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Abstract 

Nectar is a “network backplane” for use in heterogeneous 
multicomputers. The initial system consists of a star- 
shaped fiber-optic network with an aggregate bandwidth 
of 1.6 gigabits/second and a switching latency of 700 
nanoseconds. The system can be scaled up by connecting 
hundreds of these networks together. 

The Nectar architecture provides a flexible way to 
handle heterogeneity and task-level parallelism. A wide 
variety of machines can be connected as Nectar nodes 
and the Nectar system software allows applications to 
communicate at a high level. Protocol processing is 
off-loaded to powerful communication processors so 
that nodes do not have to support a suite of network 
protocols. 

We have designed and built a prototype Nectar system 
that has been operational since November 1988. This 
paper presents the motivation and goals for Nectar and 
describes its hardware and software. The presentation 
emphasizes how the goals influenced the design deci- 
sions and led to the novel aspects of Nectar. 
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1 Introduction 

Parallel processing is widely accepted as the most 
promising way to reach the next level of computer sys- 
tem performance. Currently, most parallel machines 
provide efficient support only for homogeneous, fine- 
grained parallel applications. There are three problems 
with such machines. 

First, there is a limit to how far the performance of 
these machines can be scaled up. When that limit is 
reached, it becomes desirable to exploit coarse-grained, 
or task-level, parallelism by connecting together several 
such machines as nodes in a multicomputer. Second, 
there is a limit to the usefulness of homogeneous sys- 
tems; as we will argue below, heterogeneity (at hardware 
and software levels) is inherent in a whole class of im- 
portant applications. Third, parallel machines are typi- 
cally built from custom-made processor boards, although 
they sometimes use standard microprocessor compo- 
nents. These machines cannot readily take advantage 
of rapid advances in commercially-available sequential 
processors. 

Current local area networks (LANs) can be used to 
connect together existing machines, but this approach is 
unsatisfactory for a heterogeneous multicomputer with 
both general-purpose and specialized, high-performance 
machines. It is often not possible to implement effi- 
ciently the required communication protocols on special- 
purpose machines, and typical applications for such sys- 
tems require higher bandwidth and lower latency than 
current LANs can provide. 

The Nectar (network ~ompu&r architecture) project at- 
tacks the problem of heterogeneous, coarse-grained par- 
allelism on several fronts, from the underlying hardware, 
through the communication protocols and node operating 
system support, to the application interface to commu- 
nication. The solution embodied in the Nectar architec- 
ture is a two-level structure, with fine-g&red parallelism 
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within tasks at individual nodes, and coarse-grained par- 
allelism among tasks on different nodes. This system- 
level approach is influenced by our experience with pre- 
vious projects such as the Warp’ systolic array machine 
[l] and the Mach multiprocessor operating system [ 123. 

The Nectar architecture provides a general and sys- 
tematic way to handle heterogeneity and task-level par- 
allolism. A variety of existing systems can be plugged 
into a flexible, extensible network backplane. The Nec- 
tar system software allows applications to communicate 
at a high level, without requiring each node to support a 
suite of network protocols; instead, protocol processing 
is off-loaded to powerful network interface processors. 

We have designed and built a prototype Nectar system 
that has been operational since November 1988. This 
paper discusses the motivation and goals of the Nectar 
project, the hardware and software architectures, and 
our design decisions for the prototype system. We will 
evaluate the system with real applications in the coming 

Ye=. 
Section 2 of this paper summarizes the goals for 

Nectar. An overview of the Nectar system and the 
prototype implementation is given in Section 3. The 
two major functional units of the system, the HUB and 
CAB, are described in Sections 4 and 5. Section 6 
describes the Nectar software. Some of the applications 
that Nectar will support are discussed in Section 7. The 
paper concludes with Section 8. 

2 Nectar Goals 

There are three major technical goals for the Nectar sys- 
tem: heterogeneiry, scalability, and low-latency, high- 
bandwidth communication. These goals follow directly 
from the desire to support an emerging class of large- 
grained parallel programs whose characteristics are de- 
scribed below. 

2.1 Heterogeneity 

One of the characteristics of these applications is the 
need to process information at multiple, qualitatively 
different levels. For example, a computer vision system 
may require image processing on its raw input at the 
lowest level, and scene recognition using a knowledge 
base at the highest level. A speech understanding system 
has a similar structure, with low-level signal processing 
and high-level natural language pmiug. The processing 
required by an autonomous robot might range from 

handling sensor inputs to high-level planning. 
At the lowest levels, these applications deal with sim- 

ple data structures and highly regular number-crunching 

‘Warp is a service mark of Carnegie Mellon University. 

algorithms. The large amount of data at high rates of- 
ten requires specialized hardware. At the highest level, 
these applications may use complicated symbolic data 
structures and data-dependent flow of control. Special- 
ized inference engines or database machines might be 
appropriate for these tasks. The very nature of these 
applications dictates a heterogeneous hardware environ- 
ment, with varied instruction sets, data representations, 
and performance. 

Software heterogeneity is equally significant. The 
most natural programming language for each task ranges 
from Fortran and C to query languages and production 
systems. As a result, the system must handle differences 
in programming languages, operating systems, and data 
representations. 

2.2 Scalability 

Often the most cost-effective way of extending a system 
to support new applications is to add hardware rather 
than replacing the entire system. Also, by including 
a variety of processors, the system can take advantage 
of performance improvements in commercially available 
computers. In the Nectar system, it must therefore be 
possible to add or replace nodes without disruption: the 
bandwidth and latency between existing tasks should not 
be affected significantly, and it should not be necessary 
to change existing system software. Using the same 
hardware design, Nectar should scale up to a network 
of hundreds of supercomputer-class machines. 

2.3 Low-Latency, High-Bandwidth Com- 
munication 

The structure of these parallel applications requires com- 
munication among different tasks, both “horizontally” 
(among tasks operating at the same level of representa- 
tion) and “vertically” (between levels). The lower levels 
in particular require a high data rate (megabyte images 
at video rates, for example). Moreover, applications of- 
ten have response-time requirements that can only be 
satisfied by low-latency communication; two examples 
are continuous speech recognition and the control of au- 
tonomous vehicles. 

In general, by providing low-latency, high-bandwidth 
communication the system can rapidly distribute compu- 
tations to multiple processors. This allows the efficient 
parallel implementation of many applications. 

Lowering latency is much more challenging than 
increasing bandwidth, since the latter can always be 
achieved by using pipelined architectures with wide data 
paths and high-bandwidth communication media such as 
fiber-optic lines. Latency can be particularly difficult to 
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minimize in a large system where multi-hop communica- 
tion is necessary. Nectar has the following performance 
goals for communication latency: excluding the lrans- 
mission delays of the optical fibers, the latency for a 
message sent between processes on two CABS should 
be under 30 microseconds: the corresponding latency 
for processes residing in nodes should be under 100 mi- 
croseconds; and the latency to establish a connection 
through a single HUB should be under 1 microsecond. 

Figure 1: Nectar system overview 

3 The Nectar System 

3.1 System Overview 

The Nectar system consists of a Necfur-net and a set of 
CABS (communication accelerator boards), as illustrated 
in Figure 1. It connects a number of existing systems 
called nodes. The Nectar-net is built from fiber-optic 
lines and one or more HUBS. A HUB is a crossbar 
switch with a flexible &talink protocol implemented in 
hardware. A CAB is a RISC-based processor board serv- 
ing three functions: it implements higher-level network 
protocols; it provides the interface between the Nectar- 
net and the nodes; and it off-loads application tasks from 
nodes whenever appropriate. Every CAB is connected 
to a HUB via a pair of fiber lines carrying signals in 
opposite directions. A HUB together with its directly 
connected CABS forms a HUB cluster. 

In a system with a single HUB, all the CABS are 
connected to the same HUB (Figure 2). The number of 
CABS in the system is therefore limited by the number 
of T/O ports of the HUB. 

To build larger systems, multiple HUBS are needed. 
In such systems, some of the I/O ports on each HUB 
are used for inter-HUB fiber connections, as shown 

HUB 

Figure 2: A single-HUB system 

in Figure 3. The HUB clusters may be connected in 
any topology appropriate to the application environment. 
Since the I/O ports used for HUB-HUB and for CAB- 
HUB connections are identical, there is no a priori 
restriction on how many links can be used for inter-HUB 
connections. Figure 4 depicts a multi-HUB system using 
a 2-dimensional mesh to connect its clusters. 

The Nectar-net offers at least an order of magni- 
tude improvement in bandwidth and latency over current 
LANs. Moreover, the use of crossbar switches substan- 
tially reduces network contention. Moderate-size, high- 
speed crossbars (with setup latency under one microsec- 
ond) are now practical; &bit wide 32 x 32 crossbars can 
be built with off-the-shelf parts, and 128 x 128 crossbars 
are possible with custom VLSI. 

Re-engineering the software in the critical path of 
communication is as important for achieving low latency 
as building fast network hardware. Typical profiles of 
networking implementations on UNIX* show that the 
time spent in the software dominates the time spent on 
the wire [3,5,11]. 

There are three main sources of inefficiency in current 
networking implementations. First, existing application 
interfaces incur excessive costs due to context switching 
and data copying between the user process and the node 
operating system. Second, the node must incur the 
overhead of higher-level protocols that ensure reliable 
communications for applications. Third, the network 
interface burdens the node with interrupt handling and 
header processing for each packet. 

The Nectar software architecture alleviates these prob- 
lems by restructuring the way applications communicate. 
User processes have direct access to a high-level network 

*UNIX is a trademark of AT&T Bell Laboratories. 
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Figure 3: HUB cluster 

Figure 4: Multi-HUB system connected in a 2-D mesh 

interface mapped into their address spaces. Communi- 
cation overhead on the node is substantially reduced for 
three reasons. First, no system calls are required dur- 
ing communication. Second, protocol processing is off- 
loaded to the CAB. Third, interrupts are required only 
for high-level events in which the application is inter- 
ested, such as delivery of complete messages, rather thau 
low-level events such as the arrival of conml packets or 
timer expiration. 

3.2 Prototype Implementation 

We have built a prototype Nectar system to carry out 
extensive systems and applications experiments. The 
system includes three board types: CAB, HUB I/O 
board, and HUB backplane. As of early 1989 the 
prototype consists of 2 HUBS and 4 CABS. The system 
will be expanded to about 30 CABS in Spring 1989. 

In the prototype, a node can be any system running 
UNIX or Mach [12] with a VME interface. The initial 
Nectar system at Carnegie Mellon will have Sun-3s, Sun- 
4s and Warp systems as nodes. 

To speed up hardware construction, the prototype 
uses only off-the-shelf parts and 16 x 16 crossbars. 
The serial to parallel conversion is performed by a 
pair of TAXI chips manufactured by Advanced Micro 
Devices. The effective bandwidth per fiber line is 100 
megabits/second, a limit imposed by the TAXI chips. 

When the prototype has demonstrated that the Nectar 
architecture and software works well for applications, 
we plan to re-implement the system in custom or semi- 
custom VLSI. This will lead to larger systems with 
higher perfotmance and lower cost. 

4 The HUB 

The Nectar HUB establishes connections and passes 
messages between its input and output fiber lines. There 
are four design goals for the HUB: 

1. Low latency. The HUB provides custom hardware 
to minimize latency. In the prototype system, the 
latency to set up a connection and transfer the 
first byte of a packet through a single HUB is 
ten cycles (700 nanoseconds). Once a connection 
has been established, the latency to transfer a byte 
is five cycles (350 nanoseconds), but the transfer 
of multiple bytes is pipelined to match the 100 
megabits/second peak bandwidth of the fibers, 

2. High switching rate. In the prototype Nectar sys- 
tem, the HUB central controller can set up a new 
connection through the crossbar switch every 70 
nanosecond cycle. 

3. Efjcient support for multi-HUB systems. Because 
of the low switching and transfer latency of a single 
HUB, the latency of process to process communi- 
cation in a multi-HUB system is not significantly 
higher. Flow control for inter-HUB communication 
is implemented in hardware (see Section 4.2.3). 

4. Flexibility and high efficiency. The HUB hard- 
ware implements a set of simple commands for 
the most frequently used operations such as opcn- 
ing and closing connections. These commands can 
be executed in one cycle by the central HUB con- 
troller. By sending different combinations of these 
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simple commands to the HUB, CABS can imple- 
ment more complicated datalink protocols such as 
multicast and multi-HUB connections. The HUB 
hardware is flexible enough to implement point-to- 
point and multicast connections using either circuit 
or packet switching. In addition, HUB commands 
can be used to implement various network manage- 
ment functions such as testing, recontiguration, and 
recovery from hardware failures. 

4.1 HUB Overview 

The HUB has a number of I/O ports, each capable of 
connecting to a CAB or a HUB via a pair of fiber lines. 
The I/O port contains circuitry for optical to electrical 
and electrical to optical conversion. From the functional 
viewpoint, a port consists of an input queue and an output 

register as depicted in Figure 5. 

The HUB has a crossbar switch, which can connect the 
input queue of a port to the output register of any other 
port (see Figure 7). An input queue can be connected 
to multiple output registers (for multicast), but only one 
input queue can be connected to an output register at a 
time. A status table is used to keep track of existing 
connections and to ensure that no new connections are 
made to output registers that are already in use. The 
status table is maintained by a central controller and 
can be interrogated by the CABS. 

The I/O port extracts commands from the incoming 
byte stream, and inserts replies to the commands in the 
outgoing byte stream. Commands that require serializa- 
tion, such as establishing a connection, are forwarded to 
the central controller, while “localized” commands, such 
as breaking a connection, are executed inside the I/O 
port. 

For the prototype Nectar system, the HUB has 16 
I/O ports. ‘ILvo HUB I/O boards, each consisting of 
eight I/O ports, can be plugged into the HUB backplane. 
The backplane contains an &bit wide 16 x 16 crossbar 
and the central controller. Each I/O port interfaces to 
a pair of fiber lines at the front of the I/O board, This 
packaging scheme is depicted in Figure 6. An additional 
instrumentation board can be plugged into the backplane, 
as shown in the figure; it can monitor and record events 
related to the crossbar and its controller. 

Each I/O board in the prototype uses 305 chips and 
has a typical power consumption of 110 watts; the boards 
are 15 x 17 inches. The backplane uses 92 chips for the 
16 x 16 crossbar and 132 chips for the central controller. 
(47 chips in the crossbar and 20 chips in the controller are 
for hardware debugging.) The backplane has a typical 
power consumption of 70 watts. 

IN 

OUT 

Figure 5: HUB overview 

Backplane containing 
Crossbar & Central Controller 

fV v 
Fiber Out 

Figure 6: HUB packaging in the Nectar prototype 

4.2 HUB Commands and Usage 

The HUB hardware supports 38 user commands and 14 
supervisor commands for various datalink protocols. Su- 
pervisor commands are for system testing and reconfig- 
uration purposes, whereas user commands are for op- 
erations concerning connections, locks, status, and flow 
control. 

For the Nectar prototype each command is a sequence 
of three bytes: 

command HUB ID param 

The first byte specifies a HUB command, the second byte 
specifies the HUB to which the command is directed, and 
the third byte is a parameter for the command, typically 
the ID of one of the ports on that HUB, 

In the following we mention some of the user com- 
mands and describe how they can be used to implement 
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Figure 7: Connections on a 4-HUB system 

several datalink protocols. The four-HUB system de- 
picted in Figure 7 will be used in all the examples. 

4.2.1 Circuit Switching 

Using circuit switching, the entire route is set up first 
using a command packet, before a data packet is trans- 
mitted. (A data packet is framed by start of packet and 
end of packet.) To send data from CAB3 to CABl, 
CAB3 first establishes the route by sending out the fol- 
lowing command packet: 

open with retry HUB2 P8 
open with retry and reply HUB1 P8 

HUB2 will keep trying to open the connection from 
P4 to P8. After the connection is made, the open with 
retry and reply command is forwarded to HUB1 over 
the connection. After the connection from P3 to P8 in 
HUB1 is established, HUB1 sends a reply over the route 
established in the opposite direction, using another set 
of fiber lines, input queues, and output registers. By 
stealing cycles from these resources whenever necessary, 
the reply is never blocked and can reach CAB3 within 
a bounded amount of time. After receiving the reply, 

CAB3 knows that all the requested connections have 
been established, Then CAB3 sends data, followed by a 
close all command that travels over the established route. 

The close all command is recognized at the output 
register of each HUB in the route. After detecting 
the close all, the HUB closes the connection leading 
to the output register. Therefore all the connections 
will be closed after the data has flowed through them. 
Alternatively, close all can be replaced with a set of 
individual close commands, closing the connections in 
reverse order. 

If CAB3 does not receive a reply soon enough, it 
can try to get the connection status of the HUBS in- 
volved to find out what connections have been made, and 
can send another command packet requesting a different 
route (possibly starting from some existing connections). 
CAB3 can also decide to take down all the existing con- 
nections by using close all, and attempt to re-establish 
an entire route. 

4.2.2 Circuit Switching for Multicasting 

To illustrate how multicasting is implemented, consider 
the case in which CAB2 wants to send a data packet 
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to both CAB4 and CABS, as depicted in Figure 7. To 
establish the required connections, CAB2 can use the 
following command packet: 

open with retry HUB1 P6 
open with retry and reply HUB4 P5 
open with retry HUB4 P3 
open with retry and reply HUB3 P4 

After receiving replies to both of the open with retry 
and reply commands, CAB2 sends the data packet. 

4.2.3 Packet Switching 

The 

1. 

2. 

HUE! has two facilities to support packet switching: 

An input queue for each port, For the prototype 
Nectar system the length of the input queue, and 
thus the maximum packet size, is 1 kilobyte. (Cir- 
cuit switching must be used for larger packets but, 
since the overhead of circuit setup is small com- 
pared to the packet transmission time, this does not 
add significantly to latency.) 

Support for flow control. A ready bit is associated 
with each port of a HUB. The ready bit indicates 
whether the input queue of the next HUB CoMected 
to it is ready to store a new packet. Consider for 
example port P8 of HUB2 in Figure 7. This port 
is connected to port P3 of HUB 1. If the ready bit 
associated with P8 of HUB2 is 1, then the input 
queue of P3 of HUB1 is guaranteed to be ready to 
store a new packet. 

The ready bit associated with each port is set to 
1 initially. When start of packet is detected at 
the output register of the port, the ready bit is set 
to 0. Upon receipt of a signal from the next HUB 
indicating that the start of packet has emerged from 
the input queue connected to the port, the bit is set 
to 1, 

Suppose that CAB3 wants to send a data packet to 
CAB1 using the route shown in Figure 7. Using packet 
switching, CAB3 can send out the following packet: 

test open with retry HUB2 p8 
test open with retry HUB1 PS 
data 
close all 

The test open with retry command is used to enforce 
flow control. For example, the first test open with retry 
command ensures that HUB2 will not succeed in making 
the connection from P4 to P8 until port P3 of HUB1 is 
ready to store the entire data packet. Otherwise HUB2 
will keep trying to make the connection. Thus the packet 
is forwarded to the next HUB as soon as the input queue 
in that HUB becomes available. 

4.2.4 Packet Switching for Mulicasting 

Consider again the multicasting example of Section 4.2.2. 
Using packet switching, CAB2 can use the following 
commands to multicast a packet to CAB4 and CABS: 

test open with retry HUB1 P6 
test open with retry HUB4 P5 
test open with retry HUB4 P3 
test open with retry HUB3 P4 
data 
close all 

5 The CAB 

The CAB is the interface between a node and the Nectar- 
net. It handles the transmission and reception of data 
over the fibers connected to the network. Communi- 
cation protocol processing is off-loaded from the node 
to the CAB thus freeing the node from the burden of 
handling packet interrupts, processing packet headers, 
retransmitting lost packets, fragmenting large messages, 
and calculating checksums. 

5.1 CAB Design Issues 

The design of the CAB is driven by three requirements: 

1. The CAB must be able to keep up with the aansmis- 
sion rate of the optical fibers (100 megabits/second 
in each direction). 

2. The CAB should ensure that messages can be trans- 
mitted over the Nectar-net with low latency. The 
HUB can set up a connection and begin transfer- 
ring a data packet in less than one microsecond. 
Thus any latency added by the CAB can contribute 
significantly to the overall latency of message trans- 
mission, 

3. The CAB should provide a flexible environment 
for the efficient implementation of protocols and 
selected applications. Specifically, it should be 
possible to implement a simple operating system on 
the CAB that allows multiple lightweight processes 
to share CAB resources. 

Together these design goals require that the CAB 
be able to handle incoming and outgoing data at the 
same time as meeting local processing needs. This is 
accomplished by including a hardware DMA controller 
on the CAB. The DMA controller is able to manage 
simultaneous data transfers between the incoming and 
outgoing fibers and CAB memory, as well as between 
VME and CAB memory, leaving the CAB CPU free for 
protocol and application processing. 
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Figure 8: CAB block diagram 

To meet the protocol and application processing re- 
quirements, we designed the CAB around a high perfor- 
mance RISC CPU and fast local memory. The choice 
of a high-speed CPU, rather than a custom microengine 
or lower performance CPU, distinguishes the CAB from 
many I/O controllers. The latest RISC chips are com- 
petitive with microsequencers in speed, but offer ad- 
ditional flexibility and a familiar development environ- 
ment. Older general-purpose microprocessors would be 
unable to keep up with the protocol processing require- 
ments at fiber speeds, let alone provide cycles for user 
tasks. 

Allowing application software to run on the CAB is 
important to many applications but has dangers. In par- 
ticular, incorrect application software may corrupt CAB 
operating system data structures. To prevent such prob- 
lems, the CAB provides memory protection on a per- 
page basis and hardware support for multiple protection 
domains. 

The CAB design also includes various devices to 
support high-speed communication: hardware checksum 
computation removes this burden from protocol soft- 
ware; hardware timers allow time-outs to be set by the 
software with low overhead. 

5.2 CAB Implementation 

The prototype CAB implementation uses as its RISC 
CPU a SPARC processor running at 16 megahertz. A 
block diagram of the CAB is shown in Figure 8. 

A VME interface to the node was the natural choice in 

our environment, allowing Sun workstations and Warp 
systems to be used in the Nectar prototype. The initial 
CAB implementation supports a VME bandwidth of 10 
megabytes/second, which is close to the speed of the 
current fiber interface. 

Two fibers (one for each direction) connect each CAB 
to the HUB. The fiber interface uses the same circuit as 
the HUB I/O port (see Section 4.1). Data can be read or 
written to the fiber input or output queue by the CPU, but 
for data transfers of more than small numbers of words 
the DMA controller should be used to achieve higher 
transmission rates. The DMA controller also handles 
flow control during a transfer: the DMA controller waits 
for data to arrive if the input queue is empty, or for data 
to drain if the output queue is full. 

The on-board CAB memory is split into two regions: 
one intended for use as program memory, the other as 
data memory. DMA transfers are supported for data 
memory only; transfers to and from program memory 
must be performed by the CPU. The memory architec- 
ture is thus optimized for the expected usage pattern. 
although still allowing code to be executed from data 
memory or packets to be sent from program memory. 

In the prototype, the total bandwidth of the data 
memory is 66 megabytes/second, sufficient to support 
the following concurrent accesses: CPU reads or writes, 
DMA to the outgoing fiber, DMA from the incoming 
fiber, and DMA to or from VME memory. The program 
memory has the same bandwidth as data memory and is 
thus able to sustain the peak CPU execution rate. 

The program memory region contains 128 kilobytes 
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of PROM and 512 kilobytes of RAM. The data memory 
region contains 1 megabyte of RAM. Both memories 
are implemented using fast (35 nanosecond) static RAM. 
Using static RAM in the prototype rather than less 
expensive dynamic RAM plus caching was worth the 
additional cost-it allowed us to focus on the more 
innovative aspects of the design instead of expending 
effort on a cache. 

The CAB’s memory protection facility allows each 1 
kilobyte page to be protected separately. Each page of 
the CAB address space (including the CAB registers and 
devices) can be assigned any subset of read, write, and 
execute permissions. All accesses from the CAB CPU 
or from over the VMB bus are checked in parallel with 
the operation so that no latency is added to memory 
accesses. The flexibility, safety, and debugging support 
that memory protection affords the CAB software is 
worth the non-trivial cost in design time and board area. 

The memory protection includes hardware support for 
multiple protection domains, with a separate page protec- 
tion table for each domain. Currently the CAB supports 
32 protection domains. The assignment of protection 
domains is under the control of the CAB operating sys- 
tem kernel. The kernel can therefore ensure that the 
CAB system software is protected from user tasks and 
that user tasks are protected from one another. In addi- 
tion, accesses from over the VME bus are assigned to a 
VME-specific protection domain. 

The CAB occupies a 24-bit region of the node’s VME 
address space. Every device accessible to the CAB CPU 
is also visible to the node, allowing complete control of 
the CAB from the node. In normal operation, however, 
the node and CAB communicate through shared buffers, 
DMA, and VMB interrupts. 

The CAB prototype is a 15 x 17 inch board, with a 
typical power consumption of 100 watts. Of the nearly 
360 components on the densely packed board about 25% 
are for the data memory and DMA ports, 15% for the 
VMB interface, 15% for the CPU and program memory, 
and 13% for the I/O ports. The remaining 120 or so chips 
are divided among the DMA controller, CAB registers, 
hardware checksum computation, memory protection, 
and clocks and timers. 

6 Software 

The design of the Nectar software has two goals: 

1. Minimize communication latency between user pro- 
cesses. Since processing overhead on the send- 
ing and receiving nodes accounts for most of the 
communication latency over local area networks 
[3.5,113, the software organization plays a critical 

2. 

role in reducing the latency. To achieve low la- 
tency, data copying and context switching must be 
minimized. 

Provide a flexible software environment on the CAL3. 
This will convert a bare “protocol engine” into a 
customizable network interface. When appropriate, 
the CAB can also be used to off-load application 
tasks from the node. 

The software currently running on the prototype sys- 
tem consists of the CAB kernel, communication proto- 
cols, and Nectarine, a library for programming applica- 
tions. 

6.1 The CAB Kernel 

Candidate run-time systems for the CAB range from 
a minimal single-task system to a complete UNIX im- 
plementation. To provide the required efficiency and 
flexibility, we built the CAB kernel around lightweight 
processes similar to Mach threads [8]. Threads support 
multitasking so the CAB can execute multiple activities 
concurrently in a time-shared fashion, but, since threads 
have little state associated with them, the cost of con- 
text switching is low. Thread switching takes between 
10 and 15 microseconds; almost all of this time is spent 
saving and restoring the SPARC register windows. 

Threads execute as a set of coroutines, using a simple, 
non-preemptive scheduler. This organization matches 
the intended use of the CAB: a thread will be awakened 
by an event (such as the arrival of a packet), will 
take some action (such as processing transport protocol 
headers), and will voluntarily go back to waiting for 
another event, 

The CAB kemet provides support for simple, time- 
critical operations such as memory management and 
timers, but it relies on the node operating system for 
more complicated operations such as file I/O. The CAB 
invokes these services by interrupting the node over the 
VMB bus. 

Another CAB function is to provide temporary buffer 
space for messages in an efficient way. This is achieved 
using mailboxes in CAB memory. In the common 
single-reader, single-writer case, allocating and reclaim- 
ing space is simple because mailboxes behave like 
FIFOs. Mailboxes also support multiple readers, mul- 
tiple writers, and out-of-order reads. These access pat- 
terns occur, for example, when multiple servers operate 
on different messages in the same mailbox. 

6.2 Communication 

The communication software has three main parts: the 
datalink protocol on the CAB, transport protocols on 
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the CAB, and node software dealing with the CAB- 
node interface. The main guideline in the design of the 
communication software was to avoid data copying and 
context switching on both the CAB and the node. 

6.2.1 Datalink Protocol 

The datalink protocol transfers data packets between 
CABS using HUB commands, manages HUB connec- 
tions, and recovers from framing errors and lost HUB 
commands. The most frequently used simple operations, 
such as sending a packet to a node in the same HUB 
cluster, are implemented in hardware as a single HUB 
command, while more complicated and less frequent op- 
erations, such as multicasting and error recovery, are im- 
plemented in software. 

The interface between the datalink and transport layers 
passes packets by reference, thus avoiding the copying 
of data. During a send, the datalink gathers the packet 
when it transfers the data to the fiber output queue 
using DMA. During a receive, the datalink interrupt 
handler, invoked by the start of packet signal, executes 
an upcull [6] to a transport layer routine. This routine 
uses the transport header to determine the destination 
mailbox for the packet. The datalink layer then sets up 
the DMA to transfer the incoming data to the destination 
mailbox. The transport layer upcalls must determine 
the destination mailbox and return to the datalink layer 
before incoming &ta overflows the CAB input queue. 

The datalink code is executed entirely by interrupt 
handlers and by procedures that are called from transport 
or application threads, so there is no context switching 
overhead at the datalink-transport interface. The SPARC 
architecture helps reduce the overhead for critical inter- 
rupts by reserving a register window for trap handling. 

6.2.2 Transport Protocols 

The transport layer is responsible for message transfer 
between mailboxes on different CABS. This involves 
breaking messages into packets, reassembling messages, 
flow control, and retransmission of lost and damaged 
packets. Three protocols have been implemented: 

l The datagram protocol has low overhead but does 
not guarantee packet delivery; it is a direct interface 
to the datalink layer and should only be used by 
applications that can tolerate or recover from lost 
packets. 

l The byte-stream protocol provides reliable commu- 
nication using acknowledgments, retransmissions, 
and a sliding window for flow control. 

0 The request-response protocol supports client-ser- 
ver interactions such as remote procedure calls. 

The current transport protocols are simple and Nectar- 
specific. We plan to experiment with the corresponding 
Internet protocols (IP, TCP, and VMTP [4]) over Nectar 
in the coming year. 

Each transport protocol can be invoked through a 
procedure call or by placing a command in a special 
mailbox. In both cases, the message to be sent is 
specified as a list of areas located in CAB memory 
or in CAB-accessible VME memory. When sending 
large messages between nodes, it is important to overlap 
packet transfers over the Nectar-net and over the VME 
bus at each end, in order to reduce latency and increase 
throughput. The CABS at the sender and receiver sides 
are well suited for setting up this “packet pipeline”: they 
can select an optimal packet size, synchronize the various 
DMAs, and manage the buffers. 

6.2.3 CAB-Node interface 

Three CAB-node interfaces are provided, with different 
tradeoffs between efficiency and transparency: 

l 

l 

l 

6.3 

The most efficient CAB-node interface is based on 
shared memory: the CAB memory is mapped into 
the address space of the node process, and the node 
process builds or consumes messages in place in 
CAB memory. Node processes invoke services by 
placing a command in a special mailbox on the 
CAB. This interface is efficient since it eliminates 
copying the message between the node and the 
CAB and does not involve the operating system on 
the node. Messages are received by polling CAB 
memory. 

A second approach is to provide a Berkeley UNIX 
socket interface to Nectar. This interface is less ef- 
ficient since it involves system call overhead and 
data copying on the node. But the transport pro- 
tocol overhead is off-loaded onto the CAB. This 
approach allows existing source code to be used on 
Nectar with minimal modification. 

The third interface is a Berkeley UNIX network 
driver for Nectar. In this case, Nectar is used as 
a “dumb” network and all transport protocol pro- 
cessing is performed on the node, The advantage 
of this approach is binary compatibility for current 
applications such as network file systems and win- 
dow systems. 

Programming Nectar: Nectarine 

Nectarine is a programming interface that gives the pro- 
grammer access to the Nectar hardware and low-level 
software. It is similar to the communication interface 
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available on other distributed-memory machines such as 
hypercubes [2]. An important difference is that Nec- 
tarine must accommodate heterogeneous nodes, operat- 
ing systems, memories, attached processors, and other 
devices. 

Nectarine presents the programmer with a simple com- 
munication abstraction: applications consist of rusks that 
communicate by transferring messages between user- 
specified buffers. Tasks are processes on any CAB or 
node. Messages can be located in any memory. Us- 
ing Nectarine, the programmer can create tasks, manage 
buffers, and send and receive messages. Nectarine min- 
imizes the number of copy operations and uses DMA 
whenever possible. 

The fact that Nectarine hides much of the heterogene- 
ity does not free the programmer from knowing the cbar- 
acteristics of nodes and memories, because the allocation 
of tasks and data to processors and memories has a se- 
rious impact on performance. For example, whether a 
message is allocated in CAB or node memory influences 
how efficiently the message can be built and how fast it 
can be sent. 

Work has started on higher-level programming tools 
for Nectar. We are developing a high-level language 
that will be mapped onto a specific Nectar configuration 
by a compiler. Automating the mapping process will not 
only simplify the programming task, but will also make 
programs portable across multiple Nectar configurations 
or other distributed systems. 

7 Applications 

The prototype Nectar system will be used for a wide 
spectrum of applications ranging from parallel programs, 
in which Nectar is used as a multicomputer, to research in 
distributed operating systems, in which Nectar is viewed 
as a fast LAN. 

One of the first Nectar applications is in the area of 
vision. The application uses a Warp machine [l] for 
low-level vision analysis and Sun workstations for ma- 
nipulating image features that are stored in a distributed 
spatial database. It requires both high bandwidth for im- 
age transfer and low latency for communication between 
nodes in the database. This application has a static com- 
putational model: the assignment of tasks to nodes is 
done when the application is started. 

We are implementing a parallel production system as 
an example of an application that requires run-time load 
balancing. Matching is performed in parallel using a 
distributed RETE network, and tokens that propagate 
through the network are stored in a distributed task 
queue 1141. The low latency communication of Nectar 
provides good support for the fine-grained parallelism 

required by this application. 

The flexibility of Nectar allows it to run applications 
originally written for other parallel systems. For exam- 
ple, to run hypercube applications on Nectar, we have 
implemented the Intel iPSC communication library [lo] 
on top of Nectarine. Since Nectarine is functionally a 
superset of the iPSC primitives, this implementation is 
relatively simple. Several large applications are being 
ported to Nectar using this approach, including simu- 
lated annealing and a solid modeling system based on 
the octree data structure. 

Large-scale scientific applications that execute well on 
loosely-coupled arrays of processors [71 are also eas- 
ily ported to Nectar. Powerful, general-purpose Nectar 
nodes can provide sufficient processing power and mem- 
ory to meet the computational demands of these applica- 
tions and the Nectar-net has the bandwidth to meet their 
communication needs. 

The high bandwidth and low latency provided by Nec- 
tar also make it an attractive architecture for communica- 
tion-intensive distributed applications. Examples of such 
applications include distributed transaction systems, such 
as Camelot [133, and the simulation of shared virtual 
memory over a distributed system using Mach [9]. In 
these applications, the CAB will play a critical role as 
an operating system co-processor. 

8 Conclusions 

Architectures to exploit the high-level, irregular paral- 
lelism found in large applications should support het- 
erogeneity, low-latency communication, and scalability. 
The Nectar architecture meets these goals: it is based 
on a “network backplane” that consists of a high-speed 
fiber-optic network, large crossbar switches, and power- 
ful network interface processors. 

The hardware design takes advantage of the availabil- 
ity of fast crossbar chips, fiber-optic technology, and 
RISC processors that can keep up with fiber speeds. The 
software architecture has benefited from experience with 
network communication, operating systems, and parallel 
applications. 

The prototype shows that the proposed architecture 
can be implemented. Developing real applications on the 
prototype is the next step; we will use these applications 
to evaluate the basic ideas of Nectar, to judge how well 
the design meets its goals, and to guide us in evolving 
the prototype into a large-scale system with hundreds of 
nodes in production use. 

215 



Acknowledgements 

The Nectar project is a team effort. The follow- 
ing people have made invaluable contributions to the 
project: Matthieu Amould, Bemd Bruegge, Vincent 
Cate, Ming-Jen Chan, Cheng Chen, Chiun-Hong Chien, 
Takashi Hot& Mike MacPherson, Onat Menzilcioglu, 
Martha Moran, Ravishankar Mosur, Hudson Ribas, 
Steven Schlick, Wilhelm S&mid, Venkatadri Seshadri, 
Bruce Siegell, Bemd Spiegel, I-Chen Wu, and Brian Zill. 
We are also grateful to Sun Microsystems for technical 
assistance with the SPARC architecture. 

References 

PI Marco Annaratone, Emmanuel Amould, Thomas Gross, 

H. T. Kung, Monica Lam, Onat Menzilcioglu, and Jon A. 

Webb. 

The Warp computer: architecture, implementation and per- 

formance. 

IEEE Transactions on Computers, C-36(12):1523-1538, 

December 1987. 

PI William C. Athas and Charles L. Seitz. 
Multicomputers: message-passing concurrent computers. 

Computer, 21(8):9-24, August 1988. 

131 Luis-Felipe Cabrera, Edward Hunter, Michael J. Karels, and 

David A. Mosher. 

User-process communication performance in networks of 
computers. 

IEEE Transactions on Software Engineering, X-14(1):38- 
53, January 1988. 

[41 David R. Cheriton. 
VMTP: Versatile Message Transaction Protocol. 

RFC 1045, Stanford University, February 1988. 

PI Greg Chesson. 

Protocol engine design. 

In Proceedings of the S ummer 1987 USENIX Conference, 

pages 209-215, June 1987. 

[61 David D. Clark. 

The structuring of systems using upcalls. 

In Proceedings of the Tenth ACM Symposium on Operating 
Systems Principles, pages 171-180, ACM, December 

1985. 

171 E. Clementi, J. Detrich, S. Chin, G. Corongiu, D. Folsom, D. 

Logan, R. Caltabiano, A. Carnevali, J. Helin, M. Russo, 

A. Gnuda, and P. Palamidese. 
Large-scale computations on a scalar, vector and parallel 

“Supercomputer”. 

In E. Clementi and S. Chin, editors, Structure andDynamics 
of Nucleic Acids, Proteins and Membranes, pages 403- 

450, Plenum Press, 1986. 

PI 

r91 

r101 

i-111 

WI 

1131 

[141 

Eric C. Cooper and Richard P. Draves. 

C Threads. 

Technical Report CMU-CS-88-154, Computer Science De- 
partment, Carnegie Mellon University, June 1988. 

Allesandro Forin, Joseph Barrera, and Richard Sanzi. 

The shared memory server. 
In Winter USENIX Conference, Usenix, San Diego, January 

1989. 

iPSCI2 C Programmer’s Reference h4anual. 

Intel Corporation, March 1988. 

Hemant Kanakia and David R. Cheriton. 

The VMP network adaptor board (NAB): high-performance 
network communication for multiprocessors. 

In Proceedings of the SIGCOMM ‘88 Symposium on Com- 
munications Architectures ana’ Protocols, pages 175-187, 

ACM, August 1988. 

Also published as Computer Communications Review, 

18(4). 

Richard F. Rashid, Avadis Tevanian, Jr., Michael W. Young, 
David B. Golub, Robert V. Baron, David L. Black, 
William Bolosky, and Jonathan J. Chew, 

Machine-independent virtual memory management for 

paged uniprocessor and multiprocessor architectures. 

IEEE Transactions on Computers, C-37(8):896-908, Au- 

gust 1988. 

Alfred 2. Spector, Joshua J. Bloch, Dean S. Daniels. 

Richard P. Draves, Daniel J. Duchamp, Jeffrey L. Ep- 

pinger, Sherri G. Menees, and Dean S. Thompson. 

The Camelot project. 
Database Engineering, 9(4), December 1986. 

Also published as Technical Report CMU-CS-86-166, Com- 

puter Science Department, Carnegie Mellon University, 
November 1986. 

Milind Tambe, Dirk Kalp, Anoop Gupta. Charles Forgy, 
Brian Milnes, and Allen Newell. 

Soar/PSM-E: investigating match parallelism in a learning 

production system. 

In Proceedings of the ACMISIGPLAN PPEALS 1988: Par- 

allel Programming: Experience with Applications, Lan- 

guages, and Systems, pages 146-161, ACM, July 1988. 
Also published as SIGPLAhJ Notices, 23(9). 

216 


