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ABSTRACT 

Over the past few years several proposals have been made for the standardization of 

sparse matrix storage formats in order to allow for the development of portable matrix 

libraries for the iterative solution of linear systems. We believe that this is the wrong 

approach. Rather than define one standard (or a small number of standards) for matrix 

storage, the community should define an interface (i.e., the calling sequences) for the 

functions that act on the data. In addition, we cannot ignore the interface to the vector 

operations because, in many applications, vectors may not be stored as consecutive 

elements in memory. With the acceptance of shared memory, distributed memory, and 

cluster memory parallel machines, the flexibility of the distribution of the elements of 

vectors is also extremely important. This issue is ignored in most proposed standards. 

In this article we demonstrate how such libraries may be written using data encapsulation 

techniques. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

In the 1970s two extremely successful numerical 

linear algebra software packages, EISPACK and 

LINPACK, were introduced. They were designed 

for portability, numerical robustness, and effi

ciency. They were, however, restricted to dense 

and banded matrices. The development of serial 

numerical linear algebra software for dense and 

banded matrices is greatly simplified by the fact 

that there are very few natural ways of storing the 
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matrices. Thus, very little effort is needed in de

signing the data structures used in the codes. 

For sparse linear algebra, even on sequential 

machines, the issues become much more compli

cated. When one includes various parallel ma

chines, the problems multiply even further. Not 

only must one make decisions about the storage 

of the sparse matrices, one must also decide on 

storage formats for the vectors, since each vector 

is probably distributed across the parallel proces

sors. We also note that even on sequential ma

chines, the natural storage format for a vector 

could be dictated by the application. For instance, 

an adaptive mesh refinement code may represent 

the solution and other vectors with an octtree 

data structure. 

Software methodologies to overcome these 

problems do exist; they involve data encapsulation 
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and object-oriented programming techniques. In 

object-oriented programming, we abstract out of 

a data type the actions that we wish to perform on 

the data, independent of the underlying represen

tation of the data. So. for instance. in the iterative 

solution of linear svstems we need to be able to 

multiply vectors by sparse matrices and their trans

poses. In addition. we must be able to perform 

scalings of vectors, calculate sums of vectors, etc. 

These operations. not the particular representa

tion of the matrices and vectors. are what define 

the data. Thus. any storage format, with the corre

sponding operations defined. should be immedi

ately supported by the software library. 

To someone used to prgramming in Fortran 77. 

this may sound like a pipe dream. It is actually 

relatively easily achieved in some programming 

languages. In this article we describe an implemen

tation using C, sinee many people are familiar with 

this language and it is portable and available on 

virtually all machines. Also. it is fairly easy to mix 

Fortran 77. C. and C++ code in a single applica

tion on most platforms. 

l\ote that some people use the term object ori

ented to rPfer to specifying a data type, operations 

on that data type. and all of the details of the 

internal formats (e.g .. thE' sparse matrix format to 

use). \V e are using object oriented in a stronger 

and purer sense: Only the operations are specified. 

The choice of internal format (and hence, the 

choice of the aetual code to implement the opera

tions) is determined only at run-time rather than 

at compile-time. Thi:-; is an important difference: 

it changes object oriented from being simply a way 

to organize a code and the argument lists of the 

routines to a method for flexibly adapting to differ

ent situations. 

Several publications that discuss these issues in 

the standard Fortran 77 framework are [1], [2L 

and 13]. An alternative approach to ours that uses 

C++ as the implementation language can be 

found in [4]. 

2 PROGRAMMER-DEFINED DATA TYPES 

In Fortran 77., a limited number of data types are 

built into the language. essentially scalar integer 

and floating-point numbers, and dense arrays of 

integer and floating-point numbers. The language 

contains no mechanism for the programmer to 

construct additional data types. Hence. when 

dealing with higher-level objects such as sparse 

matrices, the programmer must choose a partieu-

lar storage format. which. in general. will involve 

several separate array variables. All of these array 

variables must be passed to the routines that oper

ate on the spares matrices. 

To explain this more fully, we give a particular 

example. the well-known Yale Sparse .Vlatrix 

Package (YS.VIP) storage scheme [5 ~. In YS:\IP, 

the sparse matrix io; stored by using four variables: 

n, the size of the matrix: a .. an array of floating

point numbers that contain the nonzero entries in 

the matrix: ia. an array of integers that contain 

the locations in a of the beginning of each new 

row; and j a. which contains the column number 

of each entry in a. A variation of this storage format 

is to store the diagonal entries separately in another 

array, d. 

If a programmer desired to write a general-pur

pose iterative solver routine that used the YS.VIP 

storage pattern. it could have a calling sequence 

like GMRES (n, a, ia, j a, ... ) . But if de

sired to support both storage formats, something 

like GMRES (n, a, ia, j a, d, flag, ... ) 

would be needed, where the value of a ilag indi

cates which of the two formats io; being used. This 

increases the complexity of the code and makes 

the addition of a new stoarge format difficult: lt 
may require not only rewriting the GMRES () code. 

but also modifying all of the application codes that 

use it, since the calling sequence of the GMRES () 

code has been changed. 

Other programming languages such as C, C++. 

and Fortran 90 provide a better and more flexible 

alternative. The programming is free to introduce 

new data types, called structures in C and classes 

in C++. One feature that is useful about these 

new data types is that pointers to the data may be 

passed into a routine without the routine needing 

to know what information thev contain and how it 

is stored. (Fortran 90 has a much more limited 

construct called derived data types.) In this way 

the GMRES () routine need not know the storage 

format of the matrix; only the matrix-multiply rou

tine needs to know it. So, for instance. a program

mer may introduce a new data type .. Mat, then 

write GMRES routines like the following that will 

support any matrix storage format. 

int MatrixMultiply(Mat matrix, Vee x, Vee y); 

int GMRES(Mat matrix, ... ) 

ierr Matri xMul tiply (matrix, x, y); 
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typedef struct { 

int (*create)(Vec,Vec*), I* Routine returns a single vector *I 
(*destroy)(Vec), I* Free a single vector *I 
(*dot)(Vec,Vec,Scalar*), I* z = x-H * y *I 
(*scale)(Scalar *,Vee), I* X = alpha * x *I 
(*axpy)(Scalar *,Vec,Vec), I* y y + alpha * X *I 

} _VectorOps; 

FIGURE 1 The vector operation~ structure. 

By using a base abstract matrix objecL Mat, the 

compiler can still do complete type checking of 

arguments. If the sparse matrix storage format is 

changed. only the MatrixMul tiply () routine 

must be changed, not the GMRES () routine. ln 

face we can do even better than this. Rather than 

hardwiringinto the GMRES () code the matrix-mul

tiply routine, we can pass a pointer to the matrix

multiply routine into the GMRES () routine. 

3. OUR APPROACH 

Since we would like to support a variety of Krylov

based solvers. we must first determine which vector 

operations these require. A few of them are the 

standard Level 1 BLAS operations. Others include 

routines to generate and free vectors that are 

needed for temporary or permanent workspace. 

Since it would be cumbersome to individually pass 

pointers to all of these routines into the solver rou

tines, we bundle up all of the function pointers 

and any additional data needed for a particular 

implementation into a single data type. called a 

Vee. In Figure 1 we give a part of our C structure 

that defines the vector operations. For those read

ers who are not fluent in C, this simply defines a 

data structure whose entries are function pointers. 

\Vhen a function call is needed. the correct func

tion for the particular data storage format is ex

tracted from the data structure and called. Since 

the function pointers are part of the data structure, 

the correct function is always called. 

All higher-level routines that require access to 

the vectors act on the vectors only through the 

pointer. not by directly manipulating the data. The 

object Vee is actually a pointer defined by 

typedef struct_Vec* Vee. The definition of 

the structure _Vee is private to the library and 

not directly accessible to the application program

mer. In this way the library may evolve without 

requiring any changes to the application codes that 

rely on it. If the application code had access to the 

individual data structures in _Vee. there would 

be no data encapsulation. 

All of the vector implementations include a 

pointer to a private, implementation -dependent 

data structure that may contain the vector length 

and layout. For a standard serial vector implemen

tation, this can simply be a pointer to an integer 

containing the lenerth of the vector. For a simple 

parallel implementation it may be a pointer to two 

integers, the first containing the length of the part 

of the vector stored in local memory, the second 

the length of the entire vector. A sample serial im

plementation of the dot () routine is given in Fig

ure 2. 

Currently, our vector stn1cture provides the op

erations from the Level 1 BLAS. plus the opera

tions y +--- x + a.v and w +--- ax + .Y. along with 

operations to create and free storage for vectors. 

ln Table 1 we list the minimal vector operations 

we believe must be defined. The pointers to Sca

lar are also unspecified; the indication Scalar 

is there simply to allow type checking of arguments 

for those languages that support it. These calling 

sequences will allow the same codes to be used 

with single precision, double precision, complex, 

multiple precision, and interval arithmetic. For er

ror handling, all our functions return a nonzero 

on error and a zero on success. 

Remark 

Unlike the standard Level 1 BLAS definitions, 

there is no need to indicate stride information, 

since the underlying storage format is left up to the 

particular implementation of the vector opera

tions. Sparse matrix operations may be stored sim

ilarly. In addition to the obvious operations such 

as matrix-vector product and triangular solve, we 

include such operations as insert and extract row 

and compute incomplete factorizations. Sparse 
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static int VecDot_Seq(Vec xin, Vee yin, Scalar *z ) 
{ 

Vec_Seq *X = (Vec_Seq *) xin->data, *Y = (Vec_Seq *) yin->data; 

int n = x->n; 

Scalar sum = 0.0, *xx = x->array, *YY = y->array; 
for ( i=O; i<n; i++ ) { 

} 

sum+= xx[i]*yy[i]; 
} 

*z = sum; 

return 0; 

FIGURE 2 Sample dot product. 

matrices have a similar table, which, to keep this 

article short, will not be displayed here. 

An important feature of the data-hiding ap

proach is that additional operations can be added 

without disturbing existing code. For example, the 

operation w ~ ax + y was added when it became 

apparent that several Krylov methods could make 

good use of it. The previously coded Krylov space 

methods did not require any changes. If these rou

tines were passed through argument lists (the only 

portable mechanism available for Fortran 77 pro

grammers), adding a routine would require modi

fying each argument list for every routine that used 

these vector routines. 

The only technique available to Fortran pro

grammers that approximates this flexibility is "re

verse communication." In this method, for each 

operation, the library routine sets a flag and returns 

to the calling program with a request that an opera-

Table 1. Vector Operations 

Name 

VecDuplicate 

VecDestrov 

VecDuplicate Vecs 

V ecDestroy V ecs 

VecDot 

VecNorm 

VecMax 

VecScale 

VecCopy 

VecSet 

VecAXPY 

VecAYPX 

VecSwap 

VecWAXPY 

V ecSet Values 

Description 

a vector 

a vector 

n vectors 

n vectors 

Z ~ XH * y 

z ~ VxH*x 

z ~ max(Jxl) 

x~ax 

y~x 

x 1 ~a, 'Vi 

.Y~ax + y 

y~ay+x 

Swap x andy 

w~ax+.Y 

v(idx) = x 

tion be performed. However, this method puts the 

burden on the user. as well as requires a rather 

unnatural style of programming. In addition, it is 

difficult to nest routines implemented with reverse 

communication. For example, if an iterative 

method, implemented with reverse communica

tion, asks the user to evaluate the preconditioner, 

which itself makes use of an iterative method (per

haps implementing a block-diagonal precondi

tioner), implemented with reverse communication, 

it is the user, not the library, that is responsible 

for untangling what is happening. 

It is extremely important to note that our ap

proach supports both matrix-free as well as out

of-core solvers. In both cases, only the required 

matrix operations must be provided; no explicit 

representation of the matrices (or vectors) is 

needed. 

Since the various Krylov-based solvers have 

Calling Sequence 

Vee in, Vee *out 

Vee v 

Vee in, int n, Vee **out 

int n. Vee *v 

Vee x, Vee y, Scalar *z 

Vee x, Scalar *z 

Vee x, Scalar *z, int *idx 

Scalar *a, Vee x 

Vecx, Vecy 

Scalar *a, Vee x 

Scalar *a, Vee x, Vee y 

Scalar *a, Vee x, Vee y 

Vee x. Vee y 

Scalar *a, Vee x, Vee y, Vee w 

Vee v,int n,int *idx,Scalar *x,int mode 



for (k=O; k<maxit; k++) { 

VecDot(r, z, &beta); 

c = beta/betaold; betaold = beta; 

VecAYPX(&c,z,p); 

MatMult(ksp->A, p, z ); 

VecDot(p, z, &a); 

a = beta/a; ma = -a; 

VecAXPY(&a, p, u ); 

VecAXPY(&ma, z, r ); 

VecNorm( r, &rnorm ); 
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I* beta <- r'z *I 

I* p <- z + c* p *I 
I* z <- A*p *' 

I* a <- beta/p'z *I 
I* u <- u + a*p *I 
I* r <- r - a*z *I 
I* rnorm <- llrll *I 

if (CONVERGED( ksp, rnorm, k)) break; 

PCApply( ksp->B,r, z ); 
} 

FIGURE 3 Sample code for preconditioned conjugate gradient loop: Code prior to 
entering the loop has been omitted. 

many optional arguments, we use a context data 

type, KSP, to store this information as well as the 

location of the right-hand side and the solution. 

The KSP has two parts: a public part, which is the 

same for all Krylov space methods; and a private 

part, which contains particular options and work

space for each particular Krylov space method. 

The distinction between the two parts is invisible 

to the application programmer. The user may also 

provide optional routines to replace the default 

convergence tests and optional routines to print 

out or plot the solution, residual, and error at each 

iteration; these are also stored in the KSP. 

Figure 3 shows an implementation of the inner 

loop of a preconditioned conjugate gradient. This 

implementation is portable and works correctly on 

parallel computers regardless of the distribution of 

data (all of the difficulty is handled by the specific 

choices of functions for the vector and matrix oper

ations). In facL, it is taken from the version that 

we are currently using on both uniprocessors and 

parallel computers such as the Cray T3D and 

IBM SP. 

Figure 4 gives a code fragment that will allow the 

SLES sles; 
Vee 
Mat 

X, b; 

A· 
' 

int its; 

I* assemble or define matrix A and vector b *I 
SLESCreate(&sles); 

SLESSetOperators(sles,A,A,O); 
SLESSetFromOptions(sles); 
SLESSolve(sles,b,x,&its); 

FIGURE 4 Sample code using Krylov solvers. 

solution of a linear system by using the conjugate 

gradient method, GMRES, Bi-CG-stab, CGS, or 

two different versions of transpose-free QMR. In 

the first line, a data structure, sles, to contain 

the control information on the solution process is 

created. We next set the matrix operator defining 

the linear system (note that we support matrix-free 

methods by passing in an abstract matrix object). 

The next line checks the users command line for 

solver options and finally the linear system is 

solved. 

The important point is that all of the different 

methods have the same calling sequences. Op

tional arguments are passed by calling additional 

routines, which are ignored if the option is not 

appropriate. In this way any of the methods in the 

library may be used without changing the applica

tion code at all. In addition, more Krylov space 

methods may be added to the library without a 

need for any changes to the application codes. 

Of course, this flexibility is purchased at a price. 

Adding a method requires following the object

oriented approach. Further, any matrix vector 

product or preconditioner provided by the user 

must conform to the defined calling sequence. But 

the user may choose any data structure appro

priate for his or her application. It has been our 

experience that the object-oriented design makes 

this selection relatively easy. 

Figure 5 shows the calling sequence for a conju

gate gradient algorithm contained in a recent tech

nical report. Within the constraints of Fortran 77 

(as a language in which to implement this routine), 

this is just about the best that can be done. We 

contend that limiting the design of software to what 

can be implemented in Fortran 77 severely limits 
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SUBROUTINE CG(M,DESCRA,AR,IA1,IA2,INFORM,DESCRL,LR,IL1,IL2,DESCRU, 
* UR,IU1,IU2,DESCRAN,ARN,IAN1,IAN2,DESCRLN,LRN,ILN1, 
* ILN2,DESCRUN,URN,IUN1,IUN2,VDIAG,B,X,EPS,ITMAX, 
* ERR,ITER,IERROR,Q,R,S,W,P,PT1,IAUX,LIAUX,AUX,LAUX) 

FIGURE 5 Calling sequence for a conjugate gradient routine in Fortran 77. 

the flexibility and maintainability of the software. 

However. this limitation (:loes not mean that the 

libraries cannot be implemented in another lan

guage and then used from either Fortran 77 or 90. 

For instance, virtually all aspects of our libraries 

may be used directly from C. C++, or Fortran. 

We also point out that our approach is not in

tended to duplicate the code in a package such as 

SPARS KIT [ 3], but rather to provide an interface 

that is more flexible and extensible. In fact, we can 

use carefully crafted implementations of opera

tions involving sparse matrices as the implementa

tion of the operations that we support. 

One major concern with object-oriented pro

gramming in numerical computing is efficiency. In 

our approach the "objects" (vectors and matrices) 

are large grained; this means the OOP overhead 

is small relative to the time for the numerical com

putation. Thus, the overall computation time is 

dictated by the efficiency of the numerical code. 

In fact, using our package to solve a sparse linear 

system with direct LU factorization is faster than 

the Fortran 77 implementation in the YSYIP. In 

Tables 2 and 3 we compare the performance of 

the direct linear system solver in our package 

PETSc) to the publicly available YSY[P for solving 

nonsymmetric linear systems using LC factoriza

tion and a nested dissection ordering. The first 

problem is from an industrial oil reservoir simula

tor and contains 1.501 unknowns and 26,1:31 

nonzeros. The second is from a three-dimensional 

compressible flow simulation with 15,360 un

knowns and 496.,000 nonzeros. Runs were made 

on a Digital Alpha workstation and on an IBM 
RS6000/:370. Times are given in seconds. 

The columns Default and Basic indicate the 

PETSc default I-node version (a version that takes 

Table 2. Oil Heservoir Simulation 

Machine 

Alpha 

RS6000 

Default 

."f5 

.57 

PETSc 

Basic 

.5.3 

.69 

YSYIP 

.60 

.72 

advantage of rows with identical nonzero structure) 

and basic version, respectively. 1'\ote that the basic 

version's performance is virtually the same as that 

from the Fortran 77 YS:MP code. Our alpha work

station did not have enough memory to perform 

the factorization on the larger matrix. 

We have chosen the C programming language 

for our software libraries for a varietv of reasons. 

It is simply not possible to perform true data encap

sulation in Fortran 77 or Fortran 90. In addition. 

the various object-oriented languages such as 

Smalltalk and Eiffel are too far from the main

stream of scientific computing to be considered. 

C++ was rejected because it is a moving target. 

Code that compiles with one compiler will not com

pile with another; even slightly different genera

tions of the compiler handle very different aspects 

of the C++ language. We work in an environment 

where we must maintain robust, high-quality eode 

for a large variety of machines. \~·e can do this in 

C; and sinee we ean do true data encapsulation 

and polymorphism inC while supporting users who 

program in both Fortran and C++, Cis dearly 

the language of choice for our libraries. In many 

numerical applications and libraries, C++ may be 

the most appropriate ehoice. 

4 RECOMMENDATIONS 

Some readers may object that the object-oriented 

approach merely hides the fact that users must still 

write the routines to perform the vector operations 

and the matrix-vector operations. To some degree 

this objection is correct. The power of the object

oriented approach is that once the vector and ma

trix-vector routines are written, they need not be 

touched, or even understood, to write a new Kry-

Table 3. Compressible Flow Simulation 

PETSc 

Machine Default Basic YSMP 

RS6000 112 162 161 



lov-based solver that utilizes them. The converse 

is also true: One need never rewrite the Krvlov

based solvers again when a new architecture comes 

along. As soon as the vector and matrix-vector 

operations are provided, the Krylov-based solvers 

will automaticallv work on that machine-and as 

efficiently as the underlying operators. 

As an example of the flexibility that this ap

proach gives. we mention one of our applications. 

a magnetostatics code that solves a large, dense 

linear system in its inner loop. w·e wished to use 

iterative methods instead of direct methods to solve 

this problem. To do this. we simply introduced a 

new sparse matrix format called "dense." This 

format uses the same matrix storage that the appli

cation is using. and uses Level2 BLAB for matrix

vector operations (thus providing good efficiency). 

w· e were then able to use all of our iterative routines 

without change. The same approach was used for 

the parallel version of this application [ 6]. 

Another example is in the EAGLE code [T for 

external two- and three-dimensional fluid dvnam

ics. In this code. a linear svstem must be solved 

within the inner loop. However, the matrix is repre

sented implicitly as coefficients on a grid. The con

ventional approach to interfacing this code to a 

solver package is to reformat the matrix into some 

explicit representation, such as the YS:YIP format. 

With our package, we simply added a new sparse 

matrix type. "Eagle." that is defined by the grid 

coefficients and a few operations. This simplified 

the task of using our package in an existing appli

cation. Perhaps more importantly. it minimized 

the amount of additional memorv needed. since 

we did not have to make a separate copy of the 

matrix elements. Both of these applications codes 

are written in Fortran T?, demonstrating that the 

advantages of true object-oriented design can be 

made available to Fortran users. 

w· e make the following recommendations for the 

design of truly data -structure-neutral libraries: 

1. Do not design the interface based on the 

limitations of the target language. Just be

cause you cannot implement an interface in 

Fortran does not mean that you cannot pro

vide that interface to Fortran programmers. 

2. Do not assume any particular format in the 

data structures. Do not assume that vectors 

are contiguous in computer memory (this is 

not true even in many serial applications 

codes). 

3. Design the interface so that routines that 

solve the same problem in different ways are 
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perfectly interchangeable. This approach 

maximizes the upward compatibility of add

ing new algorithms. 

4. Remember that data-structure-neutral does 

not mean that the format of the matrix is 

unspecified: it means specifying vectors and 

matrices and other objects by the operations 

that are performed on them in such a way 

that you can operate on them without know

ing their internal structure. 

5. Choose the operations carefully so that they 

can be implemented efficiently. Often this 

means providing aggregate operations. such 

as one to set manv elements in a matrix. 

rather than only providing an operation that 

acts on a single element. 

6. Provide implementations of the operations 

for at least several interesting data struc

tures. For example. our library implementa

tion includes several kinds of sparse matrix 

formats as well as a dense matrix format. 

Developing the codes initially takes slightly longer 

than writing use-once, data-structure-dependent 

codes. but the payoff in code reuse more than com

pensates. Our codes that use these techniques are 

available via anonymous ftp from the site 

info. mcs. anl. gov in the directory pub lpetsc. 

(We will support "double" and '·double complex"' 

as the Scalar.) These routines are callable from C. 

C++. and Fortran 77 (and from Fortran 90 using 

the Fortran 77 interface). The linear solvers are 

part of a larger set of tools. PETSc 2.0 (Portable, 

Extensible Tools for Scientific computing). that we 

have been developing. The user's manual for 

PETSc Version 2.0, [8: is also available at the ftp 

site. In addition. an overview of PETSc mav be 

obtained vm the W\VW at http: I I 
www.mcs.anl.govlpetsclpetsc.html. 
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