UC Berkeley

Research Reports

Title
Design Of Platoon Maneuver Protocols For IVHS

Permalink
https://escholarship.org/uc/item/89c6p0cn

Authors

Hsu, Ann
Eskafi, Farokh
Sachs, Sonia

Publication Date
1991

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/89c6p0cn
https://escholarship.org/uc/item/89c6p0cn#author
https://escholarship.org
http://www.cdlib.org/

Program on Advanced Technology for the Highway
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA AT BERKELEY

The Design of Platoon Maneuver Protocols for IVHS

Ann Hsu
Farokh Eskafi
Sonia Sachs
Pravin Varaiya

PATH Research Report
UCB-ITS-PRR-91-6

This work was performed as part of the Program on Advanced
Technology for the Highway (PATH) of the University of California,

in cooperation with the State of California, Business and Transportation
Agency, Department of Transportation, and the United States Department
of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

April 20,1991

ISSN 1055-1425

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

The Design of Platoon Maneuver Protocols for IVHS

Ann Hsu, Farokh Eskafi Sonia Sachs and Pravin Varaiya
University of California, Berkeley CA 94720

20 April 1991

‘ Work supported by PATH (Program on Advanced Technology for the Highway), Institute of
Transportation Studies, University of California, Berkeley, and &SF Grant ECS-8719779. It is a
pleasure to thank Dr. Bob Kurshan for providing COSPAN and explaining its use, Ellen Sentovich
for help with COSPAN, Max Holm for computer support, Anuj Puri for comments which improved
some parts of the design, and members of the PATH Seminar on AVCS where this design was first

presented and discussed.

Contents

1 Introduction

2 System Requirements

3 Elementary Maneuvers and Path Planning
4 Informal Design of Elementary Protocols
5 Introduction to COSPAN

6 Formal Specification and Verification

7 Implications for Regulation Layer

8 Conclusions

References

Appendix

List of Figures

1 Control hierarchy
2 Definition of platoon
3 Lateral sensor range requirements (figure not to scale)
4 Inter-vehicle communication link requirements

The merge maneuver v v v i it

16

18

39

40

42

45

The split maneuver
The change lane MANEUVET « - « « « « « « o o vt v e et e e e
A path along highway H - oo
Flow diagram fOr MEIZe - - « « « « « v v o v v v e e
State machines for merge: initiator (top), respondent (bottom)
Flow diagram for split
State machines for split: initiator (top), respondent (bottom)
Flow diagram for change lane
State machines for change lane: initiator (top), respondent (bottom)

The COSPAN model o o ittt e s e e
COSPAN example SYSLEM - « « « v v v v vttt
Monitor for example system
The four sublayers of the platoon layer
Merge protocol mManeuver ProCesses - - - « « « -+« o+ e e e e e 00 e
Merge environment ProCessSes - - - « « « « o 4 . e e e e e e e e e e
Merge protocol ProCesseso i
Merge moni tor
Split, Protocol maneuver processes . . - oo o e o
Split environment ProCesses . . . - « v . o v e e u e e
Split protocol processes for 'leader' wishes to split”
Split protocol processes for ‘follower wishes to split”™

Split, MONItors

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Change lane maneuver processes

Change lane environment process for vehicle C

Change lane environment processes for vehicle B,

Change lane environment processes for vehicle A

Cha.ngr lane environment processes for vehicle B

Change lane protocol process for vehicle A

Change lane protocol process for vehicle Band B;

Change lane protocol process for vehicle C

Change lane monitor
Free agen t s ubl ayer processes . .

Free agent sublaycr monitor . . .

SIZE process for supervisor sublayer environment

ALLBUSY process for supervisor sublayer environment.

FREE process for supervisor sublayer environment

SUPR process for supervisor sublayer

First moni tor for supervisor sublayer

Second monitor for supervisor sublayer

Path monitor sublayer processes

28

28

28

29

29

30

31

32

33

33

34

35

35

35

36

36

37

38

Abstract

A structured use of control, communication and computing technologies in vehicles and in
the highway in the form of an Intelligent Vehicle/ Highway System or IVHS can lead to major
increases in highway capacity and decreases in travel time without building new roads. Our
context is an IVHS system in which traffic on the highway is organized in platoons of up
to twenty closely spaced vehicles under automatic control. We consider the design of the
controllers for such platoons.

The control tasks are arranged in a three layer hierarchy. At the top or link layer. a
centralized controller assignsto each vehicle a path through the highway and the target.
size and speed for platoons to reduce congestion. The remaining two layers are distributed
among controllers on each vehicle. A vehicle’s platoon layer plans its trajectory to conform
toits assigned path and to track the target size and speed. I'he plan consists of a sequence
of elementary maneuvers: merge (combines two platoons into one), split (separates one
platoon into two), andchange lane (enables a single car to change lane). Once the protocol
layer determines that a particular maneuver can safely be initiated, it instructs its regulation
layer to execute the corresponding pre-computed feedback control law which implements
the maneuver.

This paper focuses on the design of the platoon layer. In order to ensure that it is safe to
initiate a. maneuver, the platoon layer controller enters into a. uegotiation with its neighbors.
This negotiation is implemented as a protocol — a, structured sequence of message exchanges.
After a protocol terminates successfully, the actions of the vehicles involved become coor-
dinated and the maneuver can be initiated. A protocol is designed in two stages. Inthe
first stage, the protocol is described as an informal state machine, one machine per vehicle.
The informal state machine does not distinguish between actions and conditions referring
to the vehicle’s environment and those referring to the protocol itself. In the second stage
this distinction is enforced and the protocol machines are specified in the formal language
COSPAN. COSPAN software is then used to show that the protocol indeed works correctly.
One can now be reasonably confident in the protocol logic presented here. Much further
work remains to be done and some of the more significant problems are outlined.

Link Layer 3

'__/
Platoon Platoon Platoon Layer 2
Regulation Regulation Regulation Layer 1
Physical Physical Physical Layer 0

Figure 1: Control hierarchy

1 Introduction

Projections of highway traffic conditions point to the need for an Intelligent Vehicle/Highway
System (IVHS)thatincreases highway capacity and decreases travel time without building
new roads. One promising strategy towards achieving this goal is to organize traffic in
platoons of closely spaced vehicles. With platoons of 20 vehicles, headways within a platoon
of 1m, and headwaysbetween platoons of 60m, such an organization can attain a capacity
that is four times and travel times that are half the values corresponding to current operating
conditions [1]. The design and implementation of the control tasks needed to realize such
an IVHS system will require a structured approach that uses control, communication and
computing technologies both to maintain within narrow tolerances the position and speed
of a vehicle within a platoon and to coordinate platoon maneuvers.

The control tasksare arranged in the three layer hierarchy of Figure 1.1 There is a single
link layer for a. long segment of the highway extending several sections. Each section may
be between 50m and 500m long. The link layer has two functions. It assigns a path to each
vehicle entering the highway as explained in §3. And it continuously determines platoon
optimal speed (denoted optspeed)and optimal size (optsize) for each highway section. The
values of optspeed and optsize are selected to maintain smooth traffic flow and to reduce
congestion. One approach to computing these values is presented in [1]. The link layer

YA more comprehensive discussion of the IVHS control architecture appears in [2].

functions areimplemented in a centralized manner: a single computer receives all the
information needed to assign vehicle paths and the section target platoon speed and size.

The remaining control tasks are implemented in a distributed manner. There is one platoon
layer, one regulation layer and one physical layer per vehicle. Fach vehicle’s platoon layer
plans a sequence of maneuvers and issues corresponding commands to its regulation layer so
that the vehicle’s trajectory follows closely the path assigned toil, and so that platoon speed
and size track oplspecd and optsize. Each vehicle’s regulation layer executes the commands
issued by itsplatoon layer by implementing corresponding pre-computed feedback control
laws which continuously determine the vehicle’s throttle, braking, and steering actions.
Finally, the physical layer of a. vehicle is a model of its dynamic behavior against which the
feedback control laws arc designed.

This paper presents a design of the platoon layer. It is shown in §3 that the platoon
layer’s plan can alwaysbe constructed as a sequence of three elementary maneuvers called
merge, splitand change lane. The merge maneuver joins two platoons into a single platoon;
split separates one platoon into two; and a change lane maneuver moves a single vehicle
into an adjacent lane. To accomplish these maneuvers safely, the platoon layer controller
first coordinates its action with those of its neighbors. This is achieved by exchanging a
structured sequence of messages with the platoon layer controllers of neighboring vehicles.
This sequence of message exchanges is called a protocol. The design of these protocols is
carried out in two stages. In the first stage, presented in §4, the merge, split and change lane
protocols are described as informal finite state machines. In the second stage, presented in
§6, these informal machines are specified in a formal language called COSPAN. COSPAN
software is then used to verify that the protocol machines work correctly. Also specified are
path planning supervisor machines which invoke the elementary protocols to produce the
correct sequence of maneuvers conforming to the assigned path. A very brief introduction
to COSPAN is givenin§5s.

After a vehicle’s platoon layer successfully completes an elementary protocol exchange with
its neighbors it issues a command to its regulation layer to implement the corresponding pre-
computed feedback control law. Although it is not the focus of this paper, the platoon layer
design poses some challenging problems for the regulator layer design. These implications
are drawnout in $7. Finally, some conclusions reached by this study including suggestions
for future work are collected in $8.

The discussion of the platoon and regulation layers presented here presupposes a system
of sensors on board vehicles and on the roadside, and a. communication system. These
requirements are summarized in §2.

platoon free agent

I N Iy B o IO

follower leader

Figure 2: Definition of platoon

2 System Requirements

We introduce certaindefinitions and background assumptionsthat will make the discussion
more precise. Traffic is organized in platoons of vehicles. See Figure 2. The size of a
platoon is between one and twenty depending on the traffic flow with larger sizes needed to
sustain bigger flows [1]. The headway within a platoon is small (about 1m); the minimum
headway between platoons grows with the platoon size reaching about 60m for platoons of
size twenty.” The lead vehicle of a. platoon is called itsleader, the rest are followers. A
single vehicle platoon is called a free agent. Protocol exchanges are always between leaders
(including free agents) of neighboring platoons. If a follower wants to initiate a maneuver it
must request its leader to do so. It is also the task of the leader to track optspeed and optsize
announced by the link layer. The follower’s task is only to execute a feedback control law
which maintains the tight headway with the vehicle in front of it. (This is discussed further
in §7.)

Each vehicle’s platoon layer maintains its own ‘state’ information:

state = (I D#, hwy#.In#,sect#,optsize, optspeed, plin#,ownsize, pos,busy) (1)

I D# is the vehicle’s ID which is ‘hardwired into the controller. Hwy#,In#, sect# are
the highway number, lane number, and section number on which the vehicle is currently
traveling; these are either broadcast to the vehicle from the roadside or they are sensed from
roadside markers or computed by a navigation system on board the vehicle. Optsize and
optspeed are the targets computed by the link layer and communicated in some way to the
vehicle. Pltn# is the [D# of the platoon leader. ownsize is the size of the platoon, pos is
the vehicle’s position i n the platoon (pos = 1 is the position of the leader). Lastly, busy is a
binary flag thatis set if the platoon is engaged in a maneuver; it is only used by the leader
and its function will become clear when we discuss the protocols. The last four components
of the state are updated at the end of each maneuver by communication among vehicles
in a platoon. It is assumed that this state is always availableto a vehicle’s platoon layer
controller and updated as needed. The regulation layer controller maintains other state
information relating to the vehicle’s dynamics such as position, speed and engine rpm.

“Our design presupposes a platooning strategy. But it does notdepend upon the choice of intra- and
inter-platoon headways. Of course, the capacity does depend on these headways.

. max optimal platoon headway (60 m) o

E
o sensor range y

Tigure 3: Lateral sensor range requirements (figure not to scale)

In addition to their own states, the platoon and regulator layers need information about
their environment chiefly neighboring vehicles and platoons.

Sources of Information

A vehicle’s controller obtains information about its own state and about its environment
from three sources: roadside monitors, sensors mounted on the vehicle, and inter-vehicle
communication links. We discuss these briefly in order to indicate in a. little more detail some
of the requirement’s of an IVHS system and because the formal specification and verification
of the protocol design require models of the interfaces between the platoon layer and its
environment.

Roadside monitors. They measure traffic conditions based on which the link layer as-
signs a path to each vehicle and calculates the values of optsize and optspeed. These are
communicated to the vehicles. These monitors would he distributed along the highway.

Sensors. Platoons of size twenty maintain a headway of about 60m. Hence vehicles must
be equipped with a longitudinal sensor that measures the distance between itself and the
vehicle in front of it up to at least 60m. In order to change lanes the vehicle must be
equipped with a. lateral sensor that locates each vehicle within a radius of about 30m as
shown in Figure 3. If vehicle A in Figure 3 wishes to change lanes, its sensor should be able
to determine that, there is no vehicle within the area marked °‘sensor range’. The vehicle’s
regulation layer necds additional sensors including those that measure its distance and speed
relative to the vehicle in front of it within a platoon and its position relative to the center
of the lane on which it is traveling.”

Inter-vehicle communication. The platoon layer protocols require the capability to ex-
change messages hetween one vehicle and other vehicles within the range of its longitudinal

®For longitudinal control sensor requirements see [3, 4], for lateral control sensor requirements see [5].

D—Q I'_bssunkﬂmnmngm:x L S
T]
C]]

[— greater than max link range -~

Figure -1: Inter-vehicle communication link requirements

and lateral sensors, i.c. with vehicles within 60m in front of itand within 30m alongside
it. In addition, vehicles within the same platoon need to exchange messages among them-
selves. Thus each velicle should be capable of setting up communication links with some
of its neighbors as illustrated by the double arrows in Figure 4.% The traffic on these links
consists of messages that convey platoon and regulation layer state information, and mes-
sages required by the protocols described below. There arethree types of protocol messages:
‘broadcast’ messages arc sent by a platoon leader to all its followers; ‘addressed’ messages
are exchanged between a platoon leader and a specific follower; and ‘direct’ messages are
exchanged between lcaders of neighboring platoons. Of course, depending on the commu-
nication technology used, a. message between a pair of vehicles may be forwarded through
intermediate vehicles.

The kind of study presented here has an important bearing on the amount of bandwidth
that must be available on the various communication links to support the necessary message
exchanges. However, we will not address this issue further.”

3 Elementary Maneuvers and Path Planning

We describe three elementary maneuvers and then show how these are combined to plan
a path conforming totheone assigned by the link layer. The maneuvers are called merge,
split, and change lane.

Merge. This maneuver combines two successive platoons in the same lane into a single
platoon. See Figure 5. The merge is always initiated by the leader of the rear platoon,
vehicle B. If the size of B's platoon, ownsize(B), is smaller thanoptsize, B requests A for

permission to merge. If A is not busy, and if
ownsize(B) + ownsize(A) < optsize

this permission is granted. B’s platoon layer then requests its regulation layer to accelerate
and join A’s platoon.

*Simple experiments involving radio links is described in [6,7].
® Anillustrative calculation of the bandwidth needed for longitudinal control is given in [2]; see also [6].

A

OB O0O0OQ

¥
000000

Figure 5: The merge maneuver

-V

OOO000DEA 0OBROO0OG
T OR I
O0000BE @ O0EB 0O0D@

Figure 6: The split maneuver

Split. A split maneuver may be needed because a platoon’s size may exceed optsize, or
because a vehicle in an adjacent lane requests a change lane maneuver (see below), or
because a vehicle in a platoon initiates one or two splits in order to become a free agent.
As indicated in Figure 6, a split may be initiated by a leader (vehicle A) or by a follower
(vehicle B).

Change lane. This maneuver can be initiated only by a free agent, i.e. a single vehicle
platoon.® See Figure 7. If a vehicle in a multi-vehicle platoon needs to change lanes it must
first gain free agent status by executing one split (if it is a leader) or two split maneuvers

(if it is a follower).

Suppose the free agent. vehicle A, wishes to move from its current lane 3 to the adjacent lane
2. Before it can do thissafely, it must make sure that there is a. vacant space in lane 2, and
if there is, it must determine whether any other vehicle (from lane 2 or lane 1) is planning
to move into that, space. Thus A must communicate and negotiate with the vehicles within
the range of its lateral sensor. There are three mutually exclusive possibilities: the sensor

%The restriction to a single vehicle is imposed to simplify the resulting regulation layer feedback control
law. However, the additional complexity of multi-vehicle platoon change lane maneuvers may be justified at
entrance and exit lanes.especially if this significantly increases capacity.

lane 1 (far lane)

lane 2 (adjacent lane)

000 W OO0 tanes

Figure 7: The change lane maneuver

(f],[},(lg) / Z
3

——

/—— change lane maneuvers

oo

(H,l;,dy)

lane-keeping mode /

Figure 8: A path along highway H

detects no vehicle in its range (case 0), or the sensor detects a vehicle in lane 2 (case 2), or
the sensor detects a vehicle in lane 1 and no vehicle in lane 2 (case 1).

In case 0, A orders its regulation layer to change lane. In case 1, A requests C not to move
into lane 2. In case 2, B compares A’s speed and position relative to B’s platoon and then
responds by asking A to decelerate and move into lane 2 behind B’s platoon, or B itself
decelerates and asks A to move in front of it, or B asks the appropriate follower. B;, to split
and make room for A.

Path planning

We now indicate how a platoon layer controller combines these maneuvers to create a path
in conformity to thelinklayer assignment.

Imagine an automnated highway H.Each vehicle continuously senses the section on which
it is traveling. A section is a triple (H,l,d) where hwy# = H. In# =1, and sect# = d.
Upon entering the highway, the vehicle declares its destination. In response, the link layer
assigns a path (/2.d3,[3). The interpretation is that the vehicle must change to lane [/, from
its current lane /y;travel along [, until section (H, [, d5); and finally change to lane {3 from
which it reaches its exit,. See Figure 8.

Having been assigned its path, the vehicle’s platoon layer plans a conforming path as follows:

1. It is initially a free agent in section (H,l,,dy). It executes |l —[;] change lane
maneuvers at the end of which it is a free agent in lane /.

2. It now enters a lane-keeping mode, staying in lane /, until section (H, l;,d;). In this

|

mode it tries to track optsize and optspeed. To do this, the platoon layer may execute
several merge and split maneuvers.

3. Upon reaching (H,.ly,ds3) the platoon layer will execute at most two split maneuvers
to become a free agent. It then executes |/3—{,| change lane maneuvers to reach lane
l3.

4 Informal Design of Elementary Protocols

This section presents an informal design for the protocol for each of the three elementary
maneuvers. For each maneuver the design involves two steps. in the first step, we express
as a flow diagram the coordinated sequence of actions of the platoon and regulation layers
of the vehicles engaged in that maneuver. In the flow diagram no attention is paid to
the requirement that controllers in different vehicles must be coordinated through explicit
message exchanges.

In the second step, this requirement is enforced and the flow diagram is ‘distributed’ among
separate state machines, one for each vehicle. The state machine descriptions are ‘informal’
since their states and transitions refer to actions and conditions that may depend on the
regulation layer, on information from sensors on board the vehicle and on information from
roadside monitors and which, therefore, are not part of the protocol machines themselves.
In the formal specification, presented in $6, references to these ‘environment’ actions and
conditions are represented as separate state machines.

Merge

The flow diagram that achieves the merge maneuver of Iigure 5 is displayed in Figure
9. The sequence of events depicted in the flow diagram requires little comment. A and
B refer to the vehicles in Figure 5. B initiates the merge request to which A responds.
The condition ‘Achecks if busy’ refers to the busy flag in A’sstate (see (I)). That flag
is set if and only if A is engaged in a maneuver. Thus if A is busy, it denies B’s request
represented by the event, ‘A sends nack to B’. After B receives permission to merge (‘A sends
ack_request_merge to B’), it orders its regulation layer to accelerate and join A’s platoon (‘B
accelerates to merge’). After B’s regulation layer task is completed, B informs A of this (‘B
sends confirm_mergetoA’). A then unsets its busy flag, and broadcasts its new updated
state to its own followers, and B does the same to its followers.

The paired state machines of Figure 10 achieve the same sequence of events. The machine
on top is that of the initiator (B), the other machine is that of the respondent (vehicle A).
The two machines are coupled together by explicit message exchanges. That is, transitions
labeled ‘SEND zz' and ‘RFEC xzx’ are supposed to occur simultaneously and synchronize the

B establishes link with A’s platoon J

B, while not busy, sends request_merge and
ownsize to A, and sets own busy flag

yes

| A checks if busy]

no

| A adds two platoon sizes and checks if > optsize

no yes

| A sets busy flag

1
| A sends ack_request_merge to B

1
l B accelerates to merge |

| B sends confirm_merge to A |

A unsets busy. updates ownsize and

broadcasts ownsize, pltn#, viead and

alead to new followers A sends nack to B

|

B unsets busy OR stays at
optimum headway

B cancels busy. stops broadcasting its

own info and passes on A’s info to all
new followers

Figure 9: Flow diagram formerge

set busy
SEND

(yes) uest_

wait for
confirm

Figure 10: State machines for merge: initiator (top), respondent (bottom)

10

while "split platoon” true, A
sets busy & sends invitation_

split to B
[A checks if busy 1—’9‘_
IE o
A sets &
smdsmB
B sets busy I
B broadcasts its own vlead, alead, A sendsnack to B

plm# and ownsize W its followers.
A updates ownsize for its followers.

|

B decelerates; then sends confirm_
split to A; then unsets busy

!

[A unsets busy]

Figure 11: Flow diagram for split

state transitions in the two machines.” The state transition labeled ‘MERGE PLATOON’
is initiated by a ‘supervisor’ state machine. That machine, denoted SUPR, is defined in

56.

Split

Figure 11 gives the sequence of’ events needed to achieve the split maneuver in Figure 6.
The split may be initiated by the platoon leader (vehicle /) or a follower (vehicle B). In
the latter case, B forwards a request to A; if A is not busy it initiates the split maneuver.

This flow diagram is transcribed into the pair of state machines of Figure 12. The machine
on top refers to the initiator (A or B) which initiates the split. The other machine refers to
the respondent, (B). B will become the leader of the rear platoon following the split. The
two machines are synchronized by matched transitions ‘SKND zz’ and ‘REC zz’. Finally,
the transition *SPLIT PLATOON’is initiated by the supervisor machine SUPR. Recall
that the condition ‘check if pos = 1’ returns (yes) if and only if the vehicle is a leader (see
definition of state (1)), otherwise it returns (no).

‘The implementation of synchronous transitions among processes running on two separate computers,
one in each vehicle, will require some inter-process communication facility. hlany operating systems provide
such facilities.

11

Figure 12: State machines for split: initiator (top): respondent (bottom)

12

Change lane

This is the most complex of the three maneuvers. see Figure 7. The free agent, vehicle A,
in lane 3 initiates the change lane request. Depending on what A’s lateral sensor detects in
lanes 1 and 2, there follows one of three event sequences of Figure 13. Case 1 occurs when
lane 2 is unoccupied and lane 1 is occupied. A then requests (' not to move. The resulting
sequence of events is the leftmost branch in Figure 13.

Case 2 occurs when lane 2 is occupied and the event sequence in the middle branch ensues.
If B is not busy, it responds to A’s request in one of three ways: (i) B asks A to decelerate,
or (ii) B splits its own platoon at a follower B, or (iii) B itself decelerates. The maneuver
succeeds whether a response is selected arbitrarily or on the basis of traffic conditions.

Case 0 occurs when lanes 1 and 2 are both unoccupied. The rightmost branch of Figure 13
describes the corresponding event sequence. In this case Aimmediately orders its regulation
layer to change lane.

The flow diagram is transcribed into the pair of machines of Figure 14. The machine on
top corresponds to the initiator il. A copy of the machine on the bottom is in each of the
vehicles B, B;,and (' that may be engaged as a respondent.

Consider A’s state machine. The transition ‘CHANGE LANES’is initiated by the super-
visor machine SUPR. If the result of the condition ‘check if adjacent lane clear’is no’,
then Case 2 prevails and A sends ‘SEND request_change_lune’ to vehicle B. If the result of
the condition is ‘yes’, then the condition ‘check if fur laneclear’is tested. If the answer is

yes’, Case 0 prevails and A orders its regulation layer to change lane. If the answer is ‘no’,
itis Case 1, and Asends ‘SEND request_change_lane’ to vehicle (',

We now discuss the respondent’s state machine. Recall that this may be vehicle ', or B,
or both B and B;.In Case 1, the respondent is (', and only the loop of transitions labeled
‘C” will be activated. In Case 2, either the loop labeled ‘B’ is involved or those labeled
‘B’ and ‘B;’ both are involved. Only this last situation mayv need additional comment. If
B’s machine is in state‘decide’ and the transition "SEND request_split_chg_ln’ occurs, that
message is received by its follower B; whose machine is in state “?dle’ and undergoes the
transition ‘REC request_split_chg_ln’ (ie. loop labeled ;).

This concludes the design of the informal protocol state machines. We introduce some
names for these machines to facilitate relating them to the formal machines presented in §6.
The following convention is adopted. Machine names are written in boldface. The first let-
ter is either A, B, Bi or C corresponding to the vehicle names in Figures 5,6,7. The second
letter is P for protocol, and to distinguish these machines from those which model the envi-
ronment. The third letter is either C or R depending on whether the machine commands a
maneuver or responds to a command. Thus there are two machines for merge, BPCmerge
and APRmerge. There are four machines for split: APCsplit and BPCsplit depending

13

not_to_move to A

l

A moves over, sends
confirm move to C,
and unsets busy

B decides by A’s relative
position and speed

B asks A to B decelerates 1 let |
decelerate behind A in front

A decelerates

C sends nack 1o A [

A does not change
lanes & unsets busy

A, when ‘change. lane” true, sets all clear
busy & checks sensor
lane 2 clear usy
lane 1joccupied lane 2 occupied
A establishes link and sends In#, speed,
and request_change_lane to B
A establishes link and
sends In# and request_
change_lane to C
| B checks if busy I_yes—_
- no
[C checks if busy |
yes 1 no
C sends promise_] Bsendsnackto A

A unsets busy &
does not change lanes

B splits own platoon
appropriate place (B;)

| B; sets busy & proceeds w/ split l

I B; sends confirm split to B —‘

|

I B sends confirm split to A I

|

A moves over
and unsets busy

A monitors sensor, moves over when clear, sends
confirm to B (and B; if necessary), & unsets busy

B (and B; if necessary) unsets busy

Figure 13: Flow diagram for change lane

14

CHANGE

L.
SE
St
changt |
(if negessary)
unset busy
SEND,
o e decelerate
change_lane
monitor REC
sensor & contimdecel OF
move over, A soiit
SEND
wait for promise_not_ 00 checkif
confirm _;
(yes)
RE
co:% o

checkif \ (@0

busy
=)

SEND
idle ack lrequest_
arjge_lane
REC
onfirm .
REC change_lane lecelerate decide
request] split_
chg In
set busy & SEND st_split_
broadcast confysm_ h
new info Sp)
RE
decelerate process confim update
to split confirm split

Figure 14: State machines for change lane: initiator (top), respondent (bottom)

15

global
memory

local outputs
(selections)

[]
local memo
° Q ¢ e (State) i

Figure 15: The COSPAN model

on whether A or B in Figure 6 issues the command, and APRsplit. BPRsplit depending
on the respondent. There are four machines for change lane: APCchg for the initiator,
and BiPRchg, BPRchg, and CPRchg for the three potential respondents. Each proto-
col layer controller will have a. copy of all these ten machines. Three additional supervisor
machines will be introduced in §6.

5 Introduction to COSPAN

We give a very brief introduction to COSPAN. For more details. see [8,9]and the references
therein. COSPAN (coordination-specification analysis) is a software system used to specify
a system of interacting finite state machines and to prove or verify that the behavior of the
specified system satisfies certain properties.

Specification. COSPAN’s model of a system of interacting state machines can be un-
derstood with the aid of Figure 15. Each A;is a state machine or COSPAN process.® A
process has internal local memory - its state. Let r;(t) be the state of process A; at time
t=0,1,2,.... With each state is associated one or more outpuls, and the process selects
one of the outputs in a non-deterministic manner. Suppose A; selects y;(t) (associated with
x;(t)). The global output y(¢)=(y1(t),....yr(t)) is seen by all the machines.

We now explain state transitions. Associated with each pair of states (z;,z!) of Ajis a
binary predicate on the global output y. It is denoted P(ux;,z%)(y). The transition z; —
is enabled at a global output y if P(z;,2:)(y) evaluates lo true. If for a particular state
more than one transition is enabled, the process selects one of these non-deterministically.

Finally, each process starts in some prespecified initial state at time (0. A behavior of a
system is a. pair of infinite sequences of global or systern states and outputs

B() = (@1(1)s e @i(D))s yeor = (11(1)5 ey £))et = 0,1,2, .

such that for every ¢ and ¢,;(0) is the initial state of A;.y;(¢)is an output associated with

fWe use ‘state machine’ and ‘process’ interchangeably below and in §6.

16

clse else

B#=a B#=-a
state {a, b} B#=b {a, b} (@) B#=b (b}
A B

Figure 16: COSPAN example system

2;(t), and the transition z;(?) — z;(t + 1) is enabled at y(7).

The language generated by such a system is denoted L(Aj,...,Ag). It consists of the set
of all infinite sequences y(t), ¢ = 0, 1, . . . such that (z(t), y(¢)),t=0, 1, ... is a behavior for
some state sequence w(f),1=0,1,...

We emphasize two features of a COSPAN specification. First, the interacting machines A {,
..., Ag (implicitly) define a ‘product’ machine withstate z(t)=(z(t),....z,(t)) and output
y(t) = (y1(t), ..., yr(t)). If Ajhasn;states in all, the product machine has n =nyx... xng
states. However, in practice, only a small fraction of these n states is reachable from the
initial state (21(0),.... 24(0)). The COSPAN compiler generates an internal representation

of the product machines including only the reachable states.

Second, the specification gives a ‘closed’ system in the sense that there is no external input.
Therefore, in order to describe the informal machines of §4 in COSPAN, we must specify
not only the protocol machines, but also their interfaces to the sensors, monitors, and link
and regulation layers.

Example. Figure 16 presents a system consisting of two interacting machines, A and B. A
has two states, O and |. In both states it can select any output from {a,b}. The transition
0 — 1 is enabled if the predicate ‘B.# = a’ evaluates (ruc.otherwise 0 — 0 is enabled. (In
COSPAN notation, X.# denotes the output of process X.) The transition 1 — 0 is selected
if B# =b, otherwise 1 — [is enabled. The initial or startstate is 0; it is indicated by a
double circle.

B also has two stales. In state 0 only « may be selected, in state 1 only & may be selected.
The transition O — 1 is enabled if B.# = a, 1 — 0 is enabled if B# = 5. The transitions
0 — 0,1 — 1 arc never enabled (i.e. the corresponding predicates are identically false).
The initial state is 0.

This system generates only one state sequence

0,0) ift=0,2,..
(za(t),zp(t)) = { 271 1% ifl—[i: 1.3

§ e

(A#=a) &(B#=a)

Neo @B OsE

(A#=b)& (B#=D)

Figure 17: Monitor for example system

But the language L(A, B) contains infinitely many sequences

/ (a,a) or (bya) ift=0,2,..
(alt) yslt)) - { (a,b)or (b,b) if1=1,3,..

Verification. This consists of one or more tests of the form
L(Ay,.. . Ay) C L(T) (2)

where L(T) is the language accepted by a task monitor T.¥ A monitor T is a state machine
coupled to the system Al,....Ay except that T has no outputs. Thus the monitor state

moves in response to the system output (yi,....y); however, since it has no outputs of
its own, it cannot affect the system behavior. L(T) is defined by acceptance conditions
involving two sets called cycle set and recur. A cycle set is a. collection C'y, Cy, . . . of subsets

of the states of T, and recur is a subset of state transitions of T. An infinite sequence
y(t), t=0,1....1isin L(T) (itis said to be accepted by T) if after some finite time, the
state of T stays forever in one of the C; or the transitions in recur occur infinitely often.
Given Al, ... ,Axand T, the COSPAN software can verify if the test (2) succeeds or fails.

Figure 17 gives a monitor for thesystem of Figure 16. Suppose the acceptance condition is
cyset {0}, recur 0 ~— 1

Observe thatL(A, B) contains the output sequence
(a,a),(a,b),(b,a),(a,b)..

which leads to the monitor state sequence 0, 1,1, 1,.... For this sequence both cyset and
recur conditions fail; so L(A, B) ¢ L(T).

6 Formal Specification and Verification

In §4 ten informal state machines were described. They define the protocols for the three
elementary maneuvers. Three additional machines are needed for path planning (see §3),

9Any w—regular language can be expressed in the form L(T); w—regular languages are defined by
Biichi automata {10, 11].

18

PATH, RDSNR, LN#
SIZE, ALLBUSY, EREE, POS
s .
ASUM ARS
BQ cQ BiQ
BV CLS BiV
PM AQ MR BQ
SUPR AV FRS BV
BFRE
APRiiierge
BPCmerge .~ APRsplit
APCsplit T BPRsplit
BPCsplit-—" BiPRchg
APRCChg BPRchg
-------- CPRchg

Figure 18: The four sublayers of the platoon layer

PM, SUPR and BFRE. The path monitor machine PM compares a vehicle’s current (n#
and sect# with the assigned path to determine when to change lane and when to keep in
the same lane. Based on the output of PM SUPR determines when to invoke BFRE; the
rest of the time it invokes merge and split in such a way as to track optsize. BFRE invokes
the split maneuver(s) needed to become a free agent. These 13 interacting state machines
together constitute the platoon layer design. They can naturally be arranged in the four
sublayers displayed in the left panel of Figure 18.

It should be understood that all 13 machines are present in each vehicle’s platoon layer.
The PM and SUPR machines are ‘running’ at all times. The 11 machines in the two
bottom layersare ‘invoked’ as needed depending on the role (command or response) the
vehicle plays in a particular maneuver. For example, BPCmerge is invoked by SUPR
when it issues a command to merge. In fact, all the command protocol machines are invoked
by SUPR. A response protocol machine on the other hand is invoked by a request (from
another vehicle) for that maneuver. A machine which is not invoked remains in its "/ DLE"
state.

W e have adopted as a rule of platoon management the restriction that a platoon may
engage in at most one maneuver at a time. Thus, for example, a platoon may not merge
with another while it is also engaged in a split maneuver. This rule permits an enormous
simplification in the design because it can now be modular since the specification and
verification of each maneuver protocol can be done separately.

In order to enforce this ‘one maneuver at at time’ rule the various machines must he
coordinated in such a way that when a platoon receives Lwo or more maneuver requests
(from vehicles uithin the platoon or from neighboring platoons), one and only one request
is granted. A coordination mechanism that grants at least one request is said to be deadlock-

19

free, and a. mechanisin that grants at most one request is said to achieve mutual exclusion.'”

In our design deadlock is prevented by enforcing a priority among requests: among all
response machines {he change lane maneuver has highest priority. followed by split, followed
by merge; and in case of conflict between command and response, command receives priority.
Mutual exclusion is achieved by using a, single ALLBUSY flag for all the machines: it can
he set by any protocol machine (subject to the priority). and a, request is denied if the flag
is set. The implementation of mutual exclusion and priority will become clear as we specify
each machine.

The panel on the right of Figure 18 lists another collection of machines arranged in four
corresponding sublayers. These machines specify the ‘environment’ within which the pla-
toou layer operates. There are three types of such machines. One type represents interfaces
between the platoon layer and the link and regulation layers. The second type represents
interfaces to sensors and roadside monitors. The third type represents the results of various
tests conducted on the platoon layer state (1). The environment machines serve two pur-
poses. They art needed to ‘close’ the system around the platoon layer so that verification
is possible. And they are essential for future work to develop the IVHS system since they
help standardize the interfaces among different components and layers.!!

The rest of the section is arranged as follows. We first specify and verify in COSPAN the
protocols for each clementary maneuver. We then specify and verify path planning.

Protocols for elementary maneuvers

These machines are in the hot tom sublayer of Figure 18. Iiach maneuver is specified and
tested separately. This allows modularity. However, since priority and mutual exclusion are
incorporated into these machines, some transitions depend on outputs of machines that are
specified much later.

Merge

This involves the seven processes shown in Figure 19. These seven processes correspond
to the two informal machines of Figure 10. (The letters A and B in the process names
correspond to the vehicles 4 and B in Figure 5.) The two processes above the dotted line
are protocol processes, the other five represent the environment. Double arrows indicate
information links. In terms of COSPAN this means, for example, that the state transition
predicates of APRmerge involves only the outputs of BPCmerge, ASUM and AQ.!?

10These terms are used in oprrating systems.

1 The role of interface standards in helping to structure IVHS system design is further discussed in [2].

12Note that the link between BPCmerge and APRmerge requires inter-vehicle communication; the
other links involve inter-process communication within the same vehicle.

20

BPCmerge j¢ APRmerge

OJORONC

Figure 19: Merge protocol maneuver processes

6/

The five environment processes are specified in Figure 20. BR gives the response of vehicle
B’s longitudinal range sensor, BV is the interface with its regulation layer, BQ indicates
whether its busy flag is set. ASUM gives the result of the test‘ownsize(B)+ownsize(A)<
optsize’, A Qelers to A’s busy flag. BQ and A Q will later be replaced by ALLBUSY
which refers to a single (global) flag that can be set by all protocol machines on the vehicle;
it is used to enforce mutual exclusion.

The two protocol processes are specified in Figure 21. BPCmerge is normally in the
‘IDLE’ state. It initiates the merge protocol when ‘SUPR.# = merge’ (i.e. when the
vehicle’s SUPR machine selects ‘merge’). In order to test the merge protocol by itself this
predicate will be replaced by ‘true’ so that this maneuver is repeatedly initiated.

The APRmerge protocol machine (in vehicle A) responds to the condition ‘BPCmerge.# =
request_merge’. [t responds affirmatively only after checking various conditions in the state

‘CHECK STATUS”. Those conditions enforce the priorities mentioned above. In testing the

merge protocol by itself, the conditions involving any process other than those in Figure 19

are removed.

The monitor of Figure 22 defines a test of the system of’ seven processes in Figure 19. It
has the acceptance conditions

cyset {0}, recur 2—0,1— 0 (3)

We briefly explain the test. The monitor starts in state 0. The transition into state |
is enabled only if’ ‘BPCmerge.# = request_merge’, indicating beginning of the maneu-
ver. However, from ligure 21 we see that this transition will not occur unless B’s range
sensor indicates ‘BR.# = car_ahead’. It is possible that BR always makes the selection
‘no_car_ahead’. (Such non-deterministic state machines are frequently used to model the
environment.) Therefore, a behavior of the monitor which remains forever in state 0 is cor-
rect. Hence the cysel condition in (3). However, once themerge request is issued by vehicle
B, APRmerge should grant or deny the request, causing the monitor to go through state
2 or 3, respectively. Ineither case, the monitor should return to state 0. This should occur
infinitely often, hence the recur condition in (3).

The state machines in Figures 20,21,22 can be mechanically transcribed into the COSPAN

21

/* B’s ranlgf sensor randomly selects “car-ahecad” and “no_car_shead"
e

to model enviromemt.
= car_ghead 0 ahead
{car-ahead, e ~— Car_ ,
ahead} no_car-ahead}
BR no_car_i
else else

= no-car-ahead

f* B’s velocity response machine models tbe acceleration process.
A ™" denotes a pausing state {4].%/

BPCmerge.# = accelerate_to_merge

. —eeeee {accelerating :
{eruise} merge_complete}

BV else ‘ ‘ else

= merge_complete

/* B’s busy flag is set when it is engaged in @ maneuver. No other maneuvers are
allowed while tbls flag is BUSY.*/

{not_busy} BPCmerge# = set BQ busy {busy}

—

else else

BPCmerge.# = set BQ_not_busy

/* ASUM models car A’s calculation of tbe combined size of two platoons
to be either "sum_ok" or “sum-too-large”. */

= sum_large

{sum_ok, /——-\ {sum_ok,
sum_too_large) sum_too_large}

ASUM
o ‘ # = sum_ok ‘ else

/* A’s busy flag is set when it is engaged in a maneuver. No other maneuvers are
allowed while this flag is BUSY.*/

(not_busy} APRmerge# = set AQ_busy {busy}

/—_—\‘
AQ else C else

APRmerge# = set AQ_not_busy

Figure 20: Merge environment processes

22

{check_range} else (56t BQ_busy)

{request_merge}
idle REQ
tidle) MERGE else
else de.
{set BQ_not_busy} ack_requést_merge
BPCmerge clse
{ ACCEL-
BV# = merge_complete \ERATE
{confirm_merge} {acceleraie_to_merge}
{nack_request_merge}
else % {set AQ_busy}

{idle}

APRmerge

{set AQ_not_busy} {update) {ack_request_merge}

Figure 21: Merge protocol processes

else

BPCmerge.# = request_merge

BPSmerge # =

else

Figure 22: Merge monitor

23

BPsplit APsplit

Figure 23: Split protocol maneuver processes

code merge.sr listed in the Appendix. Part of the COSPANoutput upon performing this
test is shown below:

80 states reached
336 resolutions performed
Task performed!

This means that a. total of 80 states in the system of Figure 19 are reachable from the
initial state and 336 state transitions can be enabled. The system behavior is accepted by
the monitor.

Split

This involves the two protocol processes and three environment processes as in Figure 23.
The letters A and B correspond to the names of the vehicles in Figure 6. The third letter
C or R is omitted here since either process can initiate the command or repond to it. BV
is the interface with the regulation layer; BQ and AQ indicate busy flag status. These
three processes are specified in Figure 24.

Recall from Figure 6 that. thereare two scenarios for the split maneuver. We call these
‘leader wishes to split’ or ‘follower wishes to split’. The protocol machines for the first
scenario are specified in Figure 25. In this case APCsplit is invoked either by BFRE or
by SUPR, the other conditions enforce mutual exclusion and priorities. For testing the
protocol by itself this condition is replaced by ‘true’.

BPCsplit is the follower responding to ‘APCsplit.# = invite_new lead’. A follower
normally does not use the busy flag. In this case only, however, it does so since it is asked
to become a leader. Before BPRsplit commits to the maneuver, it verifies that it is a
follower, that its SUPR and PM are in the appropriate states to allow a positive response,
and that the change lane maneuver, which has higher priority, is not invoked. For testing
the protocol by itself only the condition on ‘APCsplit.#’ is retained.

The protocol machines in the ‘follower wishes to split’ scenario are specified in Figure 26.

24

/* B’s velocity response machine models the deceleration process.*/
(BPCsplit.# = decelerate_to_split) O R
PRsplit# = decelerate_to_split) .
(o) R = Sl 00D (gctcrming
split_complete}

else [) ‘ else

= split_complete

/* B’s busy flag k set when it k engaged in a maneuver. No other maneuvers are
allowed white thk flag k BUSY.*/

PCsplit# = set BQ_busy) OR
{not_busy} (B(B pht¥ o m%‘ﬁ?sy) {busy)

/——-——-——-\
- O =1

(BPCspliL# = set BQ_not_busy) O R
(BPRsplit# = set BQ_not_busy)

/* A’s busy flag k set when it k engaged ina maneuver. No other maneuvers are
allowed while this flag k BUSY.*/

{not_busy} APRsplit# = set AQ busy {busy}

—_— T
o @ =)

APRsplit# = set AQ_not_busy

Figure 24: Split environment processes

& CrRE e froe_ageat
c_] ent’

OR (PM#=keeplny 2 {set AQ busy)

& ggP'R" = sl’l‘t)]

(BPRChg # = ldle)
& (CPRchg.# = idle)
& (APRsplit# = idle)
& (APRmerge# = idle)

APCsplit
{set AQ_not_busy} {update} {invite_new_lead}

%PC(P&%t 'f:oug‘v‘v':e)'mw‘m) {set BQ_busy} {brdcst_lead_info)

& (BiPRchg# = idle)

& [(SUPR# = keep_position)
& (PM# = keep_in

OR (SUPR.# = become_free_agen igiéi true (deaelemte
& (PM.# = chg_In)]
else

p-< split_complete

{idle}
BPRsplit
{set BQ_not_busy} {confirm_split)

Figure 25: Split protocol processes for ‘leader wishes to split’

25

FRE.# = become_leader) (equesLsplit] {set BQ busy)

(POS# = follower)
y : SET
BUSY

= chg
(BQ.# = peCb
(BiPRefig #
else
true
else
RDCS' brdc:
é‘%’ l[ead_is;fo)
true
BPCsplit else

e

BV.# = split_ complete \ERATE

{decelerate_to_split}

{set AQ busy}
AQi#t =
o iy
& (POS# = Jeade
& (SUPR.# = check_size)
& (BPRchg# = idle)
& (CPRchg# = idle)
& ~(APRmerge.# = set_busy)

APRsplit UNSET @
BUSY BPCsplit# = confirm_split U
{set AQ_not_busy) {update} {ack_request_split}

Figure 26: Split protocol processes for ‘follower wishes to split’

In this case BPCsplit is invoked by the free agent supervisor BFRE. The remaining
conditions enforce priority and mutual exclusion. For testing the protocol by itself this
condition is replaced by 'true’. APRsplit is the process in the lead vehicle that responds
to BPCsplit. A positive reponse is made only under the following conditions: PM and
SUPR are in appropriate states; higher priority processes are not invoked; and the lower
priority machine associated with the merge maneuver, namely APRmerge, is not setting
the busy flag (~ denotes ‘not’). For testing the protocol by itself only the busy condition
is retained.

The two monitors of Figure 27 test the two scenarios. The leader wishes to split’ monitor
(upper process) involves the condition:

recur 1 — 2
The ‘follower wishes to split’ monitor (lower process) involves the condition:
recur 1 — 2, 1 — 4

Both test were successful; the number of reachable states is 17 and 19, respectively.

26

APCsplit# = invite_new_lead

BPRsplit# = [brdcst_lead_info
APCsplit# =| setAQ not_busy

BPRsplit# = confirm_split

else else

BPCsplit# = confirm_split

Figure 27: Split monitors

Change lane

This maneuver may involve up to four vehicles as indicated in Figure 7: the free agent
initiating the request, the leader of the adjacent lane platoon, a follower in that platoon
that may be asked to split, and the leader of the farlane platoon. The specification involves
13 processes as shown in Figure 28. There are four protocol processes (above the dotted
line) with names corresponding to the vehicle names in Figure 7, and nine environment
processes. Information links involve message exchanges between the protocol machines in
different vehicles and inter-process communication on the same vehicle between a protocol
machine and its environment.

Figure 29 indicates the busy flag for vehicle (. Figure 30 specifies the two environment
processes for vehicle B;. Figure 31 specifies the five environment processes for vehicle A.
Figure 32 specifics thethree environment processes for vehicle B. The CLS process gives
the result of the procedure that B uses to decide Lhowto make room for A depending on
the latter’s position and speed relative to B’s own platoon.

We now specify the four protocol machines themselves. Figure 33 specifies free agent A’s
protocol process. It is invoked by the supervisor process SUPR. When testing the protocol
by itself, the condition ‘SUPR.# = start_chg.In’ is replaced by ‘true’. The logic of the
change lane protocol was explained in §3.

27

cQ CPRchg

BiQ

FTEBRE®®®E

Figure 28: Change lane maneuver processes

/* C’s busy flag random}y selects “busy” or “not-busy” to check for
different possibilities.®

= busy

{not_busy, busy} /—\ {not_busy, busy}

cQ else ‘ ‘ else

= not_busy

Figure 29: Change lane environment process for vehicle C

/* Bi’5 busy flag is set when it Is engaged in . maneunver. No other maneuvers are
allowed while this flag is BUSY.*/

{not_busy} BiPRchg# = set BiQ_busy {busy]

/—_—\

BiPRchg # = set BiQ_not_busy

/* Bi’s velocity response machine models the deceleration process */

BiPRchg# = decelerate_to_split
{cruise} ——
‘ {decelerating :
split_complete)
else

Figure 30: Change lane environment processes for vehicle B;

28

/* A’s busy flag is set when it is engaged to o . No otba s are
allowed while this flag is BUSY.*/

(not_busy} APCchg# = set AQ_busy {busy}

/-“——\‘
o <O =)

APCchg # = set AQ not_busy

/* A’s far lane range sensor randomly selects ““lateral car" and "no lateral car”
to model the environment */

{lateral_car,
{no_lateral_car, # = lateral_car no_lateral _car)

#= no_hleral

Figure 32: Change lane environment processes for vehicle A

/* B's velocity response machine models the deceleration process. */

(decelerating :
BPRchg# = decelerate deceleration_complete}
{cruise)

/———_\
BV
else ' “ else

= deceleration_complete

/* A’s movement response machine models tbe lateral movement of changing lanes. ® !

{cruise} APCchg # = move_over [moving : move-complete)

/_—__\
MR
else ‘. ‘ else

= move_complete

/* B’s change lane supervisor decides how to make space for A according to some .
function of A’s position, speed, and traffic conditions. However, a random selection
is used here to model tbe selection process since no actusl data Is available. */

BPRchg.# = ack_req chg_In

{idle}

DECIDE } {decelerate, split,

CLS

{decelerate)

Figure 32: Change lane environment processes for vehicle B

29

{set AQ_busy)
{req_chg In}

c

SUPR#,

ARS # =/adjacent_car
APCchg start_efig_in
BPRchg.# sAfack_req chg In
{idle}
req_) {check_range}
4 1O
COOP ARS.# = no| adjacent_car
true Rc e FRS# = Taiegal_car BPRchg.# = 4ck_req chg In
- CPRchg# = promise_
{set AQ_ { UNSET not_to/move
not_busy} \ BUSY
{move_over} FRS; 0_lateral_car {check_further)
true
MR ove_complete]
CONFM
CHGLN

ARS.# o no_adjacent_car

{confirm_change_lane} AV # = deecterafion_
O ete
{wait) P

(BPRchg.# = gonfirm_split) OR
(BPRchg# = ¢onfirm_decel)

{change_lane_action}

AWAIT
CONFM

{await_confirm}

Figure 33: Change lane protocol process for vehicle 4

30

{nack_req chg In}

BPRchg

{idle}

‘ APCchg# = req_chg_In

& ~(APRsplit# = set_busy)
{check busy} & (APRmerge# = set_busy)

CLS.# = req_decel {ack_req_
B UNSET APCchg#t = @
r‘.f,i‘bg;] BUSY confirm,_change_lane Q.CEL/‘ chg_Tn}
{request_decel) CLS# = deeflerate
cm‘ﬁrm CLS.#|= split
APCchg# =
confirm_chane_lane
CQNR BiPRchg.# = confirm_split
SPLIT
{confirm_splitl} {update_ownsize}
f"("pg : =fsx;}u)) (set BQ_busy} {brdcst_iead_info}
= follower, m
{idle} & (BiQ# = not busy) Beay true EEDACD
& [(SUPR# = kee _position)
& (PM.# = keep_In me \INFO
OR (SUPR.# = beocme_free_agent)
BiPRchg & (PM.# = chg_in)]
true
UNSET APCchg # = [Coxrm\. BiV# = split_complete /ppca
BUSY confirm_change_tane @ ERATE
{set BQ_not_busy} {confirm_split) {decelerate_to_split)

Figure 34: Change lane protocol process for vehicle B and B5;

Figure 34 specifies the protocol processes for the leader B and its follower B;. If there is
a platoon in the adjacent lane, its leader’s process BPRchg responds to the request from
APCchg.It responds affirmatively to the request only if its SUPR and PM are in the
appropriate states, it is not responding to a change lane request from another free agent,
and other response processes are not setting the busy flag at the same time. If it gives a
positive response, BPRchg then determines how to malke space for A. This is done by the
response of its environment machine CLS.

B;is a follower of B. One way in which BPRchg may decide to make space for A is to ask
B; to split,, The protocol process BiPRchg in vehicle B responds to the split request. It
initiates the requested split if its SUPR and PM processes are in the appropriate states;
then informs B when the split is complete; and then waits for confirmation from A that
the change lane maneuver is complete before unsetting its own busy flag. When testing the
change lane protocol by itself the conditions on the SUPR and PM selections are replaced

31

{promise_not_

0_move] (PM.# = keep_In)

& (CQ# = not_busy)
flS’OS.# = leader)

{check_busy)

{nack_req_chg_In)

Figure 35: Change lane protocol process for vehicle C
by ‘true’.

Figure 35 specifies the protocol process for vehicle (7 in the far lane. C' is the platoon leader
in the far lane. It receives a request to cooperate from A only if there is no vehicle in the
near lane (recall Figure 7). The request is denied if (' is busy. If it is not busy, it makes
sure that its SUPR and PM are in the appropriate slates, it is not responding to another
change lane request, and the lower priority processes are not setting the busy flag at the
same time. In testing the change lane protocol by itself only the busy flag is checked.

The monitor of Figurce 3G is used to test this protocol. The test condition is
recur 1 —- 0,3 —0,4-—20

This testcan be understood along the same lines as the previous monitors. The test is
successful; 3.588 states of the system in Figure 28 arc reached from the initial state and
94,176 transitions are enabled.

Free agent supervisor sublayer

This sublayer contains only one process BFRE; its environment also contains one process
POS whose outputindicates whether the vehicle is a follower or a leader (this information is
in the platoon layer state). The two processes arc specified in Figure 37. BFRE is invoked
by its supervisor selection ‘SUPR.# =become_frec_agent’. It then checks its status from
POS. If it is already a leader (‘POS.# = lender’), it moves to the state ‘BECOMFE FREE
A GENT {rom which itselects BFRE.# = become_free_agent’. That selection invokes the
APCsplit process, see Figure 23. If it is a. follower, it selects ‘BFRE.# = become_leader’.
That invokes the BPCsplit process; when that process completes, the vehicle has become
a leader, and the same moves are carried out.

The monitor for this sublayer is specified in Figure 38. To test this sublayer, the split
and merge maneuver profocol processes are included. The condition involving SUPR.# is

32

APCchg# = req_chg In

\S

PCshg.# = check_further
else BPRchg# = 4ck_req chg_In

APCchg #

APCchg.# = move_over f 2 ?
clse else

Figure 36: Change lanc monitor

/* Position machine randomly selects “follower” or “leader” to
model tbe different possibilities, ® /

(follower, leader) # = leader {follower, leader)
’ — —
POS
else ‘ else
= follower
{become_leader})
{check_stams) —¢ | %
ECO! else
POS.# = follower ER
BPCsplit# =
setBQ_not_busy
else
BFRE

ECO! else

(idle} FREE
AGENT /"ApCsplit¥ = setAQ_not_busy\acc,

{frec_agent} {become_frec_agent}

Figure 37: Free agent sublayer processes

33

BFRE.# = become_free_agent

Figure 38: Free agent sublayer monitor

replaced by ‘true’. Theacceptance condition is
recur 0 — 2, 1 — 2

The test is successful; 77 statesare reached, and 162 transitions are enabled.

Platoon supervisor sublayer

This sublayer contains one process SUPR which runs continuously, and four environment
processes: SIZE, ALLBUSY, FREE, and POS. POS is the same process as in Figure
37 and indicates whether the vehicle is a leader or follower. SIZE indicates whether the
current, platoon size is larger or smaller thanoptsize (see (I)). ALLBUSY is the overall
busy flag for the vehicle. Itis set by any of the protocols specified above. Once it is set,
no other maneuvers is permitted until the protocol process that set the flag completes the
maneuver and unsets the flag. Processes that attempt to request initiation of a maneuver
receive a nack, so they must try again. > FREE indicates whether the vehicle is a free agent
(also determined from (I)). Figure 39 specifies SIZE, Figure 40 specifies ALLBUSY. and
Figure 41 specifies FREE.

The platoon supervisor receives commands from the path monitor PM which decides when
the vehicle must keep to the same lane and when it must change lane. When ‘PM.# =
keep_In’, SUPR tries to track optsize by executing split and merge as necessary.” When
‘PM.# = chg.In’, SUPR makes sure that the current maneuver is complete before issuing
the command ‘become_free_agent’ to BFRE. Figure 12 specifies the supervisor process.

Figures 43 specifies one monitor for the supervisor sublayer. In order to conduct the test
a PM process is included. It selects ‘keep.in or ‘chg_ln’ non-deterministically. It is also
necessary to include the processes which interact wit It SUPR, namely BFRE, BPRchg,

13The design doesnotqueue requests since that could lead tovery poor performance. To see this suppose
platoon 1is in front of 2 which is in front of 3, Suppose 2requests merge with 1 and sets itself busy;
then 3requests merge with 2, gets its request queued and thensctsitself busy In this wag all platoons
become busy. Eventually 2 completes merge; then 3’s queued request is considered and may be denied (if
the resulting platoon is too large) or accepted; aud so on, oncat a time. When queuing is not allowed,
several of the merge requests are executed in parallel.

MTracking optspeed is a function of the regulation layer, see§7.

34

/* SIZE varies among ~optimum”, "smaller_than _optimum”, and
"larger_than_optimum" to model different “possibilities, |

{opt, smaller_than_opt, large_than_opt}

SIZE

{opt, smaller_than_opt, large_than_opt} # = larger_than_opt {opt, smaller_than_opt, large_than_opt}

Figure 39: SIZE process for supervisor su blayer environment

/* ALLBUSY can be set by all the protocol machines. Once set,
no other maneuvers are allowed until It i§ set not busy. |

(APCch%(= et-busy)
OR (BPRchg# = set-busy)

OR (BiPRchg# = set-| busy)

O R (CPRchg# - set_busy

O R (APCsplit.# = set, busy)
O R (BPCsplit.# = set_busy)
O R (APRsplit.# = set_busy)
OR (BPRsplit# = set_busy)

_-OR-APRMEEET = R busy)
OR (BPCmerge = et busy) ’
ALLBUSY
else ' RPR —er sy) ‘ clse

OR (BlPRchg# = set nol busy)
OR (CPRchg# = se-not-busy)

O R (APCsplit# = set_not_busy)
OR (BPCsplit# = set_not_busy)
O R (APRsplit# = set_not_busy)
O R (BPRsplit.# = set_not_busy)
O R (APRmerge# = set_not_busy)
O R (BPCmerge# = set_not_busy)

Figure 40: ALLBUSY process for supervisor sublayer environment

/* FREE randomly selects “busy” and "not_busy" to test
all tbe possibilitiess. |

(free_agent, # = not_free_agent

free_agen
not_free_agent) { =g

not_free_agent}

e [(D e

= free_agent

FREE

Figure 4 1: FREE process for supervisor sublayer environment

(ALLBUSY #
not_busy)

Hehg # = idle)
Rsplit# = idle)

he In)
i _ (PM# =fhg In) &
BUSY# = (ALLBYSY# =

{become_free_agent) {split}

X = (BPRchg# = idle) & (CPRchg# = idle) & (APRsplit# = idle) & (APRmerge# = idlc)

Figure 42: SUPR process for supervisor sublayer

Figure 43: I'irst monitor for supervisor sublayer

OR (6) OR
OR(9)]

9 &[(1)OR Q)
OR (3) OR (4) OR (5

OR (6) OR (7) O

3)&[(1)OR (2)
OR (4) OR (5) OR
OR (7) OR (8) OR (9

@ &[(1)OR (D)
OR (3) OR (4) OR
OR (6) OR

OR (7) DR
OR (10)]
& [(1) OR (2)

©6) & [(1)[OR (2
OR (3) OR
OR (7) OR{(8) OR (9)
OR (10)]

O,

1 = APCchg.$= SET-BUSY
2 = BPRchg$= SET-BUSY
3 = CPRchg$= PROMISE

6 = BPCsplit.$ = SET_BUSY
7 = APRsplit§ = SET_BUSY
8 = BPRsplit$ = SET_BUSY

9 = BPCmerge.$ = SET_BUSY

4 = BiPRchg.$ = SET-BUSY
10 = APRmerge.$ = SET_BUSY

5 = APCsplit.$ = SET-BUSY

Figure 44: Second monitor for supervisor sublayer

CPRchg, APRsplit and APRmerge and their corresponding environment processes. !?
The acceptance conditions for this monitor are

{13 {2}, {43.{7}
~7,1—-44—-26—01—52—-53—54—25

cyset
recur 1

The cyset condition is needed since the vehicle maynever be able to merge, split, etc.
because the environment conditions may not permitit. The recur condition checks that
SUPR executes the commands in the correct sequence. The test is successful; there are
89,913 reachablestates for this system, and 3,179,28X transitions are enabled.

Figure 44 specifies the second monitor for the supervisor sublayer. This monitor tests
whether the mutual exclusion scheme functions correctly. The only acceptance condition is

cyset {0}

‘““Since we have checked that these maneuver processes arc correctly specified, reduced versions of these
processes are used; see Appendix. To prove that the verification using the reduced version is correct,
one constructs a ‘process homomorphism’ mapping the original process into the reduced process. The
homomorphism guarantees that the language generated by the reduced process (see §5) is larger than that
generated by the original process; hence verification using thereduced process implies verification using the
orginal process. We do not present the homomorphisms here. For the underlying theory see [12]

37

{keep_tane] RDSNR.# = match {chg In)

g

(LN#.# = comrect) &
(SUPR# = chg_In_complete)

/* Road sensor randomly selects "match™ or ‘no match”
to test different cases.*/

{no_match , match) # = match {match’, no_match}
RDSNR . ’ else
= no_match

/* Lane number randomly selects ““correct” or “incorrect”
to test different cases. ® /

{incorrect , correct} # = incorrect {correct , incorrect}

Figure 45: Path monitor sublaver processes

so that if the monitor moves to any other state the test will fail!l A transition from 0 to states
1, ... ,10 will occur if two or more processes commit the vehicle to (different) maneuvers
at the same time. A transition to states 11 or 12 will occur if the vehicle is a leader and
its follower protocol processes are not in their ‘idle’ states or vice versa. This test is also
successful; there are 85,937 reachable states for this system, and 3,037,592 transitions are

enabled.

Path monitor sublayer

This contains only the path monitor process, PM and two environment processes, RD-
SNSR (road sensor). aud LN# (lane #). They are specified in Figure 45. Recall that
the link layer assignsa path (/5,d9,[3) to the vehicle when it enters the highway, see $3.
The assigned pathis stored in the vehicle. The road sensor determines the section of the
highway on which the vehicle is traveling, compares itwith the assigned path, and gener-
ates a selection ‘match’ or ‘no_match’. In themodel, this selection is non-deterministic.
Similarly, LN# compares the assigned path with the current lane number to determine
whether the vehicle should change lanes. This selection is also non-deterministic. Depend-
ing on the selections made by these two environment processes, PM commands SUPR to
change lane (‘chg_{n’) or keep in the current lane (*keep_lane’). The two monitors used
for this test are the same as for the platoon supervisor sublayer except that PM and its
environment’ are included. Both tests arc successful; 15G,161statesarereached in the first
test and 11,072,608 transitions axe enabled; 143,745 states are reached in the second test
and 10,188,384 transitions are enabled. The COSPAN code protocol. sr for this system is
included in the Appendix.

3s

Concluding remarks

A vehicle’s platoon layer controller implements three functions:

o It plans a path as a sequence of elementary maneuvers. The path must conform to
the one assigned by the link layer.

o Before executing any maneuver, it must coordinate the vehicle’s movement with the
movement of neighboring vehicles to make sure that the maneuvercan be carried out
safely.

e 0 nce coordination has been achieved, it. ordersthe regulation layer to execute the
maneuver.

Two features of the control problem make the design complex. First, the tasks require
long sequences of decisions. We have limited the resulting complexity by requiring that
a platoon engages in only one maneuver at a. time. Thisleads to a modular structure of
the platoon layer. The second feature contributing to complexity is that control authority
is distributed among vehicles rather than being located in a central controller. We have
addressed the resulting coordination problem by organizing the protocols into a hierarchy
of four sublayers.

The resulting design may appear complex in terms of size: the platoon layer has about
500,000 reachablestates. But the modular and hierarchical structure of the controller made
the design specification straightforward and COSPAN made it quite easy to detect and
correct, design mistakes.

7 Implications for Regulation Layer

The design of the platoon layer presented above presupposes the capability on the part of
the regulation layer to implement five types of feed back control laws to accomplish certain
tasks. We describe these tasks briefly.

Follower spacing control. When a vehicle is a follower, it must be controlled by a
feedback law that maintainsthe required tightspacing with the vehicle in front of it in
its platoon. This control action is typically decomposed into longitudinal control which
determines acceleration and braking, and lateral control which determines the steering
action needed to maintain the vehicle in its lane[L3,3, 4, 5].

Leader tracking optspeed. In the lane keeping mode, the leader should try and track
the target speed announced by the link layer, while maintaining a safe headway (60m) from

39

the vehicle in front. This should be similar to current cruise control appropriately modified
to account for the headway requirement.

Accelerate to merge. This feedback law is used by a leader to accelerate and merge
with the platoon in front. This law could be implemented by first calculating a nominal
trajectory given the distance and speed of the vehicle in front (the last vehicle in the
preceding platoon),and then embedding the corresponding nominal open loop control in a
longitudinal control feedback loop.

Decelerate to split. A follower who has just assumed t he role of leader is required to slow
down to achieve a. safe headway (60m) from the vehicle in front. This should be similar to,
and simpler than. the previous feedback law.

Free agent change lane. This feedback law enables a free agent to move toa vacant
space in the adjacent, lane. Again the approach of embedding a nominal open loop control
in a feedback loop seems appropriate. This maneuver will require accurate position sensing
systems. This task seems to involve the most demanding sensing requirements.

It should be noted that these are types of control laws. That is to say each type represents
a class of laws indexed by several parameters. For inslance, the spacing control law would
be parametrized by the required spacing distance; similarly, the change lane law would be
parametrized by the location of the vacant space, and the speed of vehicles in the adjacent
lane. There may be other parameters as well providedby ‘preview’ information about, the
geometry of the road, road conditions. etc,[14].

The proposed design specifies in a very simple fashion the interface between the platoonand
regulation layers: the platoon layer issues a command, and the regulation layer eventually
returns a response indicating successful completion. This interface needs to be enriched:
the platoon layer may ‘pass’ several parameters to the regulation layer, and the latter may
return ‘success’ or various kinds of ‘errors’ and ‘exceptions’. The combined platoon and
regulation layer together form a hybrid system of thetype introduced in [15]. The theory
of control of such systems remains to be developed.

8 Conclusions

We have discussed some aspects of the design of a control system for an IVHS system that
organizes traffic in platoons of closely spaced vehicles under automatic control. The control
tasks are complex. The proposed approach manages this complexity by structuring the
design into three layers. The centralized link layer assigns a path to each vehicle entering
the highway and targets for the aggregate traffic. The remaining tasks are distributed

among individual vehicles.1®

The platoon layer in each vehicle is responsible for planning its path as a sequence of three
elementary maneuvers, and for coordinating with neighboring vehicles the implementation
of each maneuver. The regulation layer is responsible for executing a pre-computed feedback
control in response to a command from the platoon layer.

Our main focus is on the design of the platoon layer. The tasks of path planning and nego-
tiating each elementary maneuver are carried out by finite state machines. These machines
are themselves structured into four functional sublayers so that each function can be de-
signed andtested separately. The machines are specified and verified to function correctly
by the COSPAN software system. The final design involves a system of 40 interacting ma-
chines (13 for the platoon layer and 27 for its environment) with about 500,000 states. This
is a fairly complex design, but the design process is simplified tremendously by maintaining
functional modularity and hierarchy.!”

It may be worth noting the difference between the way- the vehicle trajectory is determined
here (planning a pathas a. sequence of elementary maneuvers and coordinating each vehicle’s
maneuver with its neighbors) and robotics-and artificial intelligence-based approaches to
the problem of guiding an autonomous vehicle, see e.g. [21, 22, 23, 24]. The objective of
the latter work is to guide one autonomous vehicle in a relatively unstructured environment
so there is much emphasis on recognition, learning, and planning moves against diverse
‘threats’ or ‘obstacles’. By contrast,, our concern is on guiding many cooperating vehicles
in a relative structured environment, so the emphasis is on communicating information and
coordinating plans and movement.

The proposed three layer control hierarchy and the platoon layer design have important
implications for the design of the rest of the system. One implication for the regulation layer
is that, five types of feedback control law need to be designed. Another implication of our
study is the specification of several interfaces: between the platoon and link layers, between
the platoon and regulation layers, and between the platoon layer and several sensors on
board the vehicle and roadside sensors. The third set of implications concerns requirements
for these sensors and monitors: the design indicates the kind of information needed to carry
out the platoon layer control functions.

The fourth set of implications concerns the communications capability needed to support
the information links. Communications must be established between neighboring vehicles,
and between vehicles and the roadside. By figuring out how frequently the protocols must
be executed, and the data exchanged during each protocol, one can estimate the data traffic

16 A design principle that has been followed is to keep control tasks as decentralized as possible inthe
belief that, the resulting IVHS system would be less vulnerable to failures than one in which tasks are carried
out more centrally. A major consequence of this principle is that much of the ‘intelligence’ resides in the
vehicles themselves.

"The design process should be of interest also to researchers intlie field of control of discrete event. systems
[16,17,18]‘ Modularity and hierarchy are also discussed in [19,2()]‘

41

that each communication link must support. This will indicate the kind of communication
technology that would he viable. A related implication concerns work on standards for
IVHS communication message structures.

We now consider some directions for future work. We group our comments under several
headings.

Error conditions. The proposed design assumes that the communication system functions
perfectly, and the synchronization mechanisms that achieve coordination of processes in
the negotiating vehicles function perfectly as well. In any real implementation errors or
exceptions will arise, and protocols must be able to handle them. It is likely that the
design of these more robust protocols must be based on more detailed assumptions about
the underlying communication and computing systems. Related concerns are the measures
that need to be designed to counter failures in the communication, control and computing
systems themselves.

System failures. The three maneuvers considered here are sufficient for ‘normal’ operating
conditions. Clearly they need to be augmented by other maneuvers that would be invoked
when failures of various types occur and are detected. What should be done if a vehicle
has a failure, or if an obstacle is detected, or if there is an accident? Serious studies are
needed that systematically describe the failure modes, classify them in terms of severity, and
propose modifications in the system design to mitigate their impact. The above-mentioned
Al-based work may prove valuable in this connection, see also [25].

Real-time behavior. The behavior of the platoon layer is described in terms of sequences
of events. These events occur in time only insofar as we can say that one event occurs before
another one. There is no notion of ‘real’ time. i.e. the amount of time between two events.
It is important to augment the design to include some real time aspects. For example, in
deciding whether to execute a maneuver, the supervisor may use an estimate (if one were
available) of the time it would take to complete the maneuver. Such an estimate could
be made available in the form of a table or function that summarizes the response of the
regulation layer to a particular command. (The table could be built up from simulation
experiments or from very simple models of vehicle dynamics.) Recent work on timed finite
state systems provide a valuable guide as to how such estimates can be used [26,27].
Discrete event system formalisms more powerful than finite state systems may also prove
valuable [17];unfortunately, these formalisms do not yet have the kind of software support
provided by C’OSPAN.

Performance. Let us suppose that highway automation of the kind described here is
technically feasible. Policy makers will then need to decide whether this technology is
worth developing. An important element that can inform this decision would be reliable
estimates of the increase in highway capacity and decrease in travel time that this technology
might bring. Studies such as [1] cannot be relied upon since they are based on unverified
assumptions about the automated highway. Reliable estimates, it seems, will have to be
based on ‘realistic’ simulations.

References

[1]U.Karaaslan, P. Varaiya., andJ. Walrand, “I'wo proposals to improve traffic flow,”
tech. rep., UCB-ITS-PRR-90-6, Institute of Transporation Studies, University of Cali-
fornia, Berkeley, C'A 94720, December 1990.

[2] P. Varaiya. and S. Shladover, “Sketch of an IVHS systems architecture,” tech. rep.,
UC’B-ITS-PRR-91-3, Institute of Transportation Studies, University of California,
Berkeley, CA 94720, 1991.

[3] S. Slreikholeslam and C. A. Desoer, “Longitudinal control of a platoon of vehicles,”
in Proceedings of the 1990 American Control Conference, Volume 1, (San Diego, CA),
pp. 291--296, March 1990.

[4] D. 'M/Mon, J. Hedrick. and S. Shladover, “Vehicle modeling and control for auto-
mated highway systems,” in Proceedings of 1990 American Control Conference,(San
Diego, CA), pp. 297-303, 1990.

[5] H. Peng and M. Tomizuka., “Lateral control of front-wheel-steering rubber-tire vehi-
cles.” tech. rep., IJCB-ITS-PRR-90-5, Institute of Transportation Studies, University
of California., Berkeley, CA 94720, 1990.

[6] K.Chang, W. Li, A.Shaikhbahai, and P. Varaiys, “A preliminary implementation for
vehicle platoon control system,” in Proceedings of the 1991 American Control Confer-
ence, (Boston, MA), June 26-28 1991. to appear.

[7]M. Aoki and H.Fujii, “An inter-vehicle communication technology and its applica-
tions.” in 22nd International Symposium on Automotive Technology and Automation,
Vol 1, (Xutomotive Automation Ltd., Croyden,ingland), pp. 127-134, 1990.

[8] Z. Har’El and R.. I'. Kurshan, “Software for analytical development of communications
protocols,” AT&T Technical Journal, pp. 45559, January/February 1990.

[9] Z. HHar’El and R. P. Kurshan, COSPAN User’s Guide. AT&T Bell Laboratories, Murray
Hill, NJ, 1987.

[10] J. R. Buchi, “On a decision method in restricted second order arithmetic,” in Proceed-
ings of the International Congress on Logic, Methodology and Philosophy of Science.
pp. 1-11, Stanford University Press, 1962.

[11] R. Kurshan, “Complementing deterministic Buchi automatain polynomial time,” Jour-
nal of Computer and System Sciences, vol. 35, pp.59-71, 1987.

. Kurshan, nalysis of discrete event coordination. reprint, e abora-
12| R. Kursh “Analysis of di dination.” Prepri AT&T Bell Lab
tories, 1990.

[13] S. Sheikholeslam and C. A. Desoer, “Longitudinal control of a platoon of vehicles,”
tech. rep., UCB-ITS-PRR-89-3,6, Institute of Transportation Studies, University of
California, Berkeley, CA 94720, 1989.

43

[14]H. Peng and M. Tomizuka, “Preview control for vehicle lateral guidance in highway
automation,” in Proceedings of the 1991 American Conirol Conference, (Boston, MA),
June 26-28 1991. to appear.

[15] A. Gollu and P. Varaiya, “Hybrid dynamical systems,” in Proceedings of the 28th
Conference on Decisionand Control, (Tampa, FL), pp. 2708-2712, December 1989.

[16] P. Varaiya and A. Kurzhanski, eds., Discrete Event Systems: Models und Applications,
vol. ITASA 103. Lecture Notes in Control and Information Sciences. Springer, 1988.

[17]Y. Ho, cd.. Proceedings of the IEEE: Special Issue on Dynamics of Discrete Fvent
Systems, vol. 77. 1989.

[18]C. C'assandras and P. Ramadge, eds., I[EEE Control Systems Magazine: Special Section
on Discrete Fvent Systems, vol. 10. March 1990.

[19] L. Inan and P. Varaiya, “Finitely recursive process models for discrete event systems,”
IEEE Transactions on Automatic Control, vol. AC-33, pp. 626-639, July 1988.

[20] C. M. Ozveren, Analyis and Control of Discrete Event Dynamic Systems: A State
Space Approach. PhD thesis. MIT, 1989.

[21]C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Vision and navigation for the
Carnegie-Mellon Navlab.” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence. vol. 10. pp. 362-373, May 1988.

[22] A. M. Waxman, J. LeMoigne, L. Davis. B. Srinivasan, T. Kushner, E. Liung, and
T. Siddalingaiah, “A visual navigatiou system for autonomous land vehicles,” IEEE
Journal of Robotics and Automation, vol. 3, pp. 124140, April 1987.

[23] M. Markarinec, An accident avoidance system for an autonomous highway vehicle. Ph1
thesis, Northwestern University, 1989.

[24] E. I'reund, Ch. Buhler, U.Judaschke. B. Lammen. and R. Mayr, “A hierarchically
structured system for automated vehicle guidance.” in 22nd International Symposium
on A ulomotive Technology and Automation, Voll, (Automotive Automation Ltd.,
(C'royden, England), pp. 351-359, 1990.

[25] S. Narain, “A new modeling technique based on the causality relation.” Preprint, Rand
Corporation, 1989.

[26]D. L. Dill, “Timing assumptions and verification of finte-state concurrent systems,” in.
Automatic Verification Methods for Finite State Systems, vol. 407, Lecture Notes in
Computer Sciences, Springer, 1989.

[27] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems,” in Pro-
ceedings of the Fifth A nnual IEEE Symposium on Logic in Computer Science, (Philadel-
phia, PA), pp. 414-425, June 1990.

Appendix

The numbered lines in the COSPAN code correspond to the following lines that
explain the syntax for describing a process. All subsequent processes are to be interpreted

similarly.
1>
2>
3>
4>
5>
6>

>

8>
o>

Process name declaration.

Names of selection/output variables.

Names of state variables.

Initial state of the process.

Conditions for transition between states follow this.

While in the state NO-CAR, the selection/output seen by other processes is
either no_car ahead or car- ahead, non-deterministically chosen.

The transition from NO-CAR to CAR will occur if the selection, while in the state
NO-CAR, is car-ahead.

Otherwise, no transition is enabled, i.e. process stays in the same state.

While in the state CAR, the selection/output seen by other processes is either
no- car-ahead or car- ahead, non-deterministically chosen.

10> The transition from CAR to NO-CAR will occur if the selection, while in the state

CAR, is no_car_ahead.

11> Otherwise, no transition is enabled, i.e. process stays in the same state.

12> End of process declaration.

13> Selections from BPCmerge can affect this process’ transitions.

14> MERGING is a pausing state, and this is allowed.

15> Upon entering this state, the process selects accelerating. After some non-

deterministic amount of time (pause), the process selects merge- complete.

Gy

merge.sr Mon Apr 1 10:37:59 1991 1

/* merge.sr -- PROTOCOL I'OR MERGL MANEUVERS */

i>proc BR /* B’s range sensor machine. It alternates between
. “car_ahead" and "no_car_ahead" */

2> selvar #:(car_ahead, no_car_ahead)

3> stvar $: (CAR, NO_CAR)

4> init NO_CAR

5> trans

6> NO_CAR {no_car_ahead, car_ahead}
> ->CAR : # = car_ahead

8> ->3 : else;

9> CAR {car_ahead, no_car_ahead}
10> ->NO_CAR : # = no_car_ahead

11> -5 : else;

12> end /* BR */

proc BV /* B's veloclity response machine. Upon recelving

"accelerate to_merge" from the RPCmerge machine, 1t
initially selects “accelerating®; after some time
1t selects "merge complete® */

13> import BPCmerge
selvar #:(cruise, accelerating, merge complete)
stvar $: (CRUISING, MERGING)
init CRUISING

14> cyset {MERGING@}
trans
CRUISING {cruise}
->MERGING : BPCmerge.# = accelerate_to _merge
->$: else;
15> MERGING {accelerating: merge_complete}
->CRUISING s § = merge_complete
->$: else-
end /* BV */
proc BQ /* B's queue busy machine. It initially starts at the

NOT_BUSY state. When it recelves “setBQ_busy®
from BPCmerge machine, 1t moves to the BUSY state */

import BPCmerge
selvar #:(busy, not_busy)
stvar $:(BUSY, NOT_BUSY)
init NOT_BUSY

trans

NOT_BUSY {not_busy}
=->BUSY : BPCmerge.# = setBQ busy
->$: else;

BUSY {busy}
->NOT_BUSY : BPCmerge.§ = setBQ not_busy
->$: else;

end /% BQ */

proc BPCmerge /* B’s protocol machine. This machine sends request to merge
and .onfl-ms merging when the maneuvre is complet. */

import BR, BQ, BV, APRmerge

9y

merge.

sr Mon Apt 1 10:37:59 1991 2
selvar I: (Idle, setBQ busy, setBQ not busy, check_range,
request-merge, accelerate-to-merge, confirm merge) SIZE-OK {sum_ok, sum_too_large}
stvar S: (IDLE, CHECK-RANGE, REQUEST-MERGE, SET-BUSY. ACCELERATE, ->SIZE_LARGE : # = sum_too_large
CONFIRM-MERGE, UPDATE) ->$: else;
init IDLE
trans end /* ASUM */
IDLE (idle} proc APRmerge /* A's protocol machine. This machine Is the leader of
->CHECK RANGE : true; the platoon which receives request from BPCmerge ® /
CHECK-RANGE {check_range} Import AQ, ASUM, BPCmerge
~>SET_BUSY : { i3R.f = car-ahead) «{ BQ.% = not-busy ! selvar I: (Idle, check-status, nack_request merge, setAQ_busy,
~>IDLE : BR.¥ = no-car-a head setAQ_not_busy, ack_request_merge)
-5 : else; stvar $: (IDLE, CHECK-STATUS, SET-BUSY, SEND-ACK, SEND-NACK,
UPDATEL
SET-BUSY {setBQ_busy} intt I DLE
->REQUEST_MERGE : true; trans
REQUEST-MERGE {request_merge} IDLE {idle}
~>ACCELERATE : APRmerge.# = ack_request_merge ~>CHECK_STATUS BPCmerge.# « request_merge
~>UPDATE : APRmerge.# = nack_request_merge ->$: else;
->$: else;
CHECK-STATDS {check_status)
ACCELERATE (accelerate-to_merge} ->SET_BUSY : (AQ.# = not_busy) * (ASUM.# = sum-ok)
->CONFIRM_MERGE : BV.# = merge_complete =>SEND_NACK 1 else;
->$: else;
SEND_NACK {nack_request_merge}
CONF IRM-MERGE (confirm merge} =>IDLE true;
->UPDATE : true;
SET-BUSY { setAQ busy
UPDATE {setBQ not-busy) ~>SEND_ACK true:
->IDLE : true;
SEND-ACK {ack_request_merge}
end /* BPCmerge */ ->UPDATE : BPCmerge, # =conf irm_merge
->$: else;
proc AQ /* A's queue busy machlne. It inltially starts at tha
NOT-BUSY state. When it receives ®"setAQ busy® UPDATE {setAQ_not_busy]
from APRmerge machine, it moves to the BUSY state ® / ~>IDLE true;
import APRmerge end /* APRmerge */
selvar I: (busy, not-busy)
stvar $: (BUSY, NOT-BUSY, monitor MERGE_MONITOR /* Checks for correctnessofthe Merge Protocol
init NOT_BUSY
trans import BPCmerge, APRmerge
stvar §:10. .3)
NOT_BUSY { not-busy } cyset {0}
~>BUSY : APRmerge.# = setAQ_busy recur 2->0, 3->0
~>$: else: init 0
trans
BUSY {busy}
~>NOT _BUSY : APRmerge.# = setAQ not_busy 0
~>$: else; =>1 : BPCmerge.d = request-merge
=->$: elsey
end /% AQ */ 1
->2 : APRmerge.# = ack_request_merge
proc ASUM /% A's slze of platoon machlne. */ =>3 : APRmerge.# = nack_request_merge
->$: else;
selvar 1: (sum-too-large, Sum_ok) 2
stvar S: (SIZE-LARGE, SIZE-OK) =->0 : BPCmerge. § = confirm merge
init SIZE-LARGE ->$: else;
trans 3
->0 : BECmerge . # = setBQ not_busy
SIZE-LARGE { sum-too-large, sum-ok ! ->$: else;
->SIZE_OK ¢ = sum_ck
->$: else; end /* MERGE-MONITOR */

A

protocol.sr

Tue Apr 9 16:16:02 1991 1

/* protocol.sr —— contains reduced command protocol machines and full

proc TRIGGER

respond machines as well as all relevant sublayer
interface machines ® /

/* triggers the test machines */

selvar #:(1)
stvar $: (ONE)
init ONE
trans
ONE (1}
-8 : true:
end /* TRIGGER */
A bt interface machines for PM layer v/
proc RDSNR /* Road Sensor */
selvar #:(match, no-match)
stvar S: (MATCH, NO_MATCH)
tnit NO_MATCH
trans
NO-MATCH (match. no_match]
->MATCH : # = match
->$: else;
HATCH (match, no-match)
->NO_MATCH : # = no-match
->$: else;
end /0N 0 G
proc LN /+ BoHl L4000 0 &
selvar #: (correct, lacorrect !
stvar $3: (CORRECT, INCORRECT1
init INCORRECT
trans
INCORRECT {correct, incorrect I
->CORRECT ¢ # = correct
->$: elsep
CORRECT {correct, incorrect}
=>INCORRECT : # = incorrect
->$: else;
end A B]
Y A el protocol machine for PM layer */
proc PM /* Path Monitor */
import RDSNR, LN, SUPR
selvar #:(chg_ln, keep_ln}
stvar $: (CHG_LN, KEEP_LN)
init KEEP LN
trans
CHG_LN {chg_1n}
->KEEP_LN (LN.# = correct) . (SUPR.# = chg_ln_complete)
->$: elsep

KEEP_LN I keep_l nj
->CHG_LN : RDSNR.# = match
->$: else;
end /* PM */
[interface machines for SUPR layer-—------—--——-—- */
proc FREE /* free agent status Indicator. */

proc POS

proc ALLBUSY

selvar #:(not_free_agent, free-agent)
stvar $: (FREE_AGENT, NOT-FREE-AGENT)
init NOT-FREE-AGENT

trans

NOT-FREE-AGENT {not_free_agent, free agent}

->FREE_AGENT : # = free_agent
->$. else;
FREE AGENT {free_agent, not_free_agent}

->NOT FREE_AGENT
->$: else;

: # = not_free_agent

end /* FREE */
/* Indicates position in platoon ® /

import BPCmerge, BPCsplit, BPRsplit, BiPRchg

selvar #:(follower, leader)
stvar $: (FOLLOWER, LEADER)
cyset {FOLLOWER® }
init FOLLOWER
trans
FOLLOWER {follower}
->LEADER (BPCsplit.# = setALLBUSY not_busy)
+ (BPRsplit.f = setALLBUSY not_busy)
+ (R{PRchg.# = setALLRBUSY not_bus'r}
->$. else;
LEADER (leader)
->FOLLOWER : BPCmerge.# = setALLBUSY_ not_busy
->$. else;
end /tpOS O /

/* over all busy flag ® /

import
APRsplit, BPRsplit, APRmerge

selvar {#:{busy, not-busy)

stvar $: (BUSY, NOT-BUSY,
init NOT-BUSY
trans

NOT-BUSY (not_busyl
->BUSY : (APCchg.# = setALLBUSY busy)
+ (BPRchg.# = setALLBUSY busy)
+(B1PRchg.# = setALLBUSY busy)
+ (CPRchg.# = setALLBUSY busy)
+(APCsplit.# = setALLBUSY_busy)
+(BPCsplit.# = setALLBUSY_busy)
+{APRsplit.# = setALLBUSY busy)
+(BPRsplit.# = setALLBUSY busy)
+ (APRmerge.§ = setALLBUSY busy)

APCchg, APCsplit, BPCsplit, BPCmerge, BPRchg, BiPRchg, CPRchg,

8%

protocol.sr Tue Apr 9 16:16:02 1991 2

+ (BPCmerge.# = set ALLBUSY busy}

->$: else;
BUSY {busy}
->NOT_BUSY : (APCchg. # = setALLBUSY not_ busy)

+(BPRchq.# = setALLBUSY not busy)

+ {BiPRchg.# = setALLBUSY not_busy)
+{CPRchg.# = setALLBUSY not_busy)
+{APCsplit.# = setALLBUSY not_ busy)
+{BPCsplit.# = setALLBUSY not_ busy)
+(APRsplit.# = setALLBUSY not_busy)
+(BPRsplit.# = setALLBUSY not_busy)
+ (APRmerge.# = setALLBUSY not_busy)
+(BPCmerge.# = setALLBUSY not_busy)

->$: else;
end /* ALLBUSY */
proc SIZE /* Indicates platoon size(will always come back to opt) */

import BPCmerge, APCsplit, APRmerge, APRsplit, BPRsplit
selvar #: {opt, smaller-than-opt, larger-than-opt)
stvar $:(OPT, SMALLER-THAN-OPT, LARGER-THAN-OPT)
cyset {OPT@)}

intt OPT@

trans

OPT (Opt: smaller-than-opt, larger_than_opt}
->SMALLER _THAN _OPT : # = smaller-than-opt
->LARGER THAN_OPT # = larger_than_opt
->8 : else;

SMALLER-THAN-OPT (smaller-than-opt)

->0PT : (BPCmerge.# = setALLBUSY not_busy)
+ (APRmerge.# = setALLBUSY not_busy)
=>$: else;

LARGER _THAN_OPT {larger_than_opt}
--OPT : (APCsplit .# = setALLBUSY_ not_busy)
+ (APRspllt .# = setALLBUSY_ not busy)
+ (BPRsplit . | = setALLBUSY_not_ busy)

->$: else;
end /*SIZE® |/
A protocol machine for SUPR layer */
proc SUPR /* Platoon supervisor, each car has one ® /

import PM, FREE, ALLBUSY, APCChQ, BFRE, POS, SIZE, BPRchg,BlPRchg,
CPRchg, APRsplit, BPRsplit, APRmerge

selvar #:(start, check_free agent, become free_agent, chg_ln_complete,

start_chg_ln, check_position, keep_position, check_size,
Split, mergE)

stvar $: (START, CHK_FREE_AGNT, BCM_FREE_AGNT, CHG_CMPLT, STRT_CHG_IN,

CHK_POS, KEEP-POS, CHK_SIZE, SPLIT, MERGe)
init START

trans

START IstartI
->CHK_FREE_AGNT : PM.# = chg_ln
->CHK_POS :PM.#=~ keep-In
->$: else;

CHK_FREE_ACNT icheck_free agent}
~>BCM FREE-AGNT : (FREE.#=not_free_agent)

e (ALLBUSY. = not-busy)

->STRT_CHG_LN : {(FREE.# = free_agent)
e (ALLBUSY.#= not-busy)
->$: else;

BCM_FREE_AGNT [become_free_agent |
->STRT_CHG_LN : BFRE.# = free_agent
->$: else;

STRT_CHG_LN [start_chg_ln}
->CHG_CMPLT : APCchg.# = setALLBUSY not_busy
->$: else;

CHG CMPLT {chg_ln_complete}
->START : true;

CHK POS {check_position}
~->KEEP_POS : POS.# = follower
->CHK_SIZE : PO5.# = leader
->8 : else;

KEEP POS (keep-position)

->BCM FREE_AGNT : (PM.# =~ chg 1ln} e (ALLBUSY.#= not-busy)
* (BiPRchg.# =1 dle) o (BPRsplit.# = idle)

->CHK_SIZE : (POS.# =leader) o (PM.#=keep ln)
->$: else;
CHK-SIZE {check_size}

~>BCM_FREE_AGNT : (PM.# = chg_ln) o (ALLBUSY.#= not-busy)
e (BPRchQ.6 =1dle) « (CPRchg.# = Idle)
e (APRsplit.# = idle) o (APRmerge.f = idle)
->SPLIT : (SIZE.# = larger_than_opt)
o (ALLBUSY.#= not-busy) e« (PM.#= keep-In)
e (BPRchg.f§ = idle) o (CPRchg.# = idle)
o {APRsplit.# = idle) o (APRmerge.$ ~ idle)
->MERGe : (SIZE.# = smaller_than_opt) * (POS.%# = leader)
e (ALLBUSY.#= not-busy) « (PM.# = keep_ ln)
e (BPRchg.# = idle) o (CPRchg.#= idle)
o (APRsplit.# = idle) o (APRmerge.# - Idle)

->8 : else:

SPLIT {split}
~>CHK_SIZE : (SI2E.# = opt) + (SIZE.4 = smaller-than-opt)
->$: else;

MERGe {mergE}
~>KEEP_POS : (PM.# = keep 1n) o (POS.# = followerl
=>BCM_FREE_AGNT : (PM.# = chg 1n) o (ALLBUSY.#=~ not-busy)
->$: else;

end /*SUPR® f

----protocol machines for change lanes maneuver—----------- e /

proc APCChQ /* A’s change lane protocol machine--reduced ® /

import SUPR, BPRchql

selvar #:(idle, setALLBUSY busy, confirm change_lane,
set ALLBUSY_not_busy)

stvar $: (IDLE, SET-BUSY, CONFM_CHG_LN, UNSET-BUSY)

init IDLE

trans

IDLE {idle}
->SET_BUSY : SUPR.# = start_chg_ln
->$: else;

6%

protocol.sr Tue Apr 9 16:16:02 1991 3

SET BUSY {setALLBUSY busyl end /* BPRchg */
->CONFM_CHG LN : BPRchgl.# = ack_req_chg ln
~>UNSET_BUSY : else; [* e */
proc APCchg2 /* test machlne for BPRchg ® /
CONFM_CHG_LN {conflrm_change_ lane}
->UNSET BUSY : true: lmport BPRchg, TRIGGER
. selvar I: 'Idle, req_chg_ln, confirm-change-lane)
UNSET_BUSY {setALLBUSY not_busy} stvar S:'IDLE, REQ CHG_IN, CONFM_CHG_LN)
->IDLE ¢ true; init IDLE
trans
end /* APCchg @ ,
IDLE {idie}
At e */ ~>REQ_CHG_LN : TRIGGER.+ = 1
proc BPRchgl /* test machine for APCchg */ ->5 : else;
selvar #:(ack_req_chg_ln, nack_req_chg_ln) REQ_CHG_LN {req_chg_lin}
stvar $:(ACK, NACK) ~>CONFM_CHG_LN + ®PR-8pRchg.#hck req_chg_ln
init ACK ~>IDLE : else;
trans
CONFM_CHG_LN {confirm change_lane}
ACK lack-reg-chg-1n, nack_req_chg_1n} ->IDLE : true:
->NACK : # = nack_req_chg_ln
->$: else; end /* APCchg2 */
O ebebobotstebotohotetedobotetetd JUE
NACK {ack_req_chg_ln, nack_req_chg_l1n}
->ACK : # = ack_req_chg_ln proc CPRchg /* far lane leader's machine--full */
->$: else;
import PM, SUPR, ALLBUSY, POS, APCchg3, BPRchg, APRsplit, APRmerqe
end /* BeCchgl */ selvar #:(idle, check-busy, promise_not_to_move, nack_req_chg_1n)
e */ stvar $:{IDLE, CHECK-BUSY, PROMISE, NACK)
init IDLE
proc BPRchg /* leader's response machine--full @ / trans
import APCchg2, PM, SUPR, POS, ALLBUSY, APCsplit, BPCmerge, IDLE {idle}
CPRchg, APRsplit, APRmerge ->CHECK _BUSY : APCchg3.# = req_coop
selvar #:(ldle, check-busy, nack_request_chg ln, setALLBUSY busy, ->$: else;
ack_req_chg_ln, setALLBUSY not_busy:
stvar S:'IDLE, CHECK-BUSY, NACK, SET-BUSY. ACK, JNSET_8USY) CHECK-BUSY {check_busy)
init IDLE ~>PROMISE : {PM.# = keep_ln) o (ALLBUSY.# = not-busy)
t rans o {(POS.# = leader) e (SUPR.# = check-sir.)
o {(BPRchg.# = idle)
IDLE 'idle) e ~{APRsplit.# = setALLBUSY_ busy)
->CHECK_BUSY : APCchg2.# = req_chg_ln o ~{APRmerge.# = setALLBUSY_ busy}
->$: else; =>NACK : else;
CHECK-BUSY {check_busy} NACK {nack_req_chg_1ln}
->SET_BUSY : (ALLBUSY.# = not-busy) e (SUPR.# = check-size) ->IDLE ¢ true;
e (POS.# = leader) * 'PM.+ = keep_ln)
e ~(CPRchg.# = promise not_to_move} PROMISE {promise_not_to_move}
o ~(APRsplit.# = setALLBUSY busy) ->IDLE : APCchgld.# = confirm-change-lane
e ~{APRmerge.# = setALLBUSY_ busy) ->$: else;
~>NACK : else;
end /* CPRchg ® /
NACK {nack_req_chg_1n}
->IDLE : true; /¥ mmemmmmmmmmmmc e */
proc APCchg3 /* test machine for CPRchg */
SET-BUSY {setALLBUSY busy}
->ACK : true; import CPRchg, TRIGGER
selvar #:(lidle, req_coop, confirm_change_lane)
ACK 'ack_req_chg_1in} stvar S:'IDLE, REQ COOP,CONFM_CHG_LN)
->UNSET_BUSY : APCchg2.# = confirm_change_ lane init IDLE
->$: else; trans
UNSET_BUSY {setALLBUSY_ not_busy} IDLE 'Idle)

->IDLE : true: ->REQ_COOP : TRIGGER.# =1

0¢s

protocol.sr

->$5

REQ_COOP
->CONFM CHG_LN
->IDLE

CONFM_CHG_LN

~>IDLE
end /* APCchg3 */
) */
proc BiPRchg
toBlv @ /
Import BPRchg2,
selvar
stvar $:(IDLE, SET-BUSY,
init IDLE
trans
IDLE
~>SET BUSY
->$
SET-BUSY

~>CONFIRM SPLIT

CONFIRM SPLIT
->UNSET BUSY

UNSET-BUSY
->IDLE
end /* B1PRchg */
e */

proc BPRchg2

import BiPRchg, TRIGGER

selvar #:{idle, split)

Tue Apr 9 16:16:02 1991 4

: else;

{req _coop)
: CPRchg.# = promise_not to move
else;

{confirm_change_lane}
true;

/* follower's machine in change lanes--left out the interface

PM, SUPR, ALLBUSY, POS
#:(idle, setALLBUSY busy, confirm_split, setALLBUSY not_busy)

CONFIRM-SPLIT, —UNSET—BUSY)

{idle}
(BPRchg2.1 = spllt) e (POS.# = follower)
e (ALLBUSY.# = not_busy)
e {(SUPR.# = keep position} « (PM.# = keep-1"
+ (SUPR.# = Dbecome-free-agent)
e {PM.# = chg_ln))
: else;

{setALLBUSY busy}
true:

{conflirm_split)
true;

{setALLBUSY not_busy)
true:

/* test machine for BiPRchg ® /

stvar $: (IDLE, SPLIT)
init IDLE
trans
IDLE (Idle)
->SPLIT : TRIGGER.F = 1
->$ else;
SPLIT {split}
->IDLE BiPRchg.# = confirm_split
->$: else;
end /* BPRchg2 ® /
2 */
It e protocol machine for free agent supervlisor--—---=------ o /
proc BFRE /* Become a free agent */
Import SUPR, POS, APCsplit, BPCsplit
selvar #:(ldle, check-status, become-leader, become-free-agent,

stvar

init
trans

IDLE

CHECK-STATUS

BECOME-LEADER

BECOME-FREE-AGENT

free-agent)

$: (IDLE, CHECK-STATUS,
FREE-AGENT)

IDLE

BECOME-LEADER, BECOME_FREE_AGENT,

{idle}
->CHECK _STATUS : SUPR.# = become-free-agent
->$: else;

(check-status)
->BECOME_LEADER : POS.# = follower
->BECOME_FREE AGENT . else;

{become_leader}
->BECOME_FREE _AGENT : BPCsplit.# = confirm split

->$: else;

{become_free_agent)

~>FREE_AGENT : APCsplit.# = setALLBUSY_ not_busy

->$. else;
FREE-AGENT {free_agent)
->IDLE : true;
end /* BFRE @ /
JY —mmmmmmmm e protocol machines for split maneuvers-—-------------- ® /

proc APCsplit
import
selvar
stvar
init

trans

IDLE

SET-BUSY

UPDATE

UNSET-BU

end

proc BPCsplit

/* sllghtly reduced--left out a state with transition ’‘true® */

PM, SUPR, BFRE, ALLBUSY, BPRchg, CPRchg, APRsplit, APRmerge,
SIZE, POS

#:(ldle, setALLBUSY busy, update, $etALLBUSY_ not_busy)

$: (IDLE. SET _BUSY, UPDATE, UNSET-BUSY)

IDLE
{1dle}
->SET_BUSY ((PH.8 = keep-1n) e {SUPR.# = split)
o (SIZE.# = larger-than-opt)
+ (PM.# = chg_l1n}
* (SUPR.# = become-free-agent)
o (BFRE.§ = become free agent))
o (ALLBUSY.# = not-busy) e {POS.# = leader)
o {BPRchg.# = idle) o {CPRchg.$ = idle)
o (APRsplit.# = Idle) o (APRmerge.# = idle)
->$: elsep
{setALLBUSY_ busy}
->UPDATE : true;
(update)
~>UNSET_BUSY : true;
SY {setALLBUSY not_busy}
->IDLE : true;

/* APCsplit *I

/* reduced--left out interface to BV and one 'true' transition
state 0 <

import PM, POS, BFRE, ALLBUSY, APRsplit2, BiPRchg, BPRsplit

selvar

#:(idle, setALLBUSY busy, setALLBUSY not_busy, request-split,
confirm split)

16

protocol.sr

Tue Apr 9 16:16:02 1991 5

stvar 5: (IDLE, REQ SPLIT, SET BUSY, CONFIRM SPLIT, UNSET BUSY)
init IDLE

trans
I DLE {idle}
->REQ SPLIT : (BFRE.# = become-leader) « (POS.#= follower)
o (PM.# = chg_ln} . (ALLBUSY.# = not-busy)
« (BiPRchg.# = idle) . (BPRsplit.# = idle)
->$: else;
REQ_SPLIT (request-split)
->SET BUSY : (APRspllt2.1 = ack_req_split)
* (PM.# = chg_lIn) * (ALLBUSY.# = not-busy)
. (BiPRchg.# = Idle) * (BPRsplit.# = idle)
~>IDLE : APRsplit2.1 =nack req split
->$: else;
SET-BUSY {setALLBUSY busy)

=>CONFIRM SPLIT : true:

CONFIRM_ SPLIT {confirm split}

->UNSET BUSY : true;
UNSET-BUSY { setALLBUSY_not_busy)
->IDLE . true:
end /* BPCsplit */
________________ '/

proc APRsplit2 /* test machine for BPCsplit */

selvar #:(ack_req_split, nack_req_ split)
stvar $: (ACK, NACK)

init ACK

trans

ACK {ack_req_split, nack_req_split}
~>NACK : # = nack_req_split
->$: else;

NACK {ack_req_split, nack req_split}
->ACK : # = ack_req_split
->$: elsep

end /* APRsplit2 © /

proc APRsplit /* leader response machine--full ® /

import BPCsplit2, SUPR, ALLBUSY, BPRchg, CPRchq, APCsplit, BPCmerge,
POS, PM, APRmerge
selvar #:(idle, check-busy, "ack-request-split, setALLBUSY busy,
ack_request_split, update, $etALLBUSY not_busy)
stvar $:(IDLE, CHECK-BUSY, SEND-NACK, SET-BUSY, SEND-ACK
UPDATE, UNSET-BUSY)
init IDLE

trans
IDLE (Idle)
=>CHECK_BUSY : BPCsplit2.# = request _split
->$. else;
CHECK-BUSY (check-busy)
->SET BUSY : (PM.# = keep 1n) * {ALLBUSY.# = not busy)

. (POS.# = leader) * (SUPR.# ~ check size)
. (BPRchg.# = idle) . (CPRchg.# = ldle)

* ~ (APRmerge. ¥ = setALLBUSY busy)

->SEND_NACK : else;

SET BUSY {setALLBUSY busy)
->SEND ACK ¢ true:

SEND_ACK lack request _split}
~>UPDATE H true;

SEND_ NACK {nack_request_split}
->IDLE . true:

UPDATE (update)
~>UNSET_BUSY BPCsplit2.1 = confirm split
->$: else;

UNSET-BUSY {setALLBUSY not busy)
->IDLE : true;

end /* APRsplit ® /

___________________ o

proc BPCsplit2 /* test machine for APRsplit @ /

import APRsplit, TRIGGER

selvar #:(idle, request-spilt, confirm_split)
stvar S: (IDLE, REQ_SPLIT, CONFIRM_SPLIT)
init IDLE

trans

IDLE (idle)
~>REQ_SPLIT TRIGGER.Q@ = 1
->$: else;

REQ-SPLIT {request_split}
->CONFIRM_SPLIT : APRsplit.# = ack_request_split
->IDLE : APRsplit.# = nack_request_split
->$: else;

CONFIRM SPLIT {confirm_split}

->IDLE ¢ true;
end /* BPCsplit2 */
i d) 4

proc BPRsplit /* follower response to split--left out inface to BV #/

import APCsplit2, PM, ALLBUSY, SUPR, POS, BiPRchg

selvar #:(idle, setALLBUSY busy, confirm split, setALLBUSY not_busy)
stvar $:(IDLE, SET-BUSY, CONFIRM-SPLIT, UNSET-BUSY)

init IDLE

trans
IDLE {idle}
->SET_BUSY : (APCspllt2.1 = invite_new_lead)
« WRQS 4 -~ follower) .
« (ALLBUSY.# = not busy). (BiPRchg.4 = ldle)
. ({(SUPR.# = keep position) . (PM.# = keep_ln)
+ (SUPR.# = become_free_agent)
e (PM.4 = chg_ln))
->$: else;
SET_BUSY {setALLBUSY busy}

->CONFIRM SPLIT : true;

CONFIRM SPLIT {confirm split}

4]

protocol.sr

I

Tue Apr 9 16:16:02 1991 6

~>UNSET_ BUSY : true:
UNSET_BUSY {setALLBUSY not busy)
->IDLE . true:
end /* BPRsplit @ /
*/

proc APCsplit2 /* test machine for BPRsplit */

/%

impart BPRsplit, TRIGGER

selvar #:(ldle, invite new lead)
stvar $:(IDLE, INVITE_NEW_LEAD)
init IDLE

t rans

IDLE (idle)
~>INVITE NEW-LEAD
->$. else;

TRIGGER.f# = 3

INVITE-NEW-LEAD {invite_new_lead}

- >IDLF : BPRsplit.# = confirm split
->$: else;
end /* APCsplit2 ® /
*/

proc BPCmerge /* slightly reduced machine--left out Interface to BV

and a 'true' transition state ® /

lmport PM, SIZE, SUPR, POS, APRmerge?

selvar #:(ldle, setALLBUSY busy, confirm_merge, setALLBUSY not busy)
stvar S: (IDLE, SET-BUSY, CONFIRM-MERGE, UNSET-BUSY)

init IDLE

trans
IDLE {idle}
~>SET_BUSY (SUPR.# = mergE) o (PM.# = keep In)
e (S12.E.I = smaller than opt)
o {POS.#§ = leader)
->$: else;
SET BUSY { setALLBUSY busy}

->CONFIRM_MERGE : APRmerge2.l = ack_req_merge
->UNSET BUSY t else;

CONFIRM-MERGE { mom2¢o0=ron o mo
=>UNSET BUSY 3 true:

UNSET-BUSY {setALLBUSY not_busy}
=->IDLE : true;
end /* BPCmerge ® /

________________ v/

proc APRmerge2 /* test machlne for BPCmerge ©® /

selvar #:(ack_req merge, nack-reg-merge)
stvar $: (ACK, NACK)

init ACK

trans

ACK lack-reg-merge, nack-reg-merge]
>NACK . # = nack-reg-merge

->$: else;

NACK tack_req_merge, nack-reqg-merge)
->ACK : # = ack_req_merge
->$: else:
end /* APRmerge2 ©®
______________ */

proc APRmerge /* leader's response machine--full ® /

YA

import BPCmerge2, PM, POS, SUPR, ALLBUSY, BPRchg, CPRchg, APRsplit,
APCsplit, BPCmerge
selvar #:(idle, check-status, nack_request_merge, setALLBUSY_ busy,
setALLBUSY not_busy, ack_request_merge)
stvar $:(IDLE, CHECK-STATUS, SET-BUSY, SEND-ACK, SEND_NACK,

UNSET-BUSY)
init IDLE
trans
IDLE {idle}
->CHECK_STATUS BPCmerge2.1 = request-merge
->$: else;

CHECK-STATUS (check-status)

->SET_BUSY (PM.# = keep_ln) o (POS.# = leader)
o {ALLBUSY.# = not-busy)
e {SUPR.# = check-size) e (BPRchg.# = idle)
o (CPRchg.# = idle) « (APRsplit.# = Idle)
o {SIZE.# = smaller-than-opt)
->SEND NACK : else:
SEND-NACK { nack_request_merge}
->1DLE : true;
SET-BUSY {setALLBUSY_ busy}
~>SEND_ACK ¢ true:
SEND ACK {ack_request_merge}
->UNSET_BUSY : BPCmerge2.1 = confirm_merge
->$: else;
UNSET BUSY { setALLBUSY not_busy}
->IDLE ¢ true;
end /* APRmerge O /
*/

proc BPCmerge2 /* test machine for APRmerge ® /

Import APRmerge, TRIGGER

selvar #:(ldle, request-merge, confirm merge)
stvar $: (IDLE, REP-MERGE, CONFIRM MERGE)
init IDLE

trans

IDLE (idle)
->REQ_MERGE TRIGGER.# = 1
->$: else;

REQ_MERGE {request_merge}
->CONFIRM MERGE : APRmerge.l = ack request merge
->IDLE : APRmerge.f# = nack_request_merge
->$: else;

CONFIRM_MERGE (confirm-merge)
->IDLE ¢ true:

€<

protocol.sr Tue Apr 9 16:16:02 1991

end /* BPCmerge2 */
. o
/* ———— */
monitor SUPR_MONITOR1 /* monitors states in SUPR */
import SUPR
stvar s: (0.7
Inlt 0
cyset (1}, {21, {3}, {4}, {5}, (6}, {7}
recur 1->7, 1->4, 4->2, 6->0, 3->5, 1->5, 2->5, 4->5
trans
0
->1 : SUPR.# = check size
->2 : SUPR.# = keep-position
->3 : SUPR.# = check-free-agent
->$. else;
1
->4 : SUPR.§# = mergE
->5 : SUPR.# = become-free-agent
->7 : SUPR.# = split
->$. else;
2
->1 SUPR.# = check-size
->5 SUPR.# = become-free-agent
->7 SUPR.# = split
->$ else;
3
~>5 ¢ SUPR.# = Dbecome-free-agent
->6 ¢ SUPR.# = start-chg-1ln
->$: else;
4
->2 : SUPR.# = keep-position
->5 t SUPR.# = Dbecome-free-agent
->$: else;
5
~>6 ¢ SUPR.# = start-chg-ln
->$ else;
6
~>0 SUPR.# = chg_ln_complete
~>$ else;
7
->1 ¢ SUPR.# = check-size
->$ else:
end /* SUPR_MONITOR1 ® /
A */
monitor SUPR_MONITOR2 /* monitors mutual exclusion ® /

import APCchg, BPRchg,CPRchg, BIPRchg, APCsplit,BPCsplit, APRsplit,
BPRsplit, BPCmerge, APRmerge
stvar $:(0..12)

init 0
cyset {0}
trans
0
=>1 : (APCchg.$ = SET-BUSY)

* ({BPRchqg.$ = SET-BUSY)
+ (CPRchg.$ = PROMISE)

+ {b1PRchg.$ = SET-BUSY)
+ (APCsplit.$ = SET-BUSY)
+ (BPCsplit.$ = SET-BUSY)

->7

-

+ (APRsplit.$ = SET_BUSY}
+ (BPRsplit.$ = SET-BUSY)
4+ (BPCmerge.$ = SET-BUSY)
+ (APRmerge.$ = SET BUSY))

: {BPRchg.$ = SET-BUS?,

o (JAPCcha.$ = SET _BUSY)
+ (CPRchg.$ = PROMISE)

+ {BiPRchg.$ = SET-BUSY)
(APCsplit.$ = SET BUSY)
(BPCsplit.$ = SET_BUSY)
{APRsqlit.§ = SET BUSY)
(BPRsplit.$ = SET_BUSY)
(BPCmerge.$ = SET-BUSY)
+ (APRmerge.$ = SET BUSY))
(CPRchg.$ = PROMISE)}

o ({APCcha.$ = SET_BUSY)
+ {BPRchg.$ = SET_BUSY)

+ (BiPRchg.$ = SET-BUSY)
+ (APCsplit.$ = SET_BUSY)
+ (BPCsplit.$ = SET-BUSY)
+ {APRsplit.$ = SET_BUSY)
+ (BPRsplit.§ = SET_BUSY)
+ {BPCmerge.$ = SET-BUSY)
+ (APRmerge.$ = SET-BUSY))

+ o+

: {BiPRchg.$ = SET-BUSY,

e ((APCchg.$ = SET-BUSY)
(BPRchg.$ = SET-BUSY)
{CPRchg.$ = PROMISE)
{APCsplit.$ = SET-BUSY)
{BPCsplit.$ = SET_BUSY)
(APRsplit.$ = SET_BUSY}
(BPRsplit.$ = SET-BUSY,
(BPCmerge.$ = SET-BUSY)
{APRmerge.$ = SET-BUSY))

+

4+ 4+ + + + +

: {APCsplit.$ = SET-BUSY)

o ((APCchg.S$ = SET-BUSY)
(BPRchg.$ = SET_BUSY)
+ (CPRchq.S = PROMISE)

+ (BiPRcha.$ = SET_BUSY)
+ (BPCsplit.§ = SET_BUSY)
N
+
+

+

(APRspllt.S = SET-BUSY)
(BPRsplit.$ = SET-BUSY,
(BPCmerge.$ = SET-BUSY)
+ {APRmerge.$ = SET-BUSY))

: (BPCsplit.$ = SET-BUSY)

o {{APCchg.$ = SET-BUSY)
(BPRchg.$ = SET-BUSY,
(CPRchg.$ = PROMISE)
(BiPRchg.$ = SET_BUSY)
(APCsplit.$ = SET-BUSY,
{APRsplit.$ = SET-BUSY)
{BPRsplit.$ = SET-BUSY)
{BPCmerge.$ = SET-BUSY)
(APRmerge.$ = SET_BUSY))
APRsplit.$ = SET-BUSY)
((APCchg.$ = SET_BUSY}
(BPRchg.$ = SET_BUSY)
{CPRchgq.$ = PROMISE)
{B1PRchg.$ = SET_BUSY)
{APCsplit.$ = SET_ BUSY)
(BPCsplit.$ = SET_BUSY)
(BPRsplit.$ = SET_BUSY)
(BPCmerge.$ = SET_BUSY)
(APRmerge.$ = SET_BUSY))

R

R

: (BPRsplit.$ = SET-BUSY)

o ((APCchg.$ = SET-BUSY)

s

protocol.sr Tue Apr 9 16:16:02 1991 8

+ (BPRchg.$ SET_BUSY)

+{CPRchg.$ = PROMISE)

+ {BiPRchg.$ = SET-BUSY)

+ (APCsplit.$ = SET BUSY)

+ {BPCsplit.$ = SET-BUSY;

+ {APRsplit.$ = SET-BUSY)

+{BPCmerge.$= SET-BUSY)

+{APRmerge.$ = SET-BUSY))
->9 : (BPCmerge.$ = SET BUSY)

e {{APCchg.$ = SET BUSY)

+ {BPRchg.$= S ET_BUSY)

+ (CPRchg.S = PROMISE)

+ (BiPRchg.$ = SET BUSY)

+ (APCsplit.$ = SE?: BUSY)

+ (BPCsplit.$ = SET-BUSY)

+ (APRsplit.$ = SET-BUSY)

+(BPRsplit.$ = SET-BUSY)

+ (APRmerge.$ = SET_BUSY))
->10 : (APRmerge.$ = SET_BUSY)

« {{APCchg.$= SET-BUSY)

+{BPRchg.$= SET BUSY)

+ {CPRchg.$ = PROMISE)

+ {BiPRchg.$ = SET BUSY)

+{APCsplit.$=SET BUSY)

+ {BPCsplit.$ = SET_BUSY)

+ {APRsplit.$ = SET BUSY)

+ (BPRsplit.$ = SET-BUSY,

+ (BPCmerge.$ = SET_BUSY))

->11 : {(POS.$ = LEADER) .« =~{{BiPRchg.$ = IDLE)
+ (BPRsplit.$ = IDLE) + (BPCsplit.$ = IDLE))
->12 : (POS.$ = FOLLOWER) * ~{(APCchg.$ = IDLE}

+ (APCsplit.$ = IDLE) + (BPCmerge.$ = IDLE)

+ (BPRchg.$ = IDLE) + (CPRchg.$ = IDLE)

+ (APRsplit.$ = IDLE) + (APRmerge.$ = IDLE))
->$: else;

end /* SUPR_MONITOR2 */

