
Cognitive Engineering in the Design of Human-Computer Interaction and Expert Systems, 583
edited by G. Salvendy
Elsevier Science Publishers B.V., Amsterdam, 1987 - Printed in The Netherlands

The Design of FLEX: A Tolerant and Cooperative
User Interface to Databases

Amihai Motro
Computer Science Department, University of Southern California
Los Angeles, California 90089

Abstract

FLEX is a user interface to relational databases that is tolerant of incorrect input. FLEX never
rejects a query; instead, it adjusts to the level of technical expertise its users seem to possess
(as judged from their input). In particular, FLEX understands formal queries; salvages incorrect
queries if they include enough clues on their intended meaning; suggests educated guesees if it
recognizes metadata tokens in the input; or else, it issues browsing requests for recognized data
tokens. FLEX is also cooperative. It never delivers null results without explanation and assistance.
By following up each failed query with a set of more general queries, FLEX determines whether
a null result is genuine (it then suggests related queries that have non-null results), or whether it
reflects erroneous presuppositions on behalf of the user (it then explains them).

1 Introduction

The most common method for retrieving information from databases is through formal
query interfaces; i.e., interfaces that require their users to d e h e exact retrieval requests in
a formal language. While such interfaces can prove to b e most efficient, they also require
considerable technical skills and preparatory knowledge. In particular, they require

Familiarity with the.principles by which data is organized (the data model). . Proficiency in the procedures for specifying retrieval requests (the data language).

Familiarity with the structure (schema) of the particular database being accessed.

Familiarity with the contents (semantics) of the database.

Clear retrieval targets (e.g., i t is impossible to retrieve something "interestingn or
"suitablen).

Ability to define the targets as required by the system (e.g., to retrieve the meaning
of a word from a dictionary database, i t is necessary to know its spelling).

In the absence of of even some of the necessary expertise (skill or knowledge), formal
retrieval can become very inefficient and frustrating.

We shall refer to users that do not possess the necessary expertise as naive users.
To help naive users access databases several approaches have been attempted, including:
form-based interfaces, in which queries are specified by entering information in predefined

This work was supported in part by NSF Grant No. IRI-8609912 and by an Amoco Foundation Engi-
neering Faculty Grant.

screens (e.g., [INGRES 19841, [ORACLE 19831, [UNIFY 19831; browsing interfaces, that
enable users to explore databases with a small set of intuitive commanda (e.g., [Herot 1980],
[Stonebraker and Kalash 19821, [DBASE 19841, [Motro 1986a)); graphic-based interfaces,
that use menus, icons and pointing devices to replace some of the literal communication
(e.g., [McDonald and Stonebraker 19751, [Wong and Kuo 19821, [Fogg 1984]), and natural
language interfaces (e.g., [Codd et a1 1978], [Hendrii et al 19781, [Harris 19841).

In general, these tools indeed make it easier for naive users. However, form interfaces,
browsers, and graphic interfacea generally sacrifice the retrieval power of formal query
languages, and, quite often, using them may become tedious. The advantage of natural
language interfacea is that they can service users with different levels of expertise, handling
formal requeats, & well aa vague or even ungrammatical requests. Unfortunately, current
natural language interfaces have two major drawbacks: they require enormous investment
to capture the knowledge that is necessary to understand user requests, and even the best
systems are prone to errors.

In this article we report on research to develop a user interface to databases, which
may be used satisfactorily by experts as well as novices. This interface, called FLEX,
is based on a formal query language, but is tolerant of incorrect input. It never rejects
queries; instead, it adjusts to the level of technical expertise its users seem to possess (as
judged from their input). FLEX is also cooperative. It never delivers null results without
explanation or assistance. Hence, in some respects, FLEX exhibits behavior reminiscent
of natural language interfaces.

A useful metaphor for the approach taken in FLEX is a salesperson who is approached
by a customer. Customers going into a store have different levels of 'preparedneasn, and a
good salesperson should be able to classify each buyer promptly, and ofler the appropriate
treatment. For example,

6 If the customer asks for something specific, the salesperson directs him to that item.

6 If the customer asks for something specific that is not available, the salesperson shows
him similar items.

If the customer's request reflects erroneous presuppositions, the salesperson tries to
set him straight.

If the customer's requeat is incorrect, the salesperson nevertheless makes an effort to
understand it (possibly by means of a dialogue).

If the customer's request does not make sense at all, the salesperson tries to infer a
sensible request from recognized words.

If the customer does not know (or cannot articulate) what he wants, the salesperson
shows him around.

Similarly, FLEX incorporates several query processing mechanisms for processing re-
quests of various levels of well-formednesa. In correspondence with the salesperson strategy,
FLEX includes these mechanisms:

A formal query procerrsor (PASS).

A mechanism that detects erroneous presuppositions and suggests 'alternativesn
when queries cannot be satisfied (NULL).

6 A mechaniam that fixes incorrect queries safely (FIX).

6 A mechaniam that constructs default queries from recognized tokens (GUESS).

A mechanism that issues browsing requests for recognized tokens (BROWSE).

2 The Architecture of FLEX
FLEX divides the screen of the data terminal into three major windows, called compose,
query and response. compose is a user window, an elementary editor where the user
enters queries. query and response are system windows: query diisplays the query
being processed, and response displays its result. Upon initialization, the user is in the
compose window. When he issues the command process, the contents of the compose
window are copied to the query window, and processing begins.

The formal query processor PASS is engaged to check the syntax of the input. If the
input is found to be incorrect, then a system component called FIX is engaged to salvage
the query. If it determines that the query is fixable, then the system diisplays the message
'Incorrect query ... fixingn. If the query is not fixable, then a system component called
GUESS is engaged to construct a query that approximates the intentions of the user. If
it determines that a guess can be made, then the system displays the message 'Incorrect
query ... guessingw. In either case a simple dialogue may follow, and eventually the new
query is displayed in the query window. The user may either request to process it, or he
may edit it further. If GUESS cannot even make a guess, then a system component called
BROWSE is engaged to construct a browsing request for recognized input tokens. The
system displays the message 'Incorrect query ... browsing", a simple dialogue may follow,
and eventually a browsing request is displayed in the query window. If approved, a frame
of information is retrieved and displayed in the response window.

Whether it is the original input of the user, or it was suggested by FIX or GUESS,
eventually a query that satisfies PASS is sent to the underlying database management
system. A non-null result is displayed in the response window. A null result may indicate
problems of 'miscommunication", such as an erroneous presupposition on behalf of the
user, or failure to express intentions correctly in a query (it may also be a genuine null
result). A mechanism called NULL is then engaged to analyze the situation. It may either
detect erroneous presuppositions on behalf of the user, in which case it displays the message
'Erroneous presupposition ... cannot answer even simpler queriesn, or it may decide that
the null result is genuine, in which case it displays the message 'No data matched ... partial
results availablew. The query window shows either the erroneous presuppositions (in the
form of queries), or the related queries that have non-null results.

3 The Mechanisms of Flex
FLEX has five major mechanisms: PASS, FIX, GUESS, BROWSE and NULL. Because of
space limitations, individual issues and solutions are only sketched here. For more details
see [Motro 1986a], [Motro 1986b], [Motro 1986cj. Three mechanisms (FIX, GUESS and
BROWSE) make use of an auxiliary database relation called lexicon. This two-column
relation maps database values onto the attributes in which they appear. All mechanisms
consult the schema of the database, which provides important semantic information.

3.1 PASS
The database environment of FLEX is relational, and formal requests are specified with
the following statement, reminiscent of SQL's select statement [Charnberlin et a1 1976):

retrieve attributel,. . . ,attribute, from relati.onl,. . . ,relation, where condition

condition is either of the form attributeevalue or ~ t t r ibu te~ea t t r ibu te~ (where 0 is a
comparator such as =, #, <, >, 5, >), or a combination of such conditions with the logic
connectors and , o r and not. The result of this query is defined by a Cartesian product
of all the relations named in the f rom clause, followed by a selection according to the
condition in the where clause, followed by a projection onto the attributes named in the
retrieve clause. If two attributes in different relations are named identically, they are dif-
ferentiated by including the relation name: relation.attribute. If more than one version of
the relation is needed in the query, they are differentiated by an index: relation.l.attribute,
relation.2.attribute, etc. If the where clause is omitted altogether, the selection condition
is assumed tp be true.

In our examples, we shall assume the following database on musical compositions (key
attributes are underlined):

composer = name, country, year-of-birth, year-of-death
composition = title, author, type

For example, to retrieve the German composers who wrote symphonies, one issues the
following query:

retrieve name f rom composer, composition
where country='Germany' a n d name=author a n d type='symphony'

The PASS mechanism ia the simplest component. It checks the syntax of the query
and verify8 its semantics against the schema of the database. If the query is found to be
proper, PASS translates it into the retrieval language of the underlying database mange-
ment system, and sends it for processing.

3.2 FIX
The FIX mechanism looks for input (mostly omissions) that can be corrected
unambiguously. For example, the inputs

retrieve country from composer where composer='Mozart'
rctricve country where name='Mozarta
rctricve country where 'Mozart'

are all improper. All are corrected automatically by FIX to

retrieve country f rom composer where name='Mozart'

In the first case a relation name (composer) was understood to mean its key attribute
(name). In the second and third cases the f rom clause was inferred from the names of the
attributes mentioned in the query. In the third case the attribute name was assumed after
'Mozart' was found (in the lexicon) to be a value of that attribute. There are numerous
other opportunities for automatic correction.

Consider now the input

retrieve composer where '1807'

As the value '1807' appears under both year-of-birth and year-of-death, the user is requested
to clarify: 'Is '1807' value of year-of-birth or year-of-death?n Assuming the user meant the
former, FIX corrects the input as follows: ,

retrieve name f rom composer where year-of-birth='1807'

Note that FIX also substituted composer with its key attribute name and provided the
f rom clause.

3.3 GUESS
If the input is not structured enough to be salvaged by FIX (or if the user cannot answer
the disambiguation questions) then GUESS is engaged.

Using knowledge of the functional dependencies among the attributes of the database
(inferred from knowledge of the keys), GUESS constructe a permanent semantic network
representation of tLe schema of the database. GUESS then extracts from the input a aet of
tokens. A token is either a data value (i.e., appears in a database relation), or a metadata
valus (i.e., appears in the database schema). Each token is then used to mark a node in
the network. A metadata value marks its own node; a data value marks the node of the
attribute under which it appears (again, this information is found in the lexicon). The
set of marked nodes is a model for the input. The connection of this set into a subgraph
provides an interpretation of the input. Once the connection is made, GUESS infers a
default query from the subgraph.

As an example, consider

list the name and the country of the composer of 'The-Magic-Flute'

Obviously, the structure of this input is too far from the formal syntax to be correctable by
FIX. Consequently, GUESS is engaged and extracts a total of four tokens. Three metadata
values: name, country and composer, and one data value: TheMagic-Flute. The first three
tokens mark the data nodes by these names; the last token marke the node title. The
subgraph that connects them yields the.following query:

retr ieve name, country f rom composer, composition
where name=author and title='The-Magic-Flute'

The process of inferring a query from a set of tokens involves uncertainties at three
phases. First, a token may correspond to more than one node; for example, a data value
that appears under more than one attribute. Such ambiguities are resolved via a dialogue.
Second, there may be several ways to connect the marked nodes. GUESS looks for the most
compact subgraph that spans them (this graph-theoretic problem is known as the Steiner
tree problem). And, third, numerous queries could be inferred from the same connected
subgraph (GUESS constructs a default query, preferring conjunctions).

3.4 BROWSE

When the input tokens extracted by GUESS do not include metadata values, it is impossi-
ble to construct queries. In this case, FLEX engages BROWSE, requesting it to construct
a browsing request for recognized data values.

The primary innovation of this browser.is that it presents each relational database as
a single network of objects, making its actual tabular representation transparent. Such
networks can support browsing functions of greater utility. The network representation
is constructed with the help of the lexicon, which, in effect, "invertsn the database. This
enables BROWSE to effect "object behaviorn: all occurrences of a particular data value
throughout the database are considered collectively to be one object; this object is related
to other objects through the functional dependencies in which its indi.vidua1 occurrences
participate. Given a data value, BROWSE can construct the appropriate object and its
relationships. The effect resembles a semantic network, in which users can browse by
mentioning a data value and receive a frame of information on this value.

For example, consider the input

what is known about Mozart

The only recognized token here is Mozart, which is a data value. Consequently, BROWSE is
mked to construct a browsing request on Mozart (when several data values are recognized,
the user is asked to select one). According to the lexicon the value Mozart appears under
both composer.name and composition.author. In composer, Mozart it is a key value, and it
is therefore linked to all other objects that occur in its tuple. In composition, it is not a key
value, and it is therefore linked to the objects that occur as keys in its tuples. Altogether,
the objects linked to Mozart create the following frame of information, which is delivered
to the user:

Mozart is name of composer having country Austria
name of composer having year-of-birth 1756
name of composer having year-of-death 1791
author of composition having title The-Magic-Flute
author of composition having title Jupiter
author of composition having title Requiem

At this point the user can continue by entering one of the objects that appear in the frame
as the new topic (e.g., Austria). Again, BROWSE will be engaged to construct a new
frame of information.

3.5 NULL

Consider a query to retrieve all the operas written by composers from Freedonia. As
there are no titles of compositions whose type is opera and whose composer's country is
Freedonia, the system returns a null result. This response, however, is misleading. Clearly,
the author of this query seems to think that there are composers from Freedonia, while,
in fact, there are no such composers; indeed, there isn't even a country Freedonia.

We distinguish between genuine nulls, and these fake nulls that actually reflect erro-
neous presuppositions on behalf of the user. Fake nulls are misleading, as they are often
mistaken for genuine nulls (and may therefore be understood m reaffirmation of the user's
presuppositions). Even genuine nulls are unsatisfactory, because their information content
amounts to a 'shrug".

This is in contrast with human behavior, where the detection of erroneous presupposi-
tions is common cooperative behavior (Customer: "How many recordings of Beethoven's
10'th Symphony are available?" Clerk: "Beethoven only wrote 9 symphonies"), and partial
answers are uaually suggested when the query is legitimate, but does not have an answer
(Customer: 'Do YOU have a recording of the Beethoven's Q'th Symphony with Toscanini?"
Clerk: 'No, but I do have other performances of this piece").

The NULL mechanism attempts to infer the presuppositions of users, test their cor-
rectness, and deliver partial results when appropriate. We begin our description of NULL
with these observations:

1. Every query reflects a presupposition that the condition it expresses is plausible (may
possibly succeed). For example, the query 'operas by Mozart" reflects a preauppo-
sition 'there may be operas by Mozart".

2. Each presupposition is a source of more general (weaker) presuppositions. For exam-
ple, from the presupposition 'there may be operas by Mozart" the presuppositiona
Ythere may be operas" and 'there are compositions by Mozart" may be inferred.

3. Given two presuppositions (inferred from the same query), the user is more confident
about the more general presupposition. For example, the user is more confident about
'operas" or 'compoaitio~ by Mozartw than about 'operas by Mozart".

We may summarize this as follows: while users expect that their queries may possibly
have null results, they tend to be confident that every more general query would not have
failed. Consequently, we adopt the following test: When a query fails, we generate a set
of immediate generalizations and attempt them. If all succeed, it is an indication that
the original null result was "genuine". The results of the generalizations may then be
considered "partial results". If at least one of the immediate generalizations fails, it is an
indication that the original null result was "fake". The failed queries (both the original
and the generalization) then reflect erroneous presuppositions.

Clearly, if one query is a generalization of another and both fail, then the erroneous
presupposition behind the more specific query is insignificant. Hence, a failure is signifi-
cant, only if all its generalizations succeed. The previous test is therefore continued until
all significant failures are detected.

As an example, consider again the previous query to retrieve "titles of operas by com-
posers from Freedonia". Its result is null, so NULL generalizes it to "titles of compositions
by composers from Freedonian and 'titles of operas". The result of the first of these queries
is still null, so it is generalized to "titles of compositions" and "composers from Freedonia".
The result of the second query is still null, so it is generalized to 'composers". Its result is
non-null. Therefore, the previous query ("composers from Freedonia") reflects a significant
erroneous presupposition. The system displays the message 'Possible erroneous presupp*
sition ... cannot answer even simpler queries", and the following query is displayed in the
query window:

1. retrieve name from composer where country='Freedonia'

As another example, assume the previous query is modified to -"titles of operas by
composers from Estonian and that the result of this query is also null. Again, the query is
generalized to "titles of compositions by composers from Estonia" and "titles of operas".
Here, however, both queries return no,n-null results. Therefore, the answer to the original
query is a genuine null. The system displays the message 'No data matched ... partial
results available", and the following queries are displayed in the query window:

1. retrieve title from composition where type='opera'
2. retrieve title f rom composition, composer

where author=name and country='Estonia'

The user can then select any of these queries and see their result in the response window.

4 Conclusion

This paper described the design of FLEX, a tolerant and cooperative user interface to
databases. FLEX is tolerant, because it never rejects queries, and it is coqperative, because
it never delivers null results without explanation and assistance. Because it "goes to work"
only when needed and only as much as needed, FLEX can be used satisfactorily by experts
as well as novices.

As the interface we described is being implemented, research on FLEX ia still con-
tinuing. One research goal is to incorporate a mechanism for interactive construction of
queries. Another research goal is to enable FLEX to cope with 'meta queries", queries
that are not directed a t the data, but at knowledge about the data, or about the system
itself.

References

Codd, E. F., Arnold, R. S., Cadiou, J-M., Chang C. L., and Roussopoulos, N. Rendezwus
version 1: an Etperimental English Language Query Language System /or Casual
Users o/ Relational Databases. Technical Report RJ2144, IBM, San Jose, California,
February 1978.

Chamberlin, D. Dl Astrahan, M. M., Eswaran, K. P., Griffiths, P. P., Lorie, R. A.,
Mehl, J. W., Reisner, P., and Wade, B. W. SEQUEL 2: a unified approach to
data definition, manipulation, and control. IBM Journal o/ Research and Develop-
ment, 20(6):560-575, November 1976.

DBASE-III Reference Manual. Ashton-Tate, Culver City, California, 1984.

Fogg, D. Lessons from a 'living in a database' graphical query interface. In Proceedings
of ACM-SIGMOD International Conjerence on Management of Data, pages 100-106,
Boston, Massachusetts, June 18-21, 1984.

Harris, L. R. Natural language front ends. In The A I Business, pages 149-161, The MIT
Press, Cambridge, Massachusetts, 1984.

Herot, C. Spatial management of data. ACM Zlansactions on Database Systems, 5(4):493-
513, December 1980.

Hendrix, G. G., Sacerdoti, E. D., Segalowicz, D., and Slocum, J. Developing a natu-
ral language interface to complex data. ACM llansactions on Database Systems,
3(2):105-147, June 1978.

INGRES Rejerence Manual. Relational Technology, 1984.

Motro, A. BAROQUE: an exploratory interface to rklationa~ databases. ACM Zbansac-
tiow on Ofice Information Systems, 4(2): 164-181, April 19868.

Motro, A. Constructing queries from tokens. In Proceedings of ACM-SIGMOD Interna-
tional Conkrence on Management o/ Data, pages 120-131, Washington, D. C., May
28-30, 1986b.

Motro, A. SEAVE: a mechanism for verifying user presuppositions in query systems.
ACM Zbansactiow' on Ofice Inormation Systems, 4(4):312-330, October 1986~.

~ c ~ o n a l d , ' N . , and Stonebraker, M. CUPID: a user friendly graphics query language.
In proceedings o/ the ACM-Pacific Conference, pages 127-131, San Francisco, Cali-
fornia, 1975.

ORACLE User's Guide. Oracle Corporation, 1983.

Stonebrsker, M., snd Kalash, J. TIMBER': a sophisticated database browser. In Proceed-
ings o/ the Eighth International Confirence on Very Large Data Bases, pages 1-10,
Mexico City, Mexico, SCptember 8-10, 1982.

UNIFY Reference Manual. UNIFY Corporation, Lake Oswego, Oregon, 3.0 edition,
1983.

Wong, H. K. T., and Kuo, I. GUIDE: a graphical user interface for database exploration.
In Proceedings o/ the Eighth International Conference on Very Large Data Bases,
pages 22-32, Mexico City, Mexico, September 8-10, 1982.

