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Abstract

A structured use of control, communication and computing technologies in vehicles and in

the highway in the form of an Intelligent Vehicle/ Highway System  or IVHS can lead to  major

increases in highway capacity and decreases in travel time without building new roads. Our

context is an IVHS system in which traffic on the highway is organized in platoons of up

to twent,y  closely spaced vehicles under automa,tic control. We consider the design of the

controllers for such pla,toons.

The co ntro l ta,sks are arranged in a three layer hiera,rchy.  At the top or link layer. a

centralized controller a,ssigns to ea.ch vehicle a path through the highway and t,he target.

size and speed for platoons to reduce congestion. The remailting  two layers are distributed

among controllers on  each vehicle. A vehicle’s platoon layer plans its trajectory to conform

t,o  it,s assigned path and to track the target size and speed. ‘L‘he plan consists of a sequence

of elementary maneuvers: merge (combines two platoons into one), split (separates one

platoon into two), a.nd  cha,nge  lane (ena.bles  a single car to change laue).  Once the protocol

la,yer  determines that a particular maneuver can sa.fely  be initiated, it instructs its regula,tion

layer t,o  execute the corresponding pre-computed  feedback control law which implements

the ma,neuver.

This paper focuses on the design of the platoon layer. In order to ensure that it is safe to

initiate a, maneuver, the platoon layer controller enters into a. uegotiation with it)s neighbors.

This negotiation is implemented as a protocol - a, structured sequence of messa.gc  exchanges.

_4ft,er  a protocol ternrinates successfully, the actions of the vehicles iuvolvrd  become coor-

dina.ted  and the ma,neuver  can be initiated. A protocol is designed in two stages. III  the

first stage, t,he protocol is described as an informal state machine, one machine per vehicle.

The informal state machine does not distinguish between actions and condit,ions  referring

to t,he vehicle’s environment and those referring to the protocol it,self. In the second sta,ge

this distinct,ion  is enforced and the protocol machines are specified in the formal language

COSPAN. COSPAN software is then used to show that the protocol indeed works correctly.

One can now be reasonably confident in the protocol logic presented here. h/ luch further

work rema,ins  to be done and some of the more significant problems are outlined.
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1 Introduction

Projections of highway traffic conditions point to the need for all Intelligent Vehicle/Highway

System (MIS) lhat increa.sc’s highway capacity and decreases travel time without building

new roads. One protnising strategy towards achieving this goal is t,o organize traffic in

pla,toons of closc~ly spacod vehicles. With platoons of 20 vehicles,  headways within a platoon

of lm, and hea,dways hetw;cen platoons of 60m, such an orgalrization can attain a capacity

that is four times and t,ra,vel  times that are half the values corresponding t.o current operating

conditions [l]. The design and implementation of the c.ontrol tasks needed to realize such

an IVHS syst,em will require a structured approach that uses control, communication and

computing technologies both to ma,intain  within na,rrow tolerances the position aad speed

of a vehicle within a platoon and to coordinate platoon nla.neuvers.

The control t)asks are arra,nged in the three layer hierarchy of Figure 1.l There is a single

link layer for a. long segment of the highway extending several sectiors.  Each section may

be between 50111  and 5OOm  long. The link layer has two functions. It assigns a path to each

vehicle entering the highway a,s explained in $3. And it corltinuously determines platoon

opt,imal speed (denoled optspeed)  a.nd optimal size (qtsizc)  for each highway section. The

va,lues of optspeed and opt.Gx  are selected to maintain smoot~h traffic flow and to reduce

congestion. One approach to computing these values is presented in [l]. The link layer

l.4 more comprchenAvc discussion of the IVHS control architrct,urc appears in [a].
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functions a,re implement.ed in a centralized manner: a single computer receives all the

information needed to assign vehicle paths and t,he section target platoon speed and size.

The remaining control tasks are implemented in a distributed manner. There is one platoon

layer, one regulation I~yer, and one yhysical layer per vehicle. Ea.& vehicle’s platoon layer

plans a, sequence of maneuvers and issues corresponding commands to its regulation layer so

thal the vehicle’s trajectory follows closely the path assigned toil, and so that platoon speed

and size track ol~l~~~cd and oplsize. Each vehicle’s regulation layer executes the commands

issued by it,s platoon layer by implementing corresponding pre-computed feedback control

la,ws which continuottsly determine the vehicle’s throttle, braking, and steering actions.

Finally, the physical l;l,yer of a. vehicle is a model of its dynamic behavior against which the

feedback cont,rol laws arc designed.

This paper presents a design of the platoon layer. It is shown in $3 that the platoon

layer’s p1a.n caa a,l”-ays be constructed as a sequence of three elementary maneuvers called

merge,  split a,nd clacl//yc lrrrle.  The merge maneuver joins two pla,toons into a single pla.toon;

split separates one platoon int,o two; a,nd a change lane maneuver moves a single vehicle

into an adjacent la.ne. To accomplish these maneuvers safely, t,he platoon layer controller

first coordinat,es  its a&ion with those of its neighbors. This is achieved by exchanging a

structured sequence of messages with the platoon layer cont,rollers of neighboring vehicles.

This sequence of mrssa,ge excha,nges is called a protocol. The design of these protocols is

ca.rried out in two stages. In the first sta,ge, presented in $4: the merge, split and change la,ne

protocols are described as informal finite state machines. In t,he second stage, presented in

$6, these informal machines are specified in a formal language called COSPAN. COSPAN

software is then used to verify that the protocol machines work correctly. Also specified are

path pla,nning supervisor ma,chines which invoke the elementary protocols to produce the

correct sequence of maneuvers conforming to the assigned path. A very brief introduction

to COSPAN is give11  iu $5.

After a vehicle’s phtoon  layer successfully completes an elementary protocol exchange with

its neighbors it’ issues a conlmand to its regulation layer to implement the corresponding pre-

computed feedback cant rol law . Although it is not the f'ocus of this paper, the platoon layer

design poses SOLI~C challenging problems for the rcgulat.or layer design. These implicat,ions

are dra,wn out, in $7. l-‘i na,lly, some conclusions rea.ched by this study including suggestions

for future work are c~ollected in $8.

The discussion of the platoon and regulation layers presentsed here presupposes a system

of sensors on board velliclm and on the roadside, and a. communication system. These

requirements are summarized in $2.
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Figure 2: Definition of plaloon

2 System Requirements

We introduce cert,ailr tlclinitions and background assumptjions t,hat will make the discussion

more precise. Traffic is organized in platoons of vehicles. See Figure 2. The size of a

platoon is betwec>n one and twenty depending on the traffic flow with larger sizes needed to

sustain bigger flows [I]. The headway within a platoon is small (about lm); the minimum

headway between platoons grows with the platoon size reaching about 60m for platoons of

size twenty.” The lca,tl vehicle of a. platoon is called it.s leacl’cr, the rest are followers. A

single vehicle platoon is called a free agent. Protocol exchanges are always between leaders

(including free a,gents)  of neighboring platoons. If a follower wants to initiate a maneuver it

must request its lea,der to do so. It is also the task of the leader t.o track o$speedand o@x’~t.

announced by the link layer. The follower’s task is only to execute a feedback control law

which maintains the tight headway with the vehicle in front of it. (This is discussed further

in 57.j

Each vehicle’s platoon la.yer mainta,ins  its own ‘state’ informalion:

side = (I~#,l~~~oy#,ln.#,sect#,optsi~e,opts~~red.pltn#,ow~~~~ze,pos,busy) (1)

Jo# is the vehicle’s ID which is ‘hardwired into the cont,roller. H~y#,ln#~  scct# a,re

the highway number. lane number, and sect’ion  number on which the vehicle is currently

t,raveling; t,hese are either broadcast to the vehicle from the roadside or they are sensed from

roadside markers or computed by a navigation system on board the vehicle. Optsize  and

o#speccl  a,re t,he targets computOed by the link layer and communicated in some way to the

vehicle. Pltn# is the IO# of the platoon leader. ow7l,.Gze  is the size of the platoon, Laos  is

the vehicle’s position i LI the platoon (pos = 1 is the position of Ihe leader). Lastly, busy is a

binary fla,g t,hat is set. if the platoon is engaged in a maneuver; it is only used by the lea.der

and its function will become clear when we discuss the protocols. The last four components

of the state are llpdated a,t the end of each maneuver by communication among vehicles

in a plat,oon. II is assumed that this state is always available t*o a vehicle’s platoon layer

controller and II pdatc~l as needed. The regulation layer controller maintains other sta,te

informa.tion  relat,ing to the vehicle’s dynamics such as position, speed and engine rpm.

“ Our design presupposes a platooning strategy. But it does no1 depend  upon the choice of intra- and

inkr-pMoon headways. Of course, the capacity does depend OII these headways.
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Figure :I: Lateral sensor range requirements (figure not to scale)

In a.ddition  to their own stat,cs.  the platoon and regulator layers need information about

t,heir environmentj  chiclly neighboring vehicles and platoons.

Sources of inforination

A vehicle’s controller obtains information about its own state and about its environment

from three sources: roadside monitors, sensors mounted on the vehicle, and inter-vehicle

communication links. Vi’e discuss these briefly in order to indicate in a. little more detail some

of the requirement’s of an IVHS system and beca,use the formal specification and verification

of the protocol design require models of the interfa.ces between the platoon la.yer and it,s

environment.

Roadside monitors. They measure traffic conditions ba,sed on which the link layer as-

signs a path to each vehicle and calculates the values of optsize and optspeed.  These are

communicated to the vehicles. These monitors would he dist,rihuted  along the highway.

Sensors. Plat.oons  of size twenty maintain a headway of about 60m. Hence vehicles must

be equipped with a longitudinal sensor that measures the distance between itself and the

vehicle in front of it up to at least 60m. In order to change lanes the vehicle must be

equipped with a. la.tcral sensor that loca,tes each vehicle within a radius of about 30m as

shown in Figure 3. If vehicle A in Figure 3 wishes to change lanes, its sensor should be able

to determine that, there is no vehicle within the area marked ‘sensor range’. The vehicle’s

regulation layer needs additional sensors including those that measure its distance and speed

relative to the vehicle in front of it within a platoon and its position relative to the center

of the la.ne on which it is traveling.”

Inter-vehicle communication. The platoon layer protocols require the capability to ex-

change messages beijwcen one vehicle and other vehicles within the range of its longitudinal

3For longitudinal cot~~~rol seusor rrquirement,s see [3, 41. for lateral coutjrol sensor requirements see [5].
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Figure  -1: Inter-vehicle communication link requirements

a.nd  la,teral sensors, i.e. with vehicles within 60m in front of it) a.nd  within 30m alongside

it. In addition, vehicles within the same platoon need to exchange messages among them-

selves. Thus each velricle should be capable of setting up communication links with some

of its neighbors as illustrated by the double arrows in Figure 3.‘* The traffic on these links

consists of messages that convey platoon and regula,tion  la.yer state information, and mes-

sages required by the protocols described below. There a.re three types of protocol messa.ges:

‘broadca.st’  messa.ges  arc sent by a platoon leader t,o  all its followers; ‘addressed’ messages

a.re excha.nged  betwecll  a platoon leader and a specific follower; and ‘direct’  messages are

exchanged between Icadcrs of neighboring platoons. Of course, depending on the commu-

nica.tion technology used,  a. message between a8 pair of vehicles ma,y be forwa.rded  through

intermedia,te  vehicles.

The kind of study pros(~ntJed  here has an importanl  bearing on the amount of bandwidth

that must be avadlablcl  on t.he various communication links to support the necessary message

exchanges. Howcv~r.  we will not address this issue further.”

3 Elementary Maneuvers and Path Planning

We describe three elementary  maneuvers and then show how these are combined to plan

a pat,h  conforming (~0 the one assigned by the link layer. The rna,neuvers  are called merge!

split, and rha,nge  lalle.

Merge. This maneuver combines two successive platoons in the same lane into a single

platoon. See Figure 5. The merge is always initiated by the leader of the rear platoon,

vehicle B. If the size ol’  B’s platoon, oulnsize(B), is smaller tha,n  oy~&ze,  B requests A for

permission to merge. If A is not busy, and if

this permission is gl’anted. B’s pla,toon layer then requests its regula.tion  layer to accelerate

and join A’s platoon.

4Simple experiments involving radio links is described in [6, 71.

5An iilust,rative calculation of he bandwidth needed for longit,udinal  control is given in [a]; see also [6].



v .

Figure 5: The merge maneuver

Figure 6: The split maneuver

Split. A split ma~neuver may be needed because a pkoon’s  size ma,y exceed @size, or

because a vehicle in an adjacent lane requests a change lane maneuver (see below), or

because a, vehicle iu a platoon initiates one or two splits in order to become a free agent.

As indica,ted in Figure 6, a split may be initia.ted  by a leader (vehicle A) or by a follower

( vehicle II).

Change lane. This maneuver can be initiated only by a free agent, i.e. a single vehicle

platoon.6 See Figure 7. If a vehicle in a multi-vehicle platoon needs to change lanes it must

first, gain free a,gcnt status by executing one split (if it is a leader) or two split maneuvers

(if it is a follower).

Suppose the free agent. vehicle A, wishes to move from its current lane 3 to the adjacent lane

2. Before it can do t,his sa,fely, it must make sure that there is a. vacant space in lane 2, and

if there is, it must determine whether any other vehicle (from lane 2 or lane 1) is planning

to move into that, space. Thus A must communicate a,nd negotiate with the vehicles within

the ra,nge of it,s lateral sensor. There are three mutually exclusive possibilities: the sensor

GThe restriction to a single vehicle is imposed to simplify the resulting regulation layer feedback control

law. However, the additional complexity of multi-vehicle platoon change lane maneuvers may be justified at

entrance and exit laneh. especially  if this significantly increases capacity.

;---:  :---,  l--I  ;---;  i-W:

I . . . ..^. : ^_..j i._.._: L...! i ._-_. I

icl

(......I’ lane 1 (far lane)

3ane 2 (adjacent lane)

clclcl IA 000 lane3

Figure 7: The change lane maneuver
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Figure 8: A pa,th along highway H

detects no vehicle in its range (case 0), or the sensor detects a, vehicle in lane 2 (case 2), or

the sensor detects a vehicle in lane 1 and no vehicle in lane 2 (case 1).

In case 0, A orders its regulation layer to change lane. In case 1, il requests C not to move

into la,ne 2. In case 2, H compares A’s speed and position relative to B’s platoon and then

responds by a,sking -1 to decelerate a.nd move into la.ne 2 behind B’s pla,toon, or B itself

decelerates and a,sks  A to move in front of it, or B asks the appropriate follower. B;, to split

aad ma.ke room for 11.

Path planning

We now indicate how a platoon layer controller combines  these maneuvers to create a path

in conformity to the liuk la,yer assignment.

Imagine aa a~utomatetl  highway H. Ea.ch vehicle continuously senses the section on which

it is traveling. A section is a triple (H,l,d)  where hwy#  = H. l~z# = 1, and sect#  = d.

Upon entering the highwa,yi, the vehicle declares its destination. In response, the link layer

assigns a path (12.  dz, 1s). The interpretation is tha,t the vehicle must change to lane l2 from

its current lane (1; travel along 12 until section (H, 12, d2); a#nd finally change to lane 13 from

which it reaches its exit,. See Figure 8.

Having been a.ssignetl its pat’h, the vehicle’s platoon la.yer plans a conforming path as follows:

1. It is initially a free agent in section (H,ll,dl).  It executes l/z - 111 change lane

ma,neuvers  at the end of which it is a, free agent in lane 12.

2. It now enters a lane-keeping mode, staying in lane 12 until section (H, 12, dz). In this



mode it tries t.o tra,ck @site and o$l.‘tspeed.  To do this, the platoon la,yer may execute

severa, merge and split maneuvers.

3. Upon reaching ( H, 12,  C/Z) the platoon layer will execut.e a.t most two split maneuvers

to become a free agent. It, then executes l/s - />I change lane ma,neuvers  to reach lane

13.

4 Informal Design of Elementary Protocols

This section presents an informal design for the protocol for each of the three elementary

maneuvers. For each maneuver the design involves two steps. in the first step, we express

a,s a flow diagra,m the coordinated sequence of actions of t,he platoon and regulation layers

of the vehicles enga,ged in that maneuver. In the flow dia,gram no attent,ion  is paid to

the requirement tlrat controllers in different vehicles must be coordinated through explicit

message exchanges.

In the second step, tShis  requirement is enforced and the flow diagram is ‘distributed’ among

separate state machines, one for ea,ch vehicle. The state machine descriptions are ‘informal’

since their states and transitions refer to actions and conditions that may depend on the

regulation layer, on information from sensors on board t,he vehicle and on information from

roadside monitors aud which, therefore, are not pa.rt of the protocol ma.chines themselves.

In the forma,1 specification, presented in $6, references to these ‘environment’ actions and

conditions are represenl,ecl as separa,te state machines.

M erge

The flow diagram that achieves the merge maneuver of Figure 5 is displayed in Figure

9. The sequence of events depirt)ed in the flow diagram requires little comment. i-I and

B refer to the vehicles in Figure 5. B initiates the merge request to which 11 responds.

The condition ‘il chtcks if buy’ refers to the busy flag in :1’s st,ate (see (I)). That flag

is set if and only if .LL is engaged in a maneuver. Thus if A is busy, it denies B’s request

represented by the event, ‘A sends nack to B’. After B receives permission to merge ( ‘A sends

c&-request-rnergc 20 B’), it orders its regulation layer to accelerate and join A’s platoon ( ‘B

accelerates to m.erge  ‘). After B’s regulation la,yer task is completed, B informs A of this ( ‘B

sends conjirm-meTye  to A ‘). A then unsets its busy flag, and broadcasts its new updated

state to its own followers, and l3 does the same to its followers.

The paired state machines of Figure 10 achieve the same sequence of events. The machine

on top is that of the initia,tor  (B), the other machine is that of the respondent (vehicle A).

The two machines are coupled together by explicit message exchanges. That is, transitions

labeled ‘SEND XX ’ and .REC XX’ are supposed to occur simultaneously and synchronize the

8
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Figure 9: Flow diagram for ttrergc
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Figure 10: State rnachi~~es for merge: initiator (top), respondent (bottom)
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Figure 11: Flow diagram for split

state transitions in the two machines.7 The state transition labeled ‘MERGE PLATOON’

is initiated by a ‘supervisor’ state machine. That machine, denoted SUPR, is defined in

$6.

Split

Figure 11 gives the sequence of’ events needed to achieve the split maneuver in Figure 6.

The split may be initiated by the platoon leader (vehicle A) or a follower (vehicle B). In

the latter case, B forwards a request to A; if A is not busy it initiates the split maneuver.

This flow diagram is t,ranscribecl into the pair of state machines of Figure 12. The machine

on top refers to the initiator (A or B) which initiates the split. The other machine refers to

the respondent, (B). B will become the leader of the rea,r pLatoon  following the split. The

two mxhines are synchronized by matched transitions ‘,Sl:‘f\Z,  xc’ and ‘REC xx’.  Finally,

the transition *SPLIT PLATOON’is  initiated by the supervisor machine SUPR. Recall

that, the condition ‘check if l.‘o.s  = 1’ returns (yes) if and only if the vehicle is a leader (see

definition of state (l)), otherwise it returns (no).

‘The implementation of synchronous transitions among processes running on two separate computers,

one in each vehicle, will require some inter-process communication facility. hlany operating systems provide

such facilities.

11
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Fignw 12: State machines for split: initiator (top): respondent (bottom)
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Change lane

This is the most complex of the t,hree maneuvers. see Figure 7. The free agent, vehicle A,

in lane 3 initiates the change lane request. Depending on what ;t’s lateral sensor detects in

laaes 1 and 2, there follows one of three event sequences of Figure 13. Case 1 occurs when

la,ne  2 is unoccupied and lane 1 is occupied. A then requests (’  not to move. The resulting

sequence of events is the leftmost branch in Figure 13.

Case 2 occurs when lane 2 is occupied and the event sequence in the middle branch ensues.

If U is not busy, it responds to A’s request in one of three wa,ys: (i) R asks A to decelerate,

or (ii) .B splits its own platoon a,t a follower B;, or (iii) B itself decelerat.es. The maneuver

succeeds whether a response is selected arbitrarily or on 1.11~ hahis  of traffic conditions.

Case 0 occurs when lanes 1 and 2 a.re both unoccupied. The rightmost branch of Figure 13

describes the corresponding event sequence. In this case A iulmediately  orders its regulation

layer to change lane.

The flow dia,gra,m  is transcribed into the pair of machines of Figure 14. The machine on

top corresponds to the initiator il. A copy of the machine  on the bottom is in each of the

vehicles B, R;, a,nd  C,’ that ma,y be engaged as a respondent.

Consider A’s state machine. The transition ‘CHANGE L.,1NES” is  initiated by the super-

visor machine SUPR. If the result of the condition ‘chcc.k if’ crdjawnt lane clear’is ‘no’,

then Case 2 prevails and A sends ‘SEND reyuest-chnlalre-ln/re  ’ to vehicle B. If the result of

the condition is ‘yes’ , then the condition ‘check if fur lanr rlet~r’is  tested. If the answer is

‘yes’, Case 0 prevails and A orders its regula.tion  layer t>o  change la.ne.  If the answer is ‘no’,

it, is Case 1, and A scuds ‘SEND request-chunge-kne’to  vcxhicle  6’.

We now discuss the respondent’s state machine. Recall t,lla,t  this may be vehicle c’ , or H,

or both B and 0;. In Case 1, the respondent is C, and only l,he loop of transitions labeled

‘c”  will be activated. In Case 2, either the loop labeled *U’ is involved or those labeled

‘B’  and ‘B;’ both are involved. Only this last situation 111ay  need additional comment. If

B’s machine is in sta,tc ‘decicle’  and  the transition b,SEND /,ccllrt:st-split_chy_ln’  occurs, that

message is received by its follower Bi whose machine is in state ‘idle and undergoes the

t.ransition  ‘REC ~Fq2re~t_.s~lit-chg_ln’  (i.e. loop labeled J;).

This concludes the design of the informal protocol state ma’chines.  We introduce some

na,mes for these machines to facilita,te  relating them to the formal machines presented in $6.

The following convention is adopted. Machine names are written in boldface. The first let-

ter is either A, B, Bi or C corresponding to the vehicle names in Figures 5,6,7.  The second

letter is P for protocol, and to distinguish these machines from those which model the envi-

ronment. The third letter is either C or R depending on whether the machine commands a

maneuver or responds to a command. Thus there a,re two nla.chines  for merge, BPCmerge

and APRmerge.  There are four ma,chines  for split: APCsplit  and BPCsplit  depending

13



lane2ckar
lane 1 clccupied

h when ‘change. lane” km.  sets
busy&checkslateral~

lane 2 oxupied

all clear

BsendsmcktoA

Figure 13: Flow diagram for change lane
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Figure 14: State machines for change lane: initiator (top), respondent (bottom)
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Figure 15: The COSPAN model

on whether A or B in Figure 6 issues the command, and APRsplit.  BPRsplit  depending

on the respondent. There are four mxhines for change lme: APCchg  for the initiator,

md BiPRchg,  BPRchg,  and CPRchg  for the three potential respondents. Each proto-

col layer conlroller will have a. copy of all these ten machines. Three additional supervisor

ma,chines will be introduced in $6.

5 Introduction to COSPAN

We give a, very brief introduclion to COSPAN. For more details. see [8, 91 a,nd the references

therein. COSPAN (coordination-specification analysis) is a software system used to specify

a systein  of interacting finite state ma.chines and to prove or verify t~l1a.t the behavior of the

specified system satisfies certain properties.

Specification. COSPAN’s  model of a system of interacting state machines can be un-

derstood with the aid of Figure 15. Each Ai is a sta.te machine or COSPAN pr0cess.s  A

process has internal local memory - its state. Let r;(t) be the state of process Ai at time

t = 0, 1,2, . . . . With each state is associated one or more outpuU1.s.  and the process selects

one of the out,puts  in a non-deterministic manner. Suppose Ai selects y;(t) (associated with

z;(t)).  The global output y(t) = (yl(t),  . . . . yk( t)) is seen by all the machines.

We now explain state transitions. Associated with ea,ch pair of states (xi, xi) of Ai is a

binary predicat,e  on the global output ZJ. It is denoted P( J;, z{)(y).  The transition zi f .x;

is e7zublecl at a global output y if P(x;,z’,)(y) evaluates lo Irue. If for a particular state

more than one tra,nsition is ena.bled, the process selects one of these non-deterministically.

Finally, ea,ch process starts in some prespecified initial sta,te at time 0. A behavior  of a

system is a. pair of infinite scquenccs  of global or systein  states and outputs

x:(I) = (x,(t) )...) Q(f)), y ( t )  =  (y1(t) )...) yn.(t)), t = 0,1,2, . . .

such that)  for every i and 1, x;(O)  is the initial state of Ai. j/;(t) is aa output associated with

‘We use ‘stat? machinr’ and ‘process’  interchangeably below and in $6.
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Figure 16: COSPAN example system

x;(t), and the transition x;(t) - .zc;(t  + 1) is enabled at g(1).

The language generated by such a system is denoted L(A1,  . . ..Ak).  It consists of the set

of all infinite sequences y(t), t = 0, 1, . . . such that (z(t), y(t)), t = 0, 1, . . . is a behavior for

some sta,te sequence 7(t), I = O,l, . . .

We emphasize two fcat,ures of a, COSPAN specification. k’irst, the interacting machines A 1,

. . . > Ak (implicitly) define a ‘product’ machine wilh sta.te ,x(I) = (xl(t),  . . . . x:l;(t))  and output

y(t) = (Y&)7 ... , !/k(t)). If Ai has 7b; sta,tes in all, the product machine has 12 = r~l x . . . x nk

sta,tes.  However, in pra,ctice, only a small fra,ction of these n states is reachable from the

initial state (xl(O), . . . . sk( 0)). The COSPAN compiler geaorates an internal representation

of the product machines including only the reachable states.

Second, the specification gives a ‘closed’ system in the sense tha.1. there is no external input.

Therefore, in order to describe the informal machines of 3-1 in COSPAN, we must specify

not only the protocol machines, but also their interfaces to the sensors, monitors, and link

and regulation layers.

Example. Figure 16 presents a system consisting of t,wo interacting machines, A and B. A

has two states, 0 and I. In both states it can select any output from {a,b}. The transition

0 - 1 is enabled if t,he predicate ‘B.# = a’ evaluates lr~~c. olherwisr  0 - 0 is enabled. (In

COSPAN notation, X.# denotes the output of process X.) The transition 1 -+ 0 is selected

if B.# = b, otherwise 1 - 1 is ena,bled. The initial or sbart stak is 0; it is indicated by a

double circle.

B also has two stales. In state 0 only (1 may be selected, in state 1 only b may be selected.

The transition 0 - 1 is enabled if B.# = a, 1 + 0 is enat)led if B.# = b. The transitions

0 - 0,l -+ 1 arc never enabled (i.e. the corresponding predica.tes  are identically false).

The initial state is 0.

This system generates only one state sequence

(~/l(t), XL?(f))  =
i

(0,O) if t = 0,2,...

(1,l) if1 = 1,3,...
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(A.# = a) & @.# = a)

(A.#  = b) & (J3.n  = b)

Figure 17: Monitor for exa.mple  system

But, the langua,gc L( A, B ) conta.ins infinitely many sequences

(l/.4(f),yB(t)) =

(u,u) or (6,~) il’t = 0,2 ,...

(u,b)or  (b,b) ifI = I,3 ,...

Verification. This consists of one or more tests of the form

J(Al,  . . . . Ak) C UT) (2)

where L(T) is the language accepted by a task monitor T.” A monitor T is a state machine

coupled to the system Al, . . . . Ak except that T has no  outputs. Thus the monitor state

moves in response t,o the system output (~1, . . . . yk); however, since it has no output,s  of

its own, it cannot a.ffect the system behavior. L ( T ) is delined by acceptance conditions

involving two sets called cycle XL and recur. A cycle set is a. collection Cl,Cz, . . . of subsets

of the states of T, and recur is a subset of state transitions of T. An infinite sequence

y(t), t = 0,l. . . . is in L(T) ( ti is said to be accepted by T) if after some finite time, the

stat,e of T stays forcvcr in one of the Ci or the transitions in WCZL~ occur infinitely oft,en.

Given Al, . . . ? Ak and T, the COSPAN  software caSn  verify if t;he test (2) succeeds or fa.ils.

Figure 17 gives a monitor for t,he syst.em of Figure 16. Suppose the acceptance condition is

c y s e t  { 0 } ,  wcur  0 -  1

Observe t,ha,i I;( A, B) contains the output sequence

(((3  (I), (a, 61,  (6, a), (a. b)...

which leads to t,he monitor state sequence 0, 1, 1, 1, . . . . For this sequence both cyset and

recTl,r conditions fail; so L(A,  B) $ L(T).

6 Formal Specification and Verification

In $4 t,en informal state machines were described. They define the protocols for the three

elementary maneuvers. Three additional machines are needed for path planning (see is),

‘Any w - regular  languagr  can be expressed in the form L(T); d - rcyulnr  languages are defined by

Biichi aut,omata  [lo, 111.
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Figure 18: The four sublayers of the platoon layer

PM, SUPR mtl BFRE. The pat’h  monitor ma.chine  PM compaaes  a vehicle’s current ln#

and sect#  with the assigned path to determine when to cha,nge lane aad when to keep in

the same lane. Based on the output of PM SUPR determines when to invoke BFRE; t he

rest of the time it invokes merge and split in such a way as to track optsix.  BFRE itivokes

the split maneuver(s) needed to become a free agent. These 13 interacting state machines

together const-itute  the platoon layer design. They  ca,n naturally be arranged in t,he four

sublayers displayed in the left pa.nel  of Figure 18.

It should be understood that all 13 machines are present in each vehicle’s plat,oon  la,yer.

The  P M  and S U P R  machines  a.re ‘running’ at all times. The 11 machines in the two

bot tom la.yers a.re ‘ invoked’ as needed depending on the role (command or response) the

vehicle plays in a pa,rticular  maneuver . For example, BPCmerge  is invoked by S U P R

when it issues a command to merge. In fact, all the command protocol machines a,re invoked

by SUPR.  A response protocol machine on the other ha,nd is invoked by a, request (from

another vehicle) for that maneuver . A machine which is not invoked remains in its -1 IILl?:”

sta,te.

W e  ha.ve adopted as  a  ru le  of  p la toon management  the  res t r ic t ion that  a  p la toon may

enga,ge in a,t most one maneuver at a time. Thus, for example, a platoon may not merge

with another while it is also engaged in a split maneuver. ‘l’his  rule permits an enormous

simplification in the design because it can now be modular since the specification and

verification of each maneuver protocol can be done sepa,rately.

In  order  to  enforce  th is  ‘one maneuver  at at time’ rule t,hc var ious machines must  he

coordinated in such a way that when a platoon receives t\vo or more maneuver requests

(from vehicles uithin the platoon or from neighboring platoons), one and only one request

is gra.nted.  -4 coordina,tion  mechanism that gra.nts  at lea.st one request is said to be deadlock-



free, and a. mechanislll that grants at most one request is said to achieve mutual exc1usion.l”

In our design deadlock is prevented by enforcing a priority among requests: a,mong all

response machines t lie change lwne maneuver has highest priority. followed by split, followed

by merge; and in c‘a,so of conflict between command and response, command receives priority.

Mutual exclusion is achieved by using a, single ALLBUSY  ffa.g for all the ma.chines: it cau

he set by any protocol nmchine (subject to the priority). and a, request, is denied if the flag

is set. The implemcllt at,iou of 1nutua1 exclusion and priorily will become c1ea.r as we specify

each machine.

‘1‘11~  pa,nel on the right of Figure 18 lists another collectiou of machines arranged in four

corresponding su bla,yers. These lnachines specify the ‘en\-ironment’  within which the pla,-

toou layer operat,es. ‘lJ~crc are three types of such machines. One type represents interfaces

between the platoon layer and the link aad regulation layers. The second type represents

interfa,ccs  to seiisors and roa.dside monitors. The third type represents the results of various

test,s  conducted on th(> platoon layer state (1). The environment machines serve two pur-

poses. They art nwded to ‘close’ t,he system around the platoon layer so that verification

is possible. And they a,re essential for future work to develop the IVHS system since they

help standardize the interfaces among different components and layers.‘l

The rest of the section is arranged as follows. We first specify and verify in COSPAN the

protocols for ea,ch clcmcnt~ary maneuver. We then specify and verify path planning.

Protocols for elementary maneuvers

These machines il.re in the hot t,om sublayer of Figure 18. Ea~ch maneuver is specified and

tested separately. This a,llows modularity. However, since priority and mutual exclusion are

incorpora,ted into these machines, some tra,nsitions  depend on outputs of machines that are

specified much later.

Merge

This involves the seven processes shown in Figure 19. These seven processes correspond

to the two inforn1a.l machines of Figure 10. (The letters A and B in the process names

correspond t,o the vehicles I-1 and B in Figure 5.) The two processes above the dotted line

are protocol processes, the other five represent the environment. Double arrows indicate

information links. In terms of COSPAN this means, for exa,mple, that the state transition

predicates of APRmerge involves only the outputs of BPCmerge,  ASUM and AQ.12

“ These terms are usrd  in oprrating systems.

“ The role of int,erface  standards in helping to structure IVHS system design is further discussed in [‘I.

“ Note that the link between BPCmerge and APRmerge  requires inter-vehicle communication; the

other links involve inter-process communication within the same vehicle.
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Figure 19: hIerge protocol maneuver processes

The five envirollrncntf  processes are specified in Figure 20. BR gives the response of vehicle

D’s  longitudinal ratrge sensor, B V  is the interfxe with its regulation layer, B Q  indicates

whether its busy flag is set.  ASUM  gives the result of the t,cst *otunsizt(  B)+ownsize(Aj <
optsize’, A Q  fre ers to il’s busy f lag.  BQ and A Q  will  lat,er be replared  by ALLBUSY

which refers to a single (global) fla,g that can be set by all protocol machines on the vehicle;

it is used to enforce mutual exclusion.

The  two protocol  processes  a,re specified in Figure 21.  BPCmerge  is normally in the

‘IDLE’ state. It illitiat,es  t h e  m e r g e  p r o t o c o l  w h e n  ‘SUPR.#  = nxerge’  ( i .e .  when t,he

vehicle’s S U P R  ma~chiuc selects ‘l,ze,rge’).  In order to lest  the merge protocol by itself this

predicate will be replaced by ‘trl/e’ so that this maneuvc’r’  is repeatedly initiated.

The APRmerge  protocol machine (in vehicle A) responds t,o the condition ‘BPCmerge.#  =

rcpest-merge’. It, respo~~ds  affirmatively only after checking various conditions in the state

SCfIECK  STATUS”. Those conditions enforce the prioritieh  Inentioned  above. In testing the

merge protocol by itsrlf’, the conditions involving any pro~ss  other than those in Figure 19

a,re removed.

The monitor of Figltre  22 defines a test of the system of’ seven processes in Figure 19. It

has the accepta,ncc  condit ions

cyset {0}, recur 2 - 0,l - 0 (:3)

We brief ly  explain  t,Ire test. The moni tor  s tar ts  in  state  0. ‘l’hc  t ransi t ion in to  s ta te  1

is enabled only if’ *BPCmerge.#  = reyuest-merge’, indica.ting  beginning of the ma,neu-

ver .  However ,  f rom ls’igure  21 we see that this transitioll  will not occur unless B’s ra.nge

sensor  indica tes  ‘BR.#  = eu1'-ahead'. It is possible Il1a.t  BR always makes the selection

‘~~o-cn~-ahe~~,CJ’.  (Such non-deterministic state machines are frequently used to model the

environment.) Thcrofore,  a behavior of t,he monitor whicll remains forever in state 0 is cor-

rect.  Hence the cy<qcl condition in (3). However, once the merge request is issued by vehicle

13,  APRmerge  should grant or deny the request, causing the monitor to go through st,ate

2 or 3, respectively. In tither case, the monitor should retllrn to state 0. This should occur

infinit,ely often, hence  t.he Y~C~LT  condition in (3).

The sta.te machines in Figures 20,21,22  can be mechanically transcribed into the COSPAN
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P B’s range seo.wr rsndomlg  selects “car-ahead” and “no-enr-abead”
to model the environment. I

BR

w = ca~&bead

B = no-car-ahead

BV

P B’s velocity response machine mod& tbe nccelen~tia~ pro~e6.s.
A “:”  denotes P pausing state [41. ‘1

BFCmerge.Y  = accelerare_to_merge

I* B’s busy flag is set when it is engaged in P maneuver. No other mnneuvers are
allowed while tbls flag is BUSY.*/

lmtbwI BPCmexge.#  = set B&busy bw)

BQ ‘lsc
else

BFCmerge.# = sex B&m-busy

I* ASUM models ear A’s calculation of tbe combined size of two plnto0o.s
to be either “sum-ok”  or “sum-too-large”. *I

P = sum-ok

I* A’s busy flag is set when it is engaged in P maoewer. No other maneuvers are
allowed while this flag is BUSY.*/

In~JvJ APRmerge.# = set AQbwy bwl

elSe

APRmwge.# = set AQootJwy

Figure 20: Merge environment processes
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(BRI  = car_ahced)

& @Q.#  = aotbusyt

BPCmerge

Figure 21: Merge protocol processes

Figure 22: Merge monitor
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Figure 23: Split protocol maneuver processes

code merge.sr listed in the Appendix. Part of the COSPAN out,put upon performing this

test is shown below:

80 states reached

336 resolutions performed

Task performed!

This means tha.t a. total of 80 states in the system of Figure 19 are reachable from the

initial state and XI6 st,ate tra,nsitions  can be enabled. The system behavior is accepted by

the monitor.

Split

This involves the two protocol processes and three environment processes as in Figure 23.

The letters A and B correspond to the names of the vehicles in Figure 6. The third letter

C or R is omitted here since either process can initiate the command or repond to it. B V

is t,he interface wit,lr the regulation layer; BQ and AQ indicate busy flag status. These

three processes a,re specified in Figure 24.

Recall from Figure 6 that. t,here a,re two scenarios for the split, maneuver. We call these

‘lea,der wishes to split’ or ‘follower wishes to split’. The protocol machines for the first

scenario are specified in Figure 25. In this case APCsplit  is invoked either by BFRE or

by SUPR, the other conditions enforce mutual exclusion and priorities. For testing the

protocol by itself t,his condition is replaced by ‘true’.

BPCsplit  is the follower responding to ‘APCsplit.#  = invitc_7~eu~Jen$‘.  A follower

normally does not use the busy flag. In this case only, however, it does so since it is asked

to become a, leader. Before BPRsplit  commits to the maneuver, it verifies that it is a

follower, that its SUPR and PM are in the appropriate states to allow a positive response,

and tl1a.t  the change lane maneuver, which has higher priority, is not invoked. For testing

the protocol by itself only the condition on ‘APCsplit.#’ is retained.

The protocol machines in the ‘follower wishes to split’ scenario are specified in Figure 26.
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P B’s vebcity  rcspoaw machine modck  the deceleration process.  *I

@PC.QGL# = deceknue-m-tit)  O R
(BPRs!plit.#  =

BV

I = splitJxmlplete

I* B’s busy flag  k set when it k engaged in a maneuver. No other maneuvers are
allowed white thk flag  k BUSY.*/

(BPCspli~#  = set BQnotLbu.sy)  O R
@PRspli~#  = set B&no-busy)

I* A’s busy flag k set when it k engaged in P maneuver. No other maneuvers are
allowed while this  llag k BUSY.*/

btbw) APRsplitJ  = sex  A&busy bwl

AQ else eke

APRspli~#  = set  ACLnat~busy

Figure 24: Split environment processes

[ (pM.X = ChgJn)
& (BPRBI  = bccome~free~agmt)
OR (pI4.t  = kcq-bt)

(APcspliL#  = inviteJlewdead)  (atBQbw)
& (Pow  - fouowa) [br&stJcadjnfo)

mte.

BPRsdit

Figure 25: Split protocol processes for ‘leader wishes to split’
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(set  B&not-busy)  B U S Y

v

BPCsplit

APRsplit
BPCsplit.X  = cmiirm-split hue

Figure 26: Split protocol processes for ‘follower wishes to split’

In this ca,se BPCsplit is invoked by the free amgent supervisor BFRE. The remaining

conditions enforce priority and mutual exclusion. For testing the protocol by ilself this

condition is replaced by 'true'. APRsplit is the process in the lead vehicle that responds

to BPCsplit. A positive reponse is made only under the following conditions: PM and

SUPR are in appropriate states; higher priority processes are not invoked; and the lower

priority machine a,ssociated with the merge maneuver, namely APRmerge,  is not setting

the busy flag ( N denotes ‘770f’).  For testing the protocol by itself only t,he busy condit,ion

is retained.

The two monitors of Figure 27 test the two scenarios. The .lea,der wishes to split’ monit.or

(upper process) involves the condition:

The ‘follower wishes to split’ monitor (lower process) involves the condition:

rear 1 -+ 2, 1 - -I

Both test were successful; the number of rea,chable states is 17 a,nd 19, respectively.
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APC@t.#  = SuAQnotbusy
BPRspW  = brdcstlead_info

BPRsplit.#  = mfm~split

BPCsplit.#  = re q u e s t& i t

BF’Csplitll  = confm~split

Figure 27: Split monitors

Change lane

This maneuver may involve up t,o four vehicles as indicated in Figure 7: the free agent

initiating the request, the leader of the a.djacent lane platoon, a follower in that platoon

that may be asked to split, and the leader of the fa,r la,ne platoon. The specification involves
13 processes a.s shown in Figure 28. There are four protocol processes (above the dotted

line) with names corresponding to the vehicle names in Figure 7, a,nd nine environment

processes. Information links involve message exchanges between the protocol machines in

different vehicles and inter-process communication on the sa,me vehicle between a prot,ocol

ma.chine and its cnvironmcnt.

Figure 29 indicates the busy fla,g for vehicle C. Figure 30 specifies the two environment

processes for vehicle B;. Figure 31 specifies the five environment processes for vehicle A.

Figure 132  specifics t,he t)hree environment processes for vehicle B. The CLS process gives

the result of the procedure tha.t B uses to decide ho\v to make room for A depending on

the la,tter’s position and speed rela.tive to B’s own platoon.

I4’e now specify the four protocol machines themselves. Figure 33 specifies free agent A’s

protocol process. It is invoked by the supervisor process SUPR. When testing the protocol

by itself, the condition ‘SUPR.# = start-chg-177, is repla.ced by ‘~Tuc’.  The logic of the

change lane protocol was explained in 53.
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Figure 28: Change lane maneuver processes

P C’s busy  flag rnndomlg  sekcts “busy” or “not-busy” to check  for
dtfferent  posabititks.*/

CQ

Figure 29: Change lane environment process for vehicle C

/* Bi’s busy flag b set when  it is  engaged in . matwuwr.  No otbcr maneuvers are
allowed while this  flag  is BUSY.*/

(n’XbU.Sy) BiPRchgd = set  Big_busy

BiQ ‘lse

BiiRchgl  = set BiQnot-busy

BiV

P Bi’s vtlcxity  response machine  models  the  deceleration  process *I

BiF’Rchgl  = deceka-ate~~~split

Figure 30: Change lane environment processes for vehicle Bi
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P A’s bosy flag k set wbeo  it k engaged to l maneover.  No otba maneovers  are
allowed wbik  this flag  k BUSY.*/

AQ

APCchg.# = .W AQbusy

APCchg.# = set AQnot-busy

I* A’s far lane  rooge sensor randomly selects “ lateral car”  and “ no  Intend car”
to model the environment *I

Figure 32: Change lane environment processes for vehicle A

I* $‘s velocity response machine models tbc decekntim p&. *I

MR

Wd

CIS

BPRchg.# = decclemte
(decelerating :
decelcration~compkten_completel

else

P A’s movement respoose  machine models tbe lPter.4 movement of cbaogiog knes. l !

(cmise) AFCchgl = move_ova [moving : move-complete)

0.&JL
# = move_canplea

ek

I* B’s change  lane wpervkor  de&es how to make Dpsee for A according  to some
fonction  of A’s positioo,  speed, aod traffic condition& However.  a raodom selectioa
k wed here to model tbe sekctioo  process riafe  110  octool data h available. ‘1

BF’RchgJ  = ack-mchgln

(tleceleme.

Figure 32: Change lane environment processes for vehicle B
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Figure 33: Change lane protocol promss  for vehicle d
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B5’Rchg.X  = cmfiigplit

Figlire  3-l:  Change la,ne protocol process for vehicle B and l?;

Figure 34 specifies t,lre  prot’ocol  processes for the leader B and its follower R;. If there is

a platoon in t’hc adjacent lane, its leader’s process BPRchg responds to the request from

APCchg.  Tt responds affirmatively to the request only if its S UP R and PM are in the

appropriate states, it is not responding to a change lane request from another free agent,

and other response processes are not setting the busy flag  at the same time. If it gives a

positive response, BPRchg lhen determines how to trrake  space for A. This is done by the

response of its environment machine CLS.

B; is a, follower of B. One way in which BPRchg ma,y decide to ma.ke  space for A is to a.sk

B; to split,. The protocol process BiPRchg in vehicle B responds to the split request. It

initia.tes the request.ed  split if its SUPR and PM processes are in the appropriate sta,tes;

then informs B where  the split is complete; and then waits for confirmation from A that

the change lane maneuver is complete before unsetting its own busy flag. When testing the

change lane protocol by itself the conditions on the SUPR a,nd  PM selections are replaced
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Figure 35: Change la,ne protocol process for vehicle C

by  ‘true’.

Figure 35 specifies t,he protocol process for vehicle C’ in the far lane. C is the platoon leader

in the far lane.  It receives a, request to cooperate front A only if there is no vehicle in the

near lane (recall Figure 7). The request is denied if C is busy. If it is not busy, it makes

sure that its S U P R  xutl PM a.re in the appropriate slates, it is not responding to another

chaage la,ne request,  and the lower priority processes a,re not setting the busy flag at the

same time. In testing the change lane protocol by it&elf only the busy flag is checked.

The monitor of Figure 3G is used to test this protocol. The test condition is

recur 1 - 0, 3 4 0, 4 - 0

T h i s  t,est ~a.11 be undrrstood  along t,he same l ines  as  the  previous  moni tors .  The tes t  i s

successful ;  :1,5SH  slat,es of the system in Figure 28 arc reached from the initial state and

94,176 t,ransitions  are crtabled.

Free agent supervisor sublayer

This sublayer contains 011ly one process BFRE;  its environment also contains one process

POS whose out)put  indica,tes  whether the vehicle is a follower or a leader  (this information is

in t,he platoon layer sta.te).  The two processes arc specified in Figure 37. BFRE is invoked

by its supervisor selection ‘SUPR.#  = becol?2e-free-uyrllt’. It then checks its sta,tus from

POS.  If it is alrea,tly a lea,der (‘POS.#  = lender’), it moves to the state *BECOME  FREE

A GEA~II”from which il selects  .BFRE.#  = beco,,ze-f?.tc-ugelat’.  That selection invokes the

APCsplit  process, we  Figure 23. If it is a. follower, it selects ‘BFRE.# = become-leucler’.

That invokes the BPCsplit  process; when that process completes, the vehicle has become

a lea,der,  and the sxne  moves are carried out.

The monitor for this sublaycr is specified in Figure 38. T o  test this sublayer, the split

and merge maneuver prot,ocol  processes are included. The  condiGon  involving SUPR.#  i s
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AF’Cchg.#  = ng_chgln

APCchg.#  = move~wer

POS

Figure 36: Change lam monitor

P Position machine  randomly selects “follower” or “leader” to

model tbe different posibUitks. l /

(follower, leada]
#=lader

Qc

(fouower.  leader)

0

else CL%

# = follower

F’igur~  37: Free agent subhyer  processes
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Figure 38: Free agent sublaycr monitor

replaccY1 by ?l.llP’. ‘L’he accept,a,nce condition is

The test is successful; 77 stat.es a,re reached, and 162 i,ransitions  are enabled.

Platoon supervisor sublayer

This sublayer conta.ins one process SUPR which runs continuously, a.nd four environment

processes: SIZE, ALLBUSY,  FREE, and POS. POS is the same process as in Figure

37 and indicates whether the vehicle is a leader or follo\vcr. SIZE indicates whether the

current, platoon size is larger or smaller tha,n optaizr- (see ( I)). ALLBUSY  is the overall

busy flag for the vehicle. It is set by any of the protocols specified above. Once it is set,

no other ma.neuvers  is permit,tecl until the protocol process t,hat set the flag completes the

maneuver and unsets the fla.g. Processes that attempt to request initiation of a maneuver

receive a /luck, so they must try again. I3 FREE indicates whether the vehicle is a free a.gent’

(also determined from (I)). Figure 39 specifies SIZE, I,‘igure 40 specifies ALLBUSY.  and

Figure 41 specifies FREE.

The platoon supervisor receives commands from the path monitor PM which decides when

the vehicle must keep to the same lane and when it must change lane. When ‘PM.# =

keep-1~1’. SUPR tries to track optsize by executing split and merge as necessary.‘” When

‘PM.#  = chg-ln’, SUPR ma.kes sure that the current Inaneuver is complete before issuing

the comma,nd  .bcco,?lt_free_nyclzt  to BFRE. Figure ~12  specifies the supervisor process.

Figures ~33 specifies one monitor for the supervisor s11 tjlayer. In order to conduct the test

a PM process is included. 11 selects ‘keep-ln or ‘thy-l/t’  non-deterministically. It is also

necessary to include 1,hc processes which inter& wit II SUPR, namely BFRE, BPRchg,

13The design does not, C~~LCUC requests since that could lead to very poor performance. To see this suppose

platoon 1 ih in front o f 2 w hich is in fro nt o f 3, Suppo se L’  rtquests  merge w ith 1 and sets itself busy;

t,hen 3 rcquest,s  merge  wit,11  2. gets its request queued  and  t,hctl sets i&If busy  In this w ag all p lato o ns

hecomr busy . Eveutually % completes merge; then 3’s queued request is considered and may be denied (if

the resnltiug  platoon is t.oo large) or accepted; aud so  OIL, OIL<’  at, a time. When queuing is not allow ed,

several of thr merge requests are execut,ed  in parallel.

14Trackiug opts~~eed  is a fllnction of t,he regulation layer, SW $7.
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SIZE

I* SIZE M&S  among “optimum”, “smaller~tban  optimum”, and
“larger~tban~optimum”  to model ditkent  porrib3ities. l /

bPL  smalla_than-on  large_tban_optl

Figure 39: SIZE process for supervisor su Mayer environment

P ALLBUSY  can k s e t  b y  atl the  prtioeol  macbhcs.  Once aa,

oo other mancovers UC allowed until It Is  set not busy. l /

(AFCch 1 = set-busy)
OR (F&chg.#  = set-busy)
OR (RiPRchg.# = set-busy)
O R  (CpRch .% = s&busy)
O R  (AFQk# = set-busy)
O R  (RFCsp1it.l) = set-busy)
O R  (APRspliL# = set-busy)
OR (BPRsplit.# = set-busy)

ALLBUSY

OR (C2F’Rchg.b = se-not-busy)
O R  (AFCsplit# = w~not.sbusy)
O R  (l3PCsplit.Y = s.e~~~Lbusy)
O R  (APRsplit# = seUtot&sy)
O R  (BPRspW  = seI_notbusy)
O R  (APRmergel  = sa_noc_busy)
O R  (BF’Cmergc.#  = seuuXhusy)

Figure 40: ALLBUSY process for supervisor sublayer environment

I* FREE randomly selects “busy” and  “not-bury”  to test

all tbe possibititiess. l /

FREE

Figure 4 1: FREE process for supervisor sublayer environment



f /

(SUE.#
cr_than-
,......

&t-busy)
\

leader

X = (BPRchg.#  = idle) & (CPRchgl  = idle) & (APR@t.#  P idle) B (AFT4mqe.b  = klle)

Figure 42: SUPR process for supervisor sublayer

Figure 43: b‘irst monitor for supervisor sublayer



hp.3 - Kik)

%

tits  = idle)
n ge.s  =_ipd. -

APCchg.%  = SET-BUSY
BPRchg.S  = SET-BUSY
CPRchg.$  = PROMISE
BiPRchg.S  = SET-BUSY
APCsplit.S  = SET-BUSY

Figure 44: Second monit,or for sup(>rvisor sublayer

CPRchg,  APRsplit  and APRmerge  a.nd their cotx>sponding  environment processes. I5

The acceptance conditions for this monitor are

cyset {l}, {2}? {4}, (7)
rFclcr 1 -7,1-4,4-2,o:-to,l-~,2-~5,3i5,1-~

The cyset condition is needed since the vehicle may never be able to merge, split, etc.

because the environment conditions may not I>erwit it. The recur condition checks that
SUPR executes the commands in the correct sequcncc. The t,est is successful; there are

89,913 reacha.ble  sta,tes for this system, a.nd 3,179,28X t,ra,nsitions  a,re enabled.

Figure 44 specifies the second monitor for the supervisor sublayer. This monitor test,s

whether the mubual  exclusion scheme functions correctly. The only arxeptance condition is

cyset (0)

‘ “ Since we have checked that these maneuver processes arc correctly specified, reduced versions of t,hese

processes are used; see A ppendix. To  prove that the verilication using t)he reduced version is correct,

one constructs a ‘ process homomorphism’  mapping the origit~al  process into  the reduced process. The

homomorphism guarantees that the language generated by tile reduced process (see $5) is larger than that

generated by the original process; hence verification using the recl~~crd process implies verification using the

orginal process. We do not present the homomorphisms here. For t,hr underlying theory see [I’].
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PM

RDSNR

P Road sensor randomly s&cts  “mntcb”  or ‘no match”
to test different - *I

/* Lane number randomly s&cts  “correct” or “incorrect”
to test dilierent  cases. l /

(in-t ,  cor r r ct )
w =hlcmmct k a=t  *  -1

LN# clre eke

Y=czmmct

Figure  15: Path monitor sublayer processes

so that if the monitor moves to any other state the test, will fail! A transition from 0 to states

1 > .** ,lO will occur if two or more processes commit t11e  vehicle to (different) maneuvers

at the same time. A transition to states 11 or 12 will occur if the vehicle is a leader a,nd

its follov,rer  protocol processes are not in their ‘idle’ states or z&x rlersa. This test is also

successful; there are 85,937 reachable states for this system, and 3,037,592  transitions are

enabled.

Path monitor sublayer

This contains only the pa01 monitor process, PM and two environment processes, RD-

SNSR (road sensor). aud LN # (1ane #). They are specified in Figure 45. Recall that

the link la,yer  a.ssigns  a, path (I,,, clz, Z3)  to the vchic~lo  ~vhcn  it enters the highw ay, see $3.

The assigned pa,th is st,ored in llrc vehicle. The road sensor determines the section of the

highwa,y  on which  the vehicle is tra.veling,  compares it with  the assigned path, and gener-

ates a, selectio n ‘mntch’ or ‘uo-match’. In t,he motLo1.  this selection is non-det,erministic.

Similxly,  LN#  compares the assigned path with the current lane number to det,ermine

whether the vehicle should change lanes. This selecliou  is also non-deterministic. Depend-

ing on the selections made by these two environment processes, PM commands SUPR to

cha,nge  lane (‘chg-ln’)  or keep in the current lane (‘/ ,aePp_lane’).  The two mo nito rs used

for this test are the same as for the platoon supervisor sublayer except that PM and its

environment’  a.re included. Both tests arc successful; I.%,161 sta,tes  aae rea,ched  in the first

test and 11,072,GOS transitions axe enabled; 143,7-1.5  sktes  a.re reached in the second test

and 10.188,384  transitions are ena,bled.  The COSPAX  code protocol. sr for this syst,em  is

included in the Appendix.
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Concluding remarks

A vehicle’s pla,toon layer controller implements three t’unctions:

l It plans a path a,s a sequence of elementary maneuvers. The path must conform to

the one a.ssigned by the link la,yer.

l Before executing any ma,neuver,  it must coordinate the vehicle’s movement with the

movement of neighboring vehicles to make sure that the maneuver caa be carried out

safely.

l 0 nce coordination has been achieved, it. orders I he regulation layer to execute the

maneuver.

Two feat.ures of the contjrol problem ma,ke the desiglr complex. First, the tasks require

long sequences of decisions. We have limited t,he result,ing complexity by requiring that

a platoon enga,ges in only one maneuver at a. time. This lea,ds to a modular structure of

the platoon layer. The scconcl feature contributing to complexity is that control authority

is distributed a.mong vehicles rather than being located in a central controller. We have

addressed the resulting coordination problem by organizing the protocols into a hierarchy

of four sublayers.

The resulting design may appear complex in terms of size: the platoon layer has about

500,000 rca,chahle  sta,tes.  But the modular and hierarchical structure of the controller made

the design specifica,tion straightforward am1 COSPAK  made it quite easy to detect and

correct, design mistakes.

7 Implications for Regulation Layer

The design of the pla,toon la,yer presented above presupposes the capability on the pa.rt of

the rcgIilat,ion layer to implenic~nt five types of feed back control laws to accoinplish certain

tasks. We describe these t,asks  briefly.

Follower spacing control. When a vehicle is a hollower, it must be controlled by a,

feedba,ck law that ma.intains  t,he required tight’  spacing  with the vehicle in front of it, in

its platoon. This control action is typically decomposed into longitudinal control which

determines  a,cceleration  a.nd bra’king,  and la.teral cant rol which det,ermines  the steering

action neecled to maintain the vehicle in its la,ne [13,  3, 4, 51.

Leader tracking optspeed. In the lane keeping mode, the leader should try and track

the target speed announced by the link layer, while nla,intaining  a safe headway (6Om)  from



the vehicle in front. This should be similar to current cruise cont,r01 a,ppropriately modified

to account for the headway requirement.

Accelerate to merge. This feedback law is used hy a lea.der to accelerate and merge

with the platoon in front. This law could be implemented by first calcul&ing a nominal

tra,jectory given t,he distance and speed of the vchiclc  in front (the la,st vehicle in the

preceding pla.toon),  aald then embedding the corresponding nominal open loop control in a

longit,urlinal  cont,rol feedback loop.

Decelerate to split. A follower who has just assumed 1 he role of leader is required to slow

down t,o achieve a. safe headway (6Om)  from t,he vehicle in front. This should be simi1a.r to,

and simpler than. the previous feedback law.

Free agent change lane. This feedback law enables a free agent to move t,o a vacant

space in t hc adjacent, la,ne. .‘\ga,iu  the approach of euibedding a nominal open loop control

in a feedback loop seems appropriate. This mancuvcr \vill require accurate position sensing

syst,ems. This task seems to involve the most dema,ndiug  sensing requirements.

It should be noted tha.t these are typ e s of control laws. That is to say ea.ch type represents

a class of laws indexed by several parameters. For inst,a,nce, the spacing control law would

be paramet,rized by the required spacing distance; sinrilarly,  the change lane law would be

pa.rametrized by the location of the vacant space, and the speed of vehicles in the adjacent

lane. There may be other pa.rameters  as well providc>tl by ‘preview’ information about, the

geometry of the road, roa,d conditions. etc: [14].

The proposed design specifies in a very simple fa,shion the interface between the plat,oon  a,nd

regula,tion  la,yers: the platoon la.yer issues a, command, and the regulation la,yer eventua,lly

ret~urns a response indicating successful completion. This interface needs to be enriched:

the platoon layer may ‘pass’ severa, parameters to the regulabion  layer, and the latter ma,y

r&urn ‘success’ or va,rious kinds of ‘errors’ a,nd ‘exceptions’.  The combined platoon and

regula,tion layer together form a hybrid system of the type introduced in [15].  The theory

of cont,rol of such systems remains to be developed.

8 Conclusions

We have discussed some aspects of the design of a control system for a,n IVHS system that

organizes tra,Eic in platoons of closely spaced vehicles under a,utomatic  control. The control

ta.sks are complex. The proposed approach rna,tlagcs this complexity by structuring the

design into three layers. The centralized link layer assigns a, path to ea,ch vehicle entering

the highwa,y and targets for the aggregate traffic. The remaining tasks are distributed



among individrml vehicles.r6

The platoon la.yer in each vehicle is responsible for planning its path as a sequence of three

elementa,ry ma.neuvers,  and for coordinating wit,11 neighboring vehicles the implementation

of each maneuver. The regulation la.yer is responsible for executing a pre-computed feedbxck

control in response to a command from the platoon layer.

Our ma,in focus is on the design of the pla.toon la.yer. The tasks of path planning and nego-

tia,ting  each elementary maneuver are carried out by finite sta,te machines. These machines

are themselves strrrcturcd into four functional subla,yrrs so that each function can be de-

signed arrd t,ested separately. The ma,chines are specified a,nd verified to function correctly

by the COSPXN  software system. The final design involves a system of 40 interacting ma-

chines (13 for t,he platoon layer and 27 for its environment) with about .500,000  sta,tes. This

is a fairly complex design, but the design process is simplified tremendously by maint,aining

func0iona.l  niodula.rity and 1iicrarchy.r’

It may be worth noting the difference between the way- the vehicle trajectory is determined

here (pla,nning  a pa.th a,s a. sequence of elementary maneuvers and coordinating each vehicle’s

maaeuvrr with it,s neighbors) and robot,ics-  aad artificial intelligence-based approaches to

the problem of guiding an autonomous vehicle, see e.g. [‘Ll, 22, 23, 241.  The objective of

the latter work is to guide one autono~nous  vehicle in a rcla.tively unstructured environment

so there is tnuc h enrpha.sis  on recognition, learning, and planning moves against diverse

‘threats’ or ‘obstacles’. By contrast,, our concern is on guiding many cooperating vehicles

in a relative structured environment, so the emphasis is on communicating information and

coordinating plans a nd m o ve m e nt.

The proposed three layer control hierarchy and the platoon layer design have important

implications for the design of t,he rest of the system. One implica,tion  for the regulation layer

is that, five types of feedback cont,rol  law need to be designed.  Another implication of our

study is the specification of several interfaces: between the platoon and link layers, between

the platoon and regulation layers, a,nd between the platoon layer a,nd several sensors on

board the vehicle a,nd roadside sensors. The third set of implications concerns requirements

for these sensors and monitors: the design indicates the kind of information needed to carry

out the platoon layer control functions.

The fourth set of implications concerns the comInunicat,ions  ca,pability needed to support

the information links. Communica~tions must be established between neighboring vehicles,

and between vehicles and the roadside. By figuring out how frequently the protocols must

be executed, and the data exchanged during ea,ch protocol, one can estimate the dat,a traffic

“A des ign  p r inc ip le  tha t  has  hem f’ollow~tl is  to keep cont,rol  t a sks  a s  decen t r a l i zed  a s  poss ib l e  in t,he

belief that, t,he resultSing IVHS system would be less vulnerable to failures than one in which t,asks are carried

o u t  more centrally.  A major consequence of this principle is that much of the ‘ intelligence’  resides in the

vehicles themselves.

liThe design process should be of interest also to researchers iu the field of control of discrete event. systcrns

[16, 17, 181.  Modu la r i t y  and  h i e r a r chy  a r e  a l so  d i s cus sed  in  [l!).  ZIJ].



that each communication link must support. This will indicate the kind of communication

technology that would he viable. A relaled implicat,ion concerns work on standards for

IVHS communication message  structures.

We now consider some direct,ions for future work. We group our comments under several

headings.

Error conditions. The proposed design assumes that lhe communication system functions

perfectly, and the synchronization mechanisms that achieve coordination of processes in

the negotia,ting vehicles function perfectly a,s well. In a.ny real implementation errors or

exceptions will arise, and protocols must be able to handle them. It is likely that the

design of these more robust protocols must be ha.sed on more detailed a.ssumptions  about

the underlying communication a.nd computing systems. Related concerns are the measures

that need to be designed t,o counter failures in the communication, control and computing

systems themselves.

System failures. The three maneuvers considered here are sufficient for ‘normal’ operating

conditions. Clearly they need to be augmented by otjher maneuvers that would be invoked

when failures of various types occur a,nd are detected. What should be done if a vehicle

has a failure, or if an obstacle is detected, or if there is an accident? Serious studies are

needed that systema,tica.lly describe t.he failure modes, classify them in terms of severity, and

propose modifications in the system design to mitigate their impact. The above-ment,ioned

*AI-based work ma.y prove valuable in this connection, see also [25].

Real-time behavior. The behavior of the platoon layer is described in terms of sequences

of event,s. These events occur in time only insofar as we can sa.y that one event occurs before

a.nother  one. There is no  notion of ‘real’ time. i.e. t.he amount of time between two events.

It is import,ant to augment the design to include some real time aspects. For example, in

deciding whether t,o execute a maneuver, the supervisor ma.y use an estimate (if one were

a.vailable) of the time it would take to complete the maneuver. Such an estimate could

be made available in the form of a table or function tlrat  summarizes the response of the

regulation layer to a pa,rticular command. (The table could be built up from simula,tion

experiments or from very simple models of vehicle dynamics.) Recent work on timed finite

state systems provide a valuable guide a,s to how such cstima.tes can be used [26, 271.

Discrete event system formalisms more powerful than finite sta,te systems may also prove

valuable [li’];  unfortuna,tely, these formalisms do not yet have the kind of software support

provided by C’OSPAN.

Performance. Let us suppose tha,t highway a.ut,omation of the kind described here is

technically feasible. Policy makers will then need to decide whether this technology is

worth developing. An important element that can inform this decision would be reliable

estima.tes  of the increa.sc in highway capacit,y and decrease in travel time that this technology

might bring. Studies such as [l] cannot be relied upon since they are based on unverified

assumptions about the automated highwa,y. R,eliablc estimates, it seems, will have to be

ba.sed on ‘realistic’ simulations.
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Appendix

The numbered lines in the COSPAN code correspond to the following lines that
explain the syntax for describing a process. All subsequent processes are to be interpreted

similarly.
l>
2>

3>

4>

5>

6>

7>

8>

9>

Process name declaration.
Names of selection/output variables.
Names of state variables.
Initial state of the process.
Conditions for transition between states follow this.
While in the state NO-CAR, the selection/output seen by other processes is
either no car ahead or car-ahead, non-deterministically chosen.
The uan&io~from NO-CAR to CAR will occur if the selection, while in the state
NO-CAR, is car-ahead.

Otherwise, no transition is enabled, i.e. process stays in the same state.
While in the state CAR, the selection/output seen by other processes is either
no-car-ahead or car-ahead, non-deterministically chosen.

lO> The transition from CAR to NO-CAR will occur if the selection, while in the state
CAR, is no-car-ahead.

1 l> Otherwise, no transition is enabled, i.e. process stays in the same state.
12> End of process declaration.
13> Selections from BPCmerge can affect this process’ transitions.
14> MERGING is apausing  state, and this is allowed.
15> Upon entering this state, the process selects acceleraring.  After some non-

deterministic amount of time (pause), the process selects merge-complete.
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se1var I :  ( I d l e ,  setW_busy, setBQ-not-busy,  check-range,

request-merge, accelerate-to-merge, conflrmmerqe)

StVar S: (IDLE, CHECK-RANGE, REQUEST-MERGE, SET-BUSY. ACCELERATE,
CONFIRM-MERGE, UPDATE)

inlt IDLE
tTa"S

IdLE lldlel
-XHECK RANGE : true;

CHECK-RANGE (check-ranqel

->SET BUSY : ( i3R.f

->IDLE

* car-ahead) l ( BQ.) = not-busy I
: BR.4 = no-car-a head

->s : else;

SET-BUSY (setBQ busy)

->REQUEST-MERGE  : true:

REQUEST-MERGE {request-merge)

->ACCELERATE : APRmerqe.l = ack-request-merge

->UPDATE : APRmerqe.l = nack-request-merge

->s : else;

ACCELERATE (accelerate-to merge)

-xONFIlU_FIERGE  : BV.4 = merge~complete

->s : else:

CONFIRM-MERGE (confIrm_merge1

->UPDATE : true;

UPDATE {setBQ not-busy)

->IDLE : tme;

end /* BPCmerge '/

~roc AQ /* A's queue busy machlne. It initially starts at tha
NOT-BUSY state. When it receives "setAQ_busy'

from APRmerge  machine, it moves to the BUSY state l /

import APRmerqe

selvar I: (busy, not-busy)

stvar 5: (BUSY, NOT-BUSY,

lnit NOT-BUSY

trans

NDT-BUSY
->BUSY

->s

BUSY
->NOT BUSY
->$ -

( not-busy 1

: APRnerge.4 = setAQ_busy

: else:

lbusyl
: APRmerge.# = setAQ_not-busy

: else;

end I* AQ *I

proc ASUM /* A's size of platoon machlne. '/

selvar I: (sum-too-large, sum-ok)

stvar S: (SIZE-LARGE, SIZE-OK)

lnlt SIZE-LARGE

trans

SIZE-LARGE
->SIZE-OK

->s

I sum-too-large, sum-ok I
: ‘= sum-ok

: else;

SIZE-OK Isum-ok, sm~tm~larqel

->SIZE-LARGE :f= sum~too~larqe
-Z-S : else;

end /* ASUH 'I

pro= APRmerqe /* A's protocol machine. This machlne Is the leader of

the platoon which receives request from BPCmerge l /

Import AQ, ASUM, BPCmerge

selvar I: (Idle, check-status, nrck-request-merge,  setAQ_busy,
setAQ_not-busy, ack-request-merge)

stvar 9: (IDLE, CHECK-STATUS, SET-BUSY, SEND-ACK, SEND-NACK,

UPDATE1
inlt I D L E
trans

IDLE (Idlel

->CHECK  STATUS

->s -
: BP’3nerqe.f  - rsquast-merge

: e1ae;

CHECK-STATDS

->SET-BUSY
->SEND-NACK

Icheck-status)

: fAQ.f - not-bU8y)  ’ (ASUM.#  - s u m - o k )

: else;

SEND-KACK
->IDLE

In~ck~request~mergeJ
: true;

SET-BUSY
->SHD-ACK

I setAO_bu*y t
: true:

SEND-ACK
-3UPDATE

->s

lack~cequsntyrge)
: wcmerge. I - conf  lrm_nerge
: else;

UPDATE
->IDLE

IsatAQ~not~busyl
: true;

end /* Nwmerge *I

ronltor HERGE-MQWTOR /* Checks for cormctness  of the Merge Protocol l /

llaport  BPCmerge,  APRmerge

stvar 5: 10. .3)
cyset 101
ICC"r z->o, 3->o
Inlt 0
tram

0
->l : BPCam3rge.l - request-merge
=>s : else:

1
->z : APRnerge.1 = sck-request-merge
->3 : APRmerge.# - nrck-request-merge

->s : else;
2

->o : l3ecmerge.  I = confirm_nerqe

-Xi : else;
3

->o : Becmerge  . I = setBenot-busy

->S : else;

end /* MERGE-MONITOR 'I
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/* protocol.sr  -- contains reduced command protocol machlnes and full

respond machines as well as all relevant sublayer
interface machines l /

proc TRIGGER /* trlqqers  the test machines '/

SSlVSi- I:(l)
StYar S:(ONE)
lnlt ONE

ONE Ill
->s : true:

end /* TRIGGER '/

,'---------------l"terface  machl"es for pH layer---------------------*,

proc RDSNR /' Road Sensor '/

SSlVSK #:(match, no-match)

stvar S: (MATCH, NO_EUTCHl

init NO MATCH

trans -

NO-MATCH (match. no match1

HATCH

end

->MATCH : I - match

-xs : else;

(match, no-match)

->NO_PUTCH : I - no-match

->s : else:

/� RDSNR l /

proc LN

SSlVSI

StYa=

lnit
trans

/� Lane Number l /

#: (correct,  iocarrect 1
S:(CORRECT, INCORRECT1

INCORRECT

INCORRECT (correct, incorrect I

->CORRECT :I- correct

-,s : else:

CORRECT (correct, incorrect)

->INCORRECT :#- incorrect

-z-s : else;

end /* LA l /

,.------------------prorocol mc,,l,-,e  for P� layer---------------------*,

proc PM /' Path Monitor '/

import RDSNR, LN, SUPR
SSlVSK I:(chq-ln,  keep-lnl
stvar S:(CHG-IN, KEEP-LNI
inlt KEEP LN

trans

CHG-LN lcho-lnl
->KEEP LN : (LN.# - correct) l (SUPR.1 - chq-ln-complete)
->s - : else:

KEEP LN- I keep-1  nl
->CHG LN : RDSNR.f - match
->s - : else:

end I' PH 'I

/+---------------interface machines for SUPR layer---------------*/

proc FREE /* free agent status Indicator. 'I

selvar #:(not-free-aqent, free-agent)

stvar S:(FREE-AGENT, NOT-FREE-AGENT)

init NOT-FREE-AGENT
tram

NOT-FREE-AGENT Inot-free-aqent, free-agentl

->FREE AGENT :a-
->s -

free-agent
: else:

FREE AGENT (free-aqent, not-free-agentl

->NOT FREE AGENT : I
->s - -

- not-free-agent

: else:

end /' FREE *I

proc POS /* Indicates position in platoon l /

import BPCmerqe,  BPCsplit,  BPRsplit,  BiPRchg
SSlVSr #:(follower, leader)
stvar S:(FOLLOWR,  LEADER)
cyset IFOLLOHERCI
lnlt FOLLOWER
tram3

FOLLOWER Ifollower)

->LBADER : (BPCsp1it.l - satALLBUSY_not-busy)
+ (BPRspl1t.l  - SetALLBUSY-not-busy)

' 1MPRchQ.l - setALLSUSY_not-bus'0

-xs : else;

LEADER (leader)

->FOLLDWER : BPCmerge.l - setALLBUSY_not-busy

->s : else;

end /* POS l /

proc ALLBUSY /* over all busy flag l /

import APCchg, APCspllt, BPCsplit,  BPCmerge,  BPRchg, BiPRchg,  CPRchg,

APRspllt,  BPRspllt,  APRmerge
se1var #:(busy,  not-busy)

stvar S:(BUSY,  NOT-BUSY,
lnlt NOT-BUSY
trans

NOT-BUSY
->BUSY

(not-busy1
: (APCchg.l - setALLBUSY_busy)

+(BPRchr~.l - setALLBUSY_busyl
+lBlPRcha.l - setALLBUSY  busy)
+iCPRchc~:l - WALLBUSY-iusy)

+(APCspllt.l - setALLBUSY_busy)

+(BPcsplit.l - setALLBUSY_busy)
tlAPRsp1it.l - sstALLBUSY_busy)
+(BPRsplit.l - SetALLBUSY-busy)
+(APRmerge.# - setALLBUSY_busyl
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BUSY

end /* ALLBUSY  ‘1

proc SIZE /' Indicates  p l a t o o n  size (~111 a l w a y s  c o m e  b a c k  t o  o p t )  ‘/

import
se1var

stvar

cyset

lnlt

t r a n s

BPCmerQe, APCsplit,  APRmerpe,  APRsplit,  BPRsplit
t: foot, smaller-than-opt, larger-than-opt)

$:(OPT, SMALLER-THAN-OPT, LARGER-THAN-OPT)

(OPT@)
OPT@

OPT (Opt: smaller-than-opt, larger-than-opt]

-Z-SMALLER THAN OPT : #
->LARGER ?HAN  OPT

- s m a l l e r - t h a n - o p t

: I
->$ - -

- ldrQer_than-opt
: else:

Tue Apr 9 16:16:02 1991

+ (0PCmerQe.l  = setALLBUSY~busyl

:  e l s e ;

->NOT  BUSY-

->s

Ibusyl
: (APCchq.  # = WALLBUSY-not-busy)

+(BPRchq.,  = SetALLBUSY n o t  b u s y )

t (8lPRchQ.l  = WALLBUS?-not-busy1

t(CPRchq.4 = setALLBUSY_not-busy)

+(APCsplIt.l - setALLBUSY_not-busy)

+(BPCspllt.~ - setALLBUSY_not-busy)

t(APRsp1it.l - WALLBUSY-not-busy)

r(BPRsp1it.l - setALLBUSY_not-busy)

+(APRmerpe.f - setALLBUSY_not-busy)

+(BPC,"eKQe.# - SetALLBUSY-not-busy)

:  e l s e ;

2

SMALLER-THAN-OPT (smaller-than-opt)
->OPT : (BPCmerpe.4 - setALLBUSY_not-busy)

+ (APPJw~Q~.  I - setALLBUSY_not-busy)

->S : else;

LARGER~~THAN-OPT I larQer_than-opt  1
--OPT : (APCspllt  .I - setALLBUSY_not-busy)

+ (APRspllt  .I * setALLBUSY_not-busy)

+ (BPRspllt  . I - setALLBUSY_not-busy)

->S : else;

end /* SIZE l /

,*------------protocol  ,,,ac,,lne  for  S,,pR  layer--------------------------'/

proc SUPR

import

SelVar

stvar

inlt
trans

START

/’ Platoon supervisor,  each car has one l /

PM, FREE, ALLBUSY, APCChQ, BFRE, POS, SIZE, BPRchQ,  BlPRChQ,

CPRchQ, APRsplit,  BPRsplit,  APRmer~e

#:(Start,  Check-free-apent, become-free-aQe"t,  chQ_ln-complete,
Start-ChQ-ln, check-position, keep-position, check-size,

Split, merQE)
$: (START, CHK-FREE-AGNT, BCM-FREE-AGNT, CHG-CMPLT, STRT-CHG-LN,

CHK-POS, KEEP-POS, CHK-SIZE,  SPLIT, MERGeI

START

I start I
->CHK-FREE-AGNT  : PH.I  - chQ_1”

->CHK  POS
->s  -

: PM.I  - k e e p - l n

: else:

CHK-FREE ACNT Icheck-free-aQe”tl
->BCM F R E E - A G N T  :  (FREE.#  - “Ot-free-aQe”tl

->STRT-CHG-LN

->$

BCM-FREE-AGNT

->STRT  CHG LN
->$ - -

STRT-CHG-LJ4

->CHG-CHPLT

->S

CHG CMPLT
->START

CHK POS

->KEEP POS

->CHK-?IZE

->S

KEEP POS

->BCM  FREE AGNT- -

->CHK-SIZE

->$

CHK-SIZE

->BCM  FREE AGNT- -

->SPLIT

-aMERGe

->s

SPLIT

->CHK-SIZE

->s

MERGe

->KEEP-POS

-,BCM-FREE-AGNT

-,s

end I* SUPR l f

l ( A L L B U S Y .  * not-busy)

: lFREE.#  - free-aQe”t)
l (ALLBUSY.#  - n o t - b u s y )

:  e l s e ;

[beCOme_free-agent1
: BFRE.f - fKe.S-aQe"t

: else;

[Start-ChQ-1")

: APCChQ.+ * setALLBUSY_not-busy

: else:

(ChQ-ln-Complete)
: true;

(check-posltlon)

: POS.#  * follower
: p0s.t - l e a d e r

: else:

( k e e p - p o s i t i o n )

: (PM-# - ChQ-1") l (ALLBUSY.I  - n o t - b u s y )

’ lB1PRChQ.t  - I d l e )  l (BPRspllt.#  - ldlel

: (P0S.b - l e a d e r )  l (Pl4.t  - keep-l”)

: else:

(check-slzel

: (PM.# - ChQ-1") l (ALLBUSY.@  - n o t - b u s y )

l (BPRchQ.6 - Idle)  l (CPRChQ.l  - Idle)
l (APRsp1lt.l  - idle) l (APRmerpe.I  - idle)

: (S1ZE.t - larQer_than-opt)
l (ALLBUSY.I  - n o t - b u s y )  l (PM.6  - k e e p - l n )

l (BPRChQ.l  - Idle)  l (CPRchg.l  - Idle)

l (APRsp1it.l  - idle) l (APR~71erge.l  - Idle)
: (SIZE.@ - smaller~thsn~opt)  ’ (P0S.l  - leader)

l (ALL8USY.t  - n o t - b u s y )  l (PM.I - keep-h)

l (8PRchQ.t  - idle) l (CPRChQ.#  - i d l e )

l (APRsp1it.l  - idle) l (APRmerQe.l  - Idle)

:  e l s e :

lsplltl
: (SIZE.@ - opt1 + (SIZE.4 - s m a l l e r - t h a n - o p t )

:  e l s e ;

IMKQEI
: (Pt4.l - keep In)  l (POS.# - follower1
: (PM.I  - chg in) l (ALLBUSY.)  - n o t - b u s y )-
: else;

/* --------------protocol machines for change lanes maneuver----------- l /

proc  APCChQ /* A’s Cha"Qe  lane protocol  machine--reduced l /

i m p o r t  S U P R ,  BPRChQl
selvar #:(ldle, setALLBUSY_busy, confinn~chr”Qe~la”e,

setALLBUSY_not-busy)
s t v a r S: (IDLE, SET-BUSY, CONFM-CHG-LN, UNSET-BUSY)
lnlt IDLE
trans

IDLE Ildle)

->SET-BUSY : SUPR.I - Start-ChQ-1"

->s : else;
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SET BUSY (setALLBUSY_busyl
->CONFM CHC LN
->UNSET-BUSY

: BPRchg1.l  = ack-req-chg-1"

: else;-

CONFM-CHG-LN 'confirm-change-lane)
->UNSET  BUSY : true:-

UNSET-BUSY IsetALLBUSY-not-busy)
->IDLE : true;

end I' APCchg l ,

,.-----------.,

proc BPRchgl I* test machine for APCchg '/

selvar #:'ack-req-chg-ln,  nack-req-chg-lnl
stvar S:'ACK, NACK)

lnlt ACK

trams

ACK lack-req-chg-ln, nack-req-chg-lnl

->NACK :B- nack-req-chg-ln
->s : else:

NACK lack-req-chg-ln, nack-req-chg-lnl
->ACK : I - ack-req-chg-ln

->s : else:

end /* BPCchgl 'I
,.----------*,

proc BPRchg I* leader's response machine--full l /

import  APCchgZ, PM, SUPR, POS, ALLBUSY,  APCspllt, BPCmerge,
CPRchg, APRspllt,  APRmerge

selvar #:'ldle,  check-busy, nack-request-chg-1% setALLBUSY_busy,
ack-req-chg-ln,  setALLBUSY_not-busy:

srvar S:'IDLE, CHECK-BUSY, NACK, SET-BUSY. ACK, JhSKT_RUSY)

lnlt IDLE

t rans

IDLE
->CHECK-BUSY

->s

CHECK-BUSY
->SET BUSY-

->NACK

NACK

->IDLE

SET-BUSY

->ACK

ACK

->UNSET-BUSY
->s

UNSET BUSY-
->IDLE

'idle)

: APCchg2.I = req-chg-1"
: else;

{check-busyt
: 'ALLBUSY.I - not-busy) l 'SUPi7.I = check-size)

l 'P0S.I = leader) ' 'PM.+ = keep-ln)

l -'CPRchg.l = promise-not-to-move1

l -'APRspllt.l = setALLBUSY_busy)

l -'APRnierge.l = setALLBUSY-busy)

: else;

Inack-req-chg-lnl

: true;

'setALLBUSY_busy)

: true;

'ack req-chg-ln)

: APCchg2.I = confirm-change-lane
: else:

,setALLBUSY-not_busyI
: true:

end I' BPRchg '/

,* ----------_--------  .,

proc APCchgZ I* test machlne for BPRchg l /

lmport BPRchg, TRIGGER

sellJar I: 'Idle, req-chg-ln,  confirm-change-lane)

stvar S:'IDLE, REQ-CHG-LN,  CONFM-CHG-LNI
lnit IDLE

trans

IDLE (Idle1

->REQ-CHG-LN : TRIGGER.+ = 1

->s : else:

REQ-CHG-IN
->CONFM CHG-LN 'req-chg-l"!  ack req: BPRchg.l  _ _ chg-ln

->IDLE - : else;

CDNm-CHG-IN lconflrm_change_lanel

->IDLE : true:

end ,* APCchg2 'I
,� __________________ l ,

proc CPRchg

import
SelVaK
stvar

lnit
trans

IDLE

I* far lane leader's machine--full  'I

PM, SUPR, ALLBUSY, POS, APCchg3, BPRchg, APRspllt, APPmerg~

#:(idle, check-busy, praise-not-to-move, nack-repchg-lnl
S:'IDLE, CHECK-BUSY, PRCMISE, NACKI

IDLE

(Idle1

->CHECK  BUSY
->$ -

: APCchg3.I  = raq-coop
: else;

CHECK-BUSY 'check-busy1

->PROMISE : 'PH.# = keep-W l 'ALLBUSY.#  = not-busy)

l 'P0S.I = leader) l 'SIJPR.) - check-sir.)

l 'BPRchg.# = idle)
l -'APRspllt.l = SetALLBUSY-busy)

l -'APRmerge.l = satALLBUSY_busyl

->NACK : else:

NACK 'neck-req-chg_lnl

->IDLE : true;

PRCMISE (promise~not~to~moval

->IDLE : APCchg3.6 = confirm-change-lane

-x5 : else;

end I* CPRchg l /

,* ________----------  .,

proc APCchg3 ,* test machlne  for CPRchg *I

import CPRchg, TRIGGER
selvar #:'idle, rep_coop,  confIrm-change-lane1

stvar S:'IDLE, REQCOOP,  CONFM-CHG-LNI

inlt IDLE
trans

IDLE 'Idle)

->REQ-COOP : TR1GGER.g  = 1
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->S : else;

REQ-COOP i=eq COOP)
->CONFH CHG LN : CP%hg.#

->IDLE - -

= promise~not_to~move

: else;

CONFM-CHG-LN [confirm-change-lane1

->IDLE : true;

end /' APCchg3 'I
,. ------------------ .,

proc BiPRchg

Import

se1var
stvar
lnit

trans

IDLE

4

I' follower's machine in change lanes--left out the interface

to BlV l /

BPRchg2, PM, SUPR, ALLBUSY, POS

I:(Idle, setALLBUSY_busy, conflrm-spllt, setALLBUSY_not-busy1
$:(IDLE,  SET-BUSY, CONFIRM-SPLIT, UNSET-BUSY)
IDLE

(Idle)

->SET BUSY : (BPRchg2.1 - spllt) l (P0S.I = follower)
l (ALLBUSY.I  = not busv)
l i(SUPR.f = keep+sltlon)  l (PH.* = keep-l")

+ (SUPR.# = become-free-agent)
l (PH.I = chg-1"))

->s : else:

SET-BUSY IsetALLBUSY-busy)
->CONFIRH  SPLIT : true:

CONFIRM SPLIT (confirm-spllt)
->UNSET  BUSY : true;

UNSET-BUSY (setALLBUSY_not-busy)

->IDLE : true:

end /* BiPRchq '1

,' ----------------- .,

proc BPRchg2 /* test machine  for BlPRchg l /

import  BiPRchg,  TRIGGER
selvar #:(idle, split)
bt"ar $:(IDLE, SPLIT)

lnlt IDLE
trans

IDLE (Idle)

->SPLIT : TR1GGER.I  = 1

->S : else;

SPLIT Isplltl
->IDLE : BlPRchg.4 = confirm~spllt

->s : else:

end /* BPRchg2 l /
,' ----------------- .,

/* ------------protocol machine for free agent supervisor------------ l /

proc BFRE I' Become a free agent *I

I m p o r t SUPR, POS, APCsplit,  BPCsplit
se1var #:(ldle,  check-status, become-leader, become-free-agent,

free-agent)
stvar $:(IDLE, CHECK-STATUS, BECOME-LEADER, BECOHE-FREE-AGENT,

FREE-AGENT)
lnlt IDLE
trans

IDLE Ildle)

-2CHECK STATUS : SUPR.#
->$ -

= become-free-agent

: else;

CHECK-STATUS (check-status)

->BECOHE LEADER : P0S.t = follower
->BECCME-FREE  AGENT : else;- -

BECOME-LEADER (become-leader1
->BECOME FREE AGENT : BPCspl1t.l

->s - -
= confirm-spllt

: else:

BECOME-FREE-AGENT (become-free-agentt

->FREE AGENT : APCspl1t.l
->5 -

= setALLBUSY_not-busy

: else;

FREE-AGENT (free-agent)

->IDLE : true;

end I* BFRE l /

/* ---------------protocol machines for split maneuvers--------------- l /

proc APCsplit /' sllghtly reduced--left out a state with transition 'true' *I

import PM, SUPR, BFRE, ALLBUSY,  BPRchg, CPRchg, APRsplit,  APRmerge,

SIZE, POS
selvar #:(Idle, setALLBUSY_busy, update, WALLBUSY-not-busy)

stvar $:fIDLE. SET BUSY, UPDATE, UNSET-BUSY)
Init IDiE . -
trans

IDLE
->SET-BUSY

->S

SET-BUSY
->UPDATE

UPDATE

->UNSET-BUSY

UNSET-BUSY
->IDLE

end I' APCspllt  *I

(idle)

: ((PH.8 = keep-ln) l (SUPR.# = split)

l (SIZE.@ = larger-than-opt)
+ (PH.@ = chq-ln)
' (SUPR.I = become-free-agent)

l (BFRE.4 - become-free-agent)  1
l (ALLl3USY.I - not-busy) l (P0S.I - leader)

l tBPRch9.f = idle) l (CPRchg.6 - idle)

l (APRsp1it.l  - Idle) l (APFUner9e.I  - Idle1
: else:

(setALLBUSY_busy)
: true;

(update)
: true;

(setALLBUSY_not-busyI
: true;

proc BPCspllt /* reduced--left o"t interface to B" and one 'true' transition
state l /

import  PM, POS, BFRE, ALLBUSY,  APRsplit.2,  BiPRchg, BPRspllt
S.?lV.+r I:(ldle, setALLBUSY_busy,  SetALLBUSY-not-busy, request-split,

confirm~split)
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stvar 5: (IDLE, REQ SPLIT, SET BUSY, CONFIRM SPLIT, UNSET BUSY)- - -
lnit IDLE

trans

I D L E
-ZREQ-SPLIT

->s

REO-SPLIT
->SET  BUSY

-DIDLE

->s

SET-BUSY
->CONFIRM  SPLIT-

CONFIRM SPLIT-
->UNSET BUSY

UNSET-BUSY
->IDLE

end /’  BPCspllt  ‘/

,.-------------------*,

proc APRsplltZ I* test machine

(idle)

: (BFRE.I = become-leader) l (P0S.I  = follower)

l (PH.I = chq-1") l (ALLE3USY.I - not-busy)
l (B1PRchq.l  = idle) l (BPRspllt.4  = idle)

: else;

(request-split)
: (APRspllt2.1 = ack?req-split)

' (Pi9.I = chq-1") (ALLBUSY.# = not-busy)

l (BlPRchq.#  = I d l e )  ' (BPRspl1t.N  = i d l e )
: APRsplit2.1 - nack req split
: else;

IsetALLBUSY busy]
: true: -

lconfirm~spllt)
: true;

IsetALLBUSY~not~busy)
: true:

for BPCspllt  '/

selvar #:(ack-req-spllt, nack-recspllt)
stvar S:(ACK, NACK)
lnlt ACK

trans

ACK lack-recspllt,  "ack-recsplit)
->NACK :I= nack-req-spllt
->s : else:

NACK lack-req-split,  "ack-req-splltl
->ACK :t= ack-req-split
-ss : else:

end /* APRspllt2 l /
,.-------------------.,

proc APRsplit /* leader response machine--full l /

import BPcspllt2, SUPR, ALLBUSY,  BPRchq, CPRchg,  APCspllt, BPCmerge,
POS, PM, APRmerqe

selvar (:(idle, check-busy, "ack-request-split, SetALLBUSY-busy,
ack-request-split, update, SetALLBUSY-not-busy)

stvar S:(IDLE, CHECK-BUSY, SEND-NACK, SET-BUSY, SEND-ACK,
UPDATE, UNSET-BUSY)

lnlt IDLE
trans

IDLE (Idle)
-XHECK-BUSY : BPCspllt2.#  = request split-
->s : else:

CHECK-BUSY (check-busy)
->SET BUSY : (PH.4 = keep-l") 4 (ALLL3USY.I = not busy)

l (P0S.e - leader) ' (SUPR.‘ = check size)
l (BPRchq.@  = idle) l (CPRchq.4  = ldie)

->SEND NACK-

SET BUSY

->SEND ACK-

SEND ACK-
->UPDATE

SEND NACK-
->IDLE

UPDATE

-XJNSET-BUSY
->s

UNSET-BUSY
->IDLE

end /* APRspllt l /

,� ------------------_  l ,
proc BPCsplitZ

import

SelVSr

stvar

lnlt

trans

IDLE

’ - (APP.merqe.I  = setALLBUSY_busy)
: else;

IsetALLBUSY busy)-
: true:

lack request split)
: true; -

("ack-request-splltl

: true:

(update)

: BPCsplit2.1 = confirm split
: else;

IsetALLBUSY not busy)
: true; - -

/* test machine for APRsplit l /

APRsplit, TRIGGER

r:(Idle,  request-spilt, conflrm~spllt)
S:(IDLE, REQ-SPLIT, CONFIRPI_SPLITl
IDLE

->REQ SPLIT
->s -

REQ-SPLIT (request-SplItI

->CONFIRM-SPLIT : APRspl1t.l = ack-request-spllt
->IDLE : APRspl1t.f = "ack~request~spllt
-xs : else;

CONFIRM SPLIT
->IDLE

(co"flnnispllt)

: true;

end /' BPCsplltP '/
,� ------------------- l ,

(idle)

: TRIGGER.@ = I
: else:

proc BPRspllt /' follower response to split-- left out lnface to Bv '/

import APCspllt2,  P?4, ALLBUSY,  SUPR, POS, BlPRchg

selvar I:(ldle, SetALLBUSY-busy, confirm_split, setALLBUSY_not-busy)
stvar S:(IDLE, SET-BUSY, CONFIRM-SPLIT, UNSET-BUSY)

lnit IDLE
trans

IDLE (idle)

->SET-BUSY : (APCspllt2.1 = lnvlte~new~lead)
l �=3S.# = f0llowerl

->s

l ;;LLBUSY.#  = not busy1 l (BlPRchg.1 = Idle)
l (1SUPR.I  = keepjosltlo") l (PH.* = keep-ln)

+ (SUPR.( = become-free-aqent)
l (PM.4 = chq-1"))

: else:

SET BUSY- IsetALLBUSY-busy)
-XONFIiW  SPLIT : true;-

CONFIAH-SPLIT
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->UNSET BUSY : true:-

UNSET BUSY- IsetALLBUSY not busy)
->IDLE : true:

end /' BPlwplit l /

,' ________--______---_  ',

proc APCsplit2 /" test machine for BPRsplIt  '/

impart BPRspllt, TRIGGER
se1var I:(idle, lnvlte  new lead)
StVar $:(IDLE,  INVITEINEWZLEAD)
init IDLE
t rans

IDLE (idle)
->INVITE  NEW-LEAD : TR1GGER.I  = 3
->s - : else;

INVITE-NEW-LEAD Ilnvlte-new-lead)
.‘IDL? : BPRspl1t.l * confirm split-
->s : else:

end /* APCsplltZ l /
,' -_________-_________  .,

proc BPCmerge /* slightly reduced machine--left out Interface to BV
and a 'true' transltlon  state l /

lmport PM, SIZE, SUP& POS, APRmergeZ
selvar r:lldle,  SetALLBUSY-busy, confirm-merge, SetALLBUSY  not busy)

S:(IDLE, SET-BUSY, CONFIRM-MERGE, UNSET-BUSY) - -stvar
init. IDLE
trans

IDLE (idle)
->SET-BUSY : (SUPR.I - mergEI l (PM.# - keep In)

l (S12.E.I - smaller than out) -

->s

SET BUSY

-XONFIRM  MERGE
-XJNSET B&Y

CONFIRM-MERGE

->UNSET BUSY

l (P0S.I - leader) - -

SlSW

SetALLBUSY-busy)

APRmerge2.1 - ack-req-merge
fZlSS$

confirm-merge)

true:

UNSET-BUSY IsetALLBUSY-not-busy]
->IDLE : true;

end /* BPCmerge l /

,.-----------  .,

Proc APP.merqeZ I* test machlne for Becmerge l /

selvar I:(ack-req-merqe, nack-req-merge)
stvar S:lACK,  NACK)
lnlt ACK
trans

ACK lack-req-merge, nack-req-merge]
>NACK : I- nack-req-merge

->s : else:

NACK lack-req-merge, nack-req-merge)
->ACK : I - ack-req-merge
->s : else:

end I' APRmerqe2 l ,
,'------------------*I

proc APRmerqe

import

selvar

stvar

inlt

trans

IDLE

/* leader's response machine--full l /

BPCmerge2, PM, POS, SUPR, ALLBUSY, BPRchg,
APCspllt, BPCmerge

#:(Idle, check-status, nack-request-merqe,

SetALLBUSY-not-busy, ack-request-merge)

S:(IDLE, CHECK-STATUS, SET-BUSY, SEND-ACK,
UNSET-BUSY)

IDLE

->CHECK STATUS
->$ -

CHECK-STATUS
->SET BUSY-

->SEND NICK

(check-status)

: (PM.) - keep-l")  l (P0S.I - leader)
l (ALLBUSY.I - not-busy)
l (SUPR.# - check-size) l (BPRchg.l - ldla)
l 1CPRchg.l - idle) l (APRspl1t.f  - Idle)
l (sI2E.r - smaller-than-opt)

: else:

SEND-NACK I nrck-request-merge)
->IDLE : true;

SET-BUSY
->SEND-ACK

IsetALLBUSY-busy)
: true:

SEND ACK
->UNSET-BUSY
->$

lack-request-merge)
: BPCmerge2.1 - conflrm~merge
: else;

UNSET BUSY
->IDLE

IsetALLBUSY-not-busy)
: true;

end /� A PRmerge  l /

,' ------------------- .,

CPRchg, APRspllt,

SetALLBUSY-busy,

SEND NACK,-

(idle)

: BPCmerge2.1 - request-merge
: else;

proc BPCmerge2

Import

selvar
stvar
lnlt

tram

IDLE

/* test machine for APRmerge l /

APRmerge, TRIGGER

#:(ldle, request-merge, confIrm-merge)
S:(IDLE, REP-MERGE, CONFIRH-NERCE)
IDLE

(idle)

->REP I4ERGE : TR1GGER.g  - 1
->s - : else:

REQ-MERGE Irequest-merge)
->CONFIRM  MERGE : APRmerge.6  - ack request merge
->IDLE - : APl7merge.e  - naci;_reques'"erge

->s : else;

CONFIRM MERGE-
->IDLE

(confirm-merge)
: true:
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end II* BPCmerqeZ *I
,. _______-------------  l ,

,�---------------------------------------------------------------.,

monitor SUPRMONITORl /* monitors states in SUPR '/

import SUPR

StVar s: IO..71
lnlt 0
cyset (II, 121. OF, 141, iSI. 161, 171
!ZeC"r l->l, l->4, 4->2, 6->O, 3->5, l->5, Z->5, 4->5
trans

0

->l : SUPR.I = check size
->2 : SUPR.1 = keep-position
->3 : SUPR.1 = check-free-agent
->s : else;

->4 : SUPR.I = merqE
->5 : SUPR.( = become-free-agent
->l : SUPI?.@  = split

-%s : else;

->l

->5
->7
-Z-S

3
->5
->6
- >S

4
-32
->5

->s
5

->6

-1s
6

->o

->s
7

->l

-x5

SUPR.#

SUPR.f
SUPR.I
else;

SUPR.I
SUPR.I

else;

SUPR.#

SUPR.#
else;

SUPR.I
else:

SUPR.#
else;

SUPR.f
else:

- check-size

- become-free-aqent
- split

- become-free-agent
- start-chq-ln

- keep-position

= become-free-aqent

= start-chq-ln

= chq-In-complete

= check-size

end /' SUPR~MONITOR1 l /

,.-------------------------------------------------------*,

monitor SUPR~MONITORZ /* monitors mutual exclusion l /

import APCchq,BPRchq,CPRchq,BlPRchq,APCspllt,BPCspllt,APRspllt,
BPRspllt,BPCmerqe,APRmerqe

stvar s:(o..lz)

lnlt 0
cyset lOI
trans

7

+ (APRsp1it.S  = SET-BUSY)

+ (BPRspl1t.S  = SET-BUSY)
+ (BPCmerqe.S = SET-BUSY)
+ (APRmerqe.S  = SET BUSY))

0

->l : (APCchq.S  = SET-BUSY)
' ((BPRchq.S = SET-BUSY)
+ (CPRchq.S = PROMISE)
+ (biPRchq.S = SET-BUSY)

+ IAPCspl1t.S  = SET-BUSY)
+ (BPCspl1t.S = SET-BUSY)

->2

->3

->4

->6

->7

->B

: (BPRchq.S  = SET-BUS?,
l f1APCcha.S = SET BUSY)-
+ 1CPRchq.S = PROMiSEI

+ (B1PRchq.S = SET-BUSY)
+ (APCsp1it.S = SET BUSY)
+ (BPCsp1it.S  = SET;BUSYl

+ lAPRsol1t.S  = SET BUSY)

+ iBPRspl1t.S - SETIBUSYj
+ (BPCmerqe.S = SET-BUSY)

+ (APRmerqe.S  = SET BUSY11
: (CPRchq.S = PROMISES
l 1IAPCcha.S  = SET BUSYI_
+ 1BPRchq.S  = SET-EUSYI
+ (B1PRchq.S = SET-BUSY)
+ (APCspl1t.S  = SET-BUSY)

+ (BPCspl1t.S = SET-BUSY)
+ IAPRsol1t.S  - SET BUSY)
+ iBPRsbl1t.S  = SET:BUSYl

+ (BPCmerqe.S - SET-BUSY)
+ (APRmerqe.S - SET-BUSY))

: (B1PRchq.S  - SET-BUSY,
l ((APCchq.S - SET-BUSY)
+ (BPRchq.S - SET-BUSY)
+ (CPRchq.S = PROMISE)

+ (APCsp1it.S * SET-BUSY)
+ IBPCsol1t.S  = SET BUSY)
+ iAPRspl1t.S  = SETIBUSY)

+ (BPRsp1it.S - SET-BUSY,
+ (BPCmerqe.S - SET-BUSY)
l (APRmerqe.S - SET-BUSY))

: (APCspl1t.S - SET-BUSY)
l ((APCchq.S - SET-BUSY)
+ (BPRchq.S - SET-BUSY)

+ (CPRchq.S = PROtiISEl
+ (B1PRcho.S  - SET BUSYI
+ iBPCsp1it.S  - SE?-BUSY1

+ (APRspllt.S - SET-BUSY)
+ (BPRspl1t.S - SET-BUSY,
+ (BPCmerqa.S - SET-BUSY)

+ (APRmerqe.S - SET-BUSY))
: (BPCsp1it.S  - SET-BUSY)

l ((APCchg.S - SET-BUSY)

+ (BPRchq.S  - SET-BUSY,
+ (CPRchq.$ - PROMISE)

+ (B1PRchq.S  - SET-BUSY)
+ (APCspl1t.S - SET-BUSY,
+ (APRsp1it.S - SET-BUSY)
+ (BPRspl1t.S - SET-BUSY)

+ (BPCmerqe.S = SET-BUSY)
+ (APRmerge.S  - SET-BUSY11

: (APRsp1it.S - SET-BUSY)

l (1APCchq.S  - SET-BUSY1
+ (BPRchq.S  - SET-&JSY)
+ 1CPRcha.S  - PROMISE)
+ iB1PRchq.S  - SET BUSY1
+ (APCspl1t.S  - SE? BUSY1
+ (BPCspl1t.S  - SET:BUSY)
+ IBPRsol1t.S  - SET BUSYI
+ i;PCm;rqe.S  - SET-BUSYj

(APRmerqe.S = SETrBUSYl)
: (BPRsp1it.S  = SET-BUSY)

l ((APCchq.S - SET-BUSY)
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->9

->lO

->ll

->I2

-z-s

1 (i3PRchq.S  SET--BUSY)

+ (CPl2chg.S  = PROMISE)

+ (B1PRchg.S = SET-BUSY)
+ IAPCso1it.S  = SET BUSY1

+ (BPCsb1it.S = SET-BUSY;
+ (APRsp1lt.S  = SET-BUSY)

+ (8PCmerge.S  = S E T - B U S Y )

+ (APRmerge.S  = SET-BUSY))
: lb3PCmeroe.S  =  S E T  BUSY)

8

l (1APC;hg.S  = SE?  BUSi’)

+ (BPRchg.$  = S E T  i&Y)

+ (CPRchg.S = PROikE)

+ (B1PRchg.S  = SET BUSY)
+ (APCsp1lt.S  = SE?: BUSY)
+ (BPCspl1t.S = SET-BUSY)
+ (APRspl1t.S = SET-BUSY)

+ (BPRsp1it.S  =  SET- BUSY)

+ (APRmerge.S  = SET-BUSY,)

: (APRmerge.S  = SET-B&Y)

l ((APCchg.S  = SET-BUSY)

C (BPRchg.S  = SET  BUSY)

+ (CPRchg.S  = PROiISE)

+ (B1PRchg.S  = SET BUSY)
+ (APCSpl1t.s  = SET  B U S Y )

+ (BPCspl1t.S  - SET:BUSY)

+ (APRsp1lt.S * SET BUSY)
+ (BPRsp1lt.S - SET-BUSY,
+ (BPCmerqe.S  = SETIBUSY))

: (P0S.S  * LEADER) l -l(BlPRchg.S  = IDLE)

+ (BPRsplit.5'  = IDLE) + (BPCsp1lt.S - IDLE))
: (P0S.S - FOLLOWER) ' -((APCchg.S = IDLE)

+ (APCsp1lt.S  - IDLE) + (BPCmerqe.$ = IDLE)
+ (8PRcho.S  - IDLE) + (CPRchg.S * IDLE)

+ (APRsplit.5  - IDLE) + (API2merqe.S  = IDLE))

: else;

end /* SUPR-MONITOR2  '/


