(T) N B, = A. Let

= (2.1.1)
M, ath

The sets Mh may be called the buckets of the filing system while the
subsets Mh A mey be called the sub-buckets.

The retrievael procedure for any query simply involves the deter-
mination of the appropriate bucket by identifying the first block which
contains the subset specified in the query. Afterwards, all sub-buckets
corresponding to subsets which contain the query set are located and
the sccession mumbers therein obtained. Thus, the retrieval function

may be formally written
r(A) = r% e (2.1.2)

A C ce@G
where A ¢ G and 7 (A) = h. Hence, from the preceding remarks, one
can see that once a combinatorial configuration (which is efficient
in the sense of b not being too large ) has been constructed, a
reasonable filing scheme may be readily based on it. In particular,
Bose, Abraham, and Ghosh [9] have used a procedure similar to this.
Finally, the concepts of combinatorial configuration and combinatorial
filing scheme as developed here are equivalent to the ones considered
by Ra;v:Cha.udlmri [43] for the situation in which only one level of

any attribute was of interest with respect to retrieval.
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Exarple (2.1.1). Supposc there are v = 5 attributes, each of which

3 577
set 0 1is given by Q ={All, Ayps AlB; Asys Asps AQE; ABl’ A52, A55;

assumes s = 3 levels; i.e; n, =n, =n my =n Hence, the

. A f mbi tori : i i
Ahl’ Ah2’ Ah}’ A51, A5os AS-. A second order combinatorial configuration

( Q, 4, 2, 15) is provided by the blocks

By = Uypphsyshypshsy ) By = [ApshonBpihsy! By = Ugg, Ay, s Ay
By = (s hephys) By = (A Ay pohsp Assd Bg = {A)5,A50, 85, A55)
By = {Ay1shoy Ay 00 Ass] BS = Biprhsprhopatysl  Bg = 1Aygihyhsesfos]
Byo= {All’ABI’ABE’AT} 1= o horshspihss)  Bip= {Ayghsyshosshss!

Bys= {hy1shy00Anp Ass) Blu {Ayprhgy, 8004 23’ Byg= {Ay5hn A5 050

The buckets of the coubinatorial filing system are setls of addresses

which correspond to the blocks B, while the sub-buckets therein correspond

h

to the possible subsets., If the subsets are represented by writing all
the attribute levels associated with the block in a fourstuple and then

placing a bar over the ones to be excluded from the subset, then we have

My =U(ApyRs BypoBsy)s (R shsy By By )y (B Bsysyy hsy),
(s hssByshsy )y (pyshsysByysBey)s (s by shsy),
(Ap1sBsyshyyshsy)s  (Bophsysbygshsy)y (RopshsysByyshsy),
RysBsyobyyohsy)s (Boyshsy hypoBsy), (Apyshsy By hsy),
(Ao Bsshyhsy)s (Rpyshsyhyhsy)s (Agpshsgsygshsy ) -

My ={(BgpsBpsBiypifsp)s  (BppyhspsPypsBisn)s (BppiBsny By, Bsp),
(BopsRspsByprtsn)s  (Bpyhsn) R Ren)s (AnpsBsnsbyp, Bsy),
(Aoprhspihpihcg)s  (BpihsgibiyiBsg)s (BopsfsnsBypshsy),
(Rops Bspslypsisn)s  (AapshspshynsBisn)s (hopstisgBypstss)s
(Ao rBspshynston)s  (Ropihsgslypsbss)s (Apnshansfypshss)) -




=f N Y ¥
(ggoRagshisshss)s

ure
|

.

(K 5 35:Kh5)Ar:):
(A25’ 53:‘3:)_,,3: 57))

(&_,&__,
2378557857 55>

( 23) 35:A’-,5:A)9)J

g, =H(hyy5 50,850, By5)s
(41 K51’:552"“45)’
(Ry15P51 550 85)
(AR5 h5p0hy5)5

My =t (Alz’Kul’E-Be’KBB)’
(BypsBy15R5pr853)s
(FypoBy1 A5p5h55)

(A].E’A,-I-I’ABE’ASB) 2

M6 ={ (Al5’ SI’ALI-E’A55)’

>

(Ay0B5058y00A55)

(-A-lB’K5l’A}-I-2’ Aﬂ:’. ) b
(AIB’K51’A14-2’ A'z ):

1y ={ (a3, 80), B0 Bs3)s
(811581, Ryp0B55)»
(Ay Aoy BypoBs5)s
(By15 010800853
=L (A5 A5 Ro0s By 5)s
(R 1204518007 By3);

(Al2’ A5 1’ A22) K}_‘L; ) )
(A

s

ohs1s Aoprhiz):

(AQ—’ 55,Au5: 5))
hoyrhsz Byzehss);
(Bpzr Ag5:Ry30R53)

A A _,A LA
( 23’33’ ua’ASB)’

(Bpzshgsstyzhss)s
(Ay15851 R0 Ry5)s
(oA 51’A52’K1+5)’
(Au’A31’A52’Zh3)’
(8115851585025
(8105815 R500 535
(B1pr8y15h500B53).
(A oy 1 A5p0Bss);
(B10s8y158501 853
(Ay30h51sBypsPss)s
(A 7;A51:Ah2:x35):
(B 508515 Ry20R33)
(50515 M0 R55)
(Ay 1581 5BypR55)
(Kll’A2l’K42’A55)’

(All’ Aval,K)_,_z)A53) 2

\
(All’ Axys Ahe’ASB) i

(A1psBsy 8000 Ry 5)
(Byprh519Bpp1 By5)s

(A5 A57 5B 000 Ry5)s

(8008570 B00sPy3)5 -

(Rozr s lysohss)s

AILZ,ASB),

(Apz5 Bz,
(AEBJA57JA14_5} 3) ’

A
( 2%’ 3“’ uB 55)’

(Agiyr 3553 )

(All’ABI’ASE’K)-l-5)’
X _,A_,A

( 117317527 Ah5)’
(A 1: 52,A)_|_5)’

(An’ 18500 Ry5) -

(AJE’AL{-:L’ A52) K55 ) b
(A]2)A)+l: A32)A55 ) ’
(AlZ’ Alg.]_) %2}A55)

(A 258y 15 A5y Bs5) T

(B3R5 Pps )
(Al5’A51’A)42’ A35):

(Al_"}’ASl’Aer’A53)’

(.A17,A5l, ALLZ,ABB)} .

(A l"2]’A"2’ 5):
(B Rnys Bp0853)

(Byy5P s Myprhs3)s

(8102515800 R3)s
(B o 51520000305

(Ala,A5l,Azz,Ah3),

L1



Hy = (130875 F500Bns),
(B0 8108500 B3 )
(By30810850:805)

(K]j, Au 1’ A52:A25 ) ’

iy =LAy 955058505 B5),
(Ry1285108500R55)5
(Ay178510 85003 )
(By 1585758500 805),
Hyy =LAy, 8005 R500R55),
(Anz’ 2178529555
(Ayps 8005850 R55),

(Al2) 21’ 52’ 3-7)))

10 ,={ (815,455, 522, K55) )
(A 15085108000 R55)
(513:A31:A22:A53):

M= (8130 A4 5B o0 hs5);
(R phyphophss)s

(A28 AR 55)s

(&

1174017 A 35)’

M= (A1 8505, Bs )
(KL?.’A31’A)+2’ 25)
(81008505 A00B5),
(B o518 805);

N‘ls ={ (A15)A21)A32) A}_{_? ) )
15) 21’A32’Alg.7 ) ?

(A13) A)-I-l’ A52:A23 ) )
(K]j; A)_,, 1:A52: A25 ) ’

(By50 8415 B500 83

(A15 ’All-l’ A52: A23 ) } *

(All’KSl, ABQJKEB))

11, 51)%2:%5):

(All’ 51) 52’ 23)’

(A115850, 850553 -

(Al2J '-521}A52’ KBB ) 2
(A’R,Agl,%z,%),

( 12) 21’ 52) 33))

Ayosrhny s hsnshss)] -

(815850800 55),
( E’Aal’ 22} 53):

(A 358515500 A53),

(815585758001 853) ] -

(A1y8)10R000R53),

(A’ll,Ahl,A'ae,A%),
& 11’Ah1’A22’ 33)’
(B 1358108000 55)]
(810 B 50085555
B iorhzys uz"‘zz)’
(81 0B 5958y 00855),

(A 12’ 31’ ue’ 25)3'

(Al5’K21’ A32)A)+3 ) 3
(K]j: A’El’ABQ’ A)+3 ) )

(Ay55R05 8500 895)

(K]j )Khl} A52) A25 ) )
(AIB’AILl’ A52: A23 ) ’

(Ay15K51 5850, 805)5

(B 1585178501 895),

(B35 51’A)2’A25)’

(8195891, 852,835)
(Ala’Agl, A52, ASB),

(AB A)l, 22) 53))
( 13) )l’ 22} 53)’
( 13) 31) 22) 55)’

(811081800 A53)s

(B 1358y R0 R55)s

(A13s8) 18000 A 52,

(Ao Rss By p0hnz),

(B prB505 8y, 00 803),

(BB 51y has)s

(Al5’ KQ:L’ A52; A[@ ) 2

By 5By 585psRy5)

L




( 15) 21} 92) '. )) (AlB’ 212 32)AL,_5) (A ’!\21’ 32)‘%4_5)

(Alj’ 232 )2: ) (AlB’AEI’A52’A)+3) } .

In the preceding, (Azl’Aﬁl’Ahl’ASI) corresponds to the individuals who

have A21’ A32 or A5/, A. or Ah}’ A52 or A53’ anéd any level of A1 while

(A21’A31’Ahl’A5l) corresponds to those having A21,A51,Ah1,A52 or A55,
and. any level of Al.

To retrieve the query A = (A first it is necessary to

11’ 21 ’

determine B7 as the first block which contains the set; i.e., 7 (A) =
Hence, M7 is identified as the bucket from which retrieval is to be

performed. The relevant sub-buckets are (All’Ael’Ah2’K53)’ (All’A2l’Ah2’K53)’
(All, 21’Ah2’A53)’ and (All’ AnysByns 53) since all the records associated
with these subsets have All’ A21‘ Hence, this two-fold query may be
efficiently retrieved.

Next, let us consider the query A = {All}' Tae first block to
contain All is Bh; hence 7(A) = 4 and the relevant bucket is Mﬁ. The
sub-buckets retrieved are (All,Kél,Kéz,KLB), (All’A31’K52’Kﬁ3)’

Ay K180 Byz)s (AyhsysBonilys), (AyyrhsyshopiBys)s (ByyrhsysBon,ds),

@uﬁﬁﬁﬂﬁgh(ﬁy%r%yﬁy.

By procedures similar to those indicated above, any one-fold or two-
fold query can be readily retrieved. Also, the system can handle a |
1irited number of three-fold and four-fold queries. The principal
operations required in this type of filing system are that of
Getermining whether one set contains another. These are performed in
areas where the contents of the buckets and sub-bucliets are stored.

After the appropriate icentifications have been performed, the addresses
which correspond to ‘he pertinent accession nurbers afe located by

chaining.
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2.3. Second order coibinatorial configurations based on incomplete
desiggs, |

The problem of constructing second order covbinatorial con-
figurations is essentially the same as that of constructing certain
incomplete block designs used in statistical research, Of special interest
are balanced incomplete block designs and group divisible designs. The
combinatorial properties of these designs have received much attention
in the literature. In p .rticular, the reader is referred to Bose (31,

Bose [4], Bose, Shrikhande, and Bhattacharya [17], Rao [39], sprott [46].

2.3.1. Balanced incoiplete block designs.,

A balanced incomplete block (BIB) design is an arrangement of v

dSbjects into b subsets called blocks such that

i. each block contains k objects

ii. each object occurs in r distinet blocks

iii. each pair of objects occurs together in A distinct blocis.
If only one level of each attribute is of interest from the point of
view of retrieval as in sub-section 1.4.6, then a BIB design with
paranmeters (v, b, r, i, A= 1) represents a conbinatorial configuration
(Q, X, 2, b) where q = (Ays Ay veey A} denotes the set of v attributes.
Such configurations arc optimel in the sense that each pair of attributes
1s covered exactly once, and hence for the given k, b is a minimum. Thus,
the formation of optinal combinatorial filing systemns appropriate for
two-fold or one-fold queries may be based on the construction of BIB
designs with A = 1. |

As was the case with the balanced filing systems considered earlier,

such BIB designs may be obtained from finite geometries. In particular,

points are identified with objects (attributes) and lines with blocks
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(vuckets). The resulting schemes are similar to the balanced filing
systems except for the fact that sub-buckets are formed in accordance
with section 2.2.

More generally, Bose [3], [4] has given some fundamental theorems
which may be used to form BIB designs. These methods were then

applied to the construction of some designs in the following series.

lev=3(2t+1),b=(3t‘+1)(2t+l), r=3+1, k=3, A=
T2:v=6t+l, b = t(6t + 1), r = 3t, k=3 A=
Firv=12t +1, b= t(18t + 1), r = LUt k=4 A=1
\F2:v=l+(5t+1),b=(l+t+1)(5t+1),r=1+t+1,k=l+, A=1

G.: v =20t +1, ©b=t(20t +1), r = 5t, k=5 A=1

1l

G2: v=20t+5, D

The actual existence of the designs belonging to Fl’ F2, Gl’ G2 depend

(5t + 1)t +1), r=5t+1, k=5 A=1

upon further conditions given in the cited references. Some examples

where the contitions are satisfied are

v b r k A
13 13 L L 1
25 50 8 L 1
16 20 5 4 1
28 63 9 4 1
41 82 10 5 1
61 183 15 5 1
25 30 6 5 1
45 99 11 5 1



Rao [39] and Sprott [46] indicate the

additional designs with k& = 4, 5

v
37
Lo
65

as well as

v

66
91
81
91
9%
113
120
153
145
145
181

For situations with larger v, additional BIB designs need to be

geveloped.

in instances where rmlti-stage schemes (as will be discussed later) are

envisioned.

require additional research.

b
111
150

208

the desigus

a2

362

Also, designs with large k would be desirable, particularly

The problems posed here are not easily solved and will

r
12
13
16

13
15
16
18
19
16
17
19
18
16

20
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2,%.2, Group divisible designs.

A group Givisible (GD) design is an arrangement of vs objects,

belonging to v groups of s objects each, into b blocks such that
i. each block contains k objects
ii. each object occurs in r distinct blocks
iii. each pair of objects, belonging to the same group,
oceur together in %1 blocks
iv. each pair of objects, belonging to different groups,
occur together in )2 blocks.
Hence, a GD design with %1 = 0, )2 = 1 represents a combinatorial
configuration ( Q, %, 2, b) appropriate to the multi-level attribute
case with Q being the set of v attributes, each with s levels. Such
configurations are optimal in the sense that each pair of levels of
diTferent attributes is covered exactly once, and hence for the given
%, b is a minimum. Thus, optimal combinatorial filing schemes
eppropriate for two-fold and one-fold queries may be constructed if
the corresponding GD designs with %1 = 0, )2 =1, exist.
Bose, Shrikhande, and Bhattacharya [17] give the following

sirple method of constructing group divisible designs.

Theorem (2.3.1.). By omitting a particular treatment ¢ and all blocks

containing it from a BIB design with A =1, one obtains & group

divisible design with %1 = 0, )2 = 1.



They list the following designs as obtainable by this method

v

O o O W\

10

[6)

O v o

10

10

11

They also give methods for constructing the following additional designs

v

4= N\ = t\‘l

U

S

Yo B \V e RS AN R S

 F PPV DWW

n

(o TS N TR — R - G U RS N S '

20
28
Lo
L8
54
60
72
88

b
1
52
32
72
30
80
16
25
kg
6l

[e¢) o = [OANRN | \O oo \n +=

\O

9

10

r

N O O O F

10

k

=
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5
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N

0

0

0

0

N

0

0

™

1
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1
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v ] b r k )1 )2
9 S 81 9 9 0 1
7 L 5k 8 L4 0 1
7 3 63 9 3 0 1
9 5 90 10 5 0 1

Some of the above designs as well as some others which are no’d listed
may be obtained from finite geoﬁxetries by procedures similar to those
illustrated in Theorems (1.%.1) and (1.4.2). Indeed, theb buckets of
the balanced multiple filing schemes constructed there coincide with
the blocks of a corresponding GD design. Also, GD designs may be ex-
tracted from the BIB designs with r 2 11 listed in the previous sub-
section by applying Theorem (2.3.1). As a final note, further research
is required toward the construction on GD designs for larger values of

v, s, and k.

2.4, Combinatorial configurations for the case when retrieval pertains

to on;l one level of each attribute.

Here, we shall indicate some methods of coartruction given by Ray-

Chauchuri [43] for general (0, k, t, b) configurations where

Q= {Al, Ay oee) AV].

2.4.1. Configurations based oh coverings of a finite projective space.

An m-flat % in PG(N,q) is said to cover a (t-1)-flat T if Z €' vwhere
N >m >t-1. A class of m-flats (:rl,:t PYRRRRY Ttb) is defined to be a
(b, t, m)-cover if every (t-1)-flat in PG(N, q) 1s contained in at
least one of the m-flats % belonging to the class. The function
b(N, t, m, q) will be used to represent the smallest value of b for

which there exists a (b, t, m)-cover, in which case the cover is



A
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called a minimum (b, t, m)-cover. Given the above Iramework, we now

prove the following thieoren of Ray-Chaudhuri {13,

Theoren (2.4.1). There exists an ( @ X, t, b) cowbinatorial con-

figuration for the case v = (qN+l -1)/(g-1), k = (¢t 1)/{q - 1)

t = b(N, t, m g) where I Zn 2 {~1 and q = p" with p being a prime.

Proof: Let (nl’n2’ cee, nb) be a class of m-flats in PG(N,q) which

covers all (t-1) flats and b = b(N, t, m, q). Since m > t-1, such a
covering exists. Let the points of PG(N,q) be identified with the

elements of O and let the m-flats Ty Moy eees T be identified with

12 B2, ooy Bb of the configuration. Because any set of

t-points or less is contained in some (t-l)-flat and hence is containec

the blocks B

in one of the m-flats of the cover, the resulting construction is an

(9 Xk, t, b) configuration with parameters as listed above.

If the number of attributes is less than (a& = = 1) /(q-1),
Theorem (2.4.1) may still be applied because if all elements of 0
except those in a subset Q*are deleted from Q and from each of the

*
blocks Bl’ B, oo, Bb’ the resulting system becomes an ( i, k, t, D)

2}
configuration. This follows because an upper bounc on the block size
is still k and all t-plets of elements from Q* are still covered.
Actually, b may become smaller, if the deletion process causes some
blocks to have fewer than t elements, in which case they may also be
discarded.

Ray=-Chaudhuri cdoes not discuss to any great extent how minimum

(b, t, m)-covers are constructed. He does, however, indicate the

following corollary.
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Corollsry (2.4.1.1). An ( @, k, t, b) combinatorial configuration

exists for v = (@F - 1)/(a-1), & = (a° - 1)/(a-1), b = &(N, t-1, q).

Proofs Take m = t-1 in Theorem (2.k.1).

Let us now supplement the above result with some additional
methods for forming covers. Except for the simplest cases, no claim
of optimality is made for the constructions given. However, they

are felt to be satisfactory until better ones become known.

Theoren (2.4.2). There exists a (b, 1, 1)-cover for the geometry

PG(N,q) with b = g(N-1, 0, q) where q is a prime power.

Proof: Consider the set of b = ¢(N-1, O, q) lines through some fixed
point By in PG(N,q). This represents a (b, 1, 1)-cover since each
point of PG(N,q) lies on exactly one of the lines through Pye

Corollaxy (2.4.2.1). There exists an optimal (b, 1, 1)-cover for

PG(2,q) where g is a prime power; i.e., v(2, 1, 1, q) = q+l.

Proof: Since each line in PG(2,q) contains (q+l) points, we have that
2 .

v(2, 1, 1, a) 2 (" +a+ l)/(‘l"'l) >q; 1.€., 'b(2, 1, 1, q) 2> (q+1).

But the construction from Theorem (2.4.2) has b = &(1, 0, @) = a1

and hence is optimal.

Theorem (2.4.3). There exists a (b, 1, m)=cover for the geometry

FG(N,q) with b = &(N-m, O, q) where g is a prime power and N > m.

Proofs Consider the set of b = ¢ (N-m, O, q) m-flats through some
fixed (m-1)-flat my in PG(N,q). This represents a (b, 1, m)-cover
since each point of PG(N, q) which is not on T determines a unique

m=-flat through Ty
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Corollary (2.4.3.1). There exists an optimal (b, 1, m)-cover for

PG(m+l, q) where q is a prime power; i.e., b (m+l, 1, m, q) = (q+1).

Since each m-flat in PG(m+l, q) contains (™% - 1)/(q-1)
points, we have that b(m+l, 1, m, q) 2 (qme_ 1)/(qm+l- 1) » q; i.e.,
b(m+l, 1, m, q) % q¥l. But the construction of Theorem (2.k.3) has
b= #(1,.0, q) =g+l |

Theorem (2.4.4)., There exists a (b, 2, 2)-cover for the geometry

PG(3, q) with b = q_2 + q + 1 where q is a prime power.

Proof: Consider all lines in a given plane T through a glven

point PO' There are (q+l) lines in T through Po. Form the

(v, 2, 2)-cover by taking all planes through these lines other than

T together with Te Hence, b = q (q+l) + 1 = q2 +q+ 1. Since

any line L, not in ‘% intersects =, in a point P, and since the

line connecting PO and Pl and the line L determine a unique plane,

each line is covered.

Theorem (2.4,5), There exists a (b, 2, 2)-cover for the geometry
N-2

PG(N,q) withb = % qa“é(a, 0, q) where q is a prime power and N >e.

Proof: Consider all lines, in & given (N-1)-flat x,,

glven point P. There - are (N-2, 0, q) such lines. Form the

through a

(b, 2, 2)=cover of PG(N,q) by taking all planes through these lines
othexr ' than those lying in n, together with a (v, 2, 2)=cover of -

PG(N-1, q) as represented by Ty Since any line L, not in T

1 and since the line connecting P0 and Pl‘

and the 1line L determine & unique plane, each line not in T is

covered. Those lines in x, are covered by the (b, 2, 2)=cover

intersects Ty in a point P
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developed for PG(N-1, q) which may be assumed to exist by mathe-
matical induction because of the existence of the (b, 2, 2)-cover
of PG(3, q) given in Theorem (2.4.4). The value of b is determined
by noting that through each of the &(N-2, 0, g) lines through P, in

Ty there pass (¢(N-2, 0, q) ~ &(N-3, 0, q)} planes not lying in

N

7 Thus, b is equal to the sum of ¢ 2 ¢(N-2, 0, q) and the number

o.

of planes needed to cover the (N-1)=-flat Ty Proceeding backwards in
N-2

s recursive manner, we have b = I < #(a, 0, q).

=0

Theorem (2.4.6). There exists a (b, 2, m)-cover for the geometry
N-m

PG(N,q) with b = £ < ¢(0; 0, q), where q is a prime power and
(0

NZm_>_2.

Proof: Consider all (m-1)-flats, in a given (N-1)-flat ny through

some fixed (m-2)-flat n,. There are $(N-m, O, q) such (m-1)-flats.

Form the (b, 2, m)~-cover of PG(N,q) by taking all m-flats through
these (m-1)-flats other than those lying in =, together with a (b, 2, m)-
cover of PG(N-1, q) as represented by =,. Since any line L, not in

. intersects n, in a unique point P, which lies in an (m=1)-flat

n such that = C v C 7, and since L and = determine a unique m-flat,

each line not in n determine a unique m-flat, each line not in T is

covered. Those lines belonging to %, are covered by the (b, 2, m)-

cover similarly developed for PG(N-1, q), the existence of which
mey be assumed by mathematicel induction since a (b, 2, m)-cover
exists for PG(m, q). In particular, for the case N = m, b = 1; for

the case N = m+l, b = ¢{qg+l) + 1; and in general b is the sum of
§(N-m, 0, q) {@(N-m, 0, q) - &(N-m-1, O, q)} and the number of

m-flats needed to cover the (N-l)_-flat Ty Proceeding recursively,
Nem ‘

o
we have b=a§0q ¢( o 0, q) -
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Theorem (2.4.7). There exists a (b, 3, m)-cover for the geometry

N-m B o+
PG{N,q) with b= = = q © &(a, O, q) where q is a prime power
B=0 =0

and N=2m =2 3,

Proof: Consider the (m-1)-flats belonging to a (b, 2, m-l)=cover
for the geometry PG(N-1,q) as represented by an (N-1)-flat Tye
Form the (b, 3, m)-cover of PG(N,q) by taking all m-flats through

these (m~1)-flats other than those lying in T together with a

(b, 3, m)-cover of PG(N-1,q) as represented by 4 Since any plane

P, not in =, intersects =, in a unique line lying in an (m=1)-flat

0)
= which belongs to the (b, 2, m=l)=-cover in n, defined above and

since P and n determine a unique m-flat through = , each plane not
in T is covered. Those planes belonging to T, axre covered by the
(b, 3, m)-cover similarly developed for PG(N-1,q), the existence of
which mey be assumed by mathematical induction since a (v, 3, m)-
cover exists for PG(m,q). In particular, for the case N=m, b=l;

for the case N=m+l, b= (q2+q+l) q + 1 = q3+q2+q+l;

and in general, b is tiie sum of

N-m . -
o _
{2 q &(o 0, q)} &(N-m 0, q) - 2(N=m=1, 0, q)}
and the number of m-flats needed to eover the (N-1)-flat =..

0
Proceeding recursively, we have

N-mBB o
b= Zqg = q #(a 0 q).
B=0 =0
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Theorem (2.4.8). There exists a (b, 4, m)-cover for the geometry

N-z 7 5]
pe(N,q) with b= £ £ £ @ P*7¢(q 0, q) wnere
=0 B=0 Q=0

q is a prime power and N 2 m 2 L,

Proof: Consider the (m-1)-flats belonging to a (b, 3, m-1)-cover
for the geometry PG(N-1,q) as represented by an (N-1)-flat e
Form the (b, 4, m)-cover of PG(N,q) by teking all m-flats through
these (m-1)-flats other than those lying in =, together with a
(b, 4, m)-cover of PG(N-1,q) as represented by . Since any
B-f}at n3, not in Ty intersects Ty in a unique plane lying
in a (m-1)-flat n which belongs to the (b, 3, m-L)-cover of no
defined above and since n5 and n determine a unique m-flat
tarough = , each 3-flat not in no is covered. Those 3-flats
belonging to m, are covered by the (b, 4, m)-cover similarly
developed for PG(N-1,q), the existence of which may be assumed by

nathematical induction since a (b, 4, m)-cover exists for PG(m,q)

In particular, for the case N=m, b=l; for the case N=n+l,

b=q_(q_3+q2+q_+l) + 1 = q)++q5+q2+q_+l;a.nd

in general, b is the sum of
N-m B o+ B
( z z q é(a: O, Q.)} {Q(N“m) O: q.) ‘Q(N"m"l: O: Q)]
g=0 =0

and the number of m-flats needed to cover the (N-1)-flat Ty -

Proceeding recursively, we have

N-m 7 B
b = £ q’% = a%"Ps(aq 0, q
y=0 = B=0 0=0
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By proceeding in & step-wise fashion according to the previous theorems,
a (b, t, m)-cover may be readily constructed for PG(N,q) where q is a

prime power and N > m > t-1. It is reasonable to believe that

N-m at aa al\"%"'o e o+at
b= £ = ees &g $(0q, 0, q) for these cases.
at=0 at_1=0 Oi:@

As‘ indicated earlier, no claim of optimality is made for +these con-
structions. However, they are easily formed and should provide useful
bases for combinatorial filing systems until a more optimal class of
covers or other type of configuration is developed.

2.4,2. Configurations based on non-lineé.r surfaces in finite-sgometries.

A subset S of points in PG(N,q) is called a cap of order d where
0 < d < N+l if no subset of d points from S lie in a (d-2)-flat. Bose
[5] used the concept of caps in the design of factorial experiments.
He termed. the problem of determining the maximum number of points

on a cep of order d the packing problem. Solutions to this problenm

are only aveilable in & few special cases - e.g., d=2, N and q arbi-
trary; d=3, q=2, N arbitrary; d=3, N=2 or 3, g arbitrary.

On the other hand, the results on Bose-Chaudhuri [1L4] codes
represent & baesis from which a useful series: of caps may be constructed.

They prove the following theorem.

Theorem (2.4.8). Let g be a prime power and let n, be an integer

relatively prime to q. Then there exists a cap of order 4 with n,

points on it in the geometry PG(N-1l, q) where N=ud and u satisfies

qu -1l = cno. These points are the columns of the matrix H when con-

sidered with respect to GF(q).
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(L 2 H(8071)c il

Lo 2l (=1 (c75)

o= .o

g(no-1) (g+(a-1)n)

s
-

Ll eg+(d-1)h 32(g+(d-l)h)
In the above 9=BC where B is a primitive element of GF(qm), g is
arbitrary, h is arbitrary except for being relatively prime to Y anc
2 <4< n0-2. Moreover, if the rank of H is NO, then when all rows of
11 except NO independent ones are deleted, the resulting array represents
a cap of order d in PG(HO-I, a).

A proof of Theoren (2.4.8) may be found in either Bose and Ray-
Chaudhuri [14], [15], in Peterson [33], or in Ray-Chaudhuri [43]. Cens

of order d may be used in the construction of configurations as follows.

Theorem (2.4.9). For any integer v, there exists an (9, X, t, b)

combinatorial configuretion based on a cap of order d.
Proof: Let the attributes correspond to the points of a cap of order 4

in PG(W-1,q) where q is a prime power relatively prine to v and where

1>¢, v>d. The existence of such a cap follows from Theorem (2.4.7).

=4

Let (ﬂl,ﬂa, coes nb) be n-flats of a (b,t,m)-cover of PG(N-1,q) vhere
-1 >m > t-1. Define the sets Bh by Bh= L Ao. The sets Bh are G-
caps ifIBhl > 4a; otherwise all points in Bh are incepencent. The nuuber
of points in the blocis does not exceed the maximum nuuber of points
belonging to a d-cap in PG(m,q). Finally any set of ¢ points belonging
L5 0 rmst also be covered by one of the mn-flats T anc. hence by one oF

e ' - 1.
e blocks Bh’
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The previous theorem was given by Ray-Chaudhuri [43]. Although it
represents a potentially large and interesting class of combinatorial
configurations, it is difficult to apply. This results from the hecessity
of first finding the relevant d-caps and then finding flat spaces which
cover the various subsets of t elements from the d;caps. Finally, the
resulting configurations may lack the symmetry of other types of con-
figurations and hence require more blocks. The answers to these questions
will require additional research involving perheps the use of covers

based on quadrics or higher degree surfaces instead of flat spaces.

2.5. The use of caps to construct combinatorial configurations in the

multi-iével attribute case.

In this section, we shall consider a method of construction due
to Bose, Abraham, and Ghosh [9], of an (0, k, t, b) configuration for
a situation in which there are v attributes, each with s=q levels where
q is a prime power. The attributes Ai‘are/identified with lineer

functions Ly gliven by

Al: Li=hilxl+h12}(2+oao +hiNxI\I i=l’ 2’ ...,V
':—“
vhere the vectors I, (hil’ higs +-*s hiN) transposed correspond to ‘
the points of a cap of order t in PG(N-1,q) which has at leest v points.
The construction of such caps follows from Theorem (2.4.7). The various
subsets of t or fewer levels of distinct attributes can be idéntified
with sets of equations expressing that corresponding linear functions
equal corresponding levels.
For example, if uil, uia, ceey uig where g < t correspond to

levels of the i,=-th, i

1

2-th, ...ﬁ.g-th attributes, then we have the
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equations

hy Xy boeee Pl p g = Yy
g g g

Because of tre construction of H, the rank of the coefficient matrix
in the above equations is g. Hence, the equations can be reduced to an
echelon form by vector addition and scalar multiplication as follows:

i. the first non-zero coefficient on the left hand side of

each equation is unity
ii, if the first non-zero coefficient in the i-th equation is

* a0 <
xci, then c < ¢, < cg

iii. the coefficient of X, is zero in every equation except the
i
i-th where 1 = g.

By putting x, = 0 if & # Cys Cps vrey Cpr & canonical solution vector
is obtained with at most g non-zero coordinates, Hence, a correspondence

nay be defined between the various subsets of t-plets and the set QO

of N-vectors with at most t non-zero coordinates. Since there are at
most
N t /N
by =1+ (q-1) (1) + ... + (g-1) (t)
gech N-vectors and since the total number of possible t-plets (involving

different levels of different attributes) is
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v 2 v t v
a () +a" Q)+ +a ()
vhere v is usually greater than N; in this case, there will be a

nunber of different t=-plets corresponding to each elenent of QO.

L4 .
Let X = (xl, Xpy eee xN) denote a solution vector with at most
t non-zero co-ordinates. The block B(x) corresponding to x in the

configuration is given by B(x) = {Alul’ A2u2’ cees Avuv} where u, =

L; (x) for i=1,2,...,v. More than one of the vectors x may have the
same corresponding B(x). However, if the rank of the matrix H with

; *
rovs i, Bhy ee- by is N, then the sets B(x) and B(x ) are different

*
if x and ¥ are different. This results from the fact that B(x)

* * *

B(x ) implies L,(x) = L,(x") and hence that Li(x -%x) =0fori

*

1,2,..., Vv; but when the rank of H is N, this means that x - X
mst be a null vector.

The previous remarks lead to the following theorem of Bose,

Abraham and Ghosh [9].

Theoren (2.5.1). There exists a combinatorial configuration (Q, v, t, b)

for the case in which © consists of v attributes, each with s = g
levels where q is a prime power. The structure of the configuration is
based on the properties of v points lying on a cap of order t

in PG(N-1,q) with N being en appropriate function of v, t, q. Finally,

| &
bsb = = (a-1%g).
a=0

The filing scheme which they base on Theorem (2.5.1) is somewhat

different from that outlined in Section 2.2 in the sense that the
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blocks B(x) are not ordered; and hence a record is stored in the
corresponding bucket if it has any elements at all in common with the
block. This leads to increased redundancy. On the other hand, the:
retrieval scheme they employ makes use of the mechanical abilities of
the computer filing system to solve the linear equétions associated
with gqueries in ordef to determine the bucket. This type of operation
may be more quickly performed possibly thanbthat of determining the first
block set which contains & given query set. Thus, any comparison of
the two types of systems will depend upon the properties of the com-
puters to be used and hence will require empirical study.

In the next chapter, we shall consider an alternative method of
constructing combinatorial configurations for the rmlti-level attribute
case., The procedure is not quife as general as the one previously
described; however, it is fairly simple to apply and provides a

reasonably efficient cover with smadl redundancy.



CHAPTER III
COMBINATORIAL CONFIGURATIONS OBTAINED BY COMPOSITION

3.1.  The combinatorial problem.

As was indicated in Section 2.5, the problem of constructing
combinatorial configurations with k = v is equivalent to the problem
of forming an array of ordered v-tuples ( in which each co-ordinate
corresponds to a unique attribute ) in such a way that cvery possible
ordered combination of t co-ordinates occurs at least once. For the
~case in which Q consists of v attributes, each with s levels, and
in which all t-plets occur exactly once, such a construction is called
an orthogonal array of strength t, constraints v, and index unity
and is represented by (b, v, s, t). Such orthogonalbarrays have been
discussed by Bose and Bush [10], Bush [21] as well as many others.
However, for large v, the.construction'of orthogonal arrays of index
unity becomes a very difficult, if not impossible, problem of
combinatorial mathematics.

On the other hand, the configurations of interest to us do not
require that every t-plet be covered exactly once, but rather at least
once. As a result, in some situations the concept of partially

balanced array, as defined by Chakravarti [24], [25] is useful.

Definition (3.1.1). A partially balanced array of strength t in b

blocks, v attributes with s levels each, is equivalent to a (b x v)

matrix in which among the rows of each t-column sub-matrix, every
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possible permmtation of the values in the vector (ul, Uy eees u,)
occurs exactly )(ul, Upy sees ut) times, independent of which t columns

are chosen.

The partially balanced arrays which are of the most interest here
are those in which a majority of the k(ul, Uy e ut) are equal to
unity. As with orthogonal arrays, the problem of cohstructing partially
balanced arrays for laige v with A's near unity is another very diff-
icult problem.

The preceding remarks suggest the following method of attack.
First attempt to construct a number of efficient orthogonal arrays and
partially balanced arrays for the cases in which v is small. Then,
for larger v, develop a method called composition which expands some
of the properties of a small Gesign to the larger ones. The resulting
arrays may not have the same symmétry properties as the smaller ones
on whicli they are based. However, when properly formed, they will
satisfy the covering requirements appropriate to the corresponding
combinatorial configuration. Moreover, in some instances, these
methods can be applied to ceses in which different attributes assume
different numbers of levels ( i.e., when the n, are not necessarily
equal ). In the subsequent sections of this chapter, the method of
composition will be illustrated for combinatorial configurations of

orders 2, 3, and L.

3,2. The construction of configurations of order 2 with k = v.

Let us assume that there are v attributes, each with s levels.
A corbinatorial configuration with k = v, t = 2 can be represented
by a (b x v) matriz in which among the rows of each 2-column

sub-matrix, each of the 52 possib.ie ordered 2-tuples (ul, u2) occurs
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at least once. In this section, a method of constructing such

matrices will be discussed for three cases of interest:

Cagse I : s =2

Case II : s = q where q is a prime power

Case III: 8 is not a prime power .

Finally, some consideration is given to the application of the basic
approach used to some situations an which the number of levels assumed

by the attributes are not necessarily equal; i.e.,

Case IV ; the n, are not necessarily equal

3.2.1. Case I: s = 2.

If v = 3, then the orthogonal array (4, 3, 2, 2) of index unity

given by

000
oLL
oL’ b=k
110

(3.2.1)

represents an optimal configuration with each of the possible values
00, O, 10, 11 occurring exactly once among the rows of each 2-column
sub-matrix. Similarly, if v = 4, then the partially balanced array

of strength t

2 given by

0000
0lll

1011, .b=S5 (3.2.2)

1101 .
1110

with N1, 0) Mo, 1) = N0, 0) =1, A1, 1) =2 represents an

optimal configuration since the assignment of two 1's and two O's to

four-tuples in each way possible would lead to six blocks. The above
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constructions represent efficient configurations for the tio small

values of v considered.

The design (3.2.1) may be extended to the

cases v =6, v = 9, and v = 12 by the following compositions

00 00 00
00 11 11
11 00 11
11 11 00

0l 01 01
10 10 10

b=6

000 000 000
000 111 111
111 000 111
111 111 000

011 011 011
101 101 101
110 110 110

b

0000 0000 0000
0000 1111 1111
1111 0000 1111

1111 111l 0000

(3.2.3)

0111 0111l Olll
1011 1011 101l
1101 1101 1101
1110 1110 1110

The first four blocks of each of these arrays are formed by dividing

the attributes into three groups and assigning the i-th column of

(3.2.1) to each of the attributes in the i-th group. As

a result,

any pair of values of attributes from different @groups is covered in

one of these blocks. Also, the pairs of values OO0 and 11 are covered

for pairs of attributes belonging to the same group. The

remaining

blocks are then formed by duplicating either (3.2.1) or (3.2.2)

( except for the vector of O's therein ) or simply +the two pairs Ol

and 10 within each group depending on whether there there

or 2 attributes respectively associated with each group.

in a similar manner, the method of composition yields the

designs for the cases v

000000
000000
111111
111111

000000
111111
000000
111111

=18, v = 27, and v = 36.

000000
111111
111111
000000

001111
110011
111100
010101
101010

001111
110011
111100
010101
101010

001111
110011
111100
010101
101010

000000000
000000000
111111111
111111111

000000000
111111111
000000000
111111111

are 3, b,
Continuing

following

000000000
111111111
111111111
000000000

- . P S R WD G S s G A WS G N RO T w A W A M8 W W e

000111111
111000111
111111000
011011011
101101101
110110110

000111111
111000111
111111000
011011011
101101101
110110110

b =10

000111111
111000111
111111000
011011011
101101101
110110110



006000000000 000000000000 000000000000
000000000000 111111111111 111111111111
111111111111 000000000000 111111111111
111111111111 111111111111 000000000000

000011111111 000011111111 00001111111l
111100001111 111100001111 11110000111l
111111110000 111111110000 111111110000
011101110111 011101110111 011101110111
I01110111011 101110111011 101110111011
110111011101 110111011101 110111011101
111011101110 111011101110 111011101110

b =11

From the nature of the previous constructions, one can see that
the composition can be subsequently extended for higher values of v.

These results may be stated in terms of the following theorem.

Theorem (3.2.1), For the case of v attributes with two levels each,

there exists a second order combinaterial configuration with k = v

and b as follows

b=3u+l if o+ 38l o, g U
b= 3u 42 if 39 <yvs 3% 4ezut
b=3u+3 if 3943t le g o - 38

where u = 1, 2, ... .

Proof: First of all the basic constructions are for the cases in

which v has one of the three forms v = 3u, v=3"4+ Bu-l, or v = 2. 3%,
When this does not hold true, then the construction is based on the
smgllest value v* larger than v which has one of the three indicated
forms, in which case the last (v* - v) colums of the resulting array
are deleted. A

u -
Suppose v has one of the three forms v =3, v = 3% 4 34 1, or

v =2 * 3", each of which is divisible by 3 when u > O. Then the



67

first group of blocks is given by

o(¥/3) o(v/3) (v/3)
olv/3) 1(v/3) 1 (v/3)
1(v/3) o(v/3) 1 (v/3)
1(v/3) ((v/3) o(v/3)

(v/3)

3 N §

where W means that the value "w' is repeated (v/5) times. Since

(v/3) has one of the three forms (v/3) = 3u-l’ (v/3) = Bu-l + 5u-2,

u-1

or (v/3) =2 * 377, the remaining blocks can be formed by repeating
the construction appropriate to (v/3) with the vector of O's excluded.
The existence of such designs has already been demonstrated for the
cases u = 1, 2. Thus, the result follows by induction.

Finally, since the expression for the number of blocks b(u) as a
function of u satisfies the relation b(u) = 4% + (b(u-1) - 1) =3 + b(u-1),
we have the equation b(u) = 3u + b(0) where b(0) is equal to 1, 2, or 3

according to the form of v.

The value of Theorem (3.2.1) is that it provides constructions
for which the value of b increaéés at an additive linear rate as the
value of v increases at a multiplicative exponential rate; i.e., fou
a Ziven v and b, the number of blocks appropriate for 3v is b + 3.

In particular, the following table indicates the relative sizes of

b and v.

v 3 v b v b

3 b 27 10 2u3 16

4 5 36 11 32k 17

6 6 5k 12 486 18

9 7 S 8L 15 729 19

12 8 108 1k 972 20

18 9 162 15 1458 21
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The filing schemes based on combinatorial configurations derived
from Theorem (3.2.1) have a relatively small redundancy R since R
is necessarily less than or equal to b ( where one recalls that the
structure of such schemes allows the acceasion number of a pertinent
record to be stored in exactly one address within ény given bucket) .
On the other hand, with k = v, the number of sub-buékets can become
overwhelmingly large for large v. Fortunately, the effects of this

problem can be substentially reduced by using appropriate multi-stage

schemes which will be discussed in the next chapter.

3.2.2. Case IT: 8 = q where q is a prime power.

Let 6 denote a primitive element of the Galois field GF(q).

Consider the (q + 1) x 2 matrix

which has the property that no two rows are linearly dependent. ILet
G

2

of the vector space which is orthogonal:to the columns of H!. For example,

1 1 - - ., .42
“ “l '1 oo "l »

1 0 o0 ... 0

G2 = o 1 o0 ... O
o o l LN ] o

1

o 0 O ...

L |

Form the q? x (q + 1) matrix in which each of the rows is orthogonal to

éé ' (3.2.4)

, denote a (@ #+1) x (@ - 1) matrix, the columns of which are a basis
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the columns of G, ; i.e., if (xl, Xy ees xq+l) denotes a row of the

array, then the following equations are satisfied.

x = X, + X

3 1 2

xl+ =0 - xl + x2
_ 2-2

xq"'_l = 6 x1 + x2

Hence, if all q? possible pairs of values are assigned to (xl, x2) in

the first two columns of the matrix, then the remaining columns can be
determined from the above equations. Since every (q + 1) x 1 vector
generated by the columns of G, has at least three non-zero co-ordinates

2
(for otherwise, there would be two dependent rows of H, and hence a

2
contradiction), all equations which are linear combinatioms of the
defining equations for the array involve at least three co-ordinates .
As a result, any pair of co-ordinates is free to assume all q? possible

pairs of values. Thus the constructed q2 x (q # 1) matrix represents

an orthogonal array (q?, g+l, q, 2) of index unity. It appears as follows

T o 0 o ... O T
0] 1 1 e 1
0 e e e
0 2 a2 Q2
1 0
1 1
1 2]
v "'_2 Remeinder
1 Gq determined
5 o from (3.2.5)
0 7 arithmetic
5 5 of GF(q)
) g2
o2 o
q-2

) 1
62 0
gz a2
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The previously indicated construction of the array is based on methods
given by Bose [5] in connection with the design of factorial experiments.
In addition, use 1s made of the fact that when q is a prime power, there
exists a complete set of (q -~ 1) orthogonal Latin squares. The relation-
ship between complete sets of Latin squares and orthogonal arrays has
been considered by Bose and Bush [10].
If the first column of the matrix in (3.2.5) is deleted, we obtain
a (q2, q, g, 2) orthogonal array in which the first q rows are a vector
of O's, a vector of 1's, a vector of O's, ..., and a vector of Gq'a's
respectively. ILet this array be denoted by (3.2.5*). The arrays
(3.2.5) or (3.2.5*) or the arrays obtained by deleting additional
colums from (3.2.5) represent efficient configurations for the cases
vEg+1l. |
The designs (3.2.5) and (5.2;5*) may be extended to the cases
v=q(q+1l)and v=(q+ l)2 by the following composition. The first
q? blocks of the arrays are formed by dividing the attributes into
(q + 1) groups and assigning the i-th column of (3.2.5) to each of the
attributes (columns) in the i-th group. As a result, any pair of values
for attributes from different groups is covered in one of these blocks.
Also, the pairs of values 00, 11, 86, ... eq'zeq'a are covered for
pairs of attributes belonging to the same group. The remaining blocks
are then formed by duplicating within each group either
i. all but the first row of (3.2.5) for the case v = (q + 1)%
i.e., all vectors there except the vector of O's.
ii. all but the first q rows of (5.2.5*) for the case
v=gq (q+1l), i.e., all vectors there except the vectors

of 0's, of 1's, of 6's, ..., and of o121,
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When this is done, the number of blocks bq(v; 2) required for the

resulting configurations are

2q2- 1 for ( i)

2
a" + (¢ - 1)

by( (@ + )% 2)

by( ala + 1), 2) 2q° - q for (ii)

2 2
a + (qd - aq)

The fact that the composition procedure can be extended for higher

values of v is indicated in the following theorem.

Theorem (3.2.2). For the case of v attributes with g levels each where

q is a prime power, there exists a second order combinatorial configur-

S _ 2 .
ation with ¥ = v and b = (ul + u2) q° - (qu2 tu - 1) where u and u,
Y Y
are integers such that (q + 1) g © is as small as possible but still

exceeds V.

Proof: As indicated in the proof of Theorem (3.2.1), only the case

u, u
v={(qg+1) lq 2 jeed be considered. The first group of blocks is

- u -l u
formed by dividing the attributes into (q + 1) L g 2 groups of (q 4 1)

u, u.-1
attributes each if u, 21 or (g + 1) lq 2 groups of q attributes each
if Uy 2 1. For each attribute in the i-th group, assign the i-th
u, -1 1 u, u,-1

column of the array appropriate to v = (q + 1) L a 2 or v = (g # 1) lq 2

as the case may be. The remaining blocks are then formed according to
the previously indicated methods ( i) or (ii) respectively depending
on whether there are (q + 1) or q attributes in each group. Either

approach gives rise to bq(v; 2) = (ul + u2) q? - (qu2 +uy - 1) blocks.

As was the case with Theorem (3.2.1), the value of Theorem (3.2.2)
is that it provides constructions for which b increases at a linear

rate as v increases at an exponential rate. In particular, the



following tables provide an indication of the relationship between

b and v for different values of q.

=3 q-= L Q=5
v b v b v b
3 9 n 16 . 5 25
I 9 © 5 16 6 25
12 15 20 28 30 45
.16 17 25 31 36 49
%6 21 80 40 150 65
48 23 100 43 180 69
- 6k 25 125 46 216 73
108 27 320 52 750 85
1 29 Loo 55 900 89
lg2 31 500 58 1080 93
324 33 625 61 1296 97
L32 35 1280 64 3750 105
576 37 1600 67 4500 109
972 39 2000 70 5400 113
1296 41 2500 73 6480 117
1728 43 5120 76 “ 7776 121
Q=7 qQ=9

v b v b

7 Lo 9 81

8 ko 10 81

56 o1 90 153

ok 97 100 161

- 392 133 810 225

L48 139 900 233

512 145 1000 k7

2744 175 7290 297

3136 181 8100 305

3584 187 9000 313

Log6 193 10000 321

T2




Exarple (3.2.1). Suppose q = 3. The methods of Theorem (3.2.2)

provide the following constructions

0 000 000 000 000 000 0000 0000 0000 0000
0 111 000 111 111 11l 0000 111l 1111 1111
0 222 000 222 222 222 0000 2222 2222 2222
1 012 111 000 111 222 1111 0000 1111 2222
1 120 111 11l 222 000 1111 1111 2222 0000
1 201 111 222 000 11l 1111 2222 0000 111l
2 021 222 000 222 111 2222 0000 2222 1111
2 102 222 111 000 222 2222 1111 0000 2222
2 210 222 202 111 000 2222 2202 1111 0000
0127012 012 012 6II1170II7 0111 0111

120 120 120 120 0222 0222 0222 0222

201 201 201 201 1012 1012 1012 1012

021 021 021 021 1120 1120 1120 1120

102 102 102 102 1201 1201 1201 1201

210 210 210 210 2021 2021 2021 2021

2102 2102 2102 2102

2210 2210 2210 2210

wlf, =9 v=12, b=15 v=16, b=17

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 1111 1111 1111 1111 1111 1111 1lll 1111 1111
0000 0000 0000 2222 2222 2222 2222 2222 2222 2222 2222 2222
1111 1111 1111 0000 0000 0000 1111 1111 1111 2002 2222 2222
1711 1111 1111 1111 1111 1111 2222 2222 2222 0000 0000 0000
1111 1111 1111 22922 2222 2222 0000 0000 0000 1111 1111 1111
000D 9922 2222 0000 0000 0000 2222 2222 2222 1111 1111 1111
o000 9222 2222 1111 1111 1111 0000 0000 0000 2222 2222 2222

111170000 2222 1111 0000 2222 1111 0000 2222 1111 0000 2222

e Y - ke 3o o . SR R O M W G Gw e o IO O m W W SR O

0002 0222 0222 0222 0222 0222 0222 0222 0222 0222 0222 0222
1012 1012 1012 1012 1012 1012 1012 1012 1012 1012 1012 1012
1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120
1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201 1201
0021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
2102 2102 2102 2102 2102 2102 2102 2102 2102 2102 2102 2102
5010 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210

v=4i8, b=23
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3.2.3. Case III: s is not a prime power.

Let q denote the smallest prime power exceeding s. Consider the
series of configurations develdped by the methods of Sub-section 3.2.2
for the situation of v attributes with q levels each. Suppose the q
levels are denoted by 0, 1, 6, &, ..., 62, 51 612 | 1

s ., ofs-2)=(as)

es'l, 0®, ..., 63% are replaced by 98'2, 68-3,

.C',

then the resulting array is equivalent to a second order configuration

involving s levels. Moreover, in some cases it may be possible to reduce

the number of blocks required by deleting any rows of the matrix which
are made identical with some other row by the preceding transformation.
Finally, one should note that for certain small values of v, other
methods of constructing second order configurations may lead to a
smaller number of blocks. In these cases, such constructions may be
lused to supplement the composition procedure in a fashion similar to
the method outlined in the proof of Theorem (3.2.2).

To see more clearly, however, the basic approach of this sub-
section, let us consider as an example the situation in which s = 6.
In this case, ¢ = 7. For v = 7 or 8, there exists a second order
configuration with b = 49 blocks. If & is replaced by Oh in this,
then two of the blocks have the same form and hence one may be deleted.
As a result, for v = 7 or 8 and s = 6, there exists a second order
combinatorial configuration with b = 48. Using the structure of these
arrays according to Theorem (3.2.2), the following teble may be formed

to indicate the relationship between v and b.
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v b
7 48
8 48
56 Q0
ol 95
3092 132
LL8 137
512 142
27k4 174
3136 179
3584 18k
Lo96 189

The above table may be supplemented by noting that for v = 3, a config-
uration with b = 36 blocks may be formed by assigning the 36 possible

ordered pairs to the first two columns of the array and then forming

the third column as the mod 6 sum of the first two columns. In addition,

for v = 4 and v = 5, arrays may be based on constructions appropriate
for q = 4. This is achieved by first forming the relevant array with
q = 4 three times, and then identifying the symbols in the first
array with the levels O, 1, 2, 3; the ones in the second array with
0, 1, 4, 5; and the ones in the third array with 2, 3, 4, 5; and
finally deleting any block , soO obtained, that is identical to some
other block or which are redundant in the sense that pairs covered by
it are covered elsewhere. When v = 4, this approach leads to a
configuration with b = 42 while for v =5, b = L, These may be used

to supplement the prececing table relating v and.b as follows.

b ' v b

=
3 36 128 120
L L2 168 125
5 N 22k 126
12 7 256 151
16 78 672 151
24 83 896 162
32 8l 1176 167
96 119 1568 168
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For other non-prime power values of s, similar methods and tables can
be developed. However, as indicated at the onset, the simplest
approach is to work with arrays based on the smallest prime power q

exceeding s.

3.2.4, Case IV: the n, are not necessarily equal.

Let g denote the smallest prime power exqeeding each of the ni's
i=1,2, ..., v where n, denotes the number of .levels associated
with the i-th attribute. Any second order configuration which is
appropriate to the case of g levels can be applied to this situation
by defining for each atiribute a correspondence which transforms
the symbols O, 1, 6, ..., 6d-2 into the n, levels of the attribute.

In gddition, in some cases, it may be possible to reduce the number
of blocks by deleting any rows of the array which are made identical
with some other row by the preceding transformation. Finally, as

was indicated for the situation of Sub-section 3.2.3, one can attempt
to construct appropriate second order configurations for small values
of v and then expand them by a composition procedure.

To illustrate the approach here, let us consider a situation
in which one half of the attributes have two levels each and the other
helf have three each. For the case v = 6, the following configuration

is appropriate

01l 000
011 11l
o1l 222
101 012
101 120 , b=9
101 201
110 021
110 102
000 210

o
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where each of the first three attributes has two levels while each of
the last three has three levels. This may then be extended to the

case v = 18 as follows.

000 111 111 000 000 000
000 111 111 111 111 111
000 111 111 222 222 222
111 000 111 000 111 222
111 000 111 111 222 000
111 000 111 222 000 111
111 111 000 000 222 111
111 111 000 111 000 222 , b = 15
070_000_000__ 222 111 000
0Ll 011011 120 120 120
101 101 101 201 201 201
101 101 101 021 021 021
110 110 110 102 102 102
110 110 110 210 210 210

where each of the first nine attributes has two levels while each of
the last nine has three levels. From the gbove, one can see that the
corposition procedure can be readily continued to yield configurations

for higher values of v.

3,3. The construction of configurations of order 3 with k = v.

As was the case in the previous section, we shall here be mostly
concerned with the situation in which each of v attributes has s levels.
Methods will be given for the construction of a (b x v) matrix such

3

that among the rows of each 3-column sub-matrix, each of the s” possible
ordered three-tuples occurs at least once. The basic composition

approach will be discussed for the following three cases of interest:

Case I : s =2

Case IT ,: s = q where q is a prime power

Case III: s is not a prime power
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Some aspects of the solutions for the above caées may also be applied
to the situation in which the numbers n, are not necessarily equal.
However, the basic approach to this situation is not as clear-cut
here as it was for second order configurations In any event, some
remarks as to how one should p;oceed will be indicatgd under the

heading of Case IV.

3.3.1. Case I: s = 2.

When v = 4, an orthogonal array of strength three and index unity
may be constructed by forming an (8 x 4) matrix in which the first
three columns represent all possible ordered three-tuples and the
fourth column is the mod 2 sum of the first three columns. The

resulting arrey appears as follows

0000

0011

0101

0110 8
1001 *

1010
1100
1111

(3.3.1)

It represents an optimal configuration of order three. Moreover, the
Tirst three columns of (3 3.1) is optimal for v = 3.

Efficient partially balanced arrays may be derived by noting that
for any ordered choice of three attributes, the set of v-tuples which
contain exactly one "1" provide a cover for the three-tuples 000, 001,
010, and 100 while the set of v-tuples which contain exactly one "O"

provide a cover for the three-tuples 011, 101, 110, and 111. The

number of blocks required in such arrays is hence b = 2v. 1In particular,

for v = 5, we have the array

-l
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10000
01000
00100
00010
00001

01111
10111
11011
11101
11110

, b=10 (3.3.2)

in which N1, 0, 0) = N1, 1, 0) =1 and NO, O, 0) = N1, 1, 1) =2,
For general values of v, N1, 0, 0) = A(1, 1, 0) =1 also, but
M@, 0, 0) = AL, 1, '1) =(v-3)

The previously indicated constructions for v = 3, 4 gnd v =5

‘may be extended to v =6, v = 8, and v = 10 by the following composi-

tion procedure. Let the v attributes be divided into v o= (v/2)
consecutive pairs, The arrey of order three which is appropriate to

v* attributes with two levels each is then written down with the
adjustment that "O" is replaced by "00" and "1" is replaced by "1l",

For any choice of attributes coming from different pairs, all possible
ordered three-tuples are covered because such a choice is equivalent

to a selection of three attributes from the v* for which a third order
configuration already exists, To complete the construction, additional
rows need to be added to the array so that for any choice of three
attributes with two coming from the same pair, all possible three-tuples
afe covered, For the cases where the levels associated with the
attributes coming from the same péir are equal ( i.e , "00" or "i1" ),
the initial set of blocks already provides a cover because the resulting
three-tuples are equivalent to two-tuples of v* attributes and hence are
accounted for by the corresponding third order array., The remaining

uncovered three-tuples involve either "O1" or "10" being associated



with a pair.

*
order two which is appropriate to v attributes with two levels eacn

These may be taken care of by writing down the array of

8o

g

with the adjustment that "O" is replaced by "OL" and "1" is replaced

by "10". Becavse any choice of three attributes with two coming from

the same pair and having different levels is equivalent to a corres-

*
ponding two-tuple of v attributes, the additional blocks complete

the construction of the configuration of order three,

In order to

previously given

examples for v

00
00
00
00
11l
11
11

00
00
11
11
00
00
11

00
11
00
11
00
11

b

12

see more clearly the structure associated with the

6, v=28, and v = 10.

00 00 00
00 00 11 11

00
00
11
11
1L
11
01
01
10
10
10

11
11
00
00
11

00
11
00
11

00

11
00
11
00
00

» =

1

method of composition, let us consider the following

i
H
o
=

Il
H o

The above constructions can be readily extended to v

=12, v.= 16, and

v =20, etc by re-applying the composition algorithme In summary,

if we let ba(v; 3) denote the number of blocks so obtained for the

configuration of order three with k = v and appropriate to the situation

of v attributes with two levels each, then we may state the following

theoreme.

5
l—l
(o]
o
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Theorem (3.3.1): By successively applying the previously indicated

method of composition, combinatorial configuretions of order three
with k = v may be constructed for any v attributes with two levels
each. The number of blocks required is given by the relation

bz(v; 3) = b2( [v/2]+; 3) + b2( [v/2]+; 2) where it is presumed that

v exceeds 6.

Using Theorem (3.3.1), the following table may be constructed to

indicate the relationship between v and b

v b \'s b v b

3 8 24 26 192 62
N 8 32 29 256 68
5 10 4o 34 320 Th
6 12 48 36 384 78

8 13 an 4o 512 85
10 16 80. L6 640 91
12 18 96 48 768 96
16 20 128 53 1024 104
20 24 160 59 1280 110

From the above, one can observe that the required b increases at a

much slower rate than v.

3,3.2. Case II: s =g where g is a prime power.

Using properties of non-degenerate conics in PG(2, gq) according
to methods given in Bose [5] and Bose and Bush [10], one can construct
orthogonal arrays of strength three and index unity for 5 <v<q+ 1
if g is odd and 3 <v<q +2if v is even. The basic approach 1is
to form the matrix H3 with |

1 0 1 1 1 L. o1
H5 = |0 0 1 @ oo if q is odd

0 1 1 o ¢
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. ol —
1 0 0 1 1 1 e o o L
Hy = 0O 1 0 1 8 £ ...a° if q is even
o o 1 1 & é .. ek

vhere € is a primitive element of GF(q). The matrix HS has the property
>that_no three columns are linearly dependent. The desired af}ay may be
formed by writing down all q; possible linear combinations of the rows
of H3 with respect to GF(q). This process may be compactly written
as the matrix product E:Hs where % 1is a (q5 x 3) matrix, the rows
of which are all possible three-tuples occurring once:

| An alternative mech;nical means of obtaining the desired array from

a

H, is t> form the matrix G, whose rows are orthogonal to the rows of

> 3

Hé and then to identify the rows of G5 with homogeneous linear equations

in variates corresponding to the columns of the array. The other aspects

of this approach are similar to what was outlined in Sub-section 3.3.2,
The orthogonal arrays previously described represent optimal
configurations of order threes, From a general point of view, they will
be the primary starting point for the composition procedure. However,

in some particuler cases, it may also be useful to similarly extend
certain partially balanced arrayss» This aspect will be discussed later.
An arrey of order three appropriate to v* attrlbutes with q levels
each may be extended to v =kcv* where 2 < ¢ < g as follows., ILet
the v attributes be divided into v* consecutive c-plets. The array of
order three which is appropriate to v* attributes is then written down
with the adjustment that each symbol is replaced by a c-plet in which
the symbol is repeated c times; eg "O" is replaced by "00...0"; "L"

is replaced by "11...1"; "@" is repaced by "66...8"; etc, For any

Gk G 0N UGN AN S A R G m 6
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choice of three attributes coming from different c-plets, all possible
srdered three-tuples are covered because such a choice is equivalent to
s selection of three attribute levels from the v* for which the third
order configuration already exists. To complete the configuration,
additional rows need to be added to the array so that for any choice

of three attributes with two or three coming from the same c:plet, all
possible three-tuples are covered. For the cases in which the levels
associated with the same c-plet are equal ( eg., "00" or "1 or "000"
or "111"; etc. ), the initial set of blocks already provides a cover
because the resulting three-tuples are equivalent to two-tuples or
one-tuples of v* attributes and hence are covered by the corresponding
third order array. The remaining uncovered three-tuples are accounted
for in two steps. First (q - 1) arrays of order two which are appro-
priate to v* attributes with q levels each are formed with the adjust-
ment that each symbol therein is replaced by a corresponding c-plet,
The q c-plets for the first array may be taken as the rows of the
sub-matrix associated with the second through (c + 1)-th columns and
the (q + 1)-th through (2q)-th rows of the orthogonal array of strength
two given in (3.2.5). The q c-plets for the next such array may be
formed similarly from the (2q + 1)-th through (3q)-th rows of (z.2.5).
This process can be continued with the g c-plets in the (q - 1)-th such
array being so taken from the last q rows of (3.2.5), For the case

of ¢ = q, the above process is equivalent to associating the (q - 1)
sets of q c-plets with the rows of (q - 1) mutually orthogonal q x q
Latin squares. These additional arrays account for the remaining three-
tuples in which exactly two a*tributes come from the same c-plete The

' *
final part of the array is formed by repeating for each of the v groups



corresponding to c-plets, a c-column matrix the rows of which ( when
taken together with the c-plets associated with the (q - 1) second order
arrays‘and the c-plets with the same symbol repeated ) lead to a config-
uration of order three appropriate for c attributes with g levels each,
Since c¢ < q, this can be done with (q? - q?) additional blocks by
locating the (q; x ¢) sub-matrix of EIH3 which represents an'orthogonal
array of strength three which contains the orthogonal array of strength
two associated with the q? different types of c~-plets already appearing
in the array.

The structure associated with the previously given method of
composition can be seen more clearly in terﬁs of & series of examples,
Hence, let us consider the case q = 3. When v = 4, the following ortho-

gonal array of strength three and index unity may be formed.

0000 1002 2001

0012 1011 2010

0021 1020 2022

0102 1101 2100

0111 1110 2112 , b =27; (3.3.3)
0120 1122 2121

0201 1200 2202

0210 1212 2211

0222 1221 2220

it represents an optimal configuration of order three. Moreover, the
first three columns of the matrix in (3.5.3) represents an optimal array
for v = 3, Finally, the following paitially balanced array is of

;nterest for v=25

00012 00021 Ollll 21111
00102 00201 10111 12111
00120 00210 11011 11211
01002 02001 11101 11121

01020 02010 11110 11112 b
01200 02100 02222 122922
10002 20001 20222 21222

10020 20010 22022 22122

10200 20100 22202 22212

12000 21000 22220 22221

ko (3.3.4)




vhere N0, 1, 2) = A0, 1, 1) = N0, 2, 2) = N1, 2, 2) = N1,
7\(01 o, l) = 7\(0, 0, 2) = )\(O: 0, 0) =23 )\(l: 1, l) = )\(2: 2,

The array given in (3.3.3) can be

as follows

00 00 00
00 00 11
00 00 22
00 11 00
00 11 11
00 11 22
00 22 00
00 22 11
00 22 28

Similarly, it may be extended to

012 012 012
012 120 120
012 201 201
120 012 120
120 120 201
120 201 012
201 012 201
201 120 012
201 201 120

By continuing to extend smaller arrays to larger ones by the

00
22
11
22
11
00
11
00
22

000
000
000
000
000
000
000
000
000

012
120
201
201
012
120
120
201
012

11 00 00 22
11 00.11 11
11 00 22 00
11 11 00 11
11 11 11 00
11 11 22 22
11 22 00 00
11 22 11 22
11 22 22 11

000 000 000
000 111 222
000 222 111
111 000 222
111 111 111
111 222 000
222 000 11l
222 111 000
222 222 222

021 021 021
021 102 102
021 210 210
102 021 102
102 210
102 210 021
210 021 210
102 021
210 210 102

102

210

22 00
22 00
22 00
22 11
22 11
22 11
22 22
22 22
22 22

111 000
111 000

00 11
11 00
22 22
00 00
11 22
22 11
00 22
11 11
22 00

v=1andb

000
111

111 000 222

111

111 000

111 111 111

111

111 222

111 222 000

111 222

111

111 222 222

o2l
102
210
210
021
102
102
210
021

o0l

01 01
0l 12
01 20
12 01
12 12
12 20
20 Ol
20 12

20 20

1
[0))
N

222
111
000
111
000
222
000
222
111

001 001

010 010 010
022 022 022

100
112
121

202 202
211 211
220 220

211
220

100
112
121 121

100
112

202

extended to v

0l
20

20
ol
20
ol

222
222
222
222
222
222
222
222
222

001
010
022
100
112
121
202
211
220

85
1, 2) =
2) = bk,
= 8 with b = 45
oL 02 02 02 02
12 02,10 10 10
20 02212121
20 10 02 10 21
0L 10 10 21 02
12 10 21 02 10
12 21 02 21 10
20 21 10 02 21
01 21 21 10 02
000 000 111
000 111 000
000 222 222
111 000 000
111 111 222
111 222 111
222 000 222
222 111 111
222 222 000
002 002 002 002
Oll 011 011 Oll
020 020 020 020
101 101 101 101
110 110 110 110
122 122 122 122
200 200 200 20C
212 212 212 212

221 221 221 221

above

i1lustrated method of composition, one can form the following table

to indicate

the relationship between v and b.



v b v b
3 a7 1l =3 x ‘48 191

4 27 192 =3 x 64 219

5 Lo 216 =3x T2 225
6 : 45 288 =3 x 96 241
8=2x 4 45 324 = 3 x 108 243
12=3x 4 63 432 =3 x 144 267
16 =2 x . 8 75 576 = 3 x 192 299
2hb =3 x 8 93 648 = 3 x 216 309
32 =2 x 16 109 86k = 3 x 288 325
36 =3 x 12 111 972 = 3 x 324 327
48 = 3 x 16 127 1296 = 3 x 432 355
64 = 2 x 32 151 1728 = 3 x 576 391
72 =3 x 24 153 194 = 3 x 648 ko5
96 =3 x 32 169 2592 = 3 x 864 Lol
108 = 3 x 36 171 2916 = 3 x 972 423

From the above table, one can observe that except for the first few
cases, b increases at a substantially slower rate than v.

The indicated method of coqstruction can be'similarly applied
to other prime power values of q. In summary, if we let bq(v; 3)
dendve the number of blocks obtained for the configuration of order
three with k = v and appropriate to a situation of v attributes

with q levels each, then we may state the following theorem.

Theorem (3.3.2). By successively applying the previously described

method of composition, combinatorial configurations of order three

with- k = v may be constructed for any v attributes with q levels each

where q is & prime power. For v > 2q, the number of blocks required

is given by b, (v; 3) = b ([v/el; 3) + (a - 1) b ([v/cl; 2) + b;(cs 3)

where’ b:(a; 3) = 0 and b:(c; q) = (¢ - ) for 3 Sesa.

For any prime power g, the relationship between v and b can be
developed by applying Theorem (3.3.2). 1In doing this, the ¢ value

used in the successive steps of the composition procedure must be
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appropriately chosen. Some aspects of this process have already been
i1lustrated for the case q = 3. As another example, let us consider
the following table indicating the relationship between v and b for

q="h

\' b

L AN

5 6L

6 an
12=2x 6 112
20=4x 5 160
oh =4 x 6 196
48 =4 x 12 oLl
8 =4 x 20 292
96 =4 x 24 337
192 = 4 x 48 k12
320 = 4 x 80 460
384 =4 x 96 510
768 = 4 x 192 616
1280 = & x 320 66k
1536 = 4 x 384 727

3,2.%5. Case IIT: s is not a prime power.

As was pointed out in Sub-section 3.2.3, the easiest way to
construct configuréﬁions for this situation is to form the array
appropriate to q levels where q is the smallest’prime power exceeding
s and then to apply a transformation in which one or more of the q
symbols correspond(s) to exactly one of the s levels. This approach
will lead to a reasonably satisfactory series of designs, particularly
if some blocks can be deleted because of duplications induced by the
transformation.

Alternatively, a composition method similar to the one of the
previous section can be developed. In particular, the procedure when
c = 2 is quite straightforward and involves the use of double symbols

like "00", "11", . . . , "ss" in the first series of blocks which are
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associated with a known third order configuration; and the series of

symbols

Series l: Ol, 12, ¢ o o (S"l)s
Series 2: 02, 13, ..., (s-1)1

Series 8-1: 0(s-1), 10, . . ., (s-1)(s-2)

in the (s-1) sets of blocks which are associated with the relevant
second order configurations. In some instances, the value of ¢ can
be readily increased as high as one plus the number of mutually
orthogonal Latin squares of side s. When this is done, however,
additional blocks have to be added to account for the three-tuples
arising from the same c-plet. Finally, some efficiencies may be
introduced by using systems like partially balanced arrays either
with  respect to initial constructions or in the formation of the
c-plets. However, these questions necessarily require investigations

of each case separately and hence will not be considered here.

3.3.4 Case IV: the n, are not necessarily equal.

Again, the most direct method is to construct the array which
is appropriate to q levels where q is the smallest prime power that
exceeds all the ni. The configuration can then be formed by applying
to each attribute a transformation in which one or more of the q
symbols corresponds to exactly one of the n, levels. The other
details of this type of approach are similar to what has been out-
lined in Sub-section 3.3.3.

In some cases, however, some efficiencies directed at reducimg the

number of blocks required can be introduced. This involves devoloping
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suitable arrays for small v and then expanding them by an appropriate
composition procedure. However, since the method of attack depends
to a large extent on the actual values of the ni, general methods
here are very difficult to develop. On the other hand, the basic
principles can be seen in terms of an example. Hencg, let us consider
the case when each of the n, is either two or three.

Suppose there are six attributes in which the first three have two
levels each and the last three have three levels each. A suitable

configuration is given by

01l 000 100 001 010 002
01l 111 100 112 010 110
011 222 100 220 010 221
011 012 101 010 110 0Ol1l
0ll 120 101 121 110 122
011 201 101 202 110 200
001 021 100 022 110 020
001 102 100 100 110 101
001 210 100 211 110 212
000 000 111 111

o’
It

29

This may be expanded to a situation involving twelve attributes in
which the first six have two levels each while +the last six have
three levels each

00 11 11 00 00 00 11 00 00 00 00 11 00 11 00 00 00 22
00 11 11 11 11 11 11 00 00 11 11 22 00 11 00 11 11 00
00 11 11 22 22 22 11 00 00 22 22 00 00 11 00 22 22 11
00 11 11 00 11 22 11 00 11 00 11 =7 11 11 00 00 11 11
00 11 11 11 22 00 11 00 11 11 22 11 11 11 00 11 22 22
00 11 11 22 00 11 11 00 11 22 00 22 11 11 00 22 00 00
00 00 11 00 22 11 11 00 00 00 22 22 11 11 00 00 22 00
00 00 11 11 00 22 11 00 00 11 00 00 11 11 00 11 00 11
00 00 11 22 11 00 11 00 00 22 11 11 11 11 00 22 11 22
00 00 00 00 00 00 11 11 11 11 11 11

0l 10 10 01
0l 10 10 12
0l 10 10 20
10 01 10 O1
10 01 10 12
PR
18 10 O1 12
01 01 01 20

ol 01 10 10 02 02 02
12 01 10 10 10 10 10
20 0l 10 10 21 21 21

01 10 10 21 02

12 10 01 10 21 02 10
12 10 10 01 02 21 10
20 10 10 O 10 02 21
01 Ol 01 OL 21 10 02

L7

SESERISNE
O
[ nd
|
(@]
o’
]
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The previously described type of procedure can be contimucd for higher

values of v. Also, some mofifications cambe introduced to base part
of the composition procedure on three-plets. In any event, the result
of the construction procedure is to cause the number of required blocks

b to increase at a reasonably slow rate as v increases at a relatively

rapid rate.

3.4, The construction of configurations of order It with k = v and s = 2.

In this section, we shall consider a method of constructing a
(b x v) matrix such that among the rows of each four-column sub-matrix
each of the 21‘L possible ordered four-tuples occurs at least once. When
v = 5, an orthogonal array of strengbh four and index unity may be

formed with b = 16. It has the following appearance

00000 | 10001
000LL 10010
00101 10100
00110 10111
01001 11000 (3.4.1)
01010 11011
01100 11101
01111 11110

and represents“an optimal configuration of order four. 1In addifion,
the first four columns of the &rray in (5.4.1) is optimal for v = k.
For higher values of v,'appropriate partially balanced arrays may
be derived by noting that for any ordered choice of four attributes,
the set of v-turnles which contain exactly two;"l's" provide g cover
£or.the four-tuples 0000, 0001, 0010, 0100, 1000, 0Oll1, 0101, O1l0,
1001, 1010, 1100 while the set of v-tuples which contain exactly one
"o" provide a cover for the four-tuples 9111, 1011, 1101, 1110, 11ll.

The number of blocks required in these constructions is given by




o1

b=( )+ ( I ) =v (v+1)/ 2. In particular, for v =6 and

2

= 7, they appear as follows

<
|

110000 1100000
101000 1010000
100100 1001000
100010 1000100
100001 1000010
011000 1000001
010100 0110000
010010 0101000
010001 0100100
001100 0100010
001010 0100001
001001 0011000
000110 0010100
000101 0010010
oooorL ’ P° =&t coro00L * ° =28 (3.k.2)
011111 0001100
101111 0001010
110111 0001001
111011 0000110
111101 0000101
111110 00000LL
0111111
1011111
1101111
1110111
1111011
1111101
1111110

in which M1, 1, 0, 0) = M1, 1, 1, 0) =1, N1, 0, O, 0) = v - UL,

AL, 1, 1, 1) =v - 4, and N0, 0, 0, 0) = Wéh).

The constructions in (3.4.1) and (3.4.2) may be extended to
v=8 v=10, v=12, and v = 14 by the following composition pro-
cedure. Let the v attributes be divided into v* = (v/2) consecutive
pairs. The array of order four which is appropriate to v* attributes
with two levels each is then written down with the adjustment that
"o" is replaced by "00" and "1" is replaced by "11", TFor any choice

of four attributes coming from different pairs, all possible ordered
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four-tuples are covered because such a choice is equivalent to a selec-
tion of four attributes from the v* for which a fourth order configura-
tion already exists. To complete the construction, additional rows
need to be added to the arrey so that for choices of four attributes
with two coming from the same pair, all possible four-tuples are
accounted for. 1In the cases where the levels associated with:the attri-
butes coming from the same pair are equal ( i.e., "0O" or "11" ), the
initial set of blocks already are suitable because the resulting four-
tuples are equivalent to either three-tuples or two-tuples of v*
attributes and hence are covered by the corresponding fourth order
array. The remaining uncovered four-tuples involve either "O1" or "10"
being associated with a pair. These may be taken care of in two steps.
First a set of blocks is added which corresponds to an array of order
three in V* attributes with two levels each but with the adjustment

that "O" is replaced by "Ol1" and "1" is replaced by "10". Because

any choice of four attributes with two coming g?om the game pair and
having different levels while the other two come from different pairs

is equivalent to a corresponding *hree-tuple of V# attributes, these
additional blocks cover such four-tuples. The construction is completed
by adding a set of blocks which is assoclated with an array of order

- two in v* attributes with four levels each but with the adjustment that
"0" is replaced by "00", "1" is replaced by "O1", "6" is replaced by
"10", and "62" is replaced by "11". This final part takes care of all
four-tuples in which tmo attributes come from Qich of two pairs. Some
reduction in the total number of blocks rejuired for the arrasy may be
realized at this stage by deleting any blocks in vhich the corresponding

covered four-tuples have already been accounted for in previous blocks;
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eg., the blocks associated with a vector of O's, a vector of 1's, a
vector of 6's and a vector of 92's may be deleted from this last part.
In order to see more clearly the structure associated with the
previously described method of composition, let us consider the follow-

ing examples for v = 8 and v = 10.

00 00 00 00 01 O1 O1L 01 00 O1L 10 11
00 00 00 11 01 01 10 10 0L 00 1L 10
00 00 11 00 Ol 10 01 10 10 11 00 01
00 00 11 11 01 10 10 01 11 10 0L 00
00 11 00 00 10 01 01 10 00 10 11 01
00 11 00 1l 10 01 10 O1 01 11 10 00
00 11 11 09O 10 10 01 O1 10 00 0L 11
00 11 11 11 10 10 10 10 11 01 00 10 b = 36
11 00 00 00 00 11 01 10 '’
11 00 00 11 0L 10 00 11
11 00 11 00 10 O1 11 00
11 00 11 11 11 00 10 01
11 11 00 QOO
11 11 00 11
11 11 11 090
11 11 11 1L
00 00 00 00 00 10 01 01 01 01 00 01 Ol 01 Ol
00 00 00 11 11 01 10 01 01 01 00 X0 10 10 10
00 00 11 00 11 0l 01 10 01 01 01 00 01 10 11
00 00 11 11 00 01 01 01 10 Ol 0L 0L 00 11 10
00 11 00 00 11 01 01 01 01 10 01 10 11 00 01
00 11 00 11 00 01 10 10 10 10 01 11 10 01 00
00 11 11 00 00 10 01 10 10 10 10 00 10 11 Ol
00 11 11 11 11 10 10 01 10 10 10 01 11 10 00 b = Lo
11 00 00 00 11 10 10 10 0L 10 10 10 00 O1 11 ~’ B
11 00 00 11 00 10 10 10 10 O1 10 11 01 00 10
11 00 11 00 Q0 11 00 11 01 10
11 00 11 11 11 11 01 10 00 11
11 11 00 00 00 11 10 01 11 00
11 17 0D 11 11 11 11 00 10 O1

11 11 11 00 11
1111 11 11 00

The indicated pr cedure can be continued for higher values of v. In
summary, if we let bz(v; 4) denote the number of blocks obtained for
the configuration of order four with k = v and appropriate to a situa-

tion of v attributes with two levels each, then we nay state
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Theorem (3.4,1). By successively applying the previously described

method of composition, combinetorial configurations of order four with
k = v may be constructed for any v attributes with two levels each.

For v > 8, the number of blocks required is given by the formula
*
b (v b) = by ([v/Rl5 4) + vy([v/2],; 3) + vy ([v/2],; 2) vwhere
*
bh([v/2]+;2) is an appropriate number which does not exceed bh([v/2]+;2).

By applying Theorem (3.4.1), the following table may be formed

to indicate the relationship between v and b.

\'s b v b
L 16 80 200
5 16 96 o2k
6 21 112 250
7 28 128 258

8 36 160 284

10 ko 192 313
12 55 224 347
1h 65 256 359

15 7> 320 391

20 80 384 423

oL 97 448 463

28 109 512 475

22 117 640 515

4o 130 768 554

48 152 896 604

56 174 1024 619

6L 182 1280 666

From the above table, one can see that b increases at a reasonably slow
rate as v increases. Indeed as v becomes quite large, the rate of
increase of b becomes comparably much smaller.

Methods similar to the ones outlined in this section can also be
developed for cases when é = q where q is a prime power as well as
general s. In addition, the basic approach can be extended to fifth
and higher order configurations. However, these topics will not be

discussed here as they involve continued application of previous concepts.




CHAPTER IV

MULTI-STAGE FILING SYSTEMS

4,1 Milti-stage combinatorial configurations.

In the previous chapter, we have considered a general method
of constructing combinatorial configurations with k = v, These systems
have the desirable property that the number of blocks b is of reason-
ably small magnitude for large v. However, because k = v, the number
of sub-buckets associated with each bucket in the corresponding filing
system can become overwhelmingly large. For example, some buckets
may have as many as (2V - 1) sub-buckets. As a result, the component
of retrieval time which is specific to checking whether sub-buckets
pertain to some given query may reach such a considerable magnitude
as to destroy any value which the filing system might otherwise have.
This particular probiem was one of the factors which motivated
Ray-Chaudhuri [43] *o introduce the concept of a multi-stage combina-
torial configuration as the basis of a multi-stage filing scheme.

A multi-stage combinatorial configuration (9 %k G, b, d)

consists of a master set Q (representing the set of attribute levels

A

A m - A e A ), a class of subsets G, and

1 \
i 1 s
blocks Bhlhe"'h with 1 = n € d such that

11, .ses

i. B €B where h. =1, 2, ..., D
hyhy..h = Thyhy .o n hybyeeoh )

for2snsd a.nd.hl =1, 2, ..., bo.
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ii. B s k.
hlh2"°hn

iii. For every set A in G, there exists (hl’ By wes hd) such that

A is contained in the block .
B}llha e .lld

The total number of blocks involved in all stages of the configuration

is givenby b=b. + £ b . If |A | St for each‘A in @,

0 hlhe...hn

then the configuration is said to be of order t and is denoted as an
(9 kK t, b,zd) scheme, The blocks of the configuration can be
ordered by in@roducing the following rule. The n-tuple (hl, h2,..,, hﬂ)
is said to precede the n-tuple (hi, gy e, hﬁ) if for some & where
15 ¢tsSm, we have hls hi, by $h, ..., b, ) Shy,, by <hi. Using
the above convention, we define the n-th stage covering index 7ﬂ(A) of
any given set A in G to be that n-tuple which precedes all other

n-tuples for which the corresponding blocks cover A. In other words,

7U(A) = (hl’ h2""’ hﬂ) if and only if A is contained in Bhlhz"’hn

but A is not contained in B, u.n
hlh2

hg-l s hg-l’ hg < hg vhere 1 = ¢ = 1. So that some degree of consis-

tency is maintained in the structure of %tue corresponding filing

for h'l' $h,, h. s hyy oo

...h" 2
Ul

systems, the discussion here will be restricted to what has been termed
simple multi-stage schemes. A multi-stage configuration is called
simple if the n-th stage covering index of a set A in ¢ contains the

o1 e hn_l, hn)
while 7n-1(A) = (hl’ h,, e hn-l)' Using the above framework, the

(n-1)-th stage index in the sense that 7n(A) = (hl’ h

following theorem may be proven.

Theorem (4.1.1). Suppose there exist uni-stage configurations

( Q17 kﬂ’ t, bn-l ) for 9 =13, 2, ., d vhere iy = @ and vhers 81
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nay be identified with the at most kn-l attribute levels which are
assigned to any given block in the (7-1)-th stage. Then there exists
a simple multi-stage configuration with parameters (9 k, t, b, d)

where k = kn and b = bo + bobl + ... F boblaoobd-lo

Proof: The result obviously holds for d = 1 by assumption. [To complete
the proof by induction, assume the theorem is true for (d-1) stages
in the sense that there exists an ( @, kd-l"t’ b', d) configuration

with b' = b, + b, + ... +b b, eee Within any given (d-1)-th

o * Po oP1°""Pa-2 °
stage block BhihQ"'hd-l, there exists an ( Qs Bt bd_l) configur-

ation since lﬂd_ll S kd-l' The blocks of these configurations may be

labelled Bh n "‘hd‘

Since each successive stage is necessarily of
1P o ’

order t, the total system represents an (9 k, t, b, d) configuration

The fact

ot Poby 0°1-“~Pa-2 a-2Pa-1

that this system is simple follows from the property that the 7n-th

stage is nested inside of the (7-1)-th stage.

The sbove theorem is essentially the same as that given by Ray-Chaudhuri
[43] except for the fact that he was concerned with situations in which
retrieval pertained to only one level of each of the attributes. In

the remainder of this chapter, we shall refer to this situation as

" the uni-level attribute case ( where the prefix "uni' refers to the

number of levels relevant to retrieval as opposed to the number of
levels which the attribute may assume ). By applying Theorem (4.1.1)
to the series of configurations arising from Theorem (2.4.1), we may

state
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Theorem (4.1.2). There exists an ( Q, k, t, b, d) configuration for

the situation of v uni-level attributes where v = (q”*l - 1)/(q - 1)

m,-1

andk=(q2 -1)/(q-1) andb=b_ +Dbb, + .co + b b eed

0 o'l 0’1 d-1

with b_ =b(m _p By, q) for n =0, 1, 2, ..., d-1 and

n n

n
N = m.o > m1 > eee>mg

4.1 > My B (t-1); end q is a prime power.

The proof of the theorem follows by noting that the attributes are
identified with points in PG(N,q) while the first-stage blocks are
identified with the ml-flats of a (bo, t, ml) cover thereof. Then
the attributes within any one of these blocks are considered as & set
Q, and are identified with the points of PG(ml, q) as it pertains to the
corresponding ml-flat. The second-stage blocks then are taken to be
the m2-flats of a (bl’ t, m2) cover of the apﬁropriate PG(ml,q). The
process continues until the d-th stage blocks have been formed.
Ray-Chaudhuri discussed Theorem (4.1.2) for the case in which
m

0
of multi-stage configurations may be derived by combining Theorem (2.4.9)

= N, m =N-1, ..., my =N - d, He also indicated that a series

and Theorem (4,1.1). However, because the parameters of such schemes
are difficult to specify in a clear-cut fashion, we shall not describe
them in any detail. In any event, the basic point of these remarks is
that a multi-stage configuration can be formed by combining any theorem
which provides the basis of construction for any generel series of
relevant uni-stage configurations with Theorem (4.1.1).

One particular type of multi-stege configuration which is of
interest to us here is formed by conmbining the procedures of Chapter III

with Theorem (4.1.2). The first-stage blocks for the attribute level

n,

set 0 = { L ETIRERY Alnl’ ooy Aygy coes A } are formed in accordance
N
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with the method of composition. This has already been described in
some detail for t =2, 3, 4. The resulting first-stage blocks contain
exactly one level of each attribute. These are then identified with
v uni-level attributes to which the results of Theorem (4.1.2) apply.
In particular, the formation of (b, t, m) covers of the geometry PG(N,q)
has been explicitly described for t = 2, 3, 4 in Theorem (2:&.6),
Theorem (2.4.7), and Theorem (2.4.8). As a result, with the appropriate
construction of the different stages, the number of attribute levels
contained in & block can be reduced to a form like k = (qt -1)/(q - 1).
If this number is still large, one cen similarly work with a new
geometry PG(N',q'), where q' < q and (q'(N'+l) - 1)/(q' - 1) 2 k.
Eventually q could be reduced as low as 2 or 3 at which point further
stages could be formed, if necessary,by a systematic trial and error
procedure. By forming a system as outlined above, one obtains a
configuration in which at any stage, the number of blocks which pertain
to the next stage is not excessively large. In addition, the number of
sub-buckets corresponding to each of the final-stage blocks is of a
reasonable magnitude.

The above approach can be supplemented at any time by any of the

useful systems considered in previous chapters. For example, when

~ t = 2, BIB designs may be used where applicable while for t =3, the

schemes of Theorem (1.4t.5) and Theorem (1.4.6) are of similar interest.
The question of what is the best ﬁay to form milti-stage systems is
difficult to attack because it is completely entangled with the con-
cept of retrieval time in the corresponding filing systems. Although
these concepts will be considered in the next sections, no definite

conclusions can really be drawn because as stated in Chapters I and II,
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the components of retrieval time depend to & very large extent on the

properties of the computer systems to be used with the filing schemes.

L.,2. Multi-stage combinatorial filing systems.

Ray-Chaudhuri [43] has indicated that a combinatorial filing
system may be based on a simple multi-stage combinatorial configurstion
in the following way. As in the previous sub-section, let 7d(A) denote
the d-th stage covering index of the set A in C; i.e., 7d(A) = h where

h = (hl’ hyy «eey hd) if A is contained in Bhlha"'hn but is not

contained in "hé'--.h;; for b{ $h), hg 2 hy eeo) h'é_l < hg-l’

h'g' < h§ where 1 s £ =7 s5d., let 012’ denote the collection of all
subsets A of Q such that 7,(A) =h. To each of the h, A combinations,
let there correspond sufficiently large disjoint subsets M’fb A of M,
the set of addresses. The accession number of the i-th individual's
record is stored in an element of MK‘; A if and only if the largest set
which £(I) has in common with Bll = Bhlha’ p 48 the subset A in QI.E.;

a
i.e., if £(I) 0 B, = A. Let

M2 = . Li an Mh)A (k.2.1)

The sets Mh represent the d-th stage buckets of the filing system while

~

~ the subsets Mb} A correspond to the sub-buckets. In addition, the sets

Mhlha...hn =hU tee hU " (4.2.2)
Tl d
1 S n < d may be identified with the n-th stage buckets.
The retrieval procedure for any query simply involves initially
the determination of the appropriate first stage bucket by identifying

which first stage block fi‘rst contains 'the subset specified in the
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query. The second and higher stage buckets would then be similarly
Getermined. Afterwards, all sub-buckets within this final d-th stage
bucket and corresponding to subsets which contain the query set are
located and the accession numbers therein obtained. Thus, the

retrieval function may be formally written for A in Q as

r(A) = v | (k.2.3)
AcC eah‘M}bc

where 7d(A) = h. In the actual filing scheme, the contents of the

biocks B, are stored in locations z(hl). Given any query, these are
1

searched sequentially starting at £(1) until the first stage covering
*
index h1 is determined. The contents of the second stage blocks

*
B, , are stored in locations £(n,, h,). Once hy has been identified
1h2 1’ T2 ?

*
the system switches to z(hl, 1) and proceeds sequentially until the
* _*
second stage covering index (hl’ h2) is found. This is continued for
* ¥ *
each stage until the d-th stage covering index (hl’ h2, ooy hd) has
* _* *
been determined at the location z(hl, hyy vees hd)' The contents of

the possible subsets C in G , are stored in locations of the type
h

~

* % *
z(hl, hyy eees Nys C). Each of these are then checked to determine

vhether C contains A in which case the addresses of Mh c are noted.
&)

Once all the relevant C have been identified, then the corresponding
Mh ¢ are referred to by chaining and the accession numbers therein

~
are extracted.

4.3, Retrieval time in mﬁlti-stage filing systems.

Here, retrieval time will be viewed as having three basic components

Tl e = time required to determine the d-th stage bucket
J

(i.e., the d-th stage covering index)
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T2 c = time required to search among the sub-buckets within
)
the d-th stage bucket
T3 o = time for retrieval which is independent of the
)

structure of the filing system

Proceeding along the lines of Ray-Chaudhuri [43], we assume that T c
! ,

may be neglected. Let Tn denote the time to test whether the set A in

"'hn for 1 =210 24,

@ is contained in an 7-th stage block Bhlh
2
Ir 7d(A) = h, then A must be compared with h1 first stage blocks, h2

second stage blocks, . ., ., hd d-th stage blocks. Hence, we have
f

that T,  is essentially given by
)
d

T = L h 7T .
Let 7' denote an upper bound on the time to determine whether a sub-
bucket contalns a set A or not. If vh denotes the number of subsets

in Q@ then an upper bound for T

2,

s (1) (v)

h’ c is given by
T2,c

Hence, we may write that the retrieval time T(A) for the set A satisfies

a

T(A) £ = ho T 4+ (F)(v,) (k.2.4)

If T, = max T if bn = max bhlha'..h.‘for 1 5 n s (d-1) with by =D,
n

end if Vo = m;x VR , them

: a-1

TA) s( Z b )1, +1' v (k.2.5)

n=0 | 0 0

As a result, we see that an upper bound for T(A) is linearly related to

o’ bl, covy bd;i and the number of

the numbers of blocks in each stage b
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sub-buckets. This is one of the principal reasons why multi-stage
systems lead to more efficient retrieval times than similarly structured
uni-stage systems. However, the proper choice of which method of
staging to use remains largely an open question until more sensitive
expressions than (%.2.5) can be developed.

Alternatively, let T. denote the average retrieval timeurequired

0
*
for retrieval of queries A in G. Let vy = |Gh;ﬂ Gl and v= la|.
Then
1 * *
T s ={f £ h Ty + T'Zwvyv }

*
Suppose the weights (vh/v) are approximately equal for different h.

Then
-1 b_+1
s 1
Ty S T°n§o(-ﬂ—2 ) + 7 g (%.2.6)

The interpretation of (4.2.6) is essentially the same as that given
previously for (%.2.5).

Finally, let us consider the redundancy of the systems described
here for the case of v attributes with s levels each under the assump-
tion of & uniform distribution of records. Since a record is not stored
in a first stage bucket if the individual has no attribute levels in

common with the corresponding block, an upper bound to the redundancy

"R is
c

o (4.2.7)

s-1 v
s - (o=
R,s{1-(=9) } v
The actual redundancy bound cannot be more exactly approached because
it is difficult to meacure the effect of the fact that a record will

not be stored in a first stage block if the intersection of that block

and the record is a subset contained in one of the prior blocks.



104

hob, Example.

Suppose there are v = 256 attributes with s = 2 levels each. In

addition, suppose that a filing system oriented toward efficient retrie-

val of first.and second order queries is desired. Using the method
of composition as outlined in the proof of Theorem (3.2.1), we can base

the first stage buckets on the b, = 17 blocks of a second oréer combin-

0
atorial configuration with k = v = 256, If the ko = k = 256 elements
in each first stage block are identified with the points of EG(2, 16),
then the second stege blocks may be taken to correspond to the b1 = 272
lines therein, each of which pertains to kl = 16 attribute levels.
Continuing in the same manner, the third stage blocks may be identified
with the b, = 20 lines of EG(2, 4) where the points are associated
with the kl elements assigned to a second stage block. As a result,

there are k2 = L elements in each third stage block. Each corresponding

(2h - 1) = 15 sub-buckets. Hence from

bucket contains as meny as vo

(+.2.5), we have

T(A) = (17 + 272 + 20) Ty t 15T

A

309 % + 15 1!

Alternatively, since bl is somewhat large, another scheme of stag-

ing may be more worthwhile. ILet the ko = 256 elements in a first stage

block be divided into 16 groups of 16. Let each of these groups be
identified with a point in EG(2, 4) and form second stage blocks as
the k, = 64 elements corresponding to the four points on a line; this
leads to b) = 20 second stage blocks. Similarly, let the K, = 6k
elements of a second stage block be divided into 16 groups of 4 and

*
form b, = 20 third stage blocks of k, = 16 elements each by again
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using the structure of EG(2, 4) in a similar fashion. The fourth .
stage is then obtained by proceeding once again in essentially the same

*
way but with respect to 16 groups of 1. This gives b, = 20 and k5 =k,

3

Finally, as in the preceding situation, each of the fourth stage buckets

has at most ¥y = 15 sub-buckets. Thus from (4.2.5), we have

T(A) s (17 +20 +20 +20 ) T, + 15T

s 87 Ty + 15 T1°'

Hence, this multi-stage system is more efficient with respect to
reirieval time than the one initially outlined. On the other hand,
the total number of final stage buckets here is (17)(20)(20)(20) as
compared with (17)(272)(20) in the previous system; i.e., this system
involves nearly (1.5) times as many final stage buckets. Whether
this added magnitude causes any problems represents a question which
is difficult to evaluate. In some sense, however, any solution will

rest on the properties of the couputer system involved.



CHAPTER V
SOME PROBLEMS FOR FUTURE RESEARCH

‘Even though a variety of different filing schemes have been
considered here, a great deal of further research is needed. More
efficient systems for cases in which different attributes assume
different numbers of levels represent one area. Also, compromise
designs, which are suitable for one type of query with respect to some

sets of attributes and other types of queries with respect to other

sets of attributes, need to be developed for the cases where they are
applicable. Other types of schemes which are of interest are those
suitable in situations where some types of queries are retrieved more
often than others and those which enable efficient retrieval of queries
involving more than one level of each attribute. Finally, before the
different systems currently in existence can be effectively compared
with one another, the concepts of retrieval time and redundancy need
to be more explicitly developed. When this has been achieved, then
one will be able to specify more completely the type of properties

which are desirsble for filing systems.
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