
The Design of Data-Structure-Neutral

Libraries for the Iterative Solution of

Sparse Linear Systems

BARRY F. SMITH AND WILLIAM D. GROPP

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844; e-mail:

bsmith@mcs.anl.gov, gropp@mcs.anl.gov.

ABSTRACT

Over the past few years several proposals have been made for the standardization of

sparse matrix storage formats in order to allow for the development of portable matrix

libraries for the iterative solution of linear systems. We believe that this is the wrong

approach. Rather than define one standard (or a small number of standards) for matrix

storage, the community should define an interface (i.e., the calling sequences) for the

functions that act on the data. In addition, we cannot ignore the interface to the vector

operations because, in many applications, vectors may not be stored as consecutive

elements in memory. With the acceptance of shared memory, distributed memory, and

cluster memory parallel machines, the flexibility of the distribution of the elements of

vectors is also extremely important. This issue is ignored in most proposed standards.

In this article we demonstrate how such libraries may be written using data encapsulation

techniques. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

In the 1970s two extremely successful numerical

linear algebra software packages, EISPACK and

LINPACK, were introduced. They were designed

for portability, numerical robustness, and effi

ciency. They were, however, restricted to dense

and banded matrices. The development of serial

numerical linear algebra software for dense and

banded matrices is greatly simplified by the fact

that there are very few natural ways of storing the

Received March 1995
Revised February 1996

© 1996 John Wiley & Sons, Inc.

Scientific Programming. Vol. 5. pp. 329-336 (1996)

CCC 1058-9244/96/040329-08

matrices. Thus, very little effort is needed in de

signing the data structures used in the codes.

For sparse linear algebra, even on sequential

machines, the issues become much more compli

cated. When one includes various parallel ma

chines, the problems multiply even further. Not

only must one make decisions about the storage

of the sparse matrices, one must also decide on

storage formats for the vectors, since each vector

is probably distributed across the parallel proces

sors. We also note that even on sequential ma

chines, the natural storage format for a vector

could be dictated by the application. For instance,

an adaptive mesh refinement code may represent

the solution and other vectors with an octtree

data structure.

Software methodologies to overcome these

problems do exist; they involve data encapsulation

330 S:\1ITH A:\D GROPP

and object-oriented programming techniques. In

object-oriented programming, we abstract out of

a data type the actions that we wish to perform on

the data, independent of the underlying represen

tation of the data. So. for instance. in the iterative

solution of linear svstems we need to be able to

multiply vectors by sparse matrices and their trans

poses. In addition. we must be able to perform

scalings of vectors, calculate sums of vectors, etc.

These operations. not the particular representa

tion of the matrices and vectors. are what define

the data. Thus. any storage format, with the corre

sponding operations defined. should be immedi

ately supported by the software library.

To someone used to prgramming in Fortran 77.

this may sound like a pipe dream. It is actually

relatively easily achieved in some programming

languages. In this article we describe an implemen

tation using C, sinee many people are familiar with

this language and it is portable and available on

virtually all machines. Also. it is fairly easy to mix

Fortran 77. C. and C++ code in a single applica

tion on most platforms.

l\ote that some people use the term object ori

ented to rPfer to specifying a data type, operations

on that data type. and all of the details of the

internal formats (e.g .. thE' sparse matrix format to

use). \V e are using object oriented in a stronger

and purer sense: Only the operations are specified.

The choice of internal format (and hence, the

choice of the aetual code to implement the opera

tions) is determined only at run-time rather than

at compile-time. Thi:-; is an important difference:

it changes object oriented from being simply a way

to organize a code and the argument lists of the

routines to a method for flexibly adapting to differ

ent situations.

Several publications that discuss these issues in

the standard Fortran 77 framework are [1], [2L

and 13]. An alternative approach to ours that uses

C++ as the implementation language can be

found in [4].

2 PROGRAMMER-DEFINED DATA TYPES

In Fortran 77., a limited number of data types are

built into the language. essentially scalar integer

and floating-point numbers, and dense arrays of

integer and floating-point numbers. The language

contains no mechanism for the programmer to

construct additional data types. Hence. when

dealing with higher-level objects such as sparse

matrices, the programmer must choose a partieu-

lar storage format. which. in general. will involve

several separate array variables. All of these array

variables must be passed to the routines that oper

ate on the spares matrices.

To explain this more fully, we give a particular

example. the well-known Yale Sparse .Vlatrix

Package (YS.VIP) storage scheme [5 ~. In YS:\IP,

the sparse matrix io; stored by using four variables:

n, the size of the matrix: a .. an array of floating

point numbers that contain the nonzero entries in

the matrix: ia. an array of integers that contain

the locations in a of the beginning of each new

row; and j a. which contains the column number

of each entry in a. A variation of this storage format

is to store the diagonal entries separately in another

array, d.

If a programmer desired to write a general-pur

pose iterative solver routine that used the YS.VIP

storage pattern. it could have a calling sequence

like GMRES (n, a, ia, j a, ...) . But if de

sired to support both storage formats, something

like GMRES (n, a, ia, j a, d, flag, ...)

would be needed, where the value of a ilag indi

cates which of the two formats io; being used. This

increases the complexity of the code and makes

the addition of a new stoarge format difficult: lt
may require not only rewriting the GMRES () code.

but also modifying all of the application codes that

use it, since the calling sequence of the GMRES ()

code has been changed.

Other programming languages such as C, C++.

and Fortran 90 provide a better and more flexible

alternative. The programming is free to introduce

new data types, called structures in C and classes

in C++. One feature that is useful about these

new data types is that pointers to the data may be

passed into a routine without the routine needing

to know what information thev contain and how it

is stored. (Fortran 90 has a much more limited

construct called derived data types.) In this way

the GMRES () routine need not know the storage

format of the matrix; only the matrix-multiply rou

tine needs to know it. So, for instance. a program

mer may introduce a new data type .. Mat, then

write GMRES routines like the following that will

support any matrix storage format.

int MatrixMultiply(Mat matrix, Vee x, Vee y);

int GMRES(Mat matrix, ...)

ierr Matri xMul tiply (matrix, x, y);

DATA-STRCCTl~RE-~EUTRAL LIBRARIES 331

typedef struct {

int (*create)(Vec,Vec*), I* Routine returns a single vector *I
(*destroy)(Vec), I* Free a single vector *I
(*dot)(Vec,Vec,Scalar*), I* z = x-H * y *I
(*scale)(Scalar *,Vee), I* X = alpha * x *I
(*axpy)(Scalar *,Vec,Vec), I* y y + alpha * X *I

} _VectorOps;

FIGURE 1 The vector operation~ structure.

By using a base abstract matrix objecL Mat, the

compiler can still do complete type checking of

arguments. If the sparse matrix storage format is

changed. only the MatrixMul tiply () routine

must be changed, not the GMRES () routine. ln

face we can do even better than this. Rather than

hardwiringinto the GMRES () code the matrix-mul

tiply routine, we can pass a pointer to the matrix

multiply routine into the GMRES () routine.

3. OUR APPROACH

Since we would like to support a variety of Krylov

based solvers. we must first determine which vector

operations these require. A few of them are the

standard Level 1 BLAS operations. Others include

routines to generate and free vectors that are

needed for temporary or permanent workspace.

Since it would be cumbersome to individually pass

pointers to all of these routines into the solver rou

tines, we bundle up all of the function pointers

and any additional data needed for a particular

implementation into a single data type. called a

Vee. In Figure 1 we give a part of our C structure

that defines the vector operations. For those read

ers who are not fluent in C, this simply defines a

data structure whose entries are function pointers.

\Vhen a function call is needed. the correct func

tion for the particular data storage format is ex

tracted from the data structure and called. Since

the function pointers are part of the data structure,

the correct function is always called.

All higher-level routines that require access to

the vectors act on the vectors only through the

pointer. not by directly manipulating the data. The

object Vee is actually a pointer defined by

typedef struct_Vec* Vee. The definition of

the structure _Vee is private to the library and

not directly accessible to the application program

mer. In this way the library may evolve without

requiring any changes to the application codes that

rely on it. If the application code had access to the

individual data structures in _Vee. there would

be no data encapsulation.

All of the vector implementations include a

pointer to a private, implementation -dependent

data structure that may contain the vector length

and layout. For a standard serial vector implemen

tation, this can simply be a pointer to an integer

containing the lenerth of the vector. For a simple

parallel implementation it may be a pointer to two

integers, the first containing the length of the part

of the vector stored in local memory, the second

the length of the entire vector. A sample serial im

plementation of the dot () routine is given in Fig

ure 2.

Currently, our vector stn1cture provides the op

erations from the Level 1 BLAS. plus the opera

tions y +--- x + a.v and w +--- ax + .Y. along with

operations to create and free storage for vectors.

ln Table 1 we list the minimal vector operations

we believe must be defined. The pointers to Sca

lar are also unspecified; the indication Scalar

is there simply to allow type checking of arguments

for those languages that support it. These calling

sequences will allow the same codes to be used

with single precision, double precision, complex,

multiple precision, and interval arithmetic. For er

ror handling, all our functions return a nonzero

on error and a zero on success.

Remark

Unlike the standard Level 1 BLAS definitions,

there is no need to indicate stride information,

since the underlying storage format is left up to the

particular implementation of the vector opera

tions. Sparse matrix operations may be stored sim

ilarly. In addition to the obvious operations such

as matrix-vector product and triangular solve, we

include such operations as insert and extract row

and compute incomplete factorizations. Sparse

332 SMITH AND GROPP

static int VecDot_Seq(Vec xin, Vee yin, Scalar *z)
{

Vec_Seq *X = (Vec_Seq *) xin->data, *Y = (Vec_Seq *) yin->data;

int n = x->n;

Scalar sum = 0.0, *xx = x->array, *YY = y->array;
for (i=O; i<n; i++) {

}

sum+= xx[i]*yy[i];
}

*z = sum;

return 0;

FIGURE 2 Sample dot product.

matrices have a similar table, which, to keep this

article short, will not be displayed here.

An important feature of the data-hiding ap

proach is that additional operations can be added

without disturbing existing code. For example, the

operation w ~ ax + y was added when it became

apparent that several Krylov methods could make

good use of it. The previously coded Krylov space

methods did not require any changes. If these rou

tines were passed through argument lists (the only

portable mechanism available for Fortran 77 pro

grammers), adding a routine would require modi

fying each argument list for every routine that used

these vector routines.

The only technique available to Fortran pro

grammers that approximates this flexibility is "re

verse communication." In this method, for each

operation, the library routine sets a flag and returns

to the calling program with a request that an opera-

Table 1. Vector Operations

Name

VecDuplicate

VecDestrov

VecDuplicate Vecs

V ecDestroy V ecs

VecDot

VecNorm

VecMax

VecScale

VecCopy

VecSet

VecAXPY

VecAYPX

VecSwap

VecWAXPY

V ecSet Values

Description

a vector

a vector

n vectors

n vectors

Z ~ XH * y

z ~ VxH*x

z ~ max(Jxl)

x~ax

y~x

x 1 ~a, 'Vi

.Y~ax + y

y~ay+x

Swap x andy

w~ax+.Y

v(idx) = x

tion be performed. However, this method puts the

burden on the user. as well as requires a rather

unnatural style of programming. In addition, it is

difficult to nest routines implemented with reverse

communication. For example, if an iterative

method, implemented with reverse communica

tion, asks the user to evaluate the preconditioner,

which itself makes use of an iterative method (per

haps implementing a block-diagonal precondi

tioner), implemented with reverse communication,

it is the user, not the library, that is responsible

for untangling what is happening.

It is extremely important to note that our ap

proach supports both matrix-free as well as out

of-core solvers. In both cases, only the required

matrix operations must be provided; no explicit

representation of the matrices (or vectors) is

needed.

Since the various Krylov-based solvers have

Calling Sequence

Vee in, Vee *out

Vee v

Vee in, int n, Vee **out

int n. Vee *v

Vee x, Vee y, Scalar *z

Vee x, Scalar *z

Vee x, Scalar *z, int *idx

Scalar *a, Vee x

Vecx, Vecy

Scalar *a, Vee x

Scalar *a, Vee x, Vee y

Scalar *a, Vee x, Vee y

Vee x. Vee y

Scalar *a, Vee x, Vee y, Vee w

Vee v,int n,int *idx,Scalar *x,int mode

for (k=O; k<maxit; k++) {

VecDot(r, z, &beta);

c = beta/betaold; betaold = beta;

VecAYPX(&c,z,p);

MatMult(ksp->A, p, z);

VecDot(p, z, &a);

a = beta/a; ma = -a;

VecAXPY(&a, p, u);

VecAXPY(&ma, z, r);

VecNorm(r, &rnorm);

DATA-STRCCTURE-;\/El.JTRAL LIBRARIES 333

I* beta <- r'z *I

I* p <- z + c* p *I
I* z <- A*p *'

I* a <- beta/p'z *I
I* u <- u + a*p *I
I* r <- r - a*z *I
I* rnorm <- llrll *I

if (CONVERGED(ksp, rnorm, k)) break;

PCApply(ksp->B,r, z);
}

FIGURE 3 Sample code for preconditioned conjugate gradient loop: Code prior to
entering the loop has been omitted.

many optional arguments, we use a context data

type, KSP, to store this information as well as the

location of the right-hand side and the solution.

The KSP has two parts: a public part, which is the

same for all Krylov space methods; and a private

part, which contains particular options and work

space for each particular Krylov space method.

The distinction between the two parts is invisible

to the application programmer. The user may also

provide optional routines to replace the default

convergence tests and optional routines to print

out or plot the solution, residual, and error at each

iteration; these are also stored in the KSP.

Figure 3 shows an implementation of the inner

loop of a preconditioned conjugate gradient. This

implementation is portable and works correctly on

parallel computers regardless of the distribution of

data (all of the difficulty is handled by the specific

choices of functions for the vector and matrix oper

ations). In facL, it is taken from the version that

we are currently using on both uniprocessors and

parallel computers such as the Cray T3D and

IBM SP.

Figure 4 gives a code fragment that will allow the

SLES sles;
Vee
Mat

X, b;

A·
'

int its;

I* assemble or define matrix A and vector b *I
SLESCreate(&sles);

SLESSetOperators(sles,A,A,O);
SLESSetFromOptions(sles);
SLESSolve(sles,b,x,&its);

FIGURE 4 Sample code using Krylov solvers.

solution of a linear system by using the conjugate

gradient method, GMRES, Bi-CG-stab, CGS, or

two different versions of transpose-free QMR. In

the first line, a data structure, sles, to contain

the control information on the solution process is

created. We next set the matrix operator defining

the linear system (note that we support matrix-free

methods by passing in an abstract matrix object).

The next line checks the users command line for

solver options and finally the linear system is

solved.

The important point is that all of the different

methods have the same calling sequences. Op

tional arguments are passed by calling additional

routines, which are ignored if the option is not

appropriate. In this way any of the methods in the

library may be used without changing the applica

tion code at all. In addition, more Krylov space

methods may be added to the library without a

need for any changes to the application codes.

Of course, this flexibility is purchased at a price.

Adding a method requires following the object

oriented approach. Further, any matrix vector

product or preconditioner provided by the user

must conform to the defined calling sequence. But

the user may choose any data structure appro

priate for his or her application. It has been our

experience that the object-oriented design makes

this selection relatively easy.

Figure 5 shows the calling sequence for a conju

gate gradient algorithm contained in a recent tech

nical report. Within the constraints of Fortran 77

(as a language in which to implement this routine),

this is just about the best that can be done. We

contend that limiting the design of software to what

can be implemented in Fortran 77 severely limits

334 SMITH A:'IID GROPP

SUBROUTINE CG(M,DESCRA,AR,IA1,IA2,INFORM,DESCRL,LR,IL1,IL2,DESCRU,
* UR,IU1,IU2,DESCRAN,ARN,IAN1,IAN2,DESCRLN,LRN,ILN1,
* ILN2,DESCRUN,URN,IUN1,IUN2,VDIAG,B,X,EPS,ITMAX,
* ERR,ITER,IERROR,Q,R,S,W,P,PT1,IAUX,LIAUX,AUX,LAUX)

FIGURE 5 Calling sequence for a conjugate gradient routine in Fortran 77.

the flexibility and maintainability of the software.

However. this limitation (:loes not mean that the

libraries cannot be implemented in another lan

guage and then used from either Fortran 77 or 90.

For instance, virtually all aspects of our libraries

may be used directly from C. C++, or Fortran.

We also point out that our approach is not in

tended to duplicate the code in a package such as

SPARS KIT [3], but rather to provide an interface

that is more flexible and extensible. In fact, we can

use carefully crafted implementations of opera

tions involving sparse matrices as the implementa

tion of the operations that we support.

One major concern with object-oriented pro

gramming in numerical computing is efficiency. In

our approach the "objects" (vectors and matrices)

are large grained; this means the OOP overhead

is small relative to the time for the numerical com

putation. Thus, the overall computation time is

dictated by the efficiency of the numerical code.

In fact, using our package to solve a sparse linear

system with direct LU factorization is faster than

the Fortran 77 implementation in the YSYIP. In

Tables 2 and 3 we compare the performance of

the direct linear system solver in our package

PETSc) to the publicly available YSY[P for solving

nonsymmetric linear systems using LC factoriza

tion and a nested dissection ordering. The first

problem is from an industrial oil reservoir simula

tor and contains 1.501 unknowns and 26,1:31

nonzeros. The second is from a three-dimensional

compressible flow simulation with 15,360 un

knowns and 496.,000 nonzeros. Runs were made

on a Digital Alpha workstation and on an IBM
RS6000/:370. Times are given in seconds.

The columns Default and Basic indicate the

PETSc default I-node version (a version that takes

Table 2. Oil Heservoir Simulation

Machine

Alpha

RS6000

Default

."f5

.57

PETSc

Basic

.5.3

.69

YSYIP

.60

.72

advantage of rows with identical nonzero structure)

and basic version, respectively. 1'\ote that the basic

version's performance is virtually the same as that

from the Fortran 77 YS:MP code. Our alpha work

station did not have enough memory to perform

the factorization on the larger matrix.

We have chosen the C programming language

for our software libraries for a varietv of reasons.

It is simply not possible to perform true data encap

sulation in Fortran 77 or Fortran 90. In addition.

the various object-oriented languages such as

Smalltalk and Eiffel are too far from the main

stream of scientific computing to be considered.

C++ was rejected because it is a moving target.

Code that compiles with one compiler will not com

pile with another; even slightly different genera

tions of the compiler handle very different aspects

of the C++ language. We work in an environment

where we must maintain robust, high-quality eode

for a large variety of machines. \~·e can do this in

C; and sinee we ean do true data encapsulation

and polymorphism inC while supporting users who

program in both Fortran and C++, Cis dearly

the language of choice for our libraries. In many

numerical applications and libraries, C++ may be

the most appropriate ehoice.

4 RECOMMENDATIONS

Some readers may object that the object-oriented

approach merely hides the fact that users must still

write the routines to perform the vector operations

and the matrix-vector operations. To some degree

this objection is correct. The power of the object

oriented approach is that once the vector and ma

trix-vector routines are written, they need not be

touched, or even understood, to write a new Kry-

Table 3. Compressible Flow Simulation

PETSc

Machine Default Basic YSMP

RS6000 112 162 161

lov-based solver that utilizes them. The converse

is also true: One need never rewrite the Krvlov

based solvers again when a new architecture comes

along. As soon as the vector and matrix-vector

operations are provided, the Krylov-based solvers

will automaticallv work on that machine-and as

efficiently as the underlying operators.

As an example of the flexibility that this ap

proach gives. we mention one of our applications.

a magnetostatics code that solves a large, dense

linear system in its inner loop. w·e wished to use

iterative methods instead of direct methods to solve

this problem. To do this. we simply introduced a

new sparse matrix format called "dense." This

format uses the same matrix storage that the appli

cation is using. and uses Level2 BLAB for matrix

vector operations (thus providing good efficiency).

w· e were then able to use all of our iterative routines

without change. The same approach was used for

the parallel version of this application [6].

Another example is in the EAGLE code [T for

external two- and three-dimensional fluid dvnam

ics. In this code. a linear svstem must be solved

within the inner loop. However, the matrix is repre

sented implicitly as coefficients on a grid. The con

ventional approach to interfacing this code to a

solver package is to reformat the matrix into some

explicit representation, such as the YS:YIP format.

With our package, we simply added a new sparse

matrix type. "Eagle." that is defined by the grid

coefficients and a few operations. This simplified

the task of using our package in an existing appli

cation. Perhaps more importantly. it minimized

the amount of additional memorv needed. since

we did not have to make a separate copy of the

matrix elements. Both of these applications codes

are written in Fortran T?, demonstrating that the

advantages of true object-oriented design can be

made available to Fortran users.

w· e make the following recommendations for the

design of truly data -structure-neutral libraries:

1. Do not design the interface based on the

limitations of the target language. Just be

cause you cannot implement an interface in

Fortran does not mean that you cannot pro

vide that interface to Fortran programmers.

2. Do not assume any particular format in the

data structures. Do not assume that vectors

are contiguous in computer memory (this is

not true even in many serial applications

codes).

3. Design the interface so that routines that

solve the same problem in different ways are

DATA-STRCCTCRE-NELTRAL LIBRARIES 335

perfectly interchangeable. This approach

maximizes the upward compatibility of add

ing new algorithms.

4. Remember that data-structure-neutral does

not mean that the format of the matrix is

unspecified: it means specifying vectors and

matrices and other objects by the operations

that are performed on them in such a way

that you can operate on them without know

ing their internal structure.

5. Choose the operations carefully so that they

can be implemented efficiently. Often this

means providing aggregate operations. such

as one to set manv elements in a matrix.

rather than only providing an operation that

acts on a single element.

6. Provide implementations of the operations

for at least several interesting data struc

tures. For example. our library implementa

tion includes several kinds of sparse matrix

formats as well as a dense matrix format.

Developing the codes initially takes slightly longer

than writing use-once, data-structure-dependent

codes. but the payoff in code reuse more than com

pensates. Our codes that use these techniques are

available via anonymous ftp from the site

info. mcs. anl. gov in the directory pub lpetsc.

(We will support "double" and '·double complex"'

as the Scalar.) These routines are callable from C.

C++. and Fortran 77 (and from Fortran 90 using

the Fortran 77 interface). The linear solvers are

part of a larger set of tools. PETSc 2.0 (Portable,

Extensible Tools for Scientific computing). that we

have been developing. The user's manual for

PETSc Version 2.0, [8: is also available at the ftp

site. In addition. an overview of PETSc mav be

obtained vm the W\VW at http: I I
www.mcs.anl.govlpetsclpetsc.html.

ACKNOWLEDGMENTS

The work of the first author was supported in part by

the Applied .Vlathematical Sciences subpro~ram of the

Office of Ener~ Research. C .S. Department of Ener~.

under Contract"; -31-109- En~-38 while the author was

at Ar~onne :\ational Laboratory. and by the Office of

:\aval Research under contract 01'\R N00014-90-J-

1695 while the author was at the Department of Mathe

matics, Cniversity of California at Los Angeles. The work

of the second was supported by the Office of Scientific

Computing, C .S. Department of Enere,ry. under Contract

W-31-109-En~-38. We thank Rick Dean of Arco for

providin~ the oil reservoir simulation matrix, Lois Curf-

336 SMITH AND GROPP

man Mcinnes for providing the compressible flow ma

nix. and Satish Balay for providing the I-node code used

in the numerical comparison.

REFERENCES

[1] I. S. Duff, M. Marrone, and G. Radicati, "A pro

posal for user level sparse BLAS," Tech. Rep. TR/

PA/92/85. CERFACS, 1992, SPARKER Working

note #1.

[2] T. C. Oppe and D. R. Kincaid, "Are there iterative

BLAS?" Int. J. Sci. Comp. Modeling (in press).

[3] Y. Saad, "SPARSKIT: A basic toolkit for sparse

matrix computations,'' Center for Supercomputing

Research and Development, University of Hlinois at

Urbana-Champaign, Tech. Rep.1029,Aug.1990.

[4] A.M. Bruaset and H. P. Langtangen, ''Object ori-

en ted design of preconditioned iterative methods,''

Sintef, Oslo, Norway, Tech. Rep. STF33 A94036.

[5] S. C. Eisenstat, H. C. Elman, M. H. Schultz, and

A. H. Sherman, The (new) Yale Sparse Matrix Pack

age, Department of Computer Science, Yale Univer

sity, Tech. Rep. YALE/DCS/RR-265, Apr. 1983.

[6] L. Kettunen, K. Forsman, D. Levine, and W.

Gropp, "Computational electromagnetics and par

allel dense matrix computations," in Proc. of the

SIAM Parallel Processing for Scientific Computing

Conference, 1995.

J. S. Mounts, D. M. Belk, and D. L. Whitfield, "Pro

gram EAGLE user's manual, vol. IV: Multiblock

implicit, steady-state Euler code," Air Force Arm

anent Laboratory (AFATL), Eglin Air Force Base,

Florida, Tech. Rep. TR-88-117, Sept. 1988.

[8] S. Balay, W. Gropp, L. Curfman Mcinnes, and B.

Smith, "PETSc 2.0 user's manual, Mathematics

and Computer Science Division, Argonne National

Laboratory, Argonne, IL, Tech. Rep. ANL-95/11.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

