
The Design of Nectar:

A Network Backplane for Heterogeneous Multicomputers

Emmanuel A. Arnould Fraqois J. Bitz Eric C. Cooper
H. T. Kung Robert D. Sansom Peter A. Steenkiste

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Nectar is a “network backplane” for use in heterogeneous
multicomputers. The initial system consists of a star-
shaped fiber-optic network with an aggregate bandwidth
of 1.6 gigabits/second and a switching latency of 700
nanoseconds. The system can be scaled up by connecting
hundreds of these networks together.

The Nectar architecture provides a flexible way to
handle heterogeneity and task-level parallelism. A wide
variety of machines can be connected as Nectar nodes
and the Nectar system software allows applications to
communicate at a high level. Protocol processing is
off-loaded to powerful communication processors so
that nodes do not have to support a suite of network
protocols.

We have designed and built a prototype Nectar system
that has been operational since November 1988. This
paper presents the motivation and goals for Nectar and
describes its hardware and software. The presentation
emphasizes how the goals influenced the design deci-
sions and led to the novel aspects of Nectar.

This research was supported in part by Defense Advanced
Research Projects Agency (DOD) monitored by the Space and
Naval Warfare Systems Command under Contract NOOO39-87-
C-0251, and in part by the Office of Naval Research under
Contracts NOOO14-87-K-0385 and NOOO14-87-K-0533.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/

or specific permission.

0 1989 ACM 0-89791-300-O/89/0004/0205 $1.50

1 Introduction

Parallel processing is widely accepted as the most
promising way to reach the next level of computer sys-
tem performance. Currently, most parallel machines
provide efficient support only for homogeneous, fine-
grained parallel applications. There are three problems
with such machines.

First, there is a limit to how far the performance of
these machines can be scaled up. When that limit is
reached, it becomes desirable to exploit coarse-grained,
or task-level, parallelism by connecting together several
such machines as nodes in a multicomputer. Second,
there is a limit to the usefulness of homogeneous sys-
tems; as we will argue below, heterogeneity (at hardware
and software levels) is inherent in a whole class of im-
portant applications. Third, parallel machines are typi-
cally built from custom-made processor boards, although
they sometimes use standard microprocessor compo-
nents. These machines cannot readily take advantage
of rapid advances in commercially-available sequential
processors.

Current local area networks (LANs) can be used to
connect together existing machines, but this approach is
unsatisfactory for a heterogeneous multicomputer with
both general-purpose and specialized, high-performance
machines. It is often not possible to implement effi-
ciently the required communication protocols on special-
purpose machines, and typical applications for such sys-
tems require higher bandwidth and lower latency than
current LANs can provide.

The Nectar (network ~ompu&r architecture) project at-
tacks the problem of heterogeneous, coarse-grained par-
allelism on several fronts, from the underlying hardware,
through the communication protocols and node operating
system support, to the application interface to commu-
nication. The solution embodied in the Nectar architec-
ture is a two-level structure, with fine-g&red parallelism

205

within tasks at individual nodes, and coarse-grained par-
allelism among tasks on different nodes. This system-
level approach is influenced by our experience with pre-
vious projects such as the Warp’ systolic array machine
[l] and the Mach multiprocessor operating system [123.

The Nectar architecture provides a general and sys-
tematic way to handle heterogeneity and task-level par-
allolism. A variety of existing systems can be plugged
into a flexible, extensible network backplane. The Nec-
tar system software allows applications to communicate
at a high level, without requiring each node to support a
suite of network protocols; instead, protocol processing
is off-loaded to powerful network interface processors.

We have designed and built a prototype Nectar system
that has been operational since November 1988. This
paper discusses the motivation and goals of the Nectar
project, the hardware and software architectures, and
our design decisions for the prototype system. We will
evaluate the system with real applications in the coming

Ye=.
Section 2 of this paper summarizes the goals for

Nectar. An overview of the Nectar system and the
prototype implementation is given in Section 3. The
two major functional units of the system, the HUB and
CAB, are described in Sections 4 and 5. Section 6
describes the Nectar software. Some of the applications
that Nectar will support are discussed in Section 7. The
paper concludes with Section 8.

2 Nectar Goals

There are three major technical goals for the Nectar sys-
tem: heterogeneiry, scalability, and low-latency, high-
bandwidth communication. These goals follow directly
from the desire to support an emerging class of large-
grained parallel programs whose characteristics are de-
scribed below.

2.1 Heterogeneity

One of the characteristics of these applications is the
need to process information at multiple, qualitatively
different levels. For example, a computer vision system
may require image processing on its raw input at the
lowest level, and scene recognition using a knowledge
base at the highest level. A speech understanding system
has a similar structure, with low-level signal processing
and high-level natural language pmiug. The processing
required by an autonomous robot might range from

handling sensor inputs to high-level planning.
At the lowest levels, these applications deal with sim-

ple data structures and highly regular number-crunching

‘Warp is a service mark of Carnegie Mellon University.

algorithms. The large amount of data at high rates of-
ten requires specialized hardware. At the highest level,
these applications may use complicated symbolic data
structures and data-dependent flow of control. Special-
ized inference engines or database machines might be
appropriate for these tasks. The very nature of these
applications dictates a heterogeneous hardware environ-
ment, with varied instruction sets, data representations,
and performance.

Software heterogeneity is equally significant. The
most natural programming language for each task ranges
from Fortran and C to query languages and production
systems. As a result, the system must handle differences
in programming languages, operating systems, and data
representations.

2.2 Scalability

Often the most cost-effective way of extending a system
to support new applications is to add hardware rather
than replacing the entire system. Also, by including
a variety of processors, the system can take advantage
of performance improvements in commercially available
computers. In the Nectar system, it must therefore be
possible to add or replace nodes without disruption: the
bandwidth and latency between existing tasks should not
be affected significantly, and it should not be necessary
to change existing system software. Using the same
hardware design, Nectar should scale up to a network
of hundreds of supercomputer-class machines.

2.3 Low-Latency, High-Bandwidth Com-
munication

The structure of these parallel applications requires com-
munication among different tasks, both “horizontally”
(among tasks operating at the same level of representa-
tion) and “vertically” (between levels). The lower levels
in particular require a high data rate (megabyte images
at video rates, for example). Moreover, applications of-
ten have response-time requirements that can only be
satisfied by low-latency communication; two examples
are continuous speech recognition and the control of au-
tonomous vehicles.

In general, by providing low-latency, high-bandwidth
communication the system can rapidly distribute compu-
tations to multiple processors. This allows the efficient
parallel implementation of many applications.

Lowering latency is much more challenging than
increasing bandwidth, since the latter can always be
achieved by using pipelined architectures with wide data
paths and high-bandwidth communication media such as
fiber-optic lines. Latency can be particularly difficult to

206

minimize in a large system where multi-hop communica-
tion is necessary. Nectar has the following performance
goals for communication latency: excluding the lrans-
mission delays of the optical fibers, the latency for a
message sent between processes on two CABS should
be under 30 microseconds: the corresponding latency
for processes residing in nodes should be under 100 mi-
croseconds; and the latency to establish a connection
through a single HUB should be under 1 microsecond.

Figure 1: Nectar system overview

3 The Nectar System

3.1 System Overview

The Nectar system consists of a Necfur-net and a set of
CABS (communication accelerator boards), as illustrated
in Figure 1. It connects a number of existing systems
called nodes. The Nectar-net is built from fiber-optic
lines and one or more HUBS. A HUB is a crossbar
switch with a flexible &talink protocol implemented in
hardware. A CAB is a RISC-based processor board serv-
ing three functions: it implements higher-level network
protocols; it provides the interface between the Nectar-
net and the nodes; and it off-loads application tasks from
nodes whenever appropriate. Every CAB is connected
to a HUB via a pair of fiber lines carrying signals in
opposite directions. A HUB together with its directly
connected CABS forms a HUB cluster.

In a system with a single HUB, all the CABS are
connected to the same HUB (Figure 2). The number of
CABS in the system is therefore limited by the number
of T/O ports of the HUB.

To build larger systems, multiple HUBS are needed.
In such systems, some of the I/O ports on each HUB
are used for inter-HUB fiber connections, as shown

HUB

Figure 2: A single-HUB system

in Figure 3. The HUB clusters may be connected in
any topology appropriate to the application environment.
Since the I/O ports used for HUB-HUB and for CAB-
HUB connections are identical, there is no a priori
restriction on how many links can be used for inter-HUB
connections. Figure 4 depicts a multi-HUB system using
a 2-dimensional mesh to connect its clusters.

The Nectar-net offers at least an order of magni-
tude improvement in bandwidth and latency over current
LANs. Moreover, the use of crossbar switches substan-
tially reduces network contention. Moderate-size, high-
speed crossbars (with setup latency under one microsec-
ond) are now practical; &bit wide 32 x 32 crossbars can
be built with off-the-shelf parts, and 128 x 128 crossbars
are possible with custom VLSI.

Re-engineering the software in the critical path of
communication is as important for achieving low latency
as building fast network hardware. Typical profiles of
networking implementations on UNIX* show that the
time spent in the software dominates the time spent on
the wire [3,5,11].

There are three main sources of inefficiency in current
networking implementations. First, existing application
interfaces incur excessive costs due to context switching
and data copying between the user process and the node
operating system. Second, the node must incur the
overhead of higher-level protocols that ensure reliable
communications for applications. Third, the network
interface burdens the node with interrupt handling and
header processing for each packet.

The Nectar software architecture alleviates these prob-
lems by restructuring the way applications communicate.
User processes have direct access to a high-level network

*UNIX is a trademark of AT&T Bell Laboratories.

207

HUB

I=
CAR

nzi’u
CLlsTER

Figure 3: HUB cluster

Figure 4: Multi-HUB system connected in a 2-D mesh

interface mapped into their address spaces. Communi-
cation overhead on the node is substantially reduced for
three reasons. First, no system calls are required dur-
ing communication. Second, protocol processing is off-
loaded to the CAB. Third, interrupts are required only
for high-level events in which the application is inter-
ested, such as delivery of complete messages, rather thau
low-level events such as the arrival of conml packets or
timer expiration.

3.2 Prototype Implementation

We have built a prototype Nectar system to carry out
extensive systems and applications experiments. The
system includes three board types: CAB, HUB I/O
board, and HUB backplane. As of early 1989 the
prototype consists of 2 HUBS and 4 CABS. The system
will be expanded to about 30 CABS in Spring 1989.

In the prototype, a node can be any system running
UNIX or Mach [12] with a VME interface. The initial
Nectar system at Carnegie Mellon will have Sun-3s, Sun-
4s and Warp systems as nodes.

To speed up hardware construction, the prototype
uses only off-the-shelf parts and 16 x 16 crossbars.
The serial to parallel conversion is performed by a
pair of TAXI chips manufactured by Advanced Micro
Devices. The effective bandwidth per fiber line is 100
megabits/second, a limit imposed by the TAXI chips.

When the prototype has demonstrated that the Nectar
architecture and software works well for applications,
we plan to re-implement the system in custom or semi-
custom VLSI. This will lead to larger systems with
higher perfotmance and lower cost.

4 The HUB

The Nectar HUB establishes connections and passes
messages between its input and output fiber lines. There
are four design goals for the HUB:

1. Low latency. The HUB provides custom hardware
to minimize latency. In the prototype system, the
latency to set up a connection and transfer the
first byte of a packet through a single HUB is
ten cycles (700 nanoseconds). Once a connection
has been established, the latency to transfer a byte
is five cycles (350 nanoseconds), but the transfer
of multiple bytes is pipelined to match the 100
megabits/second peak bandwidth of the fibers,

2. High switching rate. In the prototype Nectar sys-
tem, the HUB central controller can set up a new
connection through the crossbar switch every 70
nanosecond cycle.

3. Efjcient support for multi-HUB systems. Because
of the low switching and transfer latency of a single
HUB, the latency of process to process communi-
cation in a multi-HUB system is not significantly
higher. Flow control for inter-HUB communication
is implemented in hardware (see Section 4.2.3).

4. Flexibility and high efficiency. The HUB hard-
ware implements a set of simple commands for
the most frequently used operations such as opcn-
ing and closing connections. These commands can
be executed in one cycle by the central HUB con-
troller. By sending different combinations of these

208

simple commands to the HUB, CABS can imple-
ment more complicated datalink protocols such as
multicast and multi-HUB connections. The HUB
hardware is flexible enough to implement point-to-
point and multicast connections using either circuit
or packet switching. In addition, HUB commands
can be used to implement various network manage-
ment functions such as testing, recontiguration, and
recovery from hardware failures.

4.1 HUB Overview

The HUB has a number of I/O ports, each capable of
connecting to a CAB or a HUB via a pair of fiber lines.
The I/O port contains circuitry for optical to electrical
and electrical to optical conversion. From the functional
viewpoint, a port consists of an input queue and an output

register as depicted in Figure 5.

The HUB has a crossbar switch, which can connect the
input queue of a port to the output register of any other
port (see Figure 7). An input queue can be connected
to multiple output registers (for multicast), but only one
input queue can be connected to an output register at a
time. A status table is used to keep track of existing
connections and to ensure that no new connections are
made to output registers that are already in use. The
status table is maintained by a central controller and
can be interrogated by the CABS.

The I/O port extracts commands from the incoming
byte stream, and inserts replies to the commands in the
outgoing byte stream. Commands that require serializa-
tion, such as establishing a connection, are forwarded to
the central controller, while “localized” commands, such
as breaking a connection, are executed inside the I/O
port.

For the prototype Nectar system, the HUB has 16
I/O ports. ‘ILvo HUB I/O boards, each consisting of
eight I/O ports, can be plugged into the HUB backplane.
The backplane contains an &bit wide 16 x 16 crossbar
and the central controller. Each I/O port interfaces to
a pair of fiber lines at the front of the I/O board, This
packaging scheme is depicted in Figure 6. An additional
instrumentation board can be plugged into the backplane,
as shown in the figure; it can monitor and record events
related to the crossbar and its controller.

Each I/O board in the prototype uses 305 chips and
has a typical power consumption of 110 watts; the boards
are 15 x 17 inches. The backplane uses 92 chips for the
16 x 16 crossbar and 132 chips for the central controller.
(47 chips in the crossbar and 20 chips in the controller are
for hardware debugging.) The backplane has a typical
power consumption of 70 watts.

IN

OUT

Figure 5: HUB overview

Backplane containing
Crossbar & Central Controller

fV v
Fiber Out

Figure 6: HUB packaging in the Nectar prototype

4.2 HUB Commands and Usage

The HUB hardware supports 38 user commands and 14
supervisor commands for various datalink protocols. Su-
pervisor commands are for system testing and reconfig-
uration purposes, whereas user commands are for op-
erations concerning connections, locks, status, and flow
control.

For the Nectar prototype each command is a sequence
of three bytes:

command HUB ID param

The first byte specifies a HUB command, the second byte
specifies the HUB to which the command is directed, and
the third byte is a parameter for the command, typically
the ID of one of the ports on that HUB,

In the following we mention some of the user com-
mands and describe how they can be used to implement

209

-

Figure 7: Connections on a 4-HUB system

several datalink protocols. The four-HUB system de-
picted in Figure 7 will be used in all the examples.

4.2.1 Circuit Switching

Using circuit switching, the entire route is set up first
using a command packet, before a data packet is trans-
mitted. (A data packet is framed by start of packet and
end of packet.) To send data from CAB3 to CABl,
CAB3 first establishes the route by sending out the fol-
lowing command packet:

open with retry HUB2 P8
open with retry and reply HUB1 P8

HUB2 will keep trying to open the connection from
P4 to P8. After the connection is made, the open with
retry and reply command is forwarded to HUB1 over
the connection. After the connection from P3 to P8 in
HUB1 is established, HUB1 sends a reply over the route
established in the opposite direction, using another set
of fiber lines, input queues, and output registers. By
stealing cycles from these resources whenever necessary,
the reply is never blocked and can reach CAB3 within
a bounded amount of time. After receiving the reply,

CAB3 knows that all the requested connections have
been established, Then CAB3 sends data, followed by a
close all command that travels over the established route.

The close all command is recognized at the output
register of each HUB in the route. After detecting
the close all, the HUB closes the connection leading
to the output register. Therefore all the connections
will be closed after the data has flowed through them.
Alternatively, close all can be replaced with a set of
individual close commands, closing the connections in
reverse order.

If CAB3 does not receive a reply soon enough, it
can try to get the connection status of the HUBS in-
volved to find out what connections have been made, and
can send another command packet requesting a different
route (possibly starting from some existing connections).
CAB3 can also decide to take down all the existing con-
nections by using close all, and attempt to re-establish
an entire route.

4.2.2 Circuit Switching for Multicasting

To illustrate how multicasting is implemented, consider
the case in which CAB2 wants to send a data packet

210

to both CAB4 and CABS, as depicted in Figure 7. To
establish the required connections, CAB2 can use the
following command packet:

open with retry HUB1 P6
open with retry and reply HUB4 P5
open with retry HUB4 P3
open with retry and reply HUB3 P4

After receiving replies to both of the open with retry
and reply commands, CAB2 sends the data packet.

4.2.3 Packet Switching

The

1.

2.

HUE! has two facilities to support packet switching:

An input queue for each port, For the prototype
Nectar system the length of the input queue, and
thus the maximum packet size, is 1 kilobyte. (Cir-
cuit switching must be used for larger packets but,
since the overhead of circuit setup is small com-
pared to the packet transmission time, this does not
add significantly to latency.)

Support for flow control. A ready bit is associated
with each port of a HUB. The ready bit indicates
whether the input queue of the next HUB CoMected
to it is ready to store a new packet. Consider for
example port P8 of HUB2 in Figure 7. This port
is connected to port P3 of HUB 1. If the ready bit
associated with P8 of HUB2 is 1, then the input
queue of P3 of HUB1 is guaranteed to be ready to
store a new packet.

The ready bit associated with each port is set to
1 initially. When start of packet is detected at
the output register of the port, the ready bit is set
to 0. Upon receipt of a signal from the next HUB
indicating that the start of packet has emerged from
the input queue connected to the port, the bit is set
to 1,

Suppose that CAB3 wants to send a data packet to
CAB1 using the route shown in Figure 7. Using packet
switching, CAB3 can send out the following packet:

test open with retry HUB2 p8
test open with retry HUB1 PS
data
close all

The test open with retry command is used to enforce
flow control. For example, the first test open with retry
command ensures that HUB2 will not succeed in making
the connection from P4 to P8 until port P3 of HUB1 is
ready to store the entire data packet. Otherwise HUB2
will keep trying to make the connection. Thus the packet
is forwarded to the next HUB as soon as the input queue
in that HUB becomes available.

4.2.4 Packet Switching for Mulicasting

Consider again the multicasting example of Section 4.2.2.
Using packet switching, CAB2 can use the following
commands to multicast a packet to CAB4 and CABS:

test open with retry HUB1 P6
test open with retry HUB4 P5
test open with retry HUB4 P3
test open with retry HUB3 P4
data
close all

5 The CAB

The CAB is the interface between a node and the Nectar-
net. It handles the transmission and reception of data
over the fibers connected to the network. Communi-
cation protocol processing is off-loaded from the node
to the CAB thus freeing the node from the burden of
handling packet interrupts, processing packet headers,
retransmitting lost packets, fragmenting large messages,
and calculating checksums.

5.1 CAB Design Issues

The design of the CAB is driven by three requirements:

1. The CAB must be able to keep up with the aansmis-
sion rate of the optical fibers (100 megabits/second
in each direction).

2. The CAB should ensure that messages can be trans-
mitted over the Nectar-net with low latency. The
HUB can set up a connection and begin transfer-
ring a data packet in less than one microsecond.
Thus any latency added by the CAB can contribute
significantly to the overall latency of message trans-
mission,

3. The CAB should provide a flexible environment
for the efficient implementation of protocols and
selected applications. Specifically, it should be
possible to implement a simple operating system on
the CAB that allows multiple lightweight processes
to share CAB resources.

Together these design goals require that the CAB
be able to handle incoming and outgoing data at the
same time as meeting local processing needs. This is
accomplished by including a hardware DMA controller
on the CAB. The DMA controller is able to manage
simultaneous data transfers between the incoming and
outgoing fibers and CAB memory, as well as between
VME and CAB memory, leaving the CAB CPU free for
protocol and application processing.

211

Data Memory Bus I

Fibers

Serial Line

Figure 8: CAB block diagram

To meet the protocol and application processing re-
quirements, we designed the CAB around a high perfor-
mance RISC CPU and fast local memory. The choice
of a high-speed CPU, rather than a custom microengine
or lower performance CPU, distinguishes the CAB from
many I/O controllers. The latest RISC chips are com-
petitive with microsequencers in speed, but offer ad-
ditional flexibility and a familiar development environ-
ment. Older general-purpose microprocessors would be
unable to keep up with the protocol processing require-
ments at fiber speeds, let alone provide cycles for user
tasks.

Allowing application software to run on the CAB is
important to many applications but has dangers. In par-
ticular, incorrect application software may corrupt CAB
operating system data structures. To prevent such prob-
lems, the CAB provides memory protection on a per-
page basis and hardware support for multiple protection
domains.

The CAB design also includes various devices to
support high-speed communication: hardware checksum
computation removes this burden from protocol soft-
ware; hardware timers allow time-outs to be set by the
software with low overhead.

5.2 CAB Implementation

The prototype CAB implementation uses as its RISC
CPU a SPARC processor running at 16 megahertz. A
block diagram of the CAB is shown in Figure 8.

A VME interface to the node was the natural choice in

our environment, allowing Sun workstations and Warp
systems to be used in the Nectar prototype. The initial
CAB implementation supports a VME bandwidth of 10
megabytes/second, which is close to the speed of the
current fiber interface.

Two fibers (one for each direction) connect each CAB
to the HUB. The fiber interface uses the same circuit as
the HUB I/O port (see Section 4.1). Data can be read or
written to the fiber input or output queue by the CPU, but
for data transfers of more than small numbers of words
the DMA controller should be used to achieve higher
transmission rates. The DMA controller also handles
flow control during a transfer: the DMA controller waits
for data to arrive if the input queue is empty, or for data
to drain if the output queue is full.

The on-board CAB memory is split into two regions:
one intended for use as program memory, the other as
data memory. DMA transfers are supported for data
memory only; transfers to and from program memory
must be performed by the CPU. The memory architec-
ture is thus optimized for the expected usage pattern.
although still allowing code to be executed from data
memory or packets to be sent from program memory.

In the prototype, the total bandwidth of the data
memory is 66 megabytes/second, sufficient to support
the following concurrent accesses: CPU reads or writes,
DMA to the outgoing fiber, DMA from the incoming
fiber, and DMA to or from VME memory. The program
memory has the same bandwidth as data memory and is
thus able to sustain the peak CPU execution rate.

The program memory region contains 128 kilobytes

,212

of PROM and 512 kilobytes of RAM. The data memory
region contains 1 megabyte of RAM. Both memories
are implemented using fast (35 nanosecond) static RAM.
Using static RAM in the prototype rather than less
expensive dynamic RAM plus caching was worth the
additional cost-it allowed us to focus on the more
innovative aspects of the design instead of expending
effort on a cache.

The CAB’s memory protection facility allows each 1
kilobyte page to be protected separately. Each page of
the CAB address space (including the CAB registers and
devices) can be assigned any subset of read, write, and
execute permissions. All accesses from the CAB CPU
or from over the VMB bus are checked in parallel with
the operation so that no latency is added to memory
accesses. The flexibility, safety, and debugging support
that memory protection affords the CAB software is
worth the non-trivial cost in design time and board area.

The memory protection includes hardware support for
multiple protection domains, with a separate page protec-
tion table for each domain. Currently the CAB supports
32 protection domains. The assignment of protection
domains is under the control of the CAB operating sys-
tem kernel. The kernel can therefore ensure that the
CAB system software is protected from user tasks and
that user tasks are protected from one another. In addi-
tion, accesses from over the VME bus are assigned to a
VME-specific protection domain.

The CAB occupies a 24-bit region of the node’s VME
address space. Every device accessible to the CAB CPU
is also visible to the node, allowing complete control of
the CAB from the node. In normal operation, however,
the node and CAB communicate through shared buffers,
DMA, and VMB interrupts.

The CAB prototype is a 15 x 17 inch board, with a
typical power consumption of 100 watts. Of the nearly
360 components on the densely packed board about 25%
are for the data memory and DMA ports, 15% for the
VMB interface, 15% for the CPU and program memory,
and 13% for the I/O ports. The remaining 120 or so chips
are divided among the DMA controller, CAB registers,
hardware checksum computation, memory protection,
and clocks and timers.

6 Software

The design of the Nectar software has two goals:

1. Minimize communication latency between user pro-
cesses. Since processing overhead on the send-
ing and receiving nodes accounts for most of the
communication latency over local area networks
[3.5,113, the software organization plays a critical

2.

role in reducing the latency. To achieve low la-
tency, data copying and context switching must be
minimized.

Provide a flexible software environment on the CAL3.
This will convert a bare “protocol engine” into a
customizable network interface. When appropriate,
the CAB can also be used to off-load application
tasks from the node.

The software currently running on the prototype sys-
tem consists of the CAB kernel, communication proto-
cols, and Nectarine, a library for programming applica-
tions.

6.1 The CAB Kernel

Candidate run-time systems for the CAB range from
a minimal single-task system to a complete UNIX im-
plementation. To provide the required efficiency and
flexibility, we built the CAB kernel around lightweight
processes similar to Mach threads [8]. Threads support
multitasking so the CAB can execute multiple activities
concurrently in a time-shared fashion, but, since threads
have little state associated with them, the cost of con-
text switching is low. Thread switching takes between
10 and 15 microseconds; almost all of this time is spent
saving and restoring the SPARC register windows.

Threads execute as a set of coroutines, using a simple,
non-preemptive scheduler. This organization matches
the intended use of the CAB: a thread will be awakened
by an event (such as the arrival of a packet), will
take some action (such as processing transport protocol
headers), and will voluntarily go back to waiting for
another event,

The CAB kemet provides support for simple, time-
critical operations such as memory management and
timers, but it relies on the node operating system for
more complicated operations such as file I/O. The CAB
invokes these services by interrupting the node over the
VMB bus.

Another CAB function is to provide temporary buffer
space for messages in an efficient way. This is achieved
using mailboxes in CAB memory. In the common
single-reader, single-writer case, allocating and reclaim-
ing space is simple because mailboxes behave like
FIFOs. Mailboxes also support multiple readers, mul-
tiple writers, and out-of-order reads. These access pat-
terns occur, for example, when multiple servers operate
on different messages in the same mailbox.

6.2 Communication

The communication software has three main parts: the
datalink protocol on the CAB, transport protocols on

213

the CAB, and node software dealing with the CAB-
node interface. The main guideline in the design of the
communication software was to avoid data copying and
context switching on both the CAB and the node.

6.2.1 Datalink Protocol

The datalink protocol transfers data packets between
CABS using HUB commands, manages HUB connec-
tions, and recovers from framing errors and lost HUB
commands. The most frequently used simple operations,
such as sending a packet to a node in the same HUB
cluster, are implemented in hardware as a single HUB
command, while more complicated and less frequent op-
erations, such as multicasting and error recovery, are im-
plemented in software.

The interface between the datalink and transport layers
passes packets by reference, thus avoiding the copying
of data. During a send, the datalink gathers the packet
when it transfers the data to the fiber output queue
using DMA. During a receive, the datalink interrupt
handler, invoked by the start of packet signal, executes
an upcull [6] to a transport layer routine. This routine
uses the transport header to determine the destination
mailbox for the packet. The datalink layer then sets up
the DMA to transfer the incoming data to the destination
mailbox. The transport layer upcalls must determine
the destination mailbox and return to the datalink layer
before incoming &ta overflows the CAB input queue.

The datalink code is executed entirely by interrupt
handlers and by procedures that are called from transport
or application threads, so there is no context switching
overhead at the datalink-transport interface. The SPARC
architecture helps reduce the overhead for critical inter-
rupts by reserving a register window for trap handling.

6.2.2 Transport Protocols

The transport layer is responsible for message transfer
between mailboxes on different CABS. This involves
breaking messages into packets, reassembling messages,
flow control, and retransmission of lost and damaged
packets. Three protocols have been implemented:

l The datagram protocol has low overhead but does
not guarantee packet delivery; it is a direct interface
to the datalink layer and should only be used by
applications that can tolerate or recover from lost
packets.

l The byte-stream protocol provides reliable commu-
nication using acknowledgments, retransmissions,
and a sliding window for flow control.

0 The request-response protocol supports client-ser-
ver interactions such as remote procedure calls.

The current transport protocols are simple and Nectar-
specific. We plan to experiment with the corresponding
Internet protocols (IP, TCP, and VMTP [4]) over Nectar
in the coming year.

Each transport protocol can be invoked through a
procedure call or by placing a command in a special
mailbox. In both cases, the message to be sent is
specified as a list of areas located in CAB memory
or in CAB-accessible VME memory. When sending
large messages between nodes, it is important to overlap
packet transfers over the Nectar-net and over the VME
bus at each end, in order to reduce latency and increase
throughput. The CABS at the sender and receiver sides
are well suited for setting up this “packet pipeline”: they
can select an optimal packet size, synchronize the various
DMAs, and manage the buffers.

6.2.3 CAB-Node interface

Three CAB-node interfaces are provided, with different
tradeoffs between efficiency and transparency:

l

l

l

6.3

The most efficient CAB-node interface is based on
shared memory: the CAB memory is mapped into
the address space of the node process, and the node
process builds or consumes messages in place in
CAB memory. Node processes invoke services by
placing a command in a special mailbox on the
CAB. This interface is efficient since it eliminates
copying the message between the node and the
CAB and does not involve the operating system on
the node. Messages are received by polling CAB
memory.

A second approach is to provide a Berkeley UNIX
socket interface to Nectar. This interface is less ef-
ficient since it involves system call overhead and
data copying on the node. But the transport pro-
tocol overhead is off-loaded onto the CAB. This
approach allows existing source code to be used on
Nectar with minimal modification.

The third interface is a Berkeley UNIX network
driver for Nectar. In this case, Nectar is used as
a “dumb” network and all transport protocol pro-
cessing is performed on the node, The advantage
of this approach is binary compatibility for current
applications such as network file systems and win-
dow systems.

Programming Nectar: Nectarine

Nectarine is a programming interface that gives the pro-
grammer access to the Nectar hardware and low-level
software. It is similar to the communication interface

214

available on other distributed-memory machines such as
hypercubes [2]. An important difference is that Nec-
tarine must accommodate heterogeneous nodes, operat-
ing systems, memories, attached processors, and other
devices.

Nectarine presents the programmer with a simple com-
munication abstraction: applications consist of rusks that
communicate by transferring messages between user-
specified buffers. Tasks are processes on any CAB or
node. Messages can be located in any memory. Us-
ing Nectarine, the programmer can create tasks, manage
buffers, and send and receive messages. Nectarine min-
imizes the number of copy operations and uses DMA
whenever possible.

The fact that Nectarine hides much of the heterogene-
ity does not free the programmer from knowing the cbar-
acteristics of nodes and memories, because the allocation
of tasks and data to processors and memories has a se-
rious impact on performance. For example, whether a
message is allocated in CAB or node memory influences
how efficiently the message can be built and how fast it
can be sent.

Work has started on higher-level programming tools
for Nectar. We are developing a high-level language
that will be mapped onto a specific Nectar configuration
by a compiler. Automating the mapping process will not
only simplify the programming task, but will also make
programs portable across multiple Nectar configurations
or other distributed systems.

7 Applications

The prototype Nectar system will be used for a wide
spectrum of applications ranging from parallel programs,
in which Nectar is used as a multicomputer, to research in
distributed operating systems, in which Nectar is viewed
as a fast LAN.

One of the first Nectar applications is in the area of
vision. The application uses a Warp machine [l] for
low-level vision analysis and Sun workstations for ma-
nipulating image features that are stored in a distributed
spatial database. It requires both high bandwidth for im-
age transfer and low latency for communication between
nodes in the database. This application has a static com-
putational model: the assignment of tasks to nodes is
done when the application is started.

We are implementing a parallel production system as
an example of an application that requires run-time load
balancing. Matching is performed in parallel using a
distributed RETE network, and tokens that propagate
through the network are stored in a distributed task
queue 1141. The low latency communication of Nectar
provides good support for the fine-grained parallelism

required by this application.

The flexibility of Nectar allows it to run applications
originally written for other parallel systems. For exam-
ple, to run hypercube applications on Nectar, we have
implemented the Intel iPSC communication library [lo]
on top of Nectarine. Since Nectarine is functionally a
superset of the iPSC primitives, this implementation is
relatively simple. Several large applications are being
ported to Nectar using this approach, including simu-
lated annealing and a solid modeling system based on
the octree data structure.

Large-scale scientific applications that execute well on
loosely-coupled arrays of processors [71 are also eas-
ily ported to Nectar. Powerful, general-purpose Nectar
nodes can provide sufficient processing power and mem-
ory to meet the computational demands of these applica-
tions and the Nectar-net has the bandwidth to meet their
communication needs.

The high bandwidth and low latency provided by Nec-
tar also make it an attractive architecture for communica-
tion-intensive distributed applications. Examples of such
applications include distributed transaction systems, such
as Camelot [133, and the simulation of shared virtual
memory over a distributed system using Mach [9]. In
these applications, the CAB will play a critical role as
an operating system co-processor.

8 Conclusions

Architectures to exploit the high-level, irregular paral-
lelism found in large applications should support het-
erogeneity, low-latency communication, and scalability.
The Nectar architecture meets these goals: it is based
on a “network backplane” that consists of a high-speed
fiber-optic network, large crossbar switches, and power-
ful network interface processors.

The hardware design takes advantage of the availabil-
ity of fast crossbar chips, fiber-optic technology, and
RISC processors that can keep up with fiber speeds. The
software architecture has benefited from experience with
network communication, operating systems, and parallel
applications.

The prototype shows that the proposed architecture
can be implemented. Developing real applications on the
prototype is the next step; we will use these applications
to evaluate the basic ideas of Nectar, to judge how well
the design meets its goals, and to guide us in evolving
the prototype into a large-scale system with hundreds of
nodes in production use.

215

Acknowledgements

The Nectar project is a team effort. The follow-
ing people have made invaluable contributions to the
project: Matthieu Amould, Bemd Bruegge, Vincent
Cate, Ming-Jen Chan, Cheng Chen, Chiun-Hong Chien,
Takashi Hot& Mike MacPherson, Onat Menzilcioglu,
Martha Moran, Ravishankar Mosur, Hudson Ribas,
Steven Schlick, Wilhelm S&mid, Venkatadri Seshadri,
Bruce Siegell, Bemd Spiegel, I-Chen Wu, and Brian Zill.
We are also grateful to Sun Microsystems for technical
assistance with the SPARC architecture.

References

PI Marco Annaratone, Emmanuel Amould, Thomas Gross,

H. T. Kung, Monica Lam, Onat Menzilcioglu, and Jon A.

Webb.

The Warp computer: architecture, implementation and per-

formance.

IEEE Transactions on Computers, C-36(12):1523-1538,

December 1987.

PI William C. Athas and Charles L. Seitz.
Multicomputers: message-passing concurrent computers.

Computer, 21(8):9-24, August 1988.

131 Luis-Felipe Cabrera, Edward Hunter, Michael J. Karels, and

David A. Mosher.

User-process communication performance in networks of
computers.

IEEE Transactions on Software Engineering, X-14(1):38-
53, January 1988.

[41 David R. Cheriton.
VMTP: Versatile Message Transaction Protocol.

RFC 1045, Stanford University, February 1988.

PI Greg Chesson.

Protocol engine design.

In Proceedings of the S ummer 1987 USENIX Conference,

pages 209-215, June 1987.

[61 David D. Clark.

The structuring of systems using upcalls.

In Proceedings of the Tenth ACM Symposium on Operating
Systems Principles, pages 171-180, ACM, December

1985.

171 E. Clementi, J. Detrich, S. Chin, G. Corongiu, D. Folsom, D.

Logan, R. Caltabiano, A. Carnevali, J. Helin, M. Russo,

A. Gnuda, and P. Palamidese.
Large-scale computations on a scalar, vector and parallel

“Supercomputer”.

In E. Clementi and S. Chin, editors, Structure andDynamics
of Nucleic Acids, Proteins and Membranes, pages 403-

450, Plenum Press, 1986.

PI

r91

r101

i-111

WI

1131

[141

Eric C. Cooper and Richard P. Draves.

C Threads.

Technical Report CMU-CS-88-154, Computer Science De-
partment, Carnegie Mellon University, June 1988.

Allesandro Forin, Joseph Barrera, and Richard Sanzi.

The shared memory server.
In Winter USENIX Conference, Usenix, San Diego, January

1989.

iPSCI2 C Programmer’s Reference h4anual.

Intel Corporation, March 1988.

Hemant Kanakia and David R. Cheriton.

The VMP network adaptor board (NAB): high-performance
network communication for multiprocessors.

In Proceedings of the SIGCOMM ‘88 Symposium on Com-
munications Architectures ana’ Protocols, pages 175-187,

ACM, August 1988.

Also published as Computer Communications Review,

18(4).

Richard F. Rashid, Avadis Tevanian, Jr., Michael W. Young,
David B. Golub, Robert V. Baron, David L. Black,
William Bolosky, and Jonathan J. Chew,

Machine-independent virtual memory management for

paged uniprocessor and multiprocessor architectures.

IEEE Transactions on Computers, C-37(8):896-908, Au-

gust 1988.

Alfred 2. Spector, Joshua J. Bloch, Dean S. Daniels.

Richard P. Draves, Daniel J. Duchamp, Jeffrey L. Ep-

pinger, Sherri G. Menees, and Dean S. Thompson.

The Camelot project.
Database Engineering, 9(4), December 1986.

Also published as Technical Report CMU-CS-86-166, Com-

puter Science Department, Carnegie Mellon University,
November 1986.

Milind Tambe, Dirk Kalp, Anoop Gupta. Charles Forgy,
Brian Milnes, and Allen Newell.

Soar/PSM-E: investigating match parallelism in a learning

production system.

In Proceedings of the ACMISIGPLAN PPEALS 1988: Par-

allel Programming: Experience with Applications, Lan-

guages, and Systems, pages 146-161, ACM, July 1988.
Also published as SIGPLAhJ Notices, 23(9).

216

