
The Design of KIVIEW:
An Object-Oriented Browser

Amihai Motro

Computer Science Department, University of Southern

California, University Park, Los Angeles, CA 90089-0782

Alessandro D'Atri

Dipartimento di Ingegneria Elettrica, Universita

dell'Aquila, Monteluco Roio, 67100 L'Aquila, and

Dipartimento di Informatica e Sistemistica

Universita di Roma, Via Buonarroti 12, 00185 Rome

Laura Tarantino

Dipartimento di Informatica e Sistemistica

Universita di Roma, Via Buonarroti 12, 00185 Rome

Abstract

KIVIEW is an object-oriented browsing interface to databases.

The underlying internal model is a semantic network, defined

via a collection of triplet facts which are governed by a small

set of integrity requirements. KIVIEW's only ezternal structure

is a display, called uiew, that presents all the information that

is pertinent to a given object. KIVIEW features two kinds of

activity, called nawgation and manipulation. Navigation is an

exploration activity wherein the user repeatedly displays new
views of objects that are referenced in current views. To speed

up repetitive navigational tasks, which otherwise could become

very tedious, viewa inay be eynchronized: the user sets up sev-

eral viewa, linked in cr tree-like structure, so that when the infor-
mation displayed in the root view is modified, the contents of the

other views change automatically. Manipulation is a processing
activity wherein the user operates on existing views to create
new virtual views. Manipulation is interleaved with navigation

to assemble information located while browsing into reeulte of

browsing sessions. Using convenient graphic tools, these two

activities are integrated into a single tool, which is flexible and
effective, yet simple to use.

This work waa supported in part by the European Communitiee under ESPRIT

project 1117; the work of Motro was also supported by NSF Grant No. IRE8609912

and by an Amoco Foundation Engineering Faculty Grant; the work of Tarantino

waa also supported by ENIDATA.

107

108 EXPERT DATABASE SYSTEMS

1. Introduction

To improve their usability and responsiveness most database systems

offer their users a wide variety of interfaces, suitable for different levels

of expertise and different types of applications. A particular kind of

interface which is now commonly available are browsers. Browsers

are intended for performing exploratory searches, often by naive users.

Thus, they usually employ simple conceptual models and offer simple,

intuitive commands. Ideally, browsing should not require familiarity

with the particular database being accessed, or even preconceived

retrieval targets. While browsing, users gain insight into the contents

and organization of the searched environment. Eventually, the search

either terminates successfully or is abandoned.

Often, the conceptual model is a network of some kind, and brows-

ing is done by navigation: the user begins at an arbitrary point on

the network (perhaps a standard initial position), examines the data

in that "neighborhood", and then issues a new command to proceed

in a new direction.

An example of this approach is the interface designed and im-

plemented by Cattell [2]. The interface is to an entity-relationship

database [3], and it features a set of directives for scanning a network

of entities and relationships, and presenting each entity, together with

its context in a display called frame. The principles of this interface

were carried over to Cypress, a database management system devel-

oped by Cattell at Xerox [I.]. Cypress starts with a data model based

largely on constructs derived from well-known data models, comple-

menting it with an extensive array of features.

Browsing is offered as the principal retrieval method for loosely-

structured databases [8]. Such databases are heaps of facts that do

not adhere to any conceptual design. As facts are named binary rela-

tionships between data values, the data may be regarded as a network

of values. Two styles of browsing, called navigation and probing, are

defined. Both are derived from a query language based on predicate

logic.

MOTRO, D'ATRI AND TARANTINO 109

BAROQUE [7] is a browsing interface to relational databases.

BAROQUE establishes a view of the relational database that resem-

bles a semantic network, and provides several intuitive commands

for scanning it. The network integrates both schema and data, and

supports access by value.

Browsers have been developed for other relational systems, for

example, §DM§ [5] , INGRES [ll] and DBASE-I11 (41. These are ac-

tually tools for scanning relations (including relations that are results

of formal queries), and therefore have only limited exploration capa-

bilities. Browsing is confined to a single relation at a time, and it is

not possible to browse across relation boundaries. If a user encounters

a value while browsing, and wants to know more about it, he must

determine first in what other relations this value may appear (quite

difficult), then formulate a formal query, and resume browsing in the

new relation.

While, in general, most of these tools define search processes that

are indeed simple to perform, they usually suffer from two major

drawbacks. First, because of the requirement for simplicity, browsing

is often performed with low-level commands. Consequently, browsing

sessions tend to be quite inefficient, and may become tedious after

a while. More importantly, to our knowledge, none of these tools

provide structures and operations for constructing result8 of browsing

sessions. Consequently, users who encounter many items of interest

in a search process, may simply have to copy them onto a note pad!

In this paper we describe a browsing interface, called KIVIEW,

that addresses these problems. The underlying internal model may be

characterized as a semantic network, consisting of objects connected

by binary relationships. Objects are merely names. It is through

their relationships with other objects that information about objects

is expressed. For each object, a structure called view is defined, that

presents the relationships and objects that are adjacent to the given

object in the network. These structured displays of data are the main

component of the external (user) model.

KIVIE W browsing sessions interleave two activities, called naviga-

tion and manipulation. Navigation is an exploration activity wherein

11 0 EXPERT DATABASE SYSTEMS
-

the user repeatedly displays new views of objects that are referenced

in current views. To speed up repetitive searches, which otherwise

could become very tedious, views may be synchronized: the user sets

up several views, linked in a tree-like structure, so that when the in-

formation displayed in the root view is modified (e.g., scrolled by the

user), the contents of the other views change automatically.

Manipulation is a processing activity wherein the user operates on

existing views to create new virtual views. Manipulation is interleaved

with navigation to assemble information located while browsing into

results of browsing sessions. In analogy with relational databases,

where formal queries operate on database relations to create relations

which are answers to these queries, manipulation commands oper-

ate on database views to create views which are results of browsing

sessions. When first created, virtual views are a s general as possi-

ble; their 'typen then changes dynamically with each manipulation

to conform to their new "contents". This approach agrees with the

uncertainty that characterizes browsing.

Using convenient graphic tools, these two activities are integrated

into a single tool, which is flexible and effective, yet simple to use.

KWIEW was designed to interface with the KIWI system, a software

package that aims at providing friendly and knowledgeable access

to multiple databases, using techniques from knowledge engineering,

logic programming and database management [lo].

The remainder of this paper is organized as follows. Sections 2 and

3 define the internal and external models. Sections 4 and 5 are devoted

to navigation and manipulation. Section 6 outlines the design of an

interface that implements these operations, and Section 7 concludes

with a brief summary and discussion of additional research directions.

MOTRO, D'ATRI AND TARANTINO 11 1

2 The Internal Model

In this section we define the underlying internal model of KIVIEW.

This model is not apparent to the users of KIVIEW, but is necessary

for defining the structures and operations of the ezternal model. We

note that this internal model is not supported directly by the KIWI

system. Rather, it is an intermediate model between KIVIEW's ex-

ternal model and KIWI'S model.

2.1 Objects and Relationships

As mentioned earlier, the underlying internal model is a semantic

network, consisting of objects connected by binary relationships. In

many aspects it is similar to the model behind loosely-structured

databases [8,6]. Such a network may be defined by a set of triplets

< m, r, n >, where m and n are objects and r is a relationship. These

triplets will be called facts; the left and right objects of a fact will be

called, respectively, the source and the target of the fact.

We distinguish between two kinds of objects and four kinds of facts,

and we define eight different requirements that must be satisfied by

any collection of facts. They are described below.

2.2 Class and Token Objects

There are two kinds of objects: class objects and token objects. An

object is either a class or a token. Examples of class objects are

EMPLOYEE and DEPARTMENT; examples of token objects are JOHN

and MANUFACTURING. In the following definitions the symbols a, 6, c

denote classes, z, y, z denote tokens, m, n denote objects (either tokens

or classes), and r, s denote relationships.

112 EXPERT DATABASE SYSTEMS

2.3 Generalization and Membership Facts

A frequent relationship between classes is generdization: one class is

more general than another class (the latter class is then a specification

of the former). The generalization relationship will be denoted 4.

Examples of generalization facts are <EMPLOYEE,+,PERSON> and

<DEPARTMENT,+ ,UNIT>.

A frequent relationship between tokens and classes is membership:

a token is a member of a class. The membership relationship will be

denoted E. Examples of membership facts are <JOHN,E,EMPLOYEE>
and <MANUFACTURING,€,DEPARTMENT>.

We require that generalization and membership satisfy the follow-

ing three conditions:

Transitivity of generalizations:

If < a, 4, b > and < b,+,c > are generalization facts, then

< a, 4, c > is also a generalization fact.

Irreflexivity of generalizations:

If < a, 4, b > is a generalization fact then a # b.

Inheritance of membership over generalization:

If < x , E, a > is a membership fact and < a, +, b > is a general-

ization fact, then < x, €, b > is a also a membership fact.

The transitivity requirement models the accepted real-world se-

mantics of this relationship. For example, if PERSON is a generaliza-

tion of EMPLOYEE, and EMPLOYEE is a generalization of MANAGER,

then PERSON is also a generalization of EMPLOYEE. The inheritance

requirement guarantees that the set of member objects of each class

is contained in the set of member objects of every more general class.

Together, transitivity and irreflexivity guarantee acyclicity, so that

the generalization relationship imposes a hierarchy on the classes of

the database.

We assume the existence of a class which is a generalization of

every other databae class. The name of this object is the name

assigned to the database. Here, we shall sometimes refer to this object

MOTRO, D'ATRI AND TARANTINO 113

as database. Finally, we require that every token is a member of at

least one class:

Required participation of classes:

There exists a class database, and for every other class a there

exists a generalization fact < a, 4, database >.

Required participation of tokens:

For every token z there exists a class a and a membership fact

< %,€,a >.

2.4. Specific and Generic Facts

A specific fact associates two tokens. Examples of specific facts are

<JOHN,AGE,32> and <BETTY,PLAYS,FLUTE>.

A generic fact associates a source class with a target class or with

a target token. Some generic facts are mandatory: there must be a

specific fact that associates each of the members of the source class

with a member of the target class or with the target token.

Examples of generic facts are <PERSON,AGE,YEARS>, <KNIGHT,

OBEYS,ARTHUR> and <PER5ON,PLAYS,INSTRUMENT>. Tlle first two

facts are mandatory. The first and last facts have target classes,

while the middle fact has a target token. The facts <JOHN,AGE,32>,

<RICHARD,OBEYS,ARTHUR> and <BETTY,PLAYS,FLUTE> are exam-

ples of specific facts that are associated, respectively, with these generic

facts.

We require that specific and generic facts satisfy the following four

conditions:

Instantiation of mandatory facts:

If < a, r, m > is a mandatory fact, then either

1. m is a class: for every membership fact < z, €,a > there

exist a membership fact < y, E,m > and a specific fact

< z,r, y >.

114 EXPERT DATABASE SYSTEMS
--

2. m is a token: for every membership fact < z, E, a > there

exists a specific fact < z , r, m >.

Support of specific facts by generic facts:

If < z, r, y > is a specific fact, then either

1. There exist membership facts < z, E, a > and < y, E, b >
and a generic fact < a, r, b >.

2. There exist a membership fact < z, € ,a > and a generic

fact < a, r, y >.

Propagation of generic facts over generalizations:

If < a, r, m > is a generic fact and < a, 4, c > is a generalization

fact, then < c, r, m > is a generic fact.

Propagation of mandatory facts over generalizations:

If < a, r, m > is a mandatory fact and < b, 4, a > is a general-

ization fact, then < b, r, m > is also a mandatory fact.

The first requirement defines mandatory facts. The second re-

quirement prohibits database facts that are not supported by generic

facts and may be regarded as enforcing "strong typing" on facts.

The last two requirements provide additional semantics of the gen-

eralization relationship. Generic facts are also generic for all super-

classes (but may be unapplicable to subclasses). Mandatory facts

are also mandatory for all subclasses (but may not be mandatory

for superclasses). For example, consider the generalization hierar-

chy: TEMPORARY4EMPLOYEE4PERSON. If all employees work for

departments, then all temporaries work for departments, but only

some persons work for departments, while some do not. And if some

employees have offices, then some persons have offices, but, possibly,

temporaries never have offices.

2.5 Immediate and Distant Objects and Properties

Four of the requirements defined above (the transitivity of gener-

alizations, the inheritance of membership over generalizations, the

propagation of generic facts over generalizations, and the propagation

of mandatory facts over generalizations) can be described as closure

MOTRO, D'ATRI AND TARANTINO 115

properties of the generalization relationship. In these cases, it is useful

to distinguish between immediate and distant relationships.

A class a is an immediate generalization of a class b, if < b, 4, a >
and there is no class c such that < b, 4, c > and < c, 4, a >. A token

x is an immediate instance of a class a, if < x, E, a > there is no class

b such that < b,+,a > and < x , ~ , b >.

Given a fact < m, r, n >, which is either specific or generic, the

pair < r ,n > will be referred to as a property of rn. A property

< r ,n > is an immediate generic property of a class a, if < a, r ,n >
is a generic fact and there is no class b such that < b, +,a > and

. < b, r, n > is also a generic fact. A property < r, n > is an immediate

mandatory property of a class a, if < a,r ,n > is a mandatory fact

and there is no class b such that < a, 4, b > and < b, r, n > is also a

mandatory fact.

Objects and properties that are related to a given object, but are

not immediate, will be referred to as distant.

2.6 Model Sumrnary

A database is a collection of generalization facts, membership facts,

generic facts (some of which are mandatory) and specific facts, that

satisfy these eight requirements:

1. Transitivity of.generalizations.

2. Irreflexivity of generalizations.

3. Inheritance of membership over generalizations.

4. Instantiation of mandatory facts.

5. Support of specific facts by generic facts.

6. Propagation of generic facts over generalizations.

7. Propagation of mandatory facts over generalizations.

8. Required participation of tokens and classes.

116 EXPERT DATABASE SYSTEMS
-

3 The External Model

The ezternal model (the user model) defines the structures that'are

displayed to users and the operations with which users can display or

manipulate'these structures.

3.1 Display Structures: Views, Frames and Win-

dows

For every database object, we define a structure called view that in-

cludes all the facts in which this object participates. The facts are

sorted into several disjoint subsets called frames. The definition of

views is different for class objects and token objects.

Let a be a class object. The view of a is defined as four frames:

1. members: the tokens that are immediate members of a.

2 . superclaesses: the classes that are immediate generalizations of a.

3. subclasses: the classes that are immediate specifications of a.

4 . properties: the immediate generic properties of a (properties

that are mandatory h e tagged).

Note that the members of the class in view are those shown in the

members frame, as well as the members of any subclass. Similarly,

the subclasses of the class in view are those shown in the subclwses

frame, as well as their subclass; and the superclasses are those shown

in the superclasses frame, as well as their superclasses. Similarly,

the generic properties of the class in view are those shown in the

properties frame, as well as the generic properties of any subclass (the

mandatory properties are those tagged in the properties frame, as well

as mandatory properties of any superclass).

For example, a class EMPLOYEE may have the following view

(mandatory properties are suffixed with '!"):

MOTRO, D'ATRI AND TARANTINO 11 7
-

1. members: JOHN, TOM, MARY, BETTY, FRANK.

2. superc/asses: PERSON.

3. subclasses: MANAGER, TECHNICAL, TEMPORARY.

4. prope rties: < WORKS-FOR,DEPARTMENT>!, <POSITION,TITLE>!,

<OFFICE,ROOM>, <SECRETARY,EMPLOYEE> .

Let z be a token object. The view of z is defined as two frames:

1. classes: the classes of which z is immediate member.

2. properties: the specific properties of z.

For example, a token JOHN may have the follotving view:

1. classes: EMPLOYEE, FATHER.

2. properties: < WORKS-FOR,MANUFACTURING> ,
<POSITION,SUPERVISOR>, <OFFICE,MB475>, <AGE,32>,

<FATHER-OF,BILL>, <FATHER-OF,JULIE>.

The tontents of each frame are displayed in one or more indepen-

dent windows. Each window displays an interval of objects or proper-

ties, according to a particular ordering. Views, frames and windows

will be referred to collectively as displays.

3.2 Display Operations: Open, Close, Order, Scroll

and Activate

To access the information in the view of an object it must be opened.

This is done with the operation open. For example, EMPL EMPLOYEE)
opens the view of the object EMPLOYEE and open(~0H~) opens the

view of the object JOHN.

Each view is composed of frames: four in case of a class object,

or two in case of a token object. To access the information in a
frame it too must be opened with the operation open. For example,

118 EXPERT DATABASE SYSTEMS

if EMPLOYEE is an open view, then EMPL EMPLOYEE. members) opens

its members frame.

Each frame incorporates several windows in which objects or prop-

erties are displayed. Windows are created with the operation open.

For example, if members is an open frame in the view EMPLOYEE,

then open(~~~L0~EE.members.l) opens the window numbered 1 in

the members frame.

The operation close is the idverse of open.

To control the order in which the objects or properties appear

in a window, the operation order is used. For example, if ALPHA

is an ordering, then order(P~~~~N.rnember~.l, ALPHA) imposes this

ordering on the objects of the members frame of the class PERSON, as

they are displayed in window 1.

Since only a limited number of objects or properties of a frame
are displayed in a window at any time, the operation scroll is used to

"slide" the window over the frame, and thus control its visible part.

At each time a t most one view is active. Similarly, in the active
view at most one frame is active, and in the active frame at most

one window is active. Activation is done with the operation activate.

For example, ac t iva te (E~~L0~EE) activates the view EMPLOYEE, ac-

tivate(E~~L0~EE.membere) activates the members frame of the view

EMPLOYEE, and actiuate(~~~L0~~E.members.l) activates window 1

in the members frame of the view EMPLOYEE. When a display (i.e.,

view, frame or window) is activated, the previously active display of

that kind is automatically deactivated. When a display is activated,

all its containing displays are automatically activated. Thus, after ac-

tivate(~~~~~~~~.membete.l) the view EMPLOYEE becomes the active

view, its members frame becomes the active frame, and its window 1

window becomes the active window. When a new display is opened

it is activated automatically. It is only possible to operate on active

displays. For example, only an active window may be scrolled.

MOTRO, D'ATRI AND TARANTINO 119

4 Navigation

Navigation is an exploration activity, wherein the user repeatedly dis-

plays new views of database objects. First, we describe the elementary

navigation operations, then the synchronization feature.

4.1 Elementary Navigation

When KIVIEW is invoked, the view of the object databuse is opened

by default. The subclasses frame of this view, which is also opened

by default, resembles a *directorym of this database. For example,

in database PERSONNEL, this frame may show the subclasses EM-

PLOYEE, DEPARTMENT, etc. '

From this point on, the user applies the five display operations

described in the previous section to open, activate and close displays

(views, frames or windows), to order windows, and to scroll their

contents1.

In effect, this process corresponds to navigation in the underlying

semantic network. When a node is visited, ,its immediate neighbor-

hood is displayed in a view. Opening a new view ~f an object refer-

enced in the active view corresponds to crossing an, edge to visit an

adjacent node.

4.2 Synchronization

In elementary navigation, the different views, once opened, are in-

dependent: the information displayed in any view may be modified

without any effect on the information displayed in the other views.

Synchronization allows users to set up several views, connected in a

tree-like structure, so that when the information displayed in the root

view is modified (e.g., by scrolling its active window) the contents of

the other views change automatically.

'Other operations, to control the layout of displays, will be diecueeed in Section
6.

120 EXPERT DATABASE SYSTEMS

Let V be an open view and let p be an object that appears in

another open view. The operation sync(p, V) establishes a synchro-

nization link between p and V (more precisely, between the structures

that currently display p and V). When p is overwritten in its window

by another object p', the view of p' will be displayed in V.

Such synchronization links may be repeated to form a tree of views.

When any view in this tree is activated, and the information in one

of its windows is scrolled, changes will be made to all the descendent

views that are synchronized with this window.

Synchronization is terminatid with the operation break(V), where

V is an open view. This operation breaks the synchronization between

V and its ancestors. Synchronization is broken automatically, when

the window in which synchronization was established (or any of its

containing displays) is closed, or when the view at the other end of

the link'is closed.

The precise effect of synchronization depends on the window in

which p is displayed: we distinguish between windows in frames of

objects (i.e., members or classes) and windows in frames of properties.

If the window displays objects, the synchronization link is purely po-

sitional: if p occupied the i'th position in the window when synchro-

nization was established, then V will always display the view of the

object that occupies the i'th position. If the window displays prop-

erties, the synchronization link is also semantic: if the property that

occupied the i'th position when synchronization was established was

< r ,p >, then V will display the view of the object of the property

that occupies the i'th position only if the relationship of this property

is r. Otherwise V will display a special view called NULL.

Note that the are two methods by which the contents of a window

may change. The window may be scrolled by the user, or it may be re-

freshed with the frame of another object due to a synchronization link

at a higher level. In the latter case we must determine the contents of

the refreshed window. If the window displays objects, the refreshed

window will display the initial interval of the frame (according to the

prevailing ordering). The object occupying the i'th position will then

be displayed in V. If the new frame is empty, then V will display the

MOTRO, D'ATRI AND TARANTINO 121

view NULL. If the window displays properties, the refreshed window

will be scrolled until the first property with relationship r occupies the

i'th position. Its object will then be displayed in V. If the new frame

does not have a property with relationship r, then V will display the

view NULL.

We demonstrate the use of synchronization with a description of

a browsing session that involves three views.

First the user opens the view EMPLOYEE and its subclasses frame,

and scrolls a window in this frame until the object MANAGER appears.

Next, the user opens the view MANAGER and its members frame, and

scrolls a window in this frame until the object BILL appears. Finally,

the user opens the view BILL and its properties frame, and scrolls a

window in this frame until the property <OFFICE,AV678> appears.

The user now synchronizes the third view with the object BILL in

the second view, and the second view with the object MANAGER in

the first view. Figure 1 illustrates the resulting situation.

EMPLOYEE

Figure 1: Three synchronized views

Having established the displays, the user now browses in the list of

managers by scrolling the window in the second view. As he browses,

122 EXPERT DATABASE SYSTEMS

the third view changes automatically to display information on each

manager (in particular, the office of the manager).

When finished, the user returns to the first view and scrolls the

list of subclasses in the first view, replacing MANAGER by TECHNICAL.

The second view changes automatically to display information on this

class, and the third window changes automatically to display infor-

mation on a particular member of this class. The user now returns to

the second view, to browse iq the list of technical employees.

Note that if there are no technical employees, the window in the

second view that is used to drive the third view will be empty. In this

case the third view (and possibly other descendent views) will display

the view NULL. If TECHNICAL is later replaced by TEMPORARY in

the first view, and there are temporary employees, the third view will

chmge to display the view of a particular member of this class.

5 Manipulation

While navigation allows users to examine views of existing database

objects, manipulation allows users to display views that do not corre-

spond to existing database objects. Formally, the manipulation oper-

ators modify the underlying database by creating new virtual classes

whose views can then be displayed. However, to users, a manipula-

tion process seems as operating on the views themselves. With these

operators, users can maintain views that contain the data in which

they are interested, while they navigate in the database. In several

respects, manipulation may be regarded as a form of querying.

There are six manipulation operators, called create, include, retain,

restrict, insert, and delete. In many ways these operators are similar

to the schema-modifying operators defined in [9]. Note that all modi-

fications to the underlying database (i.e., additions of new classes and

relationships) are temporary, for the duration of the browsing session.

MOTRO, D'ATRI AND TARANTINO 123

5.1 Create

The operator create defines a new virtual class, whose name is pro-

vided by the user. The new class is as general as possible: the only

object which is related to the new class is the object database, which

is its immediate generalization. Formally, the operation create u, de-

fines a new virtual class u, and inserts the new fact < u, 4 , database >.
Hence, the view of u is:

1. members: none.

2. superclaseee: database.

3. subclasses: none.

4. properties: none.

create is always the first operation in every manipulation process.

As an example, consider a database that incorporates the following

generalization hierarchy: the classes MALE, FEMALE and EMPLOYEE

are specifications of PERSON, and MANAGER, TECHNICAL and TEM-

PORARY are specifications of EMPLOYEE. Assume that we are brows-
ing in this database trying to determine who should get a salary raise.

As a first step we create a new virtual class called RAISE:

create RAISE

5.2 Include and Retain

The operator include makes a virtual class the immediate generaliza-

tion of another class. Formally, assume that u is a virtual class and

that a is another class, and assume that a and u are not related in a

generalization relationship. The operation include a in u inserts into

the database the generalization fact < a, 4, u >. In easy to verify that

this change preserves the irreflexivity of generalizations (Rule 2), the

instantiation of mandatory facts (Rule 4), the support of specific facts

by generic facts (Rule 5) and the required participation of tokens and

classes (Rule 8). The remaining four rules are concerned with closure

124 EXPERT DATABASE SYSTEMS

properties of generalizations. These rules are preserved by generat-

ing or removing the necessary facts. For example, the members of a

that are not already members of v are added to v (and to every more

general class).

The effect of including a class in a newly created class, is that of

duplication; i.e., the existing view is copied into the new view. In

the previous example, assume that we decide that all managers and

technical employees should get a raise. We issue:

include MANAGER in RAISE

include TECHNICAL in RAISE

The operator retain makes a virtual class the immediate specific*

tion of another class. Formally, assume that v is a virtual class and

that a is another class, and assume that a and v are not related in a

generalization relationship. The operation retain a in v inserts into

the database the generalization fact < v , 4, a >. Again, four rules are

unaffected, and the four closure properties are preserved by generat-

ing or removing the necessary facts. For example, only the members

of v that are also members of a are retained in the class v (and in

every more specific class).

In the previous example, assume now that we decide to restrict

the salary raise to females only. ,We issue:

retain FEMALE in RAISE

5.3 Restrict

The operator restrict substitutes a virtual class with a class that is

more specific, by restricting one of its generic properties. There are

two basic forms of restriction: by value of a property and by ezis-

tence of a property. The former version reduces the virtual class to

include all the members that have a particular target object for a

given relationship; the latter reduces the virtual class to include all

the members for which a given relationship is defined, regardless of

the target value. The generic property used in the restriction need

- .-

MOTRO, D'ATRI AND TARANTINO 125

not be mandatory. Formally, assume that u is a virtual class, let

< r , c > be a generic property of u (where c is a class), and let z be

a member of c. The operation restrict v by r where c=x replaces the

generic property < v, r , c > with the mandatory property < v , r, z >.
Again, four rules are unaffected, and the four closure properties are

preserved by generating and removing the necessary facts. For exam-

ple, only the members of u that have the specific property < r, z >
are retained. The operation restrict v by r is defined similarly, except

that all the members of v that have the specific property < r , z > for

some z which is a member of b are retained.

In the previous example, assume that we want to restrict further

the salary raise to employees in the manufacturing department. We

issue:

restrict RAISE by WORKS-FOR where DEPARTMENT=MANUFACTURING

5.4 Insert and Delete

The operator insert inserts a token object into a virtual class. For-

mally, assume that u is a virtual class and that z is a token object,

and assume that z is not a member of u. The operation imert z into

u inserts into the database the membership fact < z, E, u >. If z does

not have a specific property for a mandatory property r of u, then the

specific property < z, r, NOTAVAILABLE > is inserted2.

In the previous example, assume that we decide that TOM (who is

not currently a member of RAISE), should be included. We issue:

insert TOM into RAISE

The operator delete deletes a token object from a virtual class.

Formally, assume that u is a virtual class and that z is a token object,

aInstead of inserting this specific fact, we could simply determine that r ia no

longer a mandatory property. However, if z ie then deleted, it would not be possible

to restore r to a mandatory property.

126 EXPERT DATABASE SYSTEMS

and assume that z is a member of v. The operation delete z from v

deletes from the database the membership fact < z, E, v >.

In the previous example, assume that we decide that BETTY (who

is currently a member of RAISE), should be excluded. We issue:

delete BETTY from RAISE

Thus, the members of the virtual view RAISE are the female em-

ployees that are managers and technical employees in the manufac-

turing department, excluding Betty but including also Tom.

The Interface Design

In this section we outline a user environment that implements the

structures Bnd operations described in the previous sections. The

design employs graphic tools that provide convenience and efficiency,

and it is possible to perform entire browsing sessions with little or no

keyboard input.

Most of the input is entered by means of a mouse. We shall refer

to the action of moving the mouse so that its screen arrow points at

the particular item and then clicking the mouse as selection. Icons

are used to represent menus. when an icon is selected, a menu of

options appears. The user then selects an item from the menu, after

which the menu disappears. Scroll bars are vertical colurims at the

side of windows. By selecting the scroll bar at various locations, the

user scrolls the contents of the window.

Each open view is displayed as a rectangular area, with a heading

that shows the name of the object and an icon. When this icon is

selected a menu of frames appears (four in the case of a class view,

two in the case of a token view). By selecting an item from this menu,

the user opens a frame that would be displayed in the view.

When a frame is opened, it is displayed in a rectangular area within

the area of the view, with a heading that shows the name of the frame

MO'TRO, D'ATRI AND TARANTINO 127
pp-p------

and an icon. When -this icon is selected a menu of windows appears.

By selecting an item from this menu, the user opens a window that

would be displayed in the frame.

When a window is opened, it is displayed as a rectangular area

within the area of the frame, with a heading that shows the number

of the window and an icon. When this icon is selected a menu of

orderings appears. By selecting an item from this menu, the user

orders the contents of this window. The window displays an interval

of objects or properties (i.e., relationship-object pairs).

Browsing operations are grouped into three global menus selected

through icons.

The navigation menu includes six commands:

1. open: Open a new display. The user selects the display to be

opened: a frame from the frame menu in the active view, a

window from the window menu in the active frame, or an object

name from the active window. These will open, respectively, a

new frame, a new window, and a new view. The user determines

the position and shape of the new display. The new display is

activated.

2. close: Close a display. The user selects the display to, be closed.

An active display cannot be closed.

3. activate: Activate a display. The user selects the display to be

activated.

4. order: Order the contents i f a window. The user selects an

ordering from the ordering menu of the window. The window

must be active.

5. sync: Synchronize the active view with another view. The user

selects an object in another view that will drive the active view.

6. break Break synchronization. The synchronization between the

active view and its driving view is broken.

128 EXPERT DATABASE SYSTEMS

The manipulation menu includes six commands:

1. create: Create a new virtual view. The user is prompted for a

name for this view, and must then determine its position and

shape. The new view is opened and activated.

2. include: Include another view the active view. The user selects

the view to be included. The active view must be virtual.

3. retain: Reduce the active view by another view. The user selects

the view to be retained. The active view must be virtual.

4. reatrict: Restrict the active view by some property. The user

selects the restricting property in the active view, and is then

prompted for a value. If a value is entered, then restriction by

value is performed; otherw<se, restriction by existence is per-

formed. The active class must be virtual.

5. insert: Insert a token into the active class. The user selects the

token from a window from some other class. The active class

must be virtual.

6. delete: Delete a token from the active class. The user selects

the token from a window in the virtual class. The active class

must be virtual.

The control menu includes six commands:

1. reposition: Move a display on the screen (within the area of the

containing display). The user selects the display to be moved,

and determines its new position.

2. reshape: Change the dimensions of a display (within the area

of the containing display). The user selects the display to be

reshaped, and determines its new dimensions.

3. hide: Hide a display behind the displays that it coven. The user

selects the display to be hidden.

4. expose: Expose a display that is covered by other displays. The

user selects the display to be exposed.

MOTRO, D'ATRI AND TARANTINO 129

5. input: Prompt for keyboard input. The user is prompted for

keyboard input (to be used instead of selection).

6. ezit: Terminate KNIEW.

Thus, browsing is performed almost entirely by selecting from

menus, scrolling windows, and providing placement instructions. The

only exceptions are the create and restrict commands that prompt for

additional keyboard input. However, in each case where a selection

is expected, the user may also execute the input command that will

prompt the user for keyboard input. The user can then type the name

of the selection. This permits displaying views of objects that are not

referenced in current views.

Conclusion

We described a new browsing interface to databases called KIVIEW.

KNIEW features a single external structure called view, and two ac-

tivities called navigation and manipulation. A view is a display that
presents all the information that is pertinent to a given object. Navi-

gation is an exploration activity wherein the user repeatedly displays

new views of objects that are referenced in current .views. Manipu-

lation is a processing activity wherein the user operates on existing

views to create new virtual views. By interleaving navigation and

manipulation, users explore the database while accumulating results.

To improve browsing efficiency KNIEW features a view synchro-
nization mechanism, that speeds up many repetitive searches. While

KNIEW was designed for the KIWI system, it can interface with any

database model from which a semantic network may be extracted, in-

cluding the relational model (see [7]).

A prototype of KNIEW is currently being implemented at the

University of Rome, using SUN workstations and the INGRES database
management system. This initial prototype follows the design out-

lined in Section 6, which focuses on the features that are unique to

KNIE W. In parallel with this implementation effort, we are consid-

130 EXPERT DATABASE SYSTEMS

ering enriching KIVIEW with additional features. For example, add

a new browsing option, whereby the user mentions two objects and

requests that the system attempt to connect them with a sequence of

views, and allow users to display in a view all the objects and prop-

erties that are related to the given object (i.e., both immediate and

distant).

References

[I] R. G. G. Cattell. Design and Implementation of a Relationship-

Entity-Datum Data Model. Technical Report CSL-83-4, Xerox

Corporation, Palo Alto Research Center, Palo Alto, California,

May 1983.

[2] R. G. G. Cattell. An entity-based database interface. In Proceed-

ings' of A CM-SIGMOD International Conference on Management

of Data (Santa Monica, California, May 14-16), pages 144-150,

ACM, New York, New York, 1980.

[3] P. P. Chen. The entity-relationship model: toward a unified

view of data. ACM Zkansactions on Database Systems, 1(1):9-

36, January 1976.

[4] DBASE-111 Reference Manual. Ashton-Tate, Culver City, Cali-

fornia, 1984.

(51 C. Herot. Spatial management of data. ACM Transactions on

Database Systems, 5 (4) :493-513, December 1980.

[6] A. Motro. Assuring retrievability from unstructured databases

through contexts. In Proceedings of the IEEE Computer Society

Second International Conference on Data Engineering (Los An-

geles, California, February 5-7), pages 426-433, IEEE Computer

Society, Washington, DC, 1986.

[7] A. Motro. BAROQUE: a browser for relational databases. A CM

Zkansactions on Ofice Information Systems, 4(2):164-181, April

1986.

MOTRO, D'ATRI AND TARANTINO 131

(81 A. Motro. Browsing in a loosely structured database. In Proceed-

ings of A CM-SIGMOD International Conference on Management

of Data (Boston, Massachusetts, June 18-21), pages 197-207,

ACM, New York, New York, 1984.

[9] A. Motro. Superviews: virtual integration of multiple databases.

IEEE Transactions on Software Engineering, 83-13(7):785-798,

July 1987.

[lo] D. Sacca, D. Vermeir, A. D'Atri, A. Liso, G. S. Pedersen, J. J.

Snijders, and N. Spyratos. Description of the overall architecture

of the KIWI system. In ESPRIT '85 Status Report of Contin-
uing Work, pages 685-700, Elsevier Science Publishers (North-

Holland.), 1986.

[ll] M. Stonebraker and J. Kalash. TIMBER: a sophisticated

database browser. In Proceedings of the Eighth International

Conference on Very Large Data Bases (Mexico City, Mexico,

September 8-10), pages 1-10, VLDB Endowment (available from

Morgan-Kaufmann, Los Altos, California), 1982.

