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Abstract—In this paper, a combined intelligent technique is 
introduced for the trajectory tracking control of a nonholonomic 
wheeled mobile robot (WMR), which comprises an interval type-
2 fuzzy kinematic control (IT2-FKC) and an interval type-2 fuzzy 
terminal sliding-mode dynamic control (IT2-FTSMDC). Firstly, 
an interval type-2 fuzzy logic controller designed for the 
kinematic model of the WMR is introduced, and then the IT2-
FTSMDC is developed for the dynamic model of the WMR, 
which is a combination of the interval type-2 fuzzy logic control 
(IT2-FLC) and the terminal sliding-mode dynamic control 
(TSMDC). The validity of the proposed method is demonstrated 
via computer simulations. The simulation results show that the 
tracking performance of the IT2-FTSMDC is better than that of 
the FTSMDC. 

Keywords—dynamic control, terminal sliding mode, type-2 
fuzzy set, type-2 fuzzy logic cobtrol 

I. INTRODUCTION

Controlling the nonholonomic WMR has been studied 
widely in recent years [1-5]. Adopting the dynamic model [2-3, 
5] is more realistic than just using the kinematic model [1, 4] 
for the real trajectory tracking control of WMRs. Several of 
studies have focused on the dynamic model by applying fuzzy-
net control [6], sliding-mode control (SMC) [5], back-stepping 
control [7], and adaptive control [2] to WMRs. 

The fuzzy logic control (FLC) has been successfully 
applied in diverse fields since Zadeh [8] first introduced the 
fuzzy set theory. Basically, one of the most widely adopted 
FLCs is rule-based system which is based on human expertise 
and knowledge. The concept of type-2 fuzzy sets (T2-FSs) [9] 
is an extension of the well-known ordinary fuzzy sets, the type-
1 fuzzy sets (T1-FSs). The membership functions of T2-FSs are 
three dimensional and include a footprint of uncertainty (FOU), 
which is a new third dimension of T2-FSs and makes it 
possible to handle uncertainties [10]. If their secondary 
membership functions are set to 1, then they are called as the 
interval type-2 fuzzy sets (IT2-FSs). The architecture of the 

IT2-FLC is very similar to that of the FLC which contains 
fuzzifier, rule base, fuzzy inference engine, type-reducer, and 
defuzzifier. IT2-FLCc can provide more robustness than the 
conventional FLC to handle the uncertainty and disturbance 
[11-13]. 

SMC techniques [5, 14] provide discontinuous control laws 
to drive the system states to a specified sliding surface and to 
keep them on the sliding surface. The dynamic performance of 
the SMC has been adopted as an effective robust control 
approach for the problems of system uncertainties and external 
disturbances. To achieve better error convergence property, the 
parameters of sliding surface must be selected such that the 
poles of the sliding dynamics should be far away from the 
origin on the left-half s-plane resulting to increase the gain of 
the controller. The FSMC [15-16], a hybrid of the SMC and 
FLC, gives a simple way to design the controller systematically 
and provides the asymptotical stability of the system. In 
general, the FSMC can also reduce the rule number in the FLC 
and still possess robustness. 

The terminal sliding-mode (TSM) concept first introduced 
in [17] can be described as 

/q ps e eβ= +  (1) 
It has been shown in Zak [18], [19] that 0e =  is the 

terminal attractor of the system /q pe eβ= − .If the initial value 
(0) 0e ≠  and the two odd integers p  and q  are selected with 

the condition p q> , then, the relaxation time will be expressed 
as  

(1 / )(0)
(1 / )

q p

s

e
t

q pβ

−

=
−

 (2) 

which means that, in the terminal sliding mode, the error state 
e  converges to zero in finite time st  and  the error rate state e
also converges to zero in finite time identically. 
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In this paper, a novel interval type-2 fuzzy terminal sliding 
mode controller is proposed for MWR, which combines the 
interval type-2 fuzzy logic controller and the terminal sliding 
mode controller. There are several advantages of the proposed 
control scheme which can eliminate the chattering phenomena 
and the system tracking errors converge to zero in finite time.  

This paper is organized as follows. In Section II, the 
kinematic model of the WMR is introduced and an IT2FLC is 
designed for the WMR. For the dynamic model of the WMR, 
the design procedure of the IT2-FTSMDC is addressed in detail 
in Section III. Computer simulation results of the proposed 
scheme are given in Section IV. Finally, the conclusions are 
drawn in Section V.  

II. DESIGN THE FUZZY KINEMATIC CONTROL OF THE 
WMR 

Firstly, we establish the kinematic model of the WMR in 
world and robot coordinates, and then an interval type-2 fuzzy 
controller is designed for the kinematic control of the WMR. 

A. Kinematic model of the WMR 
Fig. 1 shows the nonholonomic mechanical system of the 

three-wheel WMR with two driving wheels and a passive 
wheel. The posture of the WMR can be represented as: 

[ ]Tx y θ=q  (3) 
where the ( , ) x y  is the center of mass (COM) position of the 
WMR in the world X-Y coordinate, and θ  is the included 
angle between the X-axis and Xc-axis representing the heading 
of the WMR. 

The kinematic model of the WMR can be established by a 
transformation matrix ( )θJ  transforming the velocity v  in 
mobile coordinates to the velocity q  in Cartesian coordinates 
as: 

 ( )θ= ⋅q J v  (4) 

where [ ]Tx y θ=q ,
cos sin 0

( )  
0 0 1

Tθ θ
θ =J ,

1 2[ ( ) ( )] [ ( ) ( )]T Tv t t v t v tω =v = . The terms ( )v t  and ( )tω
denote the linear and angular velocities the COM of the WMR, 

respectively. The nonholonomic constraint of the WMR can be 
expressed as: 

 cos sin 0y xθ θ− =  (5) 
For the trajectory tracking control issue, a reference mobile 

robot model is given as: 

 ( )r r rθ=q J v  (6) 
where ( )r tv  and ( )r tq  denote the reference velocity and 
posture of the WMR, respectively. The difference between the 
desired and actual postures is defined as 

e r

d r e r

e r

x x x
y y y
θ θ θ

−
= − = = −

−
q q q  (7) 

With the coordinate transformation T , the posture tracking 
error eq  is defined as : 

1

2

3

  cos sin 0
sin cos 0
0 0 1

r

e r

r

e x x
e y y
e

θ θ
θ θ

θ θ

−
= = − −

−
q

 ( )r d= − =T q q Tq (8) 
Considering the nonholonomic constraint (5), the time 

derivative of the posture tracking error can be expressed as 

1 2 3

2 1 3

3

1   cos
0 sin
0 1

r

e r

r

e e v e
e v e v e
e

ω
ω

−
= = + − +

−
q  (9)

B. Interval type-2 fuzzy kinematic control of the WMR 
The proposed fuzzy kinematic control for the WMR is 

shown in Fig. 2 at the next page(enclosed by double-dot dashed 
line). 

Some basic concepts of IT2FS are reviewed here. An IT2-
FS A  is characterized as  

[0,1] [0,1]
1 ( , ) 1

x xx X u J x X u J
A x u u x

∈ ∈ ⊆ ∈ ∈ ⊆
= =  (10) 

where x X∈  is the primary variable, xu J∈  is the secondary 
variable, [0,1]xJ ⊆  is the primary membership of x . The 
secondary grades of A  are all equal to 1. 

Uncertainty about A  can be expressed by the union of all 
the primary memberships, which is called the footprint of 
uncertainty (FOU) of A :

( ){ }( ) , : ( ), ( )x A A
x X

FOU A J x u u x xμ μ
∀ ∈

= = ∈  (11) 

where ( ) ( )A x FOU Aμ ≡  is the upper bound of FOU and 

( ) ( )A x FOU Aμ ≡  is the lower bound of FOU , x X∀ ∈ .

The IT2-FLC controlled system contains the following five 
components: fuzzifier, rule base, fuzzy inference engine, type-
reducer, and defuzzifier. 

Fig. 1. A nonholonomic WMR with 2 driving wheels and a passive 
wheel. 
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1) Fuzzifier:  
The fuzzifier maps the singleton value into an interval type-

2 fuzzy set. The error e  and error rate e  are considered as the 
inputs of the diagonal type FLC [20]. We select triangular-
shape membership function and the associated upper bound of 
this membership function with uncertain width, as shown in 
Fig. 3, which can be expressed as  

1

1
1 1

1 1

1 2

2
2 2

2 2

2

0,                          

,         

( )   1,             

,        

0,                         

A

x l
x l l x p
p l

x p x p
r x p x r

r p
x r

μ

<
−

≤ <
−

= ≤ ≤
−

< ≤
−

>

 (12a) 

and the corresponding lower bound MF is 

2

2 1 2 2 2 1 1

2 2 2 2 1 1

1 1 2 2 2 1 1

1 1 2 2 1 1

1

0,                                        
( ) ( )

,
( ) ( )

( )
( ) ( )

,
( ) ( )
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x l
x l r p l l r px
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x
r x r p l l r px
r p p l r p

x r
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<
− − + −

≤
− − + −

=
− − + −

>
− − + −
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 (12b) 

2) Rule base: 

The rules for IT2-FLC are similar to those for the 
conventional type-1 FLC in the IF-THEN form. The i-th rule 
for the IT2-FLC can be written as  

iR : IF 1e  is 1iF  and 2e is 2iF

THEN u  is iG   1, ,i M=  (13) 

where the IT2-FSs 1 2 1 1, [   ]i i n nF F NE NE ZE PO PO⊆  and 

1 1[   ]i m mG NE NE ZE PO PO⊆ . iNE .and iPO  denote the i-
th negative and positive IT2-MFs, respectively. Here we 
choose the diagonal-type rule table due to the similarity 
between the diagonal type FLC and SMC [20]. The rule table 
of the diagonal IT2-FLC is listed in Table I. 

3) Fuzzy inference engine:  
The inference engine combines all the fired rules and gives 

a nonlinear mapping from the input IT2-FSs to the output IT2-
FSs. The multiple antecedents in each rule are connected by 
using the Meet operation, the membership grades in the input 

TABLE I
DIAGONAL-TYPE RULE TABLE FOR IT2-FLC 

Fig. 3. A triangular-shape IT2FS is with its principal T1FS (dot line), 
bounded by an upper bound MF (thicker solid line) and a lower bound 
MF (thicker dot-dashed line).

Fig. 2. The complete architect of the IT2-FKC and IT2-FTSMDC for a nonholonomic WMR. 
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sets are combined with those in the output sets by using the 
extended sup-star composition as: 

1( , ) ( ) ( )i i i
i

p
i iR F G

u e uμ μ μ==e    (14) 

where  denotes the Meet operation, p  is the number of input 

variables, and 1 ( ) ( )i
i

p
i iF

e Fμ= ≡ e , which results in an interval 
set described by 

( ) ( ), ( ) ,i i i iF f f f f= =e e e   (15) 

4) Type reducer:  
The type-reducer is an extension of the type-1 defuzzifier 

which can be obtained by applying the Extension Principle [9]. 
It represents a mapping of a T2-FS into a T1-FS. For an IT2-
FLC, regardless of the type-reducing method or the 
membership function of the input variables, the type-reduced 
set is always an interval set and is determined by its two end 
points ( )lu e  and ( )ru e . The type-reduced set using the center 
of sets (COS) type-reduction can be expressed as 

cos ( ) [ , ]l rU u u=e

1 1 1 1 1 1
1

, , , ,
1

1
M M M M M M

l lr r

M i i
i

M iu u u u u u f f f f f f
i

f u

f
=

∈ ∈ ∈ ∈
=

=
 (16) 

where cos ( )U e  is an interval output set determined by its left-
most point ( )lu e  and its right-most point ( )ru e . In order to 
compute ( )lu e  and ( )ru e , the Karnik–Mendel iterative 
procedure is needed [21]. 

5) Defuzzifier:  
At the type-reducer, we have a type-reduced set cos ( )U e  for 

each output determined by its left-most point ( )lu e  and right-
most point ( )ru e . The interval set can be defuzzified by using 
the average of ( )lu e  and ( )ru e ; hence, the defuzzified crisp 
output of the IT2-FLC becomes 

( ) ( )
( )

2
l r

c
u u+

=
e e

v e  (17) 

The output of the fuzzy kinematic control cv  will lead the 
tracking error approaching to zero.

III. DESIGNING THE IT2-FTSMDC FOR THE WMR 
The design procedures of the proposed IT2-FTSMDC for 

the WMR will be described in detail in this section. 

A. Dynamic model of the WMR 
The dynamic model of the WMR [3,6] can be expressed as: 

T( ) ( , ) ( ) ( ) ( )m d+ + + = −Gq q V q q q F q q C q  (18) 
where 1nR ×∈q  is position vector, ( ) n nR ×∈q  is a positive 
symmetric definite inertia matrix, ( , ) n n

m R ×∈V q q  is the 
centripetal and Coriolis matrix, 1( ) nR ×∈GF q  is the 
gravitational vector, 1n

d R ×∈ is bounded unknown 
disturbance, ( )( ) n n mR × −∈q  is the input transformation matrix, 

( ) 1n mR − ×∈  is the control input vector, m nR ×∈C  is a matrix 
associated with the nonholonomic constraints, 1mR ×∈  is a 
Lagrange multiplier associated with the constraints, and q  and 
q  denote velocity and acceleration vectors, respectively. The 
parameters in (16) are given as: 

0 0
( ) 0 0

0 0

m
m

I
=M q

,

cos cos
1( ) sin sin
r

R R

θ θ
θ θ=

−
B q

, ( ) 0=GF q ,
[ ]T

r lτ τ= , and ( ) [ sin cos 0]θ θ= −C q , where m  and 
I are the mass and the moment of inertia of the WMR, 
respectively. R  and r  are the distances between the two 
driving wheels and the radius of the wheel, respectively. rτ
and lτ  are torque control inputs generated from the right and 
left DC motor, respectively. 

By Taking the derivative of (4) and substituting it into (18), 
then pre-multiplying each term by TJ , the dynamic equation 
(18) becomes 

( ) ( )d+ =q v q  (19) 
where T 2 2R ×= ∈J MJ , T

d d= J , and T=B J B .

Without considering uncertainties and disturbances, the 
nominal dynamic model of (19) becomes 

0( ) ( )t t= ⋅v E  (20) 

where 1
0 ( ) ( )−=E q q .

B. TSMDC design of the WMR 
The proposed IT2-FTSMDC scheme for the WMR is 

shown in Fig. 2 (enclosed by the dashed line). The control 
purpose of the IT2-FTSMDC is to ensure the actual velocity of 
the WMR converges to the reference one. Before constructing 
the IT2-FTSMDC for the WMR system, one must design 
TSMDC for the nominal system first. We introduce the 
auxiliary velocity tracking error and its time derivative as 

T T
1 2 1 1 2 2( ) [ ( ) ( )] [ ( ) ( ) ( ) ( )]c c c c ct e t e t v t v t v t v t= = − −e  (21) 

 ( ) ( ) ( )c ct t t= −e v v   (22) 
where 1, 2i = . The integral type terminal sliding surface is 
selected as: 

[ ] /
1 2  0

( ) ( ) ( ) ( ) ( )
tT q p

c ct s t s t t dτ τ= +s = e eβ  (23) 

where 1

2

0
0
β

β
=β , iβ  is a positive constant and 

1, 2i = .Furthermore, once the system is on the sliding surface, 
then, ( ) 0t =s . The time derivative of the sliding surface ( )ts
becomes 

/( ) [ ( ) ( )] q p
c i ct t t= − +s v v eβ  (24) 

The equivalent control law eq  for the nominal system is given 
by  
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( )1 /
0( ) ( ) ( )q p

eq c ct t t−= +E v eβ  (25) 
Unfortunately, disturbances and uncertainties always exist  

and the discontinuous control law sw  will be introduced to 
tackle them. 

Now, the dynamic model (19) with parameter uncertainties 
and external disturbances can be expressed as: 

0( ) ( ) ( ) ( )d dt t t= ⋅ + = ⋅ ++v E E E  (26) 
where 0E  and ΔE denotes the nominal part and the 
uncertainty part of system matrix E , respectively. ( )t is
defined as the sum of these uncertainties and disturbances 

( ) ( ) dt tΔ= ⋅ +E  (27) 

where 1 2( ) [ ]Tt φ φ= , ( ) , 1, 2i it d iφ ≤ = , and id  is a finite 
positive constant. Then (26) becomes 

0( ) ( ) ( )t t t= ⋅ +v E  (28) 
Now, the control law is composed of eq  and sw  which 

can be expressed as 

( )1 /
0 ( ) ( ) sgn( )q p

eq sw c ct t−= + = + + ⋅E v e sβ  (29) 

where 1

2

0
0
γ

γ
= , and 0iγ > , 1, 2i = .

C. IT2-FTSMDC design of the WMR 
For the IT2-FTSMDC, we select the sliding surface as the 

inputs of the controlled system. The i-th fuzzy rule of the IT2-
FSMDC can be expressed as: 

iR : IF js  is ijS  THEN jg  is ijα
1, ,i M=  and  1, 2j =  (30) 

The switching controller now can be selected as 
-1
0 ( ) ( )sw = =sgn sgnE s G sΓ  (31) 

where 1

2

0
0
g

g
=G , and 0jg ≥ ( j = 1, 2). 

IV. COMPUTER SIMULATIONS

Simulations are utilized to examine the feasibility and the 
validity of the proposed control scheme. A round rectangle 
trajectory is adopted to test the trajectory-tracking capability of 
the proposed method. The triangular-shape and singleton-type 
with three even partitions are chosen as the membership 
functions of the IF-part and THEN-part in both of the 
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Fig.  4. The round rectangle trajectory-tracking (a) The tracking errors 
of the FTSMDC; (b) The tracking errors of the IT2-FTSMDC. 
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Fig.  5. The round rectangle trajectory-tracking (a) The linear velocity 
tracking errors of the FTSMDC; (b) The angular velocity tracking 
errors of the IT2-FTSMDC. 
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FTSMDC and the IT2-FTSMDC, respectively. The parameters 
of the WMR in simulation are selected as 5kgm = ,

2=3.5kg mI ⋅ , 0.25mR = , and 0.05mr = .

The initial posture of the reference trajectory is set to  
(0) [5,  0, 0 ]T

r = °q  and initial posture of the WMR is set to 
(0) [2,  1,  45  ]  T= − °q .We apply an external disturbances, 

25sin( 24)d t= −τ  to the WMR at 24t s= , and also vary the 
inertia of the WMR from 3.5 2 kg m⋅  to 7 2 kg m⋅ at 12t s= .

The trajectory tracking results are shown in Fig. 4. The 
velocity tracking errors are shown in Fig.5. The performance 
comparison of FSTMDC and IT2-FSMDC are summarized in 
Table II, including integral of the absolute error (IAE), the 
integral of the time multiplied by the absolute value of the error 
(ITAE), integral of square error (ISE) and integral of the time 
multiplied by the square error (ITSE). One can find from the 
figures and table that the IT2-FTSMDC outperforms the 
FTSMDC.  

V. CONCLUSIONS

We have conducted a thorough study including kinematic 
and dynamic control designs for the trajectory tracking control 
of the nonholonomic WMR. The design schemes of the IT2-
FKC and the IT2-FTSMDC have been introduced in detail.  
The simulation results show that, from the IAE, ITAE, ISE, and 
ITSE points of views, the tracking performance of the IT2-
FTSMDC is better than that of the FTSMDC. 
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