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Abstract

With the advent of portable communications there has been an increased
emphasis on high-speed, low-power microelectronics. The log-domain filter is a novel
- form of continuous-time filter which shows promise in this area. Based on the translinear
principle, log-domain filters are simple in structure, fast and easily tunable.

This thesis will present a technique for the design of log-domain filters which is
based on the operational simulation of LC ladders. The technique is demonstrated through
the cbmplete design of a fifth-order Chebyshev log-doméin filter, as well as the design of
elliptic and bandpuss filters. The filters were fabricated using the Gennum GA911 bipolar
transistor array technology. HSPICE simulation and experimental results are shown with
emphasis on frequency behavior and linearity. The filters showed good correlation
.between the measured responsé and the original specifications. They were tunable over
two decades and could be operated up to 1 MHz or 1/10th of the fr of the slowest
transistor. Total harmonic distortion and intermodulation distortion was measured with

results ranging from -45 dB to -70 dB.



Résumé

La popularité des communications mobiles génére un intérét grandissant pour
les circuits électroniques a grande vitesse et 2 faible puissance. Les “filtres
logarithmiques"” sont des circuits récemment développés ct prometteurs dans ce domaine.
Ce sont des circuits simples, r, «des et facilement réglables.

Cette thése présente une nouvelle méthode pour la conception des filtres
logarithmiques basée sur la simulation de circuits passifs. A titre d'exemple, un filtre
Chebyshev ainsi qu’un filtre élliptique, tous deux de cinquieme ordre, ont été congus. Les
deux circuits, fabriqués i I’aide du procédé GA911 de la compagnie Gennum, démontrent
des résultats expérimentaux comparables & ceux de simulations effectuées avec le logicicl
HSPICE, Leur réponse en fréquence est réglable sur un intervale de deux décades et ils
fonctionnent jusqu’a 1 MHz, soit un dixi¢me de fr pour le transistor le plus lent. De plus, .

ils se montrent trés linéaires avec des mesures de distorsion entre -45 dB et -70 dB.
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CHAPTER 1 Introduction

1.1 Motivation

Frequency shaping networks, or filters, are key clements in many of today's
microelectronic systems. They can be found in everything from cellular phones to data
converters to home audio components. Filters generally fall into three broad categorics:
continuous-time, sampled-data or fully digital. Digital filters have all of the advantages
associated with digital systems and can be easily incorporated inside the DSP core of an
integrated circuit. They are best suited for lower frequency applications and find
widespread use because of the increasingly popularity of fully digital design. Sampled-
data filters combine analog filtering techniques with digital sampling principles. This
makes them ideally suited for data converters (analog-to-digital or digital-to-analog)
which must interface between the real analog world and the digital core of most
microelectronics. Sampled-data systems generally use MOS technology which allows
them to be readily integrated on the same chip as the digital circuitry. Continuous-time
filters make up a small but important part of the filter design area. They are especially
effective when dealing with real-world (analog) signals and are commonly used in high-

frequency, low-power systems. This last advantage makes them a popular choice for the
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growing wireless industry.

The two most popular forms of integrated continuous-time filters are
transconductance-C (g,,-C) filters and MOS-C filters [1]. These two filter types are well
suited for integrated circuits as they lend themselves well to fully differential design and
can be fabricated using only grounded capacitors. MOS-C filters show good distortion
behavior but suffer at high speeds due to the frequency compensation of the op-amps.
Transconductance-C filters offer greater bandwidth but this often comes at the expense of
lincarity.

One filtering method which has recently proposed and which has the potential to
combine high-frequency performance with low distortion levels is the log-domain filter.
Log-domain filters contain low impedance nodes along the signal path which they exploit
to achieve greater bandwidths. In addition, they are a form of translinear circuit [2] thus
they make use of the exponential nature of a bipolar transistor and do not require that the
transistor be linearized. These properties along with the fact that they have current input

and output has led them to be classified as **current-mode™ circuits [3].

Although the concept of log-domain filtering has been around since the 1970s
[4], it has only recently been expanded into a general filter design approach [5]. This
design method proposed by Frey is based on a state-space approach and on a set of
mathematical mappings which replace the existing state-space variables by a related
exponential function, Not only is this method complicated but the set of equations which
ends up representing the filter offers very little insight into its operation. This is
particularly troublesome when dealing with a novel and unconventional filtering scheme
like the one proposed herein.

This thesis will propose a complete method of design for log-domain filters
which is based on the operational simulation of L.C ladders [6]. By doing so, we benefit

not only from the wealth of knowledge which has been accumulated over the years on
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these circuits and on their many properties but, more importantly, we benefit from the
basic insight which comes from using ladders as a basis for filter design. By establishing a
set of blocks which can be used to implement the LC ladder, the designer can tell at a
glance which parts of the circuit give rise to the different poles and zeros. This should be

of great help for both understanding these circuits and for investigating their limitations.

1.2 Conventional Integrated Continuous-Time Filters

1.2.1 MOS-C Filters

A MOS-C filter can be constructed by replacing the resistor in a standard active-

RC filter by a MOS transistor biased in the triode region [1]. The equation for the current
flowing through such a MOSFET (shown in Figure 1-1(a)) would be [7]:
. l 14 n

ip = ip.Cox 7 [2(Ve=vy= Vo) (v =vy) = (v, =v,) 7] (1.)

Eq. (1.1) can be separated into linear and non-linear terms, such that:

ip= uCox( %) (Vo-Vp) (v, —v,) +anon-linear term (1.2)

Therefore, if we neglect the non-linear part of the equation, the MOSFET can be used as a

voltage-controlled resistor where:

Ve
T i
V|02IT|_O Y2 VC ”
Ve T Va C
3 e ywod | A —0 Vg
VIN o—,_‘— (a) “VIN + >-’ — 0.V
—a Vg o—l_l (]
C
e

(b) (c)

Figure 1-1: (a) MOS resistor (b) Single-ended MOS-C integrator
(c) Fully-balanced MOS-C integrator
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|

“Cox( %,) (Ve=Vy)

R(V,) = (1.3)
Such an approach would result in the single-ended MOS-C integrator shown in Figure 1-
I(b). Unfortunately, the non-linear portion of the MOS current equation will be
appreciable for all but the smallest input levels. One solution is to use a fully-balanced
design like the one shown in Figure 1-1(c). This eliminates the even portion of the non-
lincar function which accounts for most of the non-linearity (the odd portion typically
accounts for less than 0.1% or -60 dB).

The design of different types of MOS-C filters would follow the same approach
as is used for the design of active-RC filters [6]. This would typically involve a technique
like the operational simulation of LC ladders used in this thesis. Because of the voltage’
controlled resistor, these types of filters are well suited to designs which incorporate some
form of automatic tuning [8-10}. MOS-C filters typically show distortion levels in the
order of 40-60 dB due to the non-linearity of the MOS transistor as a resistor, however
with feedback techniques, distortion levels of - 30 dB have been reached [11]. Their
biggest drawback is that they are limited in bandwidth by the op-amps and thus are not

particularly well suited to high-frequency applications.

1.2.2 Transconductance-C (g,,-C) Filters

Transconductance-C filters are based on the operational transconductance
amplifier (OTA) which, as the name implies, generates an output current which is
proportional to the input current by a factor of g,,. The symbolic representation for an
OTA is shown in Figure 1-2(a) along with a simple MOS implementation which is
composed of a differential pair, 3 current mirrors and a simple current source (Figure 1-
2(b)) [12]. The OTA can be used to build an integrator by simply pushing the output
current into a capacitor as is shown in Figure 1-2(c). Writing an equation for the transfer

function, H(s), of the gm-C integrator, we get:
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(d

Figure 1-2: (a) OTA symbol (b) Simple implementation of an OTA
(c) Single-ended g, -C integrator (d) Balanced integrator

|
H(s) = vo(s) _ gmvl(a) _ 1
v, (5} B v, - s(C/g,)

(1.4)

In order to increase the signal-to-noise ratio by reducing the common-mode noise
caused by things like the digital circuit switching transients, these filters are typically built
using a fully differential, balanced form like the circuit shown in Figure 1-2(d). Given the
2,-C integrator, traditional filter design methods such as LC ladder simulation can be used

to achieve different filter configurations.

Transconductance-C filters are more suited to high-speed applications than the
MOS-C filters described previously since they can be used in an open-loop configuration
and thus need not be constrained by the stability requirements which limit op-amps.
Several gp,-C filter designs have recently been proposed which are suitable for video-rate
applications [13,14]. The drawback to using the OTA in an open-loop configuration is that

the circuit is limited to very small input levels in order to keep it relatively linear. For
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example, the circuit of Figure 1-2(b) would need a differential input of less than 50 mV for
reasonable results. Many different techniques have been preposed which increase the
input range while maintaining linearity but these often degrade the frequency response
due to added parasitics [15]. Several circuits which combine low distortion with a
relatively high bandwidth can be found in the literature [16,17]. A final drawback
concerning g,,-C filters is their dependence on the parameter g, which makes them highly
susceptible to process variations. This can be accounted for on-chip by including some
form of automatic tuning [18,19].

Although we have focused on MOS-C and g,-C filters there exists a variety of
different continuous-time integrated filter design methods in the literature. They resemble
one another only in the fact that they share some common design goals, namely tunability,
linearity and high-frequency operation. Often, optimization of a filter in terms of one or
two of these characteristics comes at the expense of the others. The log-domain filter is

unique in that it has the potential to achieve good performance in all three of these areas.

1.3 A Novel Approach to Continuous-Time Filtering: The
Log-Domain Filter

The concept of log-domain filtering was first introduced by Adams in 1979 [4].
He recognized that the diode-capacitor combination shown in Figure 1-3 could be used as
a “log-domain” integrator. The reasoning can be summarized as follows. Let us assume
that the current flowing through the diode of Figure 1-3 is given by a simple exponential

function. The circuit could hence be described by the equation:

(v;=vg)

d .
= C2 (%) (1.5)

Which can be rewritten as:

e" = cgle”] (1.6)
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Figure 1-3: A simple log-domain integrator

If the two exponential functions of Eq. (1.6) are replaced by simple variables, i.c.

o & Se?
.t! [ xo ¢

then a linear differentiation (or integration) operation is performed. Additional
exponential circuits can be used to establish these relationships. Adams derived a number
of different filter circuits based on this premise. One characteristic of these filters which

makes them easily tunable is that their cutoff frequency is dependent on the bias current.

This concept remained largely unexplored until recently when Frey introduced a
much more generalized approach to the design of log-domain filters [5]. Frey recognized
that these filters possessed many of the same properties as current-mode circuits, His work
presented a design method which was based on a state-space approach and which involved
replacing the different variables in the state-space equations by related exponential
functions. Bipolar circuits were then used to implement the set of equations. Using this
approach he showed the design of a biquad and of a seventh-order Chebyshev filter
formed by a cascade of biquads. Frey has published additional work in this area including
a log-domain filter design which is formed entirely of NPN transistors and thus is suitable

for very high-speed applications [20].

1.4 The Operational Simulation of LC Ladders

The simulation of L.C iadders finds widespread use as a filter design method for
two major reasons [6]. The first reason is due to the straightforward relationship between

the transmission zeros of the ladder transfer function and the different impedances in the
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ladder arms. This means that the filter designer can tell at a glance which elements give
rise to the different transmission zeros thus making the task of tuning and debugging these
circuits much casier. The second advantage comes from the excellent sensitivity properties
exhibited by lossless, doubly-terminated ladders (21,22]. In simple terms, the highly
coupled nature of the circuit makes the voltage (current) at any one node dependent on the
values at all the other nodes. This serves to distribute the effect of process variations over

the entire circuit and makes the circuit less sensitive to individual variations,

Unfortunately, the passive LC ladder is of limited use since inductors do not lend
themselves well to integrated circuit design. As a result, many different active circuit
implementations of the L.C ladder have been invented including the two discussed in the
Section 1.2. The design of active filter circuits based on the simulation of LC ladders can
be {urther broken down into two different methods: component simulation and operational
simulation. Component simulation simply involves replacing the inductors in the LC
ladder by active circuits which perform the same operation. Some popular choices are the
Antoniou general impedance converter (GIC) and circuits based on the Bruton
transformation [6].

The operational simulation of LC ladders involves finding an active circuit which
will mimic all of the voltage and current relationships within the LC ladder. The designer
first writes a set of equations which completely specifies the operation of the ladder then
draws a graphical representation of these equations called the signal-flow-graph (SFG).
The signal-flow-graph is generally composed of integrators, summers and multipliers.
Once the signal-flow graph has been established it can be implemented using any of a
number of methods including active-RC, MOS-C and g,,-C.

This concept is best illustrated through an example. We will show the design of a
third-order active-RC lowpass filter based on this approach, First, a ladder which meets a

desired set of specifications is found. This can be done through hand analysis [6], by using
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() (d)
Figure 1-4: (a) LC ladder for a 3rd-order lowpass filter (b) Associated
SFG (c) Active-RC Integrator (d) Complete active-RC circuit

look-up tables [6,23] or by using a filter design program [24,25]. The LC ladder for the
third-order lowpass filter is shown in Figure l-4(a). Next a set of equations is derived
which represents the LC ladder and a signal-flow graph is drawn (Figure 1-4(b)). The
complete derivation of a signal-flow graph based on the relationships in an LC ladder can
be found in Section 3.3.2. The final step is to inmplement the signal-flow graph using
active-RC blocks like the damped integrator shown in Figure 1-4(c). The complete circuit

is shown in Figure 1-4(d).

1.5 Thesis Outline

This thesis will present a novel method for the design of log-domain filters which

is based on the operational simulation of LC ladders.

Chapter 2 will introduce a set of log-domain building blocks which can be used

to implement the signal-flow graph of an LC ladder. Because of the non-linear nature of
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the tog-domain integrator a unique linearization procedure is proposed.

Chapter 3 shows how to use the building blocks introduced in Chapter 2 to design
arbitrary filters based on the operational simulation of LC ladders. The method is
illustrated through the design of a fifth-order Chebyshev filter. The resultant filter is
simulated using ASPICE analysis. Unfortunately, AC analysis cannot be used since it
relies on linearizing the transistors and thus negates the exponential nature of the bipolar
transistor. Instead, a technique called multitone analysis is used which is based on
HSPICE transient analysis. The simulation results will focus on two areas, frequency
response and linearity, since these best allow us to judge the usefulness of the new
technique.

Chapter 4 extends these ideas to the design of filters with finite transmission
zeros, namely elliptic and bandpass filters. A third-order elliptic filter and a fourth-order
bandpass filter are designed. The implementation of the elliptic filter using the available
building blocks will require an approximation which is described in this chapter.

Performance of both filters will be verified through HSPICE analysis.

Chapter 5 presents experimental results which verify the ideas presented in the
previous chapters. These results are of particular importance since they represent the first
reported experimental data on the log-domain filter. The chapter contains results from
experiments performed on a log-domain biquad, a fifth-order Chebysheyv filter and a fifth-
order elliptic filter. The frequency response of all filters is plotted versus expected and
simulated results. Their tunability and high-frequency properties are examined. Distortion
levels are found by measuring total harmonic distortion, intermodulation distortion and
signal-to-noise ratio.

The final chapter evaluates the performance of these filters in comparison with

other continuous-time filtering techniques and discusses some areas of future work.

10



CHAPTER 2 The Basic Log-Domain Building

Blocks

As described in the introduction, the operational simulation of LC ladders is
based on replacing the different elements of a signal-flow graph by the appropriate
circuits, For example in the active-RC example given previously, the elements of the
signat-fiow graph were replaced by op-amp based integrators. The main operations which
need to be performed are addition, multiplication and integration. This chapter will
describe the log-domain circuits which provide these functions.

Because of the unique nature of log-domain circuits, we first give a symbolic
description of the log-domain building blocks. We will show how these blocks are non-
linear in nature but that they can be interconnected in such a way as to give a lincar input-
output relationship. The reader is introduced to the basic log-domain cell, a simple circuit
which will figure prominently in the rest of the thesis. Two mathematical operators will be
introduced and then used to establish a correspondence between traditional linear systems
and the log-domain systems. Once this background has been established, a library of basic

log-domain circuits will be presented.

I
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2.1 The Log-Domain Cell

We begin our journey inio the world of log-domain filters with the analysis of a
simple circuit which will prove to be the cornerstone of any filter consiructed using this
approach. This simple translinear circuit will be referred to as the basic log-domain cell
and is shown in Figure 2-1.

Analysis of this circuit can be performed as follows, Applying KVL around loop

© and neglecting base currents, we cin write:
-V, - - = 2
vV, VEB. vmsz + VBE’ + VEI34 +Vp =0 (2.1)
For case of understanding, the following emitter voltages are defined:

Voe, = Ves, + Ve, (2.2)

Vg, = Vag, + Ves, (2.3)

The voltages VBEA and VBE,, can be related to the currents K -/, and I according to the

bipolar transistor equation (the Early effect has been neglected). This results in:

Vop 72V
K-l =1.¢ * (2.4)

o 5

and,

Figure 2-1: The basic log-domain ceil

12
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VREB" 2V )
Iy=1-e¢ (2.5)
We now rewrite Eq. (2.1) as follows:
Vat Ve, = Ve, = Vy (2.6)

Replacing Eqs. (2.4) and (2.5) into Eq. (2.6) leads to:

, , K-, - 1y
Vi+2VpeIn| =12V ln[I—] =V, (2.7)
s 5
Simplitying and solving tor /g gives:
(V, - V) 72V
Ip=K-I-.e " °°°7 (2.8)

Eq. (2.8) is the basic log-domain equation and will be referenced throughout this thesis.

2.2 The LOG and ANTI-LOG Operators

Let us now define two new mathematical inverse operators, LOG and ANTI-
LOG. These functions imitate the traditional logarithmic and exponential functions except
that they can be implemented physically using the basic log-domain cell described in the
previous section. Note that the purpose here is to define a new exponential function which

is better matched to the physical circuits with which we will be dealing.
The ANTI-LOG function is essentially three mathematical steps in one:

1. Divide by 2V

2. Raise to the exponentiai

3. Multiply by I,,
Therefore it can be written as:

X/2V.
ANTILOG(X) = 1,-¢ T 2.9)

This can be implemented by Eq. (2.8) if K is equal to | and Vj is tied to ground, i.e.,
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V,72V.
A T
]b‘ = ]0'(3

(2.10)
In other words, the ANTI-LOG function can be physically represented by the current
flowing from a log-domain cell driven by a voltage X, as shown in Figure 2-2(a).

The LOG function is defined as the inverse of the ANTI-LOG function, such that:

LOG[ANTILOG (V)] = V (2.11)
As aresult, LOG can be described mathematically by:
Y
LOG(Y) = 2V, l“(z‘) (2.12)
o
Again we see that this can be physically implemented by the log-domain cell, as shown in
Figure 2-2(b).
We will now use these two operators to show the correspondence between a

traditional linear system and the log-domain systems which we deal with in this thesis.

—
=]

X LOG(Y)

*ANTI—LOG(X}

() (b)

Figure 2-2: (a) Physical implementation of the ANTI-LOG function (b)
Physical implementation of the LOG function

14
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2.3 Characterizing a Log-Domain System

The block diagram of a typical linear system is shown in Figure 2-3(a). In the
context of filter design, such a system could represent anything from a simple integrator o
an Nth-order LC ladder. This linear system can be transformed into a log-domein system
by placing ANTI-LOG blocks at the inputs and LOG block at the owpurs. This is
illustrated in Figure 2-3(b). We will see that all of the log-domain building blocks
described in this section have this form. At this point, we have introduced some notation
which will remain consistent throughout this work. Variables marked with the circumilex
(*) represent signals in the log-domain. This allows us to quickly distinguish between
signals in the log-domain and signals in the traditional linear domain.

Let us examine the new system (Figure 2-3(b)) a little more closely. Assume that

the linear system of Figure 2-3(a) is described by the equation:

X, = F(X) (2.13)
where F is a linear function.
Xit O— _ —CQO X,
: Linear '
: System :
XinO—— ——0 Xon
(@)

A ANTI- xll Xol A
xilQ— LOG() O —O— LOGO —C.) Xot
' X Linear : |

A E System : .
XinO— 0G4 —O— —O—] LOG() O XN
XiN XoN

(b)
Figure 2-3: (a) A linear system (b) A corresponding
log-domain system
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The new log-domain system would therefore be described by:

X, = LOG {F[ANTILOG( J?,.)]} (2.14)

{f we were to replace the LOG and ANTI-LOG by their original mathematical definitions

then we would have:

. X./2Vy . )
X, =2V, ln{FI:IG-e } 2 F| X, (2.15)

Even though the original function F was linear, the nature of the logarithm function will
result in X , being a non-linear function of }2,.. Therefore we need to find a way to
lincarize the log-domain system and regain the original transfer function.

Consider placing LOG blocks preceding the input and ANTI-LOG blocks after
the output, as shown in Figure 2-4(a). Because of the inverse nature of these functions (see
Eq. (2.11}), the overall result is a linear input-output relationship.

A second way to get the non-linearities to cancel is to simply join different log-
domain sections together, as shown in Figure 2-4(b). This natural cancellation is what
makes these circuits so powerful. Suppose that we can build log-domain circuits of the
form shown in Figure 2-3(b) which perform the basic functions of summation, integration
and multiplication. Then we would simply need to join the different blocks together in the
required loops, add the inverse function at the input and the output, and we would get the
desired linear transfer function. The next section will show a library of log-domain

circuits which have exactly this form.

16
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A rp—— == = e e - — -Q
Xiy X'll ANTI- Xiy Xol Mol T ANTI- Xol
O LOGE) FOT LOG( O —O— LOG) 50+ LoG()
' b ; Linear ; ¥
: ; | AT : System : l: :
O Lost) O E8T O -0~ Loa) O (BG40
XiN ﬁlNL —_—— —-X—lN ———————— X ﬂ.N_ — = JXQN x“N
(a)
________________ -
I
SveTEm SYSTEM 0X,

Natural
Cancellation

LINEAR
SYSTEM

(b)
Figure 2-4: Linearizing a log-domain system

2.4 The Basic Building Blocks

This section will introduce the different blocks which perform the summing,
integration and multiplication operations necessary for log-domain filter design. For each
different operation, we will first introduce the circuit which performs the desired task.
Then, basic circuit analysis will be used to show how they give the required log-domain
function. We pay particular attention to the input and output sections since these play an

important role in linearizing the overall system.

24.1 The Non-Inverting Integrator

The concept of a log-domain integrator was first introduced by Adams [4]. More

recently Frey has proposed a bipolar version [5] which has led to the multiple-input non-
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A
Ki 1 °Io
A
Vi 1 (2] A
Lo
A L
Kin*lo
A
ViN

Figure 2-5: Log-domain circuit which implements the multiple
input non-inverting integrator

inverting integrator shown in Figure 2-5. Analysis of the circuit can be described as
follows.
Using the basic log-domain equation (Eq. (2.8)) and applying KCL at node @

allows us to write the equation:

s da s (v?,'-\?,,)/zvr . (Vi V,,)/zvr
C'E"«:"Ki,'lo’e +...+K‘.~-Io-e (2.16)
. V. /2v,
Multiplying through by e leads to:
v . . v, 72V . V, 72V,
TP AT T ATERFIEY A% AP @.17)
Using the chain rule to rewrite the derivative gives:
c-2v ; v, /2V. v, 72v.
T d V,/2V, - i/ <vr A W “¥r
7 'E[Io‘e ] = K,.l-lo-e +...+Ki~-lo-e (2.18)

/]

The factor 7 /2V.. can be incorporated into a new constant which will be denoted simply

18
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as K, such that:

K =22 (2.1

This altows us to rewrite Eq. (2.18) in a form which will be casier to relate to the signal-
flow graph of an LC ladder,
d ‘}”/2 v, le/'.’ Vy \’j|v/?. Ve

I, -e =K

C-E ,.I-I‘,-e +...+K‘.~-Io-e (2.20)

The factor / /2V, will be important when we are transforming the LC ladder into a log-
domain circuit. It can either be incorporated into the multiplication factors K; and thus will
affect the bias current or else it can be used to scale the capacitors as will be shown in the
next chapter. It is this factor which accounts for the good tunability properties of log-
domain filters. Note that in addition to making the filter dependent on the bias currents in
the circuit, the factor 7 /2V.. also makes the circuit temperature dependenl*.

Returning to the analysis of the non-inverting integrator, Eq. (2.20) can be

rewritten using the ANTI-LOG operator, such that:

c-i[ANTILOG(ﬁ )] = K, -ANTILOG(\?. )+ +K; ~ANTILOG( V, ) 2.21)
df 0 & 5 Iy iy

A
V.
it O |

i | LoG( Kt < Joa
: | LoG() oV,
: [aNTE k.

A " N

Vin oL 1080 |

Figure 2-6: SFG of a log-domain multiple-input non-inverting inte-
grator

+. The fact that we know that the behavior of the circuit is directly proportional to V7 and hence to
temperature makes it relatively easy to account for. This can be done by using a temperature com-
pensation scheme as is done in temperature independent biasing [12].
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For the final form of the equation, V, is isolated, giving:

V, = LOG{ é k.- ANT!LOG( ‘;.-,) +o+ K, ANTILOG( v",.J] dr}  (2.22)

The signal-flow graph of this system is shown in Figure 2-6. Clearly, this circuit
has the desired log-domain form; it contains a linear system at the centre with ANT/-LOG
and LOG blocks at the input and output respectively. The only difference between this
system and the ones we defined in Section 2.3 is that the inputs and outputs are now given
as voltages as opposed to a general variable. This is due to the physical circuit which was

used to implement the system,.

2.4.2 The Inverting Integrator

We now present the multiple-input inverting integrator whose circuit is shown in
Figure 2-7(a). This circuit can be analyzed in the exact same manner as for the non-
inverting integrator. The first step is to find the sum of the currents at node ®, giving:

0kt AT g AT

| =

C.

e,

i

Comparing Eq. (2.23) to Eq. (2.16) shows that the analysis which was performed in
Section 2.4.1 can now be repeated simply by replacing the coefficients K;;, Kjp, .... Ky by

their negative counterparts. Knowing this, ‘V?a can now be written as

- l - -

v, = LOG{% I (-K;) - ANTILOG( V,.l] oK) ANTILOG( v,.J] di}(2.24)
Taking the negative sign outside of the integral gives:

- _ 1 -~ -
v, = LOG{-5- [[x.- ANTILOG( v,.l) +o+K, - ANTILOG( VI.N)] dt} (2.25)

This results in the signal-flow graph shown in Figure 2-7(b). Again we see the familiar

pattern representative of log-domain systems.
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A
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(b)

Figure 2-7: (a) Log-domain circuit for the multiple-input inverting
integrator (b) Equivalent SFG

2.4.3 Damping

The damped integrator is simply an extension of the multiple-input integrator
shown previously. It is presented here separately due to its importance as a building block
in filter circuits and because of an important simplification which arises due to the singular
nature of log-domain circuits. Damping can be performed by feeding the output of a
system back to its input, as is shown in the log-domain signal-flow graph of Figure 2-8.

This results in the circuit shown in Figure 2-8(a) which can be considerably
simplified. Because the damped section of the circuit is simply another instance of the log-
domain cell, we can replace the appropriate variables in Eq. (2.8) by the appropriate

variables from Figure 2-8(a).
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SFG of a log-domain integrator with damping

Figure 2-8: Two equivalent circuits for the damped log-domain
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This gives,
. (4, o,
Idump = Kdmnp ‘ 1,, e (2.26)

which simplifies to,

1([(""[) = Kdmnp ) Iu (2'27)
In other words, damping can be represented by a simple current source, as shown in
Figure 2-8(b). Note that to change the sign of the damping one simply needs to reverse the

current source.

2.4.4 Input and Output Stages

We have aiready seen that in order to maintain the linearity of a log-domain
system, a LOG block must be added at the input along with an ANTI-LOG block at the
output. These blocks can be implemented using the log-domain cell described in Section
2.1. This procedure will now be demonstrated for the simple log-domain system shown in
Figure 2-9. The reader will find that the techniques shown here are applicable to all of the

circuits shown in this work.

Replacing the different blocks in Figure 2-9 by their appropriate circuits gives the

system shown in Figure 2-10(a). Experienced circuit designers will note that there is a

Xinput
O A
LOG() | Xinput
\O,\ ANTI- | o 1 X
LR Y (0L o Xou |
: >@——->— Loa() -0 toaq O |
. | ANTI- ,
ﬁiNO/ LOg) &
Figure 2-9: SFG of a simple log-domain system with input and
output
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certain amount of redundancy between the LOG section at the input and the inverting
integrator. We now perform some algebraic manipulation to implement a more efficient
circuit.

From the basic log-domain cell, we can write,
~ I input
Vinpuw = 2V¢- In [—]—-] (2.28)

a

Solving for the portion of the current flowing into the capacitor from the input gives,

I.=Kippui 1, € (2.29)

Substituting Eq. (2.28) into Eq. (2.29) and simplifying gives:

~
5
=
=
=3
*®
o
5
]
=
-~

Ioutput

4 1
(b)

Figure 2-10: Circuit for the implementation of a simple system with
input and output (b) Simplified circuit
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I, = Kr"umf !,.nm”-c (2.3

Again, this is a circuit which can be implemented using the basic cell, as shown in Figure

2-10(b).

2.5 Summary

We have introduced a set of log-domain integrators which can be used for filter
design. Because of the non-linear nature of these blocks, a unique lincarization procedure
was introduced. Chapter 3 will outline a general method for the design of log-domain
filters which uses these blocks and which will be used to construct a fifth-order Chebyshev

filter.
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CHAPTER 3 The Design of All-Pole Lowpass

Filters

This chapter will begin with a quick review of the operational simulation of LC
ladders. We will show how to transform a traditional linear signal-flow graph into a log-
domain signal-flow graph thus putting it in a form which can be implemented using the
circuits introduced in the previous chapter. The complete method will be illustrated
through the design of a fifth-order Chebyshev filter. The performance of the filter will then

be verified using HSPICE simulation.

3.1 The Design Method

The traditional steps for the design of filters based on the operational simulation

of LC ladders are as follows:

4. Find an LC ladder which meets the desired filter specifications
5. Draw the SFG which corresponds to the LC ladder
6. Implement the SFG using the desired technology

Examples of technologies which are popular for continuous-time filter design include

26



Chapter 3: The Design of All-Pole Lowpass Filters

active-RC circuits, gp,-C circuits and MOS-C circuits. Log-domain filters will be
constructed using the log-domain building blocks described in the previous chapter. Due
to the unique nature of these blocks, the signal-flow graph must be modified in order to
allow it to be implemented by these non-linear circuits. The steps for the design of a log-

domain filter, can be summarized as follows:

. Find an LC ladder which meets the desired filter specifications
2. Draw the SFG which corresponds to the LC ladder

3. Modify the SFG according to the rules given in Section 3.2

4. Implement the SFG using the log-domain building blocks

3.2 Modifying the Signal-Flow Graph

Once an LC ladder has been found which meets the desired filter specifications
the designer then draws the signal-flow graph which corresponds to that ladder [26]. In
this section, we will show how to modify a traditional signal-flow graph to make it
compatible with the log-domain systems described previously. This consists of adding the
appropriate LOG and ANTI-LOG blocks while maintaining an overall linear transfer

function.

Some simple rules for transforming a linear signal-flow graph into a log-domain

signal-flow graph are shown below.

L. Place a LOG block after each integrator.

[

Place an ANTI-LOG block at the input to each summer (before the multiplier)

3. Place an ANTI-LOG block at the output of the system
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4. Place a LOG block at the input to the system

This procedure is iflustrated for the signal-flow graph shown in Figure 3-1(a), with the
result shown in Figure 3-1(b). By examining the final log-domain signal-flow graph we
can see how the overall transfer function has been maintained. Each ANTI-LOG block is
immediately followed by a LOG block, therefore due to the inverse nature of these
functions the operation of the original system has been conserved. The highlighted areas
represent typical log-domain building blocks with ANTI-LOG blocks at the input and a
LOG block at the output. Note also the LOG block at the input to the system and the ANTI-
LOG block at the output.

[Jroc

ANTI-LOG

Figure 3-1: (a) SFG of a typical LC ladder (b) Log-domain equiv-
alent SFG
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3.3 A Fifth-Order Chebyshev Filter Design Example
3.3.1 The LC Ladder

The first step in the design of any filter based on the operational simulation of LC
ladders is to find the ladder which meets the desired specifications. In this case, we wish to
design a fifth-order Chebyshev filter which has:

Cutoff frequency: f. = 100 kHz
Ripple width = 1 dB
The corresponding LC ladder can be found either through look-up tables [6,23] or through
the use of a filter design package. Here the program filtorX [25] was used and resulted in

the ladder shown in Figure 3-2. The component values are given in Table 3-1.

Name Value Name Value
Rg 1Q Ly 1.73654 uH
C, 3.39780 uF Cs 3.39780 uF
L, 1.73654 uH Ry 1Q
Cs 4.77608 pF

Table 3-1: Component values for the LC ladder

3.3.2 The Corresponding SFG

A signal-flow graph which corresponds to the LC ladder must now be drawn,

Figure 3-2: LC ladder for a Sth-order Chebyshev filter
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This is most casily accomplished by using modified nodal analysis [27,28]. First a current
is assigned to each of the inductors in the LC ladder and each node is given a different
voltage variable, as shown in Figure 3-2. We then write impedance descriptions for each
inductor in terms of its node voltages and the inductor current. This results in the

following two equations:

d

Lyly = V=V, 3.1)
d; = 3.2

Next, we apply KCL to the previously labelled voltage nodes and derive a set of equations
relating the node voltages, the inductor currents and the input. For the LC ladder of Figure

3-2 this results in the equations:

d., _ Vs V)
d
C‘3EV3 =1,-1, (3.4)
d Vs
We also note that,
V=V (3.6)

The set of equations (3.1) to (3.6) completely specifies the LC ladder. In order to remain
consistent with signal-flow graph convention let us define a set of general variables which

will correspond to the voltages and currents denoted previously. In other words, we define,

X;o2Vo X0V X, oL, X, a0V,
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Xy, Xso2V, X, oV,

We may now draw the signal-flow graph which corresponds to the LC ladder using the six
cquations defined previously and the variable correspondences given above. This is shown
in Figure 3-3(a).

The signal-flow graph is then modified according to the rules given in Section
2.4. The log-domain signal-flow graph is shown in Figure 3-3(b). Note how the operation

of the original signal-flow graph has been maintained due to the inverse nature of the LOG

and ANTI-LOG functions.

ANTI-LOG

Figure 3-3: (a) SFG of a fifth-order Chebysheyv filter (b) The log-domain
equivalent system
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3.3.3 The Complete Chebyshev Log-Domain Filter

The final step in the design of the iug filter involves replacing the different

components of the signal-flow graph shown in Figure 3-3(b) with the circvits introduced

in Section 2.4. This results in the complete log-domain circuit shown in Figure 3-4 on the

following page. The scaling factor /,/2V,. which is necessary to maintain the

equivaience between the log-domain integrator and the corresponding linear integrator

was accounted for by scaling the original LC ladder component values by 7 /2V... The

new component values are given in Table 3-2. Note that the filter could also have been

implemented by keeping the same component values as the LC ladder and scaling the bias

currents by the factor 7 /2V.,.. This will be confirmed when we examine the tunability of

this filter later in the chapter.

Name Value Name Value
e e — ——————
Rg 10 C L, 3.47308 nF
C c, 6.79560 nF CC: 6.79560 nF

C,_, 3.47308 nF Ri 1Q

Ce 9.55216 nF

Table 3-2: Component values for the Sth-order Chebyshev log-

domain filter circuit
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Figure 3-4:

Circuit diagram for the fifth-order Chebyshev log filter
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Now that a complete log-domain filter has been designed we take a minute to examine the
physical naturc of this circuit. Like in the LC ladder, there exists a correspondence
between the variables in the log-domain signal-flow graph and the physical voltages and

currents in the circuit of Figure 3-4. These are as follows:

Xswls,fl@ﬁl,fzﬁ ,_,,X3<=>\}3
XgeoV, , XV X, of

It has already been shown that the original signal-flow graph representation of the
LC ladder and the log-domain signal-flow graph are equivalent. It is interesting to note
that while the input-output signals in the LC ladder are represented by voltages, the input
and output of the log-domain filter are both currents. This has led some to characterize the
log-domain filter as a current-mode circuit.

What the method of design proposed in this thesis has shown us is that the key
nodes in the log-domain signal-flow graph (X, X», ...) are physically represented by
voltages. In fact, the input and output are only currents due to the LOG and ANTI-LOG
functions which have been added to preserve the linearity of the system. This would
indicate to some that this is a voltage-mode circuit. Suffice to say that it is always difficult
to classify circuits in this manner due to the fundamental relationship between voltage and
current (e.g.. Ohm's law). The important thing is to realize that this circuit possesses many
of the advantages which are often associated with current-mode circuits, namely the fact
that impedances along the signal path are low and that there all small voltage swings at the

key nodes.

3.4 Simulation Results

The performance of the fifth-order Chebyshev filter will now be measured

through ASPICE simulations [29,30). The tests that will be performed fall under two main
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categories: frequency behavior and linearity. First, the overall trequency performance of
the filter will be measured by comparing the frequency response of the log-domain circuit
to the LC ladder that it was designed to implement. The tunability and high-frequency
performance of the filter will also be verified since these are two of the most important
properties of these circuits.

The second big area of interest is the linearity of these filters. Although linearity
is always an important property of electronic circuits, it is of particular importance here
due to the unique linearization procedures used in these circuits. In order to verify this

area of the filter’s performance several different distortion tests will be performed.

3.4.1 Frequency Response

The traditional method for simulating the frequency response of a circuit using
HSPICE is to perform AC analysis. HSPICE does this type of analysis by first solving for
the DC operating point of the circuit, then it determines linearized small-signal models for
the different components in the circuit. Because this approach negates the essential
translinear nature of the bipolar transistor, it is not particularly suited to testing the log-

domain technique. A better approach is to perform multitone analysis.

3.4.1.1 Multitone Analysis

Multitone analysis is popular in the testing community and involves finding the
spectral response of a circuit stimulated by an input consisting of many sinusoidal tones (a
multitone input). Appendix A describes the multitone simulation method used in this
thesis. This novel approach combines multitone testing with HSPICE transient analysis.
Because of the large-signal nature of HSPICE transient analysis, the circuit is simulated
without small-signal approximation. In addition to allowing the measurement of

frequency response, multitone analysis can also be used for distortion measurements.

The fifth-order Chebyshev filter was simulated using a 16 tone multitone input,
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where each tone had an amplitude of 40 pA. The sampling frequency was chosen to be
750 kHz and the frequencics of the input tones were chosen according to thé method
described in Appendix A. The results are shown in Figure 3-5. The simulations were
performed using both ideal transistors and transistor models for a bipolar analog array
provided by the Gennum Corporation [31]. The complete transistor models can be found
in Appendix C. The circuit tested using ideal transistors had a cutoff frequency and a
passband ripple very close to that of the LC ladder and met the desired specifications. This
confirms that the theory developed previously is accurate. If we have a device which can
provide a perfect exponential function, like an ideal bipolar transistor, then we will get the

desired frequency response.

The performance of the circuit modelled with Gennum transistors shows a slight
change in the passband ripple and a shift of the cutoff frequency by about 20 kHz. This is
primarily due to the finite B which affects the bias current of the transistors, and in turn
influences the cutoff frequency of the filter. This characteristic of log-domain filters is

what makes these circuits tunable and should allow us to establish a tuning circuit which

wil! account for this shift in frequency. Tunability will be discussed in some depth later in

this section.
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Figure 3-5: Multitone analysis of the fifth-order log-domain Cheby-
shev filter (a) Ideal txs (b) Gennum txs
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3.4.1.2  AC Analysis

Multitone analysis is the best method for testing log-domain filters since AC
analysis does not account for the translinear nature of these circuits. However, once the
operation of the circuit has been confirmed through multitone analysis, AC analysis can
then be used as a quicker way to get the frequency responsc. This is because the AC
analysis resulls are not wrong, it is just that they are only limited to small signal inputs.

In order to confirm that the AC resuits are the same as those obtained from
multitone analysis, we perform AC analysis on the fifth-order Chebyshev filter derived
previously. The magnitude response of the filter is shown in Figure 3-6. Like in the
multitone case, we compare the frequency response of the LC ladder to that of the log-
domain filter simulated using both ideal transistors and Gennum transistors. The results
are indeed the same as the ones given by multitone analysis. This is not immediately
obvious because the frequency axis is logarithmic in this case. However, if we examine
the results for the circuit modelled using Gennum transistors we can see the same loss of
symmetry in the passband and the 20 kHz shift in the cutoff frequency. Again the circuit

modelled using ideal transistors gives an almost identical response to that of the LC

e 10’ W ry 10o' 10
Frequency [Ha}

Figure 3-6: AC analysis of the Sth-order Chebyshev log-domain filter
(a) Full frequency (b) Passband
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ladder.

3.4.1.3  Tunability

We have aiready shown that in order 1o maintain the equivalence between a log-
domain system and its corresponding linear system (LC ladder), then either the
capucitance values or the bias currents must be scaled by the factor I /2V... To fail to do
s0 will have an cffect on the frequency behavior of the log-domain filtes. While this adds
an extra clement of complexity to the design of log filters, it is also what makes these
circuits easily tunable.

Let us examine the frequency response of the Chebyshev filter if we keep the
capacitances in the circuit constant and vary all of the bias currents simultaneously. Figure
3-7 shows AC analysis resuits for the circuit simulated with bias levels of 0.1 LA, 1 pA,
10 pA and 100 pA. The transistors were modelled with Gennum models. The input signal
level was chosen such that it was of the same order as the bias current and only the gain
was plotted. Figure 3-7 confirms that the cutoff frequency is directly proportional to the

bias current.

The disadvantage of this aspect of the log filter’s performance is that any change

in the bias currents will lead to a change in the cutoff frequency. We have aiready seen

-mL .......... ‘.‘ -
— 0.1 pA
- lpA B S
ceo10pA !
-*-100pA
RS o ' W 10" 0 IS : W'

Fraquancy {Hz}

Figure 3-7: Tunability of the log-domain filter
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how the finite B associated with real transistors leads to base current loss and henee w
changes in the cutoff frequency. The solution is to use a tuning scheme which will allow
the designer to precisely set the cutoff {requency of the filter to its desired value by fine
tuning the bias currents.

A second feature of these circuits which arises due to the scaling tactor [ /2V,
is that the cutoff frequency is dependent on the thermal voltage, Vi Because of the strong
rclationship between the thermal voltage and temperiture, this makes the frequency
behavior of the log filter temperature dependent. However, since we know of the linear
behavior of the filter with temperature, this problem can be casily remedied. One solution
would be to make the current sources inversely proportional (o temperature using a

scheme similar to the one used in band-gap references [12]

3.d.1.4  High-Frequency Performance

Another feature of the log-domain filter which will be explored is to measure the
maximum cutoff frequency which can be achieved before the frequency behavior beging
to break down. The frequency behavior of any transistor circuit will eventually be limited
by the f; of the slowest transistor in the circuit. In order to test the high-speed performance
of this technique independent of the transistors which are used, we will measure how close
to the f, of the slowest transistor the circuit can be run.

The reason that the log-domain filter shows promise in the area of high-speed
filter design is that all of the nodes along the signal path are low impedance. As a result,
the poles which occur due the parasitic capacitances associated with the transistors will be
placed at higher frequencies than if they were in a circuit with high impedance nodes
along the signal path. Traditional filter designs tend to be made from voltage-mode
circuits which have numerous high impedance nodes.

In order to measure the high-speed performance of the log-domain filter, the

cutoff frequency will be varied by decreasing the capacitor values in the circuit. As in the
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Figure 3-8: High-frequency performance of the log filter
(a) Full frequency range (b} Passband

LC ladder, the cutoff frequency of the filter will increase accordingly. The cutoff
frequency will be increased until the frequency behavior of the filter begins to lose its
shape in the passband. This will give us the maximum operating frequency of the circuit.
The maximum bandwidth of the circuit will then be reported as a percentage of the f; of

the slowest transistor in the circuit.

Figure 3-8 shows the frequency behavior of the log-domain filter designed for
five different cutoff frequencies. The different cutoff frequencies are specified to the left of
the graph. The circuit was again modelled using Gennum transistor models. The Gennum
transistors have f;'s of 2.5 GHz for the NPN transistors and 10 MHz for the PNP
transistors. The results show that the log filters maintain their frequency behavior up to
approximately 1 MHz, or 1/10th of the f, of the slowest transistor. This confirms that log-

domain filtering is indeed a relatively fast filtering scheme.

3.4.2 Distortion Measurements

The log-domain filter, like other transistor circuits, is susceptible to distortion due
to the non-linear nature of the bipolar transistor. Distortion measurement is of particular

importance in this type of filter because of the unique approach used for linearizing the
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circuit. Simulated distortion measurements will be performed using the multitone
technique described in Appendix A. The input will be composed of either one or two tones
depending on the distortion test. A single tone allows us (0 measure total harmonic

distortion (THD) while two tones are used for intermodulation distortion measurcment

(IMD).

3.4.2.1 The Intercept Concept

When measuring the distortion level associated with a circuit it is important to
specify the input level at which it was measured. For example, one circuit may specify a
THD level of -60 dB while another might specify a distortion level of 40 dB but unless
the same input level was used, no meaningful corﬁparison can be made. One way to ensure
that a fair comparison is made between different circuits is to measure the distortion and
compare it to circuits’ intercept points [3Z]. An intercept point is a relative measure which
is defined as the level where the output power of the fundamental is equal to the output
power of a given harmonic. There will be an intercept point for each harmonic but it is
customary to only give intercept plots for the first two harmonics. Figure 3-9 shows the
intercept plots for the fifth-order Chebyshev filter simulated using both ideal and Gennum

transistors. The input was a single 1 kHz sinusoidal tone such that it was well within the
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Figure 3-9: Intercept plots for the log-domain filter
(a) Ideal txs (b) Gennum txs
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passband of the circuit. The relative power measurements are given with respect to 1 mA,
as this was the maximum current used in the experiment.

Imcas]
Power = 20 loglO[m

(3.7)
Table 3-3 gives numerical values for the intercept points. The intercept points are much
lower for the Gennum transistors than for ideal transistors which indicates that the
distortion is greater when real transistors are present. This is to be expected since the
linearity of iog-domain filters is related to the transistors ability to perform the inverse

functions, LOG and ANTI-LOG. The more ideal the transistors, the better matched the

functions will be.

Transistors | Intercept Point | Input Power { Output Power
=Ideal 2nd Order | 91.4dB 85.5dB
3rd Order | 61.6dB 55.7dB
Gennum 2nd Order 202?-]?_:?
3rd Order 178 dB 10.5dB

Table 3-3: Intercept points of the log-domain filter

3.4.2.2 Total Harmonic Distortion
Here we present the most traditional measure of distortion in electronic circuits,
namely total harmonic distortion or THD. This is a measure of the power of the harmonics

to the power of the fundamental and is calculated using the following formula:

2
oD o JE+lals ...

i (3.8)

1
I} is the current magnitude of the fundamental and I, I3, ... are the current magnitudes of

the harmonics (with the subscript denoting the corresponding harmonic term). The filter
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was tested using a sinusoidal input signal at a frequency of much less than the cutotf
frequency of the filter. This ensures that only very high harmonics will be affected by the
filter’s frequency response. The input sinusoid had an amplitude of 10 {A and a frequency
of 1 kHz. The spectral response of the filter stimulated by this tone and is shown in Figure
3-10. The frequency response is given for the filter tested using both ideal and Gennum

transistor models. The total harmonic distortion was then measured with the results given

in Table 3-4.

Using ideal transistors we get very little distortion which proves that, despite the
non-linearity of the individual integrators in the log-domain filter, we still have a very
linear system overall. When real transistors are used the distortion is considcrably greater
due to the fact that the transistors are no longer acting as perfect exponential {unctions.
Using better transistors than the ones provided by the relatively low-cost Gennum process,

one would expect to get distortion levels somewhere between the ideal transistors and the

Gennum transistors.
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Figure 3-10: Frequency plots for calculating the THD of the log-domain
filter (a) Ideal txs (b) Gennum txs
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Transistors lin THD [%] THD [dB]
Ideal 10 pA 0.00739% -82.6 dB
Gennum 10 uA 0.329% -49.7 dB

Table 3-4: Total harmonic distortion in the log-domain filter

3.4.2.3 Intermodulation Distortion

The final form of distortion measurement which will be made is that of
intermodulation distortion (IMD). This involves stimulating a circuit with two tones,
usually close in frequency and near the passband edge of the filter. In addition to the usual
harmonics present at the output, we expect to see harmonics which satisfy the following

criteria:

fom = |nfl +mfy| (3.9)

where n and m are positive integers such that n +m < 3. Figure 3-11 shows the spectral
response of the log filter stimulated by two tones, one at 75 kHz and another at 80 kHz.
The reader can clearly see the different harmonics created by the mixing of the two
different frequencies. A quantitative measure of the intermodulation distortion in the log

filter will be given in the experimental results of Chapter 5.

)
38 4 45 5
x 10’

Figure 3-11: Intermodulation distortion in the log-domain filter
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3.5 Summary

The frequency response of the filter was identical to that of its LC ladder when
ideal transistors were used and only slightly off with real transistor models. The filter
showed tunability and high-frequency operation up to i/10th of the f, of the slowest
transistor in the circuit. The simulated distortion levels were comparable to distortion

measurements quoted for other filtering techniques [1].

The next chapter will examine the performance of filters with finite transmisston

zeros, specifically elliptic and bandpass filters.

45



CHAPTER 4 Elliptic and Bandpass Filters

This chapter will introduce two new types of log-domain filters which contain
finite transmission zeros; namely elliptic and bandpass filters. 3oth filters will be derived
using the basic techniques described in Chapters 2 and 3. The derivation of the elliptic
filter will require an approximation in order to compensate for the fact that no log-domain
differentiator has been introduced. As before, HSPICE simulations will be used to confirm

that these filters have the proper frequency behavior.

4.1 Elliptic Filters
4.1.1 Derivation of a Third-Order Elliptic Filter

In order to limit the complexity of the derivation of this filter and the size of the
ensuing circuit, the design will be limited to that of a third-order elliptic filter. The filter

characteristics are chosen as:

Cutoff frequency: f, = 10 kHz
Stopband Region: Q = 20 kHz
Stopband Attenuation = 30dB
Passband Ripple = 0.5dB
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Figure 4-1: (a) LC ladder for a 3rd-order elliptic filter and its associated
frequency response

The LC ladder which meets these specifications is shown in Figure 4-1 along with its
associated frequency response. As in Chapter 3, the signal-flow graph can be drawn using
modified nodal analysis which results in the signal-flow graph of Figure 4-2(a).

As should be expected from the similarity of their LC ladders, the signal-flow
graph of the elliptic filter is very much like the one for the Chebyshev filter. The only
difference lies in the differentiator which is caused by the series capacitor between nodes
V, and V; As will be shown shortly, a single capacitor can be used to perform the

differentiator operation in the log-domain filter as long as a simple approximation is made.

The next step in the design of the filter is to redraw the signal-flow graph
according to the rules of Chapter 3 (Figure 4-2(b)). The differentiator sections can be left
as is without changing the overall linear input-output relationship of the filter.
Unfortunately, it is not possible to implement this circuil based solely on the building
blocks of Chapter 2 since we have not introduced a log-domain differentiator. However
we know that in other filter technologies (active-RC for example), a simple capacitor is
used to implement the differentiator. Let us, for the sake of argument, assume that a

capacitor placed between nodes X ; and )f3 of the Chebysheyv filter will give the desired
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Figure 4-2: (a) SFG of a 3rd-order elliptic filter (b) The log-domain
equivalent system

elliptic transfer function. This would result in the circuit shown in Figure 4-3.

In order to verify that the circuit of Figure 4-3 corresponds to the signal-flow
graph of Figure 4-2(b) we begin by writing an expression for the current flowing into the
capucitor C¢3 due to the non-inverting integrator and the capacitor C,. Note that for the
sake of simplicity the current drawn from the current source and from the output section

have been omitted. The current through Cc;3 is thus given by:

d

- - V,=V, |r2v, 4
Cc3'EV3 = K23'Ioe( J +...+ (

Cer-2(V,-V,) @)
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Figure 4-3: Circuit diagram for a 3rd-order elliptic log-domain filter

- Vyr2vy
Multiplying through by e gives:

Vi/2Ved o - Va/2V, Vi/2Ved - Vi/ 2Vl

We must now make the following approximation in order lo establish a correspondence

between the elliptic filter circuit and the signal-flow graph derived from the LC ladder:

Vi72v, V2V,
(4 = ¢

(4.3)
While such an assumption is not immediately obvious, practical experience with the log-

domain elliptic filter has proven it to be valid. This allows us to rewrite Eq. (4.3) as:

V,/2V,d - . V,/2V, Vi/2Ved A Vi/2Ved »

Applying the chain rule gives:

Cpre-2V V,/2v.] . V,/2v Cps - 2V, vsav,] Cpqae 2V v, 72V
c3 Td 3/ 2Vr 2/ 2Vy c2' “'rd /3, cx ~'rd v &Yy
_I Z-[I" J = K23 . ,”8 + .t 7 E;[]" ] -_"'"'I :l—’[l"c ] (4.5)

" o o

The factor [ o/ 2 V'r can be absorbed into the constant K;3 such that:
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Ky = -2 (4.6)

Which results in the equation:
d V2V, V,/ 2V, d V,/2v, d V22V
CC.JE}' [!Oe ] = Kzslue + e + Ccz"—l? I:IOL’ ] - Ccz“'j}'[.{ne ] (4.7)
This equation can be rewritten in terms of the LOG and ANTI-LOG functions defined in

Chapter 2, as:

Ces -%[ANTI( v, )] = Ky -ANTI( 1?2) 4ot Cpy -‘;—‘:[ANT!( v, )] ~Cpa -(%[ANTI( v, )] (4.8)

Rewriting Eq. (4.8} and simplifying leads to the final form of the equation shown below:

v, = LOG{&;I {ANTI(V2)+ +Ccz-%[AN%I(‘?J—ANTI(%)]}} 49)

A comparison between Eq. (4.9) and the signal-flow graph of Figure 4-2(b) shows that we
do indeed have a circuit which will implement the transfer function of an elliptic filter
(assuming of course that the approximation of Eq. (4.3) is valid). Simulation results will

be shown next.

4.1.2 Simulation Results

As with the Chebyshev log-domain filter, the frequency performance of this filter
will be tested using both a large-signal form of HSPICE analysis (multitone analysis) and
HSPICE small-signal analysis (AC analysis). This ensures that the log-domain filter will
perform properly for ali possible levels of input current.

The results of the HSPICE frequency analysis-are shown in Figure 4-4. Figure 4-
4(a) shows multitone testing while Figures 4-4(b) and 4-4(c) give the results of the AC
analysis. As we saw with the Chebyshev filter we get excellent performance when ideal
transistors are used such that the filter specifications are exactly met. There is a slight shift

in the cutoff frequency and the shape of the passband ripple when Gennum transistors are
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Figure 4-4: Frequency analysis of the log-domain elliptic fil-
ter (a) Multitone analysis (b) AC analysis (full scale) (c) AC
analysis (passband)

substituted. This is again primarily due to the finite B of the Gennum transistors which
gives rise to base current loss and has a noticeable effect on the performance of the filter.
There is little evidence that the approximation that was used when deriving the elliptic
log-domain filter had an adverse effect on its frequency response. This will be further

confirmed by the experimental resuits of Chapter 5.

4.2 Bandpass Filters

4.2.1 Derivation of a Fourth-Order Log-Domain Bandpass Filter

The first step in the design of a bandpass filter is to find an LC ladder with the
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Figure 4-5: (2) Lowpass Prototype (b) Bandpass LC ladder
(c) Magnitude response of the bandpass LC ladder

desired specifications. The design process begins with the choice of a suitable lowpass
prototype. As we wish to design a fourth-order bandpass filter we choose the second-order
Butterworth filter shown in Figure 4-5(a) as the lowpass prototype. Applying the
appropriate LC circuit transformations {23] leads to the fourth-order bandpass filter shown
in Figure 4-5(b). The filter was designed such that it has a cutoff frequency of 1 kHz and a
600 Hz bandwidth. Its magnitude response is shown in Figure 4-53(c).

The next step is to represent the LC ladder by its signal-flow graph. Because of
the limited set of building blocks available, we must ensure that the signal-flow graph
contains only integrators along with summing and multiplication operations. The ladder of
Figure 4-5(b) would then be represented by the following set of equations (Laplace

notation has been used to save space):

—1,-1, (4.10)
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Figure 4-7: A 4th-order log-domain bandpass filter

In order to transform this signal-flow graph into the desired log-domain form we
apply the rules of Section 3.2, This results in the new signal-flow graph shown in Figure 4-
6(b). Note that multiplier coefficients in the log-domain signal-flow graph are the same as
those in the original signal-flow graph but have been omitted for the sake of clarity. The
building blocks of Chapter 2 are then used to create the log-domain circuit for a bandpass

filter (Figure 4-7),

4.2.2 Simulation Results

Figure 4-8 shows HSPICE simulation results for the bandpass log-domain filter
derived previously. As always, the analysis was performed using both the multitone
approach described in Appendix A and AC analysis. The response of the bandpass filter
did not meet the specifications as well as for the lowpass log-domain filters. Although the
filter performs a general bandpass operation it falls short of the specifications in terms of
cutoff frequency, gain and ripple behavior. These can be compensated for by changing the

bias currents which can be used to scale both the gain and the cutoff frequency. More
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Figure 4-8: Simulated frequency response of the bandpass log-
domain filter (a) Multitone analysis (b) AC analysis

importantly however, the transistors labelled Q, and Q, tend to saturate under large signal
conditions. This is due to the fact that there is no DC path to ground for the current
flowing into Cy ; and Cgy,. Future work in this area could explore the development of more

stable structures for bandpass filtering.

4.3 Summary

In this chapter, the general methed for the design of log-domain filters was used
to design a third-order elliptic filter and a fourth-order bandpass one. By using an
approximation, we were able to implement the elliptic filter by simply adding a series
capacitor to the Chebyshev design found previously. HSPICE simulation confirmed that
this approximation was acceptable, HSPICE was aiso used to simulate the bandpass filter
which showed the required frequency behavior for small input levels but which ran into a

problem with transistor saturation for larger inputs.
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CHAPTER 5 Experimental Resuits

5.1 The Biquadratic Filter

The first circuit whose experimental performance will be described is the log-
domain biquadratic filter. This particular circuit was first introduced by Frey in [5]
although the same circuit can be found using the design method introduced in this thesis.
The complete circuit is shown in Figure 5-1. These results are of particular importance
since they represent the first experimental confirmation of the log-domain filtering

technique [33]. This section begins with a description of the experimental set-up used for

. C, =2.25 nF
To2(3) C, =849 nF

Figure 5-1: The log-domain biquadratic filter
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testing the biquadratic filter. The experimental results wilt then fall into two main
categories (much as they did in the simulation results), namely frequency performance and
linearity measurements. In the {irst, we compare the actual response of the biguad to its
intended transfer function, then show tunability and high-frequency operation. We then
present a series of linearity measurements, including total harmonic distortion,

intermodulation distortion and signal-to-noise ratio.

5.1.1 The Test Set-Up

An integrated circuit of the log-domain biquadratic filter was fabricated using
Gennum GA911 analog arrays [31]. These are semi-custom bipolar arrays that are
coniposed of fixed components which can be interconnected in whatever conliguration the
designer chooses. In other words, the designer has control over a single metal layer which
is deposited over a number of fixed components. The Gennum process provides NPN and
PNP transistors with f7's of 2.5 GHz and 10 MHz respectively. A microphotograph of the
chip is shown in Figure 5-2.

The current sources in the circuit were built using a modified Wilson design. The
circuit was biased with supplies of £ 5 voits. In order to generate and measure the input
and output currents, simple V/I and I/V converters were included in the test circuit (see
Figure 5-3). The input was generated on an HP3314A function generator while the

frequency analysis was performed using the HP3588:\ spectrum analyzer.

0 SO R U T S E':";L{l'-( '

AR, 4
Lo -- . e o,k C e e e

Figure 5-2: Microphotograph of the log-domain biquad
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Figure 5-3: The complete test-circuit for the log-domain filter

5.1.2 Frequency Perforinance

The magnitude response of the filter was first found and plotted versus the
second-order transfer function that it was designed to implement. The results are shown in
Figure 5-4. The experimental response was found by applying a peak-to-peak current
input of 100 MA and sweeping it from 10 Hz to 1 MHz. As is evident from the results, the
biquad has the expected transfer function. The cutoff frequency is correct within a small

experimental error, due to the finite B of the transistors.

5.1.2.1 Tunability

.10
g
i - - - Expecled TF
axt--| - 0-Experimental Results . .. .\ .
o} "..
e 1w |Iu' 16° ula‘ 1;)‘ 10"
Frocuercy (Hz)

Figure 5-4: Frequency response of the biquad
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Another advantage of the log-domain filter is its tunability, i.c. the ease in which

the cutoff frequency of the circuit can be varied. The tunability of the log filter can be
attributed to the factor / /2V.. which must be accounted for when using a log-domain
integrator instead of a traditional integrator. This factor is implemented by cither varying
the capacitors or the bias currents in the circuit. This theory was tested experimentally by
varying all of the bias currents in the circuit. The filter showed wunability over two
decades, namely from | kHz to 100 kHz. A plot of the magnitude response of the

biquadratic filter for three different levels of bias current is shown in Figure 5-5(a).

5.1.2.2 High-frequency operation

The final frequency test which was performed on the biquadratic filter was to
measure how close the cutoff frequency could be brought to the f; of the slowest transistor
(10 MHz for the GA911 Gennum process). To do so, the capacitors in the circuit were
varied such that the cutoff frequency gradually increased. Figure 5-5(b) shows plots of the
magnitude response of the filter for four different cutoff frequencies: 50 kHz, 500 kHz, |
MHz and 5 MHz. From these results we can see that the passband remains flat up to a

cutoff frequency of 1 MHz or 1/10th of the f, of the slowest transistor.

g — Y %-w- .
§ || -X-lpas=43pA | X o} | “©"fc=50kH2
ot el =48pA | 7 | -+-1,=500 kHz
- 0 - lpjag = 400 pA ol | =w-fo=1MHz
b -x-1.=5MHz ks
it 10 . m.lg;’ " 0t ' e 1o’ iy . Nr;' w 0* w' 1
(a) (b)
Figure 5-5: (a) Tunability of the log-domain biquad (b) The magnitude
response of the biquad for 4 different cutoff frequencies
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5.1.3 Linearity Measurements
5.1.3.1 Total Harmonic Distortion

One of the most common measures of linearity is total harmonic distortion
(THD). This is a measure of the total power of the harmonics to the power of the
fundamental. By applying a test signal to the circuit and observing the output on a
spectrum analyzer we can measure the harmonics and thus the total harmonic distortion. A
spectral plot of the output for the circuit stimulated by a 100 pA, 1 kHz sine wave is
shown in Figure 5-6(a). Given a spectral plot of this kind, the total harmonic distortion can
be calculated using Eq. (3.8). Table 5-1 shows THD measurements for a range of different
input amplitudes and frequencies. All measurements were taken over a 50 kHz bandwidth.
The biquadratic log-domain filter consistently showed distortion levels of less than -60

dB.

Ly Frequency THD
100 A 1 kHz | 624dB | 0071% |
10 pA 1 kHz 629dB | 0.076%
100 pA 5kHz -60.3 dB 0.096%

Table 5-1: THD measurements for the log-domain biquad

3.1.3.2 Intermodulation Distorzion

One of the disadvantages of THD as a measure of linearity is that the harmonics
may be affected by the filtering characteristics of the device under test. This is particularly
relevant when dealing with lowpass or bandpass filters. A better test of linearity in such

cases is the measurement of intermodulation distortion (IMD) described in Section

34.23.

A spectral plot of the log-domain biquad stimulated by two tones of slightly less
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Figure 5-6: Spectral response of the biquad (a) Stimulated by a single
tone (b) Stimulated by two tones

than the cutoff frequency of the filter is shown in Figure 5-6(a). The components f5, and
Jo2 represent the second-order distortion products which accounted for most of the total
harmonic distortion found in the previous section. The tone f;; represents the sum of the
two tones and is traditionally 6 dB greater than the .second order components, as is the
case here. We concentrate here on the distortion components close to the original tones
(f;> and fy;) since these fall near the desired frequencies and can prove the most
troublesome [32). In Figure 5-7(a), we show a plot of the sum of the power of these third-
order harmonics versus the amplitude of one of the input tones. The second tone was of
equal amplitude. Also included on the graph is a plot of the power of the sum of the two
fundamentals versus input current. The least intermodulation distortion occurs for an input
of 100 LA and measures -70 dB. The IMD then increases due to the cubic relationship
between these harmonics and the input signal. At low input levels, the power of the
harmonics remains constant due to the fact that they are so small they get lost below the

noise floor.

5.1.3.3 Signal-to-Noise Ratio

The final test performed on the biquad was to find the signal-to-noise-plus-
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Figure 5-7: (a) IMD vs. input current (b) SNR vs. input
current (measured over a 50 kHz BW)

distortion ratio (SNR) for different levels of input current. The performance of the biquad
biased with 400 HA current sources is shown in Figure 5-7(b). The measurement was
made over a SO kHz bandwidth. The signal-to-noise ratio increases linearly up to a peak-
to-peak signal of 25 pA then we see that the harmonics begin to dominate. The maximum
attainable signal-to-noise ratio with this circuit was 54 dB. From these resuits together
with those of the previous sections we see that the distortion behavior of the biquadratic
filter is best between 10 and 100 pA. This is consistent with the transistor specifications

which shows that the transistors have their highest B levels for currents in that range.

5.2 The Fifth-Order Chebyshev Filter

In order to confirm the design method presented in this thesis, a fifth-order
Chebyshev log-domain filter like the one proposed in Chapter 3 was fabricated using the
Gennum bipolar process presented earlier. In this section, we will show experimental
results which verify the performance of this filter. Once again, we focus on the frequency
response and linearity of these circuits since these best allow us to judge the usefulness of

these new techniques.
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5.2.1 The Test Set-up

The fifth-order Chebyshev filter was fabricated with a larger version of the
Gennum GA911 bipolar array used for the biquadratic filter. As with the biquad, moditied
Wilson current mirrors were used for the current sources and the circuit was biased at £ 8

volts. All of the external test circuitry and equipment was the same as described

previously.

5.2.2 Frequency Performance

The components of the Chebyshev filter were chosen such that it had a cutofl
frequency of 50 kHz and a 1 dB ripple. A plot of the spectral response of the filter is
shown in Figure 5-8(a) along with a close-up of the passband (Figure 5-8(b)). The figure
also shows a plot of the frequency response of the LC ladder which met the original
specifications along with HSPICE AC analysis of the filter modelled using both ideal and

Gennum transistors.
The results show that the fifth-order log-domain filter has very much the desired
frequency response. Most importantly, we see the desired rippling behavior in the

passband and the correct attenuation in the transition and stopband regions (until the noise
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Figure 5-8: (a) Magnitude response of the Sth-order Chebyshev
log filter (b) Close-up of the passband
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Figure 5-9: (a) Tunability of the Sth-order log filter
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floor is reached). There is a shift in the cutoff frequency by approximately 10 kHz which is
due to the non-ideal nature of the transistors. This can be seen in the simulation results
where we see similar behavior when more realistic transistor models are used. More
specifically, it is due to the finite B of the bipolar transistor which results in a certain
amount of base current loss. Since the cutoff frequency of the log-domair filter is directly
proportional to the bias current, this base current loss translates into a shift in the cutoff
frequency. It can be accounted for by designing the bias current such that it compensates
for this current loss.

The tunability of this filter is demonstrated in Figure 5-8. Although the resistors
which set the bias current of the circuit were fixed, we could still vary the supply voltages
and thus change the bias in this manner. The general circuit operation was maintained
although the new supply levels did have a slight effect on the filter response, as will be
discussed shortly. Figure 5-8 shows the fifth-order Chebyshev filter biased with & 4V,
5V and + 6V supplies which corresponded to bias currents of 140 pA, 180 pA and 220 pA
respectively. Clearly, we can see how the bias current controls the cutoff frequency of the

circuit while maintaining most other filter characteristics. Note however, that the passband
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ripple increased slightly as the supply voltages were increased. This is due to the Early
effect which modifies the ideal exponential nature of the bipolar transistor. It becomes

more pronounced when higher voltage supplies are used since it is related to the transistor

voltage Veg.

5.2.3 Linearity Measurements
35.2.3.1 Total Harmonic Distortion

Figure 5-10(a) shows a plot of the total harmonic distortion of the fifth-order
Chebyshev log-domain filter versus input current. The input was a 2 kHz sine wave of
varying amplitude. The frequency of the input tone was chosen such that it was well
below the cutoff frequency of the filter so that the harmonics were not affected by the
natural attenuation of the filter. The fact that the input frequency is below the passband
edge leads to slightly better distortion measurements than might be found for an input
signal placed right at the cutoff frequency. This is why the intermodulation distortion test
is a better measure of linearity.

The best harmonic distortion measure was -47 dB found for an input of 15 pA

and a bias current of 180 pA. The distortion is primarily due tc the first harmonic found at

) [lin=30pA |

)

f
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Figure 5-10: (a) THD of the log-domain Chebyshev filter vs. input
current (b) Spectral plot of the filter output for a single tone input
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twice the frequency of the fundamental, as shown in a spectral plot of the filter stimulated

by a 30 A, 2 kHz sine wave (Figure 5-10(b)).

5.2.3.2  Intermodulation Distortion

In order to measure the intermodulation distortion (IMD) of the log-domain filter
a two-tone stimulus was applied to the filter. The frequency of the two tones was choscn
such they were 4 kHz apart and they were placed slightly below the passband edge of the
filter. As this is where the worse distortion occurs, this gives us a form of worst-case
analysis of the linearity of the filter. Figure 5-11(b) shows the spectral response of the
Chebyshev filter stimulated by tones of 28 kHz and 32 kHz. One can clearly see the

different harmonics and intermodulation products.

The products which are of the most interest to us are the third-order tones found
at 24 kHz and 36 kHz. Figure 5-11(a) shows a plot of the sum of the power of the
fundamentals and of the sum of the power of the third-order harmonics versus input
current, The difference between these two measurements gives us the intermodulation
distortion. The best IMD measure for this filter was -35 dB and occurred for an input of 30

1A and 180 LA current sources.
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Figure 5-11: (a) IMD of the Chebyshev log filter vs. input current
(b) Spectral plot of the filter output for a two tone input
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For comparison purposes, Figure 5-11(a) shows the sum of the power of the
second-order products at 56 kHz and 64 kHz versus input current. The distortion measure
found by evaluating these products is in effect the same as the THD measurement made in
the previous section Unfortunately, the distortion may be affected by the fact that these
products fall in the stopband region of the filter. Figure 5-11(a) also shows how the power
of the third order products rises at a faster rate than the power of the sccond-order

products. This is due to the cubic relationship between the third-order products and the

signal.

5.3 The Log-Domain Elliptic Filter

A fifth-order log-domain elliptic filter was designed based on the techniques of
Chapter 4 and then implemented in silicon using the bipolar design process described
previously. This was easy to do since the circuit for a fifth-order elliptic filter is almost
identical to that of a fifth-order Chebyshev filter. The only difference lies in the value of
the existing capacitors and in the addition of two bypass capacitors.

The magnitude response of the elliptic log-domain filter is shown in Figure 5-12.
The filter which was fabricated was based on an LC ladder with a cutoff frequency of 40
kHz and a | dB passband ripple (also shown in Figure 5-12). Upon examining the
experimental response of the log-domain filter, we see that the basic response of an elliptic
filter has been achieved. We can clearly see the presence of the finile transmission zeros
which give rise to stopband ripple. The similarity between the experimental and expected
results further confirms that the approximation made in Chapter 4 was valid (Eq. (4.3)).

As with the Chebyshev filter, the finite base current has given rise to a shift in the
cutoff frequency and to degradation of the passband ripple. The HSPICE simulations
included in Figure 5-12 show the effect of non-ideal transistors on the filter performance.

Additional degradation of the passband may have been caused by variations in the
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Figure 5-12: Frequency response of the elliptic log-domain filter
(a) Full frequency scale (b) Passband

capacitor values.
The linearity of the log-domain elliptic filter was comparable to the results found

for the fifth-order Chebyshev filter hence they will not be repeated here.

54 Summary

Experimentally, the log filters fabricated using the Gennum process gave similar
results to those found through simulation (Chapters 3 & 4). This is a testament to the

quality of the transistor models provided by Gennum.

Overall, the filters showed good correlation between their frequency response
and the response required by the specifications. There was some degradation of the
passband ripple and a slight shift in cutoff frequency caused by the base current loss of the
bipolar transistors. The filters proved to be tunable over two decades and could be
operated up to one tenth of the fr of the lowest transistor in the circuit. Distortion levels
measured using a variety of methods ranged from -45 dB to -70 dB. This is comparable to

distortion levels found in many continuous-time filtering schemes [1].
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CHAPTER 6 Conclusion

6.1 Discussion of Results

This thesis presented a novel technique for the design of log-domain filters based
on the operational simulation of LC ladders. Because of the non-linear nature of log-
domain integrators, the traditional operational simulation method was modified and a
linearization procedure based on inverse functions was introduced. The strength of the LC
ladder method is that it makes the design of high-order log-domain filters easier and

provides the designer with greater insight into the circuit operation.

The tzchnique was demonstrated through the step-by-step design of a fifth-order
Chebyshev filter, as well as the design a third-order elliptic filter and a fourth-order
bandpass filter. The behavior of these filters was verified through HSPICE simulation. A
simulation procedure called multitone analy‘.éis was used to perform the initial verification
of the filter’s frequency behavior. It is based on HSPICE transient analysis and thus is
valid for all input levels, large or smail. This is as opposed to AC analysis which uses
linearized small-signal models of the transistors thus negating their true cxponential

nature. The results showed good correlation betw.en the simulated response and the
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original specifications. There was a slight drop in performance when real transistor models
were used since the devices no longer behaved as perfect exponential functions. The only
disturbing result was the presence of saturated transistors in the bandpass filter for larger
input levels.

Log-domain filters were fabricated using a semi-custom bipolar design process
provided by the Gennum Corporation. These results are of particular importance since
they represent the first experimental results to be reported on this topic. As was the case in
simulation, the filters showed excellent correlation between the experimental results and
the desired specifications. There were some discrepancies which can be attributed to the
non-ideality of the bipolar transistors. Most notably, the finite base current loss in the
transistors gave rise to a shift in cutoff frequency of approximately 10 kHz. This can be
compensated for since the filters can be tuned by adjusting the bias current.
Experimentally, the filter showed tunability over at least two decades. The filters could be
operated up to a frequency of | MHz or 1/10th of the f7 of the slowest transistor. In this
respect, log-domain filtering can be classified as a fast filtering scheme.

Several distortion measurements were performed in order to verify the linearity
of these filters. The harmonic distortion (THD) of these filters measured -62 dB for the
biquad and -47 dB for the fifth-order Chebyshev. Intermodulation distortion (a more
accepted distortion measurement as it can be performed with signals right at the passband
edge) was -70 dB for the biquad and -55 dB for the Chebysheyv filter.

In order to evaluate the performance of the filter in terms of our design goals a
table has been prepared which compares the log-domain filter to some of the more recent
papers on continuous-time filtering (Table 6-1). The design goals were high-frequency
performance, tunability and low distortion. Overall, the log-domain filter shows
. comparable performance to the other filters. While some of the filters shown may

outperform the log filter in a specific area, it is usually at the expense of another property.
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In addition, the log-domain filter achieves thesc results using a circuit which is much

simpler than the other proposed schemes.

Author Type Order Cutoff G Ly Tunable Distortion’
Snelgrove & Shoval [13] Em-C 2 | 450 MHz B - YES -45dB (IMD)
B. Nauta [14] 2m-C 3 98 MHz - YES
Willingham & Martin[ 1 7] g2m-C 7 8 MHz 31000 NO 6510 -80 dB (THD)
Moon & Song (1] MOS-C § 22kHz - NO S0 dB ('THD)
Log-Domain Filter Log 2-5 1 MHz 10 YES -55 to -70: dB (IMD)

t. Direct comparison of distortion levels is difficult due to different experimental methods

Table 6-1: A comparison of continuous-time filters

6.2 Topics of Future Research

While this thesis has shown that the log-domain filter is a viable alternative to
traditional continuous-time filtering methods, it is still a relatively new concept and much

of its potential has yet to be explored.

High-Frequency Applications: In order to build log-domain filters operable at video
rates two possibilities exist, First, the filters could be fabricated using a very good
complementary bipolar process such that the filter is not limited by the poor high-
frequency performance of the PNP transistors. Better yet would be the design of an all
NPN log-domain filter. The technique described in this thesis could be used as long as ail

NPN versions of the log-domain integrators were derived.

Low-Voltage Design: The relatively simple nature of the log-domain filter along with the
small voltage swings at the internal nodes due to the logarithmic compression of

information makes this filtering method a good candidate for low-voltage circuit design.

Bandpass and Highpass Filters: The problem of transistor saturation in the bandpass
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filter for higher input levels needs to be addressed. A more stable design could perhaps be
found based on an alternate signal-flow graph implementation. The design of a highpass

log filter has yet to be explored.

A MOSFET Implementation: The extension of the “log-domain” idea to MOS
transistors would have the advantage of eliminating the error caused by base current loss
and would make it more compatible with today’s integrated circuits. The problem is not an
casy one however since the MOS transistor does not behave according to an exponential
function but rather according to a quadratic one. A similar theory would therefore have to

be developed based on the quadratic function.
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appENDIX A  Multitone Testing of the

Log-Domain Filter

HSPICE simulation is limited by its inability to perform AC analysis on non-
linear circuits. This is due to the fact that when performing AC analysis, HSPICE first
solves for the DC operating point of the circuit, then determines linearized, small-signal
models for all of the non-linear devices in the circuit. This is particularly rel:vant when
testing the log-domain filter since the exponential nature of the bipolar transistor is at the

very heart of its operation.

The solution is to use a technique called mulititone testing [34]. Multitone testing
involves applying a stimulus composed of one or more tones to the device under test and
observing its spectral response. It is commonly used in the testing community and permits

the simultaneous measurement of frequency response, total harmonic distortion (THD)

and inter-modulation distortion (IMD).

This appendix will show how HSPICE transient analysis can be used to perform
this kind of testing. The basic approach is as follows. First, HSPICE is used to find the

transient response of a circuit subjected to a multitone stimuius. Then the mathematical
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software package MATLARB finds the discrete fourier transform of the transient output and
plots it with respect to frequency. The design approact: which is described in this appendix
was used for all of the multitone analysis performed on the log-domain filters of this

thesis.

A.1 Review of the Discrete Fourier Transform

In order to understand some of the constraints which will be imposed on the

analysis, we begin with a review of the discrete Fourier transform (DFT) [35].
For every discrete-time sequence x(n) there exists a Fourier transform which is

defined by:

X@) = Teme™ (A.1)

Suppose we now limit the length of x(n) to L samples, such that:

x(") = { x(n) 0£nsl-1 (A‘z)
0 n>L-1

The Fourier transform of this sequence will now be given by:

L-1 _
X(w) = Z x(nye?™"
n=0
We now sample X(®) at N equally spaced frequencies ®, = % , k=0,1,...,N-1
and N2 L, such that:
L~1 27kn
_ o 2nk I
X(k)=X(—ﬁ-) = Zox(n)e ,k=0,1,2,..,N-1 .
n=

which can be rewritten as:
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N-1
Xk = z x{n) e(—;ann)/N, k=012 ..N=-1 {AD

n=10
Eq. (A.3) denotes the relationship for transforming a sequence {x(n) } of length LEN
into a sequence of frequency samples {X (k)}} of length N, and is called the discrete

Fourier transform (DFT). The relationship which allows us to recover the sequence

{x(n)} from a set of frequency samples is called the inverse discrete Fourier transform

(IDFT) and is given by:

2zl

N-1
x(n) = = Y XKV 00,2, N=1 (A)
k=0

The DFT is usually computed using any of a number of efficient algorithms which are

called Fast Fourier Transforms (FFT).

A.2 The HSPICE File

The first step in multitone analysis is to use HSPICE to find the transient response
of a circuit stimulated by one or more sinusoidal tones. For those who are unfamiliar with
transient analysis, HSPICE finds the circuit solution at a set of discrete-time intervals. As
a result, the outcome of the analysis will be a sequence of discrete-time samples {x (n) }
which can be used to compute the discrete Fourier transform as described in the previous
section.

The HSPICE file describes the different circuit components which make up the
log-domain filter [29,30]. When preparing an HSPICE file for multitone analysis, special
care must be taken in two particular areas. First, the signal sources which make up the
multitone input must be properly defined such that they have the right frequency,
amplitude and phase. Each of these areas will be discussed at some length. Second, the

transient analysis requests must be chosen correctly since the computation of the FFT

depends on the proper transient output.
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A.2.1 The Signal sources

The circuit is to be stimulated by a set of sinusoidal current sources each

operating at a different frequency. This section will outline some guidelines which govern

the choice of frequency, amplitude and phase of the different tones in the multitone input.
A.2.1.1  Frequency

The choice of frequency for each different tone is important for two reasons:

1. The frequency of each input tone must correspond to one of the discrete frequency
points in the DFT. This will ensure that every input tone completes an integral number
of cycles over the total simulation time and thus prevents leakage and spreading effects.

2. The frequency of the different tones should not be multiples of one another. This will
minimize the chance that their harmonics and intermodulation products coincide.

The choice of sampling frequency and of the unit test period (a concept to be defined next)
will help us meet these constraints:

a) The unit test period
In order to minimize leakage effects when calculating the DFT of a

multitone system, we must ensure that each sinusoid in the multitone input

completes an integral number periods over the time of the analysis. The shortest

Tine ]

Figure A-1: Calculating the unit time period of a-3 tone input
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time interval which allows this for all tones is called the unit test perind (UTP), For
cxample, the unit test period for an input composed of 2 kHz, 3 kHz and 5§ kHz
sine waves is [ ms, as shown in Figure A-1. The reciprocal of the UTP is called the
primitive frequency and corresponds to the greatest divisor of the input
frequencies (1 kHz in our example). The value of the primitive frequency will help

determine the sampling frequency.

b) The sampling frequency

Since we want each of the input frequencies to correspond to one of the

discrete frequencies in the DFT, we let the sampling {requency be given by:

fy =N, (A.5)

where N = Number of points in the DFT
fp = Primitive frequency

Figure A-2 shows the results of a 16 point DFT performed on a system composed
of the three sine waves described in the previous section. Note that the sampling
frequency is 16 kHz. Only the first eight samples are shown since the other cight

are given by the mirror image of the first ones.

An additional problem which will affect the choice of the sampling

frequency is aliasing. We know from the Nyquist Sampling Theory that in order to

2kHz 3kHz 5kHz

1)
[-1]
or
L
ath
LT
LE]

[o.9]

samples
o1l P

f,=1 kHz o £/2 = 8 kHz

Figure A-2: Illustrating the relationship between the sampling
frequency and other multitone parameters
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prevent aliasing, we must make sure that the highest frequency contained in the
sampled signal is less than the Nyquist frequency, f /2. In other words, all of the
input tones must be at frequencies less than f, /2. Even with this precaution we
may get aliasing if any of the harmonics or the inter-modulation products are
greater than the Nyquist frequency. In this case, some Kind of anti-aliasing filter
would be needed. Most of the analysis done is this thesis was done such that the
cutoff frequency of the filter to be tested was much less than f /2. Therefore, the
natural attenvation of the filter limits the effect of aliasing and eliminates the need
for an anti-aliasing filter.

c¢) Frequency resolution

For a given sampling frequency, increasing the number of points in the
DFT (N} will increase the frequency resolution of the spectral output. Changing N
is analogous to controlling the resolution bandwidth on a spectrum analyzer. The
drawback to choosing a large ¥ is that the number of samples needed for the
transient analysis is large and thus increases the simulation time. Usually, one
attempts to find a balance between spectral resolution and run time. A second
constraint on N is the type of FFT algorithm used. A radix-2 algorithm needs 2N
samples while a radix-3 algorithm needs Y samples and so on. In our case, the
radix-2 algorithm was always used since it is generally faster. As a result, N_must
always be a power of 2.
d) Interference

Each tone must be placed at a frequency which will minimize the chance
that its harmonics and intermodulation distortion terms fall in the same frequency
bin. This is in general a very complic:!"}:":\-d process. Often one simply tries to use &
scheme which forces any possible overlapping harmonics to be of as high order as

possible. There are a number of approaches which can be used:

Prime-Rich Sienal
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One strategy is to base the set of input frequencies exclusively on prime
numbers. This ensures that none of the input frequencies are harmonic o0 one
another and that no sum or difference products fall on a test frequency.
Unfortunately, it does not prevent third and fifth order intermodulation

interference.

An lterative Scheme

Restricting the tones to prime numbers is a tedious process. Because of the
large number of constraints which are placed on the multitone stimulus we
eventually want to be able to automate the process by writing 1 computer program
which will automatically give us the frequency and other parameters for each tone.
As a result, a formula for deriving the frequency of each tone was borrowed {rom

telecom CODEC applications. The frequency of each tone is computed as lollows:

M;
Frone, = 7 S (A.6)
where:

[ = sampling frequency
N = Number of points in the DFT

M, =94+ [ix16] (A7)

i=012,.. as long as M; < (N2)
This method is more susceptible to interference between the harmonics of the
different input tones than the prime-rich scheme was. For example, the frequency
of the 16th harmonic of the first input tone will be the same as the frequency of the
16th tone; hence they will interfere with one another. The advantage of this
particular scheme is that it is easier to implement algorithmically. The test engineer

must decide whether the added interference is worth the greater ease of design.
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A.2.1.2  Phase

Because the periods of each sinusoid in the multitone input are related to one
another, the sinusoids will tend to peak at the same points in time. When many tones are
used this could lead to clipping in the circuit. The solution is to assign a random phase
shift to each different sinusoid. This is easily done since HSPICE can accept a phase shift

as one of the parameters of the input.

A.2.1.3  Amplitude

Even with phase shifting, the average power of the multitone signal will increase
with the number of tones used. To prevent overdriving the circuit, the amplitude of each
tone will be restricted to some reasonable value. Our strategy is to assign the amplitude of

cach sinusoid according to the following equation:

RMS of single tone = Desired RMS of multitone / .,/I—( (A.8)
where K = the number of tones in the multitone signal

For a sinusoid,

Peak of single tone = RMS of single tone * 2 (A.9)

Therefore, |

Peak of single tone = Desired RMS of multitone * J% (A.10)

A.2.14 A complete HSPICE current source
A typical HSPICE statement for one of the current sources in the multitone input

is shown below:

I; 1 0 SIN(0 100uA 10kHz 0 047.3)

N

Amplitude Damping
Frequency Time delay
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Some of these parameters are of no consequence in our analysis and hence have been set

to zero.

A.2.2 Analysis Requests

HSPICE 1s told what type of analysis to perferm by a command called an

analysis request. We wish to perform transient analysis such that we produce a sequence

of discrete-time samples {x(n)} which represent the output current of the log-domain

filter. This sequence will then be used to compute its discrete Fourier transform

The HSPICE request for transient analysis is done through the . TRAN command.

A typical . TRAN statement is shown below:
.TRAN 0.01s 1s 0.9s

e

time_step no_print_{ime
time_stop

The three times are calculated as follows;

time_step: The step time is given by the sampling frequency.

1
step =}‘- = Ts (A'“)

$

time

time_stop: The stop time would normally be the time for one unit test period which is

related to the sampling frequency by:

UTP = N-T, (A.12)

However, we wish to allow the simulation to run long enough for the output to settle down

[36]. Therefore the total stop time is defined as:

time,, = NP-N-T, (A13)

stop
where NP = Number of periods needed for the simulation to settle down

no_print_time: This makes sure that only the last N points are printed, and is computed
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according to:

no_print_time= [(NP-1)-N- T]+T,

(A1)

We now have all the tools necessary to perform a spectral analysis of our circuit. The next

section will show a simple example of how this would be donc.

A.3 An Example using the Log-Domain Biquad

We wish to obtain the frequency response of the log-domain biquad described in

Chapter 5. As we have some flexibility in choosing the component values of the biquad,

we will choose:

1, =100 uA
C,=82nF
Cr=22nF

which we know from theory should give us a cutoff frequency of:

f. = 63.8 kHz

The sampling criteria is chosen as follows:

Js
N=

= 500 kH:

512 points

Number of Tones =16
Number of Periods (NP) = 100

A C program was written which accounts for all of the criteria outlined in the previous two

sections. A listing of the program can be found in Section A-4. The multitone inpuls and

the transient analysis statement were generated automatically and are shown below:

LA 24

Isl
Is2
Is3
Is4q
IsS
Isé
Is7
Is8

Multitone Sources **+

0 SIN{100un
SIN(100uA
SIN(100uA
SIN(100un
SIN(100uA
SIN(100uA
SIN(100uA
SIN{100uA

P N o e
oo o o0oo0o

B0ua
80ua
80ua
80uA
80ua
80ua
80uh
BOuA

B8789.0625 0 0 184.9)
24414.0625 0 0 63.2}
40039.0625 0 0 111.1}
55664.0625 0 0 192.4)
71289.0625 0 0 341.1)
86914.0625 0 0 61.8)
102539.0625 0 0 252.8)
1181564.0625 0 0 B1.S5)
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Is9 1 0 SIN(10OuA B0uA 133789.0625 0 0 178.1)

Is10 1 0 SIN{100uA BOuA 149414.0625 0 0 44.8)
Isll 1 0 SIN{(100uA 80uA 165032.0625 0 0 30.2)
Iz12 1 0 SIN(100uA BOuA 180664.0625 0 0 140.2)
Isld 1 0 SIN(10QuA BOuA 196289.0625 0 0 99.8)
1s14 1 ¢ SIN(100uA 80uA 211914.0625 Q0 9 132.5)
Is15 1 ¢ SIN{100uA BOuA 227539.0625 0 0 354.0)
Isl6é 1 3 SIN{100uA BOuA 243164.0625 0 0 192.7)

*** Analysis Requests ***
.TRAN 0.000002 0.1024 Q0.101378 0.000002

We then run HSPICE and use MATLAB to calculate the FFT of the output. The
MATLAB file can be found in Section A.5. The result is plotted and is shown in Figure A-

3.

FFT Magnilude

- ) )] L 1 : 3 1
0 50 100 150 200 250 300 350 400 450 500
Samples

Figure A-3: FFT response of the log-domain biquad
The reader can clearly see the presence of the 16 tones of the multitone input.
This allows us to verify the frequency response and measure the cutoff frequency, which is

around 65 kHz, as expected. The smaller tones represent the many intermodulation
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products which occur when a multitone signal is applied to a circuit with non-lincarity

present in it.

Overall we can see how this offers an excellent alternative tor finding frequency
information about non-linear circuits. By varying the number of tones at the input we can
get total harmonic distortion and intermodulation distortion results, as well as {requency

TCSponse.

A.4 C Program for Generating the HSPICE File

The C program used to generate the multitone inputs and the .TRAN statement is

reproduced below.

/* This program generates multitone current sources

and a transient analysis statement the for an
HSPICE file */

#include <stdic.h>
kiticlude <stdlib.h>
#include <math.h>

#include <string.h>
#include <curses.h>

/*int M[16] =
{9,25,41,57,73,8%,105,121,137,153,169,185, 201,217,233
1249}/

main{)

(
/* Variables */

int i;

double Fs=1,Ftone;

double P=10;

int N=512;

double PhaseRand,Ts,Tn,Ttotal,Tdelay;
double A, Anorm, Adc, AdcNorm:
char *outfile="multitcne.out”;
FILE *fp;

double two=2, thirtyone=31l;
char string(80];

int nodel,node2;

int numTones;

int M;
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/* Clear screen and Write Title */

initseri);

eragal};

refreshi(};

printf{*Multitone Source Generator for FFT
hnalysis\n~}:

printf{ -=-n-mmrmm e mt e m e e
\n");

/* Prompt User for Program Information */
/* Spice Deck Information */

princf(*\nSpice Deck Information”};
printf(*\n-=======ccwrr—m——————— ")
princf(*\nEnter node 1 of the current sources: “};
scanf{“%s*,string};

nodel = atei(string);

printf{*Enter node 2 of the current sources: "};
scanf (“%s5",string);

node2 = atoi(string);

/* Waveform Information */

printf{*\nWaveform Information”);
printf{*\N--vseemmnre— e mumm ")

printf{*\nEnter the amplitude of a single tone [uA]l:
“¥:

scanf (“%s”",string);

A = atof(string);

printf{“Enter the DC bias of a single tone [uA]: “):
scanf (*%5*,string);

Adc = atef{string);

/* Transient Analysis Information */

printf({"\nTransient Analysis Information~*);
printf{*\n--=reemerm e e "):
printf(*\nEnter the sampling fregquency [Hz]: *):
scanf (“%s*, string);

Fs = atof({string):

printf(*Enter the number of points accorxrding to the
following table:");

printf(*\n\t\te==meeromemmmm e e "):
printf{*\n\t\t512 points\tl6 tones*);
printf(*\n\c\tl024 points\t32 tones”);
printf(*\n\t\t2048 points\t64 tones”};
printf{*\n\t\t-——recmcmem e o —aae e "y;
printf({*\nNumber of points: ");



scanf (“%s~,string):;
N = atof({string):

printf{"Enter the total number of periods of transient
analysis: "):

scanf (“%s",string};
P = atof({string};

princtf("\n~** Output will be written to multtone.out
**¥\n\ni\n");

/* Create multitone current sources
and save in file multitone.out */

fp = fopen{outfile,"w");

fprintf£{fp, "*** Multitone Sources ***\n");
Anorm = A*(0.3535534; /* Normalized Amplitudes */
AdcNorm = Ade/16;

if (N==512)

numTones=16;

else if (N==1024)

numTones=32;

else if (N==2048)

numTones=64;

for (i=1; i<=numTones; i++)

{

M={9+(i-1)*16);

Ftone = {double}M/ {double)N*Fs;

PhaseRand = rand(}/{powltwo, thirtyone)-1)*360;

fprintf(fp, "Is%d %d 3d SIMN{%funr %fuAr %.12E£ 0 O
%$4.8£)\n", i,nodel, node2,adc,A, Ftone, PhaseRand) ;

}
/* Create .TRAN statement */

TS 1/Fs;

n N*Ts;

Tteotal = P*Tn;

Tdelay = (P-1)*Tn + Ts;

fprintf(fp, "\n*** aAnalysis Requests ***\n"):

fprintf{fp, ".TRAN $%.12f %.12f %.12f
%.12f\n*,Ts,Ttotal, Tdelay,Ts);

[}

fclose({fp):
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A.5 MATLAB File for Calculating the FFT

The foilowing is the MATLAB file used to calculate the FFT and plot the result.

%1% A Matlab Program %%% To compute the FFT of a signal
1=512

load fftl.dat
iout = ff£li:,3)
s = size(iout)
bin = (l:s{l,1))"

F = £ft{iout)
Finag = abs(F)./(N/2)

subplot(l,1.1)
semilogy{bin, Fmag, '~"'}
grid

xlabel {’'Samples‘)
ylabel {*CGutput [A]’')
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