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Abstract: In general, sequential circuits are considered not to be
random-testable, since a rz:}uired test sequence may grow expo-
nentially with the number of flipflops, and it is very unlikely that
a certain sequence occurs at random. This problem can be solved
by combining two tasks:

1) A small part of the flipflops are made directly accessible,
for instance by a partial scan path or by a built-in self-test
register.

2)  Weighted random patterns are applied to the modified se-
quential circuit.

The paper describes a method to select a minimal set of flip-flops

as mentioned in 1). Since this problem turns out to be NP-com-

plete, suboptimal solutions can be derived using some heuristics.

Furthermore, an algorithm is presented to compute the cor-
responding weights of the patterns, which are time-dependent in
some cases. Finally the entire approach is validated with the help
of examples. Only 10% - 40% of the flip-flops have to be inte-
grated into a partial scan path or into a BIST-register in order to
obtain nearly complete fault coverage by weighted random pat-
terns.

Keywords: Random Test of Sequential Circuits, Built-In

Self-Test, Partial Scan Path.

1 Introduction

The random test of integrated circuits has benefits as far as the
test application, the test pattern generation and the fault coverage
are concerned. One of the most time-consuming tasks in compu-
ter-aided testing is the automatic test pattern generation (ATPG).
Using random patterns, ATPG becomes superfluous, and a high
fault-coverage 1s ensured, if weighted pattemns are applied. There
are efficient methods known for computing a single set of
weights of a combinational circuit ([Wu85], [LBGG86],
[Wu87b]). In some cases, a combinational network may be resi-
stant to a conventional random test, and multiple distributions
have to be computed ([Wu88], [WAIC88]). Test patterns cor-
responding to multiple weights also provide a high coverage of
some faults not in the original fault model, for instance, bridging
faults and transition faults [WaLi88].

The test application is simplified, if linear feedback shift registers
(LFSR) are used to implement a self-test strategy, originally
proposed as BILBOs by [KOEN79]. Here, the system registers
(Ri) are augmented by some additional circuitry, so that they can
generate and evaluate test patterns for the combinational part of
the circuit (SNi, figure 1). In [KrAl85], the exhaustive test of
pipeline-structures using self-test registers has been proposed.
Hence, not all registers are augmented, and the hardware over-
head is reduced. This approach will be generalized in the present
paper; instead of pipelines we allow more general structures, and
the exhaustive test is substituted by a pseudo-random test, with
high fault coverage.
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Figure 1: Self-test by LFSRs.

BILBOs generate equiprobable patterns; weighted patterns can be
generated during self-test using so-called GURTSs (Generator of
Unequiprobable Random Tests) [Wu87b]. The hardware over-
head of the feedback function of BILBOs and GURTS is avoi-
ded, if a scan-path is integrated, and if random pattern generation
and evaluation are done off-the-chip (fig. 2).

The migration of the random pattern generation seems to be
mandatory, if multiple weights are used. Random patterns cor-
responding to multiple distributions can be generated on-line by
some low cost test-equipment as proposed in [WAIC88],
[Str588]. The implementation of this test strategy requires at least
the integration of a complete scan path, which costs additional
silicon area, too.
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Figure 2: External random test by [BaMc82].



In this paper, we weaken this requirement. We present design
algorithms which select a minimal number of flipflops, in order
to make a random test feasible for sequential circuits. These
flipflops can be integrated either into a partial scan-path or into a
GURT or BILBO for a self-test application.

In section 2, we discuss random test lengths for combinational
and sequential circuits. A result is that sequential circuits are not
randomly testable in general, since the test lengths can grow with

a complexity of 0(2(3"))» where n is the number of flipflops.

In section 3, we discuss some properties of sequential networks,
which ensure bounded test lengths. In section 4, we estimate
fault detection probabilities of these modified sequential circuits
based on well-known methods for combinational circuits. More-
over, optimal weights of the random patterns are computed. It
turns out that the best results are obtained by time-dependent
weights at the primary and pseudo-primary inputs of the sequen-
tial network.

In section 5, we show that the time-dependence of the weights
can be weakened either by a recomputation of the weights which
implies longer tests or further design restrictions. Both approa-
ches lead to self-testable sequential circuits. In section 6, we
present algorithms which select the scanned flipflops auto-
matically. Finally, we present some results obtained by several
example circuits.

2  Random test lengths for combinational and se-
quential circuits

In this section, we discuss worst-case estimations of test lengths,
and show that for some sequential circuits a random test is not
feasible, even using multiple weights. Some previous work has
been done in estimating the necessary test lengths of combina-
tional circuits based on fault detection probabilities ([ShMc75],
[BaSa82], [WaMc86]). Let F be a set of combinational faults,
and for each fault fe F let ps be its detection probability. Let
P(N,F) be the probability to detect all faults of F by N patterns.
If fault detection forms completely independent events, then
P(N,F) can be estimated by

@ de=ITa-a-pph.

fsF
Of course, formula (1) neglects relationships such as fault equi-
valence and dominance. But in [Wu88] it 1s shown, that for the
actual probability P(N,F) we have
(2) In-ln(Jg)(1-IJn) € P(NLF) < In+In(Jn)l .
For this reason, formula (1) is precise enough, and it will be
used later on. The formula has two important consequences:
Only the few faults with lowest detectability determine the
necessary test length, and the test length increases linearly as a
reciprocal of the minimal fault detection probability. Hence the
test lengths may grow exponentially as the number of primary
inputs of the combinational network increase.
We consider an AND-gate with n inputs, where each input is set
to "1" with probability xe [0,1]. A s0-fault has detection proba-
bility x7, and a s1-fault has (1-x)xn-1. Hence formula (1) pro-
vides Jy = (1-(1-x"MN)(1-(1-(1-x)x-1)N)0, In order to achieve a
test confidence of Jyy = 0.999, assuming n = 32 inputs and
equiprobable patterns with x = 0.5, approximately N =
4.48-1010 patterns are necessary. A larger number of random
patterns are necessary even for the single input sequential circuit
of figure 3.
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Figure 3: Example circuit C1.

The n-bit counter counts the 1's at the D-input, and it is reset if
D = 0. Thus the circuit C1 checks whether there was a "1" at the
single data-input D, (27 -1) times. The random occurence of such

a sequence has a probability of 2-(21: E l) . This 1-input circuit

uires a test length similar to a 2%-input AND. For combinatio-
nal circuits, the random test length can be reduced by optimal
weights [Wu85], [LBGG86], [Wu87]. For instance, setting all

input probabilities to x := 3?.rm. we would need only 600 pat-
terns for an AND32. However, this is not a solution for the se-
quential circuit in figure 4. For this circuit there is no better input
probability than D =0.5.

A similar situation is possible for combinational networks; for
instance, if the inputs of an AND32 and an OR32 are connected,
then the problem is solved by applying 600 patterns with input

probability x = 3%@3 at first, and later 600 patterns with x :=

1- %o,
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Figure 4; Example circuit checking 1- and 0- sequences.
Methods to compute multiple sets of weights have been
presented in ([Wu88a], [WAICB8], and [Wu88bl). But for se-
quential circuits, the number of weights needed can grow ex-
ponentially. An example circuit is given in figure 5.
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Figure 5: Circuit checking an input sequence by a reference of

an LFSR-sequence.
If the LFSR represents a primitive polynomial, then the sO-fault
at Y has the detection probability 2-(2" -1) assuming equipro-
bable patterns at D. Even a small LFSR with n = 6 requires more
than 1020 patterns, Since at each time step, the necessary value at



D is determined by the pseudo-random output of the LFSR, O(2n
-1) different weights are required, in order to reduce the test
length significantly.

These simple examples prove, that there is no hope for a weigh-
ted random test strategy applicable to all sequential circuits. In
the next section we establish some restrictions on the circuit
structure ensuring random-pattern testability.

3 Design requirements of random-testable sequen-
tial circuits

We assume that the sequential circuits are described at gate level,
and that the following restrictions are fulfilled:
The circuit is purely synchronous,
e  Only D-flipflops are used.
° Only one the following conditions holds:

a)  The D-flipflops can be augmented according to the
rules of either level-sensitive or edge triggered scan-
design (LSSD, ETSD).

b)  The D-flipflops can be augmented to self-test regi-
sters, e.g. GURTSs or BILBOs.

e  For ETSD-circuits, the test signal T blocks the clock of the
unscanned flipflops. For LSSD, shift clocks and system
clocks must be separated

The main work is to determine a minimal number of flipflops,
which have to be augmented according to a) or b), in order to
ensure random pattern testability. In order to do this, we have to
establish some formal framework:

Definition 1; Let I be the set of (pseudo) primary inputs of a cir-

cuit C. W C [0,1]xIx[1,...,n} is a rime-dependent set of

weights of length n, if

a) Forall (ik) eIx{1,..
(xik)e W

b) VielJke(l,.

.,n) there is at most one x& [0,1] with

.0} Ixe[0,1] (x,i,k)eW.

(x,i,k) € W denotes that input i is set to 1 at time-step k, with
probability x. There may be some inputs i€ I at some time steps

ke (1,...,n}, where no weight x is defined. These "don't-cares”
are used for compaction later on. We are looking for circuit
structures, where a high fault coverage can be obtained using
weights of short lengths, If already the deterministic test sequen-
ces of a circuit are exponentially long, then a random test will be
even longer. Hence, some necessary and sufficient conditions
are established to bound the deterministic test lengths, and it is
shown, how these conditions also hold for a random test.

We assume that the circuit structure is given by a formal repre-
sentation, which is transformed into a graph-theoretical form (fi-
gure 6).

Definition 2: A circuit graph G := (V,E) is a directed graph with
vertices V and edges EC V2, V := VUV, is a disjoint union
of V¢ (vertices corresponding to a combinational element, Vg
(vertices corresponding to a sequential element) and inputs I.

The outputs of gates are represented by V(, the outputs of flip-
flops are represented by Vs, and I contains both primary and
pseudo-primary inputs. The pseudo-primary inputs correspond
to the flipflops of the scan-path or the self-test register. We have

(v,w) €E, if node v is the input of a component, gate or flipflop
with output node w. The primary outputs are a subset OC V.
For the example circuit of figure 7, the circuit graph G := (V,E)

consists of nodes V := {ey, ez, 3, k1,...,ks5,a) and the cor-
responding edges.

For a circuit graph, the direcr predecessors of ve V are denoted
by pd(v) := {we V | (w,v)e E], and the direct successors by
sd(v) := {weV | (v,w)eE}). We assume I = {ve VIpd(v) =
@). The predecessors of v are p(v) := {weV | there is a path
from w to v}, and its successors are s(v) ;= (weV | there is a
path from v to w). A parh ® from u to v is a sequence of vertices
ko, ..., kn, with kg=u, kp=v and (ki.1,kj)e E for i=1,...,n,
where n is called the length L(w).

Figure 6; Example circuit and its circuit graph
The topology of the storage elements Vg determines the test
length. This topology is described by the so-called S-graph.

Definition 3: Let GCi := (VCi ECi) be a circuit graph with
VCi = VEIUVEUI® and 0% cVCi. s S-graph is defined as

GS := (VS.ES), where VS := 0SIUVEUI®  and ES :=

((v,w)e VSxVS | There is a path @ from v to w in GCi, and
onVS={v,w)].
Fxgure 7 shows the S-graph corresponding to the circuit graph of

figure 6.

Figure 7. S-graph

The presented approach is valid for a very general fault model.
The only restrictions are that no sequential behavior is induced,



for instance, by stuck-open faults and that the topology of the S-
graph is not altered, for instance by shorts. The correct circuit
and all the faulty circuits are then mapped onto the same S-graph.
Since in the faulty case all changes in the functions of the combi-
national components are admissible, we have to impose some
restrictions on the topology of the S-graph, so that the test
lengths are linearly bounded. Due to observation 1 below, a ne-
cessary condition is that the S-graph contains no cycles.
Observation 1: If the S-graph of a sequential circuit contains cy-
cles, the initialization sequence of some states can increase expo-
nentially with the number of flipflops.
A simple example of this observation is a linear feedback shift
register (LFSR) of length n, which might have an initialization
sequence of length 27-1. In [KuWu89] it is also observed that
there are S-graphs containing a single cycle, where the length of
initialization sequences increases quadratically. On the other
hand, we can prove that test sequences are linearly bounded for
acyclic S-graphs. A test sequence of a sequential circuit must
drive the faulty and the fault-free circuit into states sg or s, where
the responses to the same pattern are different. Hence the maxi-
mal test length is given by the maximal necessary state transition
sequence. Using Roth's notation of time-frames, copies of the
combinational part of the circuit are generated, and the number
of time steps corresponds to the length of the test sequence.
We modify this approach, and at each time step, we only copy
the small part of the combinational circuit that is actually needed
for fault detection. This results in a small combinational repre-
sentation of the sequential circuit. There is a test sequence for the
sequential circuit if and only if, there is a test pattern for its com-
binational representation. Hence, the computation of fault detec-
tion probabilities of sequential circuits is reduced to combi-
national ones.
In order to describe our solutions exactly, some more graph-
theoretical definitions are required. We define the numbers rf(v)
:= max(%(w) | @ is a path in G with end point v} and rb(v) :=
max{&(w) | ©is a path in G with start point v}. We call the ma-
ximal path length of an acyclic graph G its rank :
rank(G) := max (rf(v)] = max(rb(v)}.

veV veV

Definition 4: Let G := (V,E) be an S-graph with sequential nodes
Vs, outputs O and inputs 1. Its back-trace function P is

P: P(Vsul)y— P(Vsul); P(W) := U pd(w).
weW

The nodes of a subset WC V have defined values at time step t,
if the nodes Wt-1 := P(W1) have defined values at time step t-1,

and we can use this notation for state-back-tracing. Pf denotes
the application of P r times.

Theorem 1: Let G := (V,E) be an acyclic S-graph with rank(G) =
r. Then Pf(Vsul) C 1.
Proof: By the strict decrease of the function rb.

Corollarv: Every state is reachable within r steps, if it is reach-
able at all.

Definition 5: Let GS := (VS,ES) be an acyclic S-graph, with rank

rand let GCi:= (VCi EC) be its circuit graph. Set

Wr:= {ve V8 | sd(v)nO=@ in G5},

Vr := [ve VCi | Juge W' 3uje O (v is member of a path @ from
ug to uy and @NVS={ugu N} UWrU O,

andforO<t<r:

Wl = P(WH‘]}'
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Vt:= (ve VCi| Juge Wt Juje WH! (v#u; is member of a path ©
from ug to uj and ®AVS=(ug,u1})) U Wt

The combinational representation of GC is the graph

G:=(V,E), where

Vi= U V'x (1t}
Ostsr
E:= U (((x0).(y) I(x,y)e V' xV' A EJU
14 .94
U ((xth(yt+D)IxeViaye whl A (xy) € E},
O<t<r
and
V =

= U (ke Vixe VS uvE,

- C DSISI —

I:={(x,t) e Vixe I}

O := {(o,r)lo € O}.

It should be noted, that all flipflops are mapped to combinational
buffers. For the example circuit in figure 6 and 7, the time fra-
mes are V2=(a, k5}, VI=[k4, k3, k1, e3, e1) and VO=[k2, k1,
el, e2). The resulting equivalent combinational network is
shown in figure 8.

el/l el/0e2/0 e3/1 @ @ @ @

Figure 8 Equivalent combinational network
Each fault at a node v of the sequential circuit corresponds to a

multiple fault at the set of nodes {(v,t) | (v,0)e V) in the combi-
national representation.

Theorem 2: Let G := (V,E) be an acyclic circuit graph, with rank
r, and let G := (V,E) be its combinational representation. A pat-
tern sequence «:cb{e {0,1} | ie I> | O<t<r> detects a given fault
of a node ve V exactly at time-step r, if and only if the corre-

sponding multiple fault in G is detected by the pattern <bti I

(el >,
Proof: By construction and theorem 1.
Now we can state the main result of this section:



Corollary: Let G := (V, E) be an acyclic circuit graph, and let G
:= (V,E) be its combinational representation. Let X
<(xG.(1,0) | (e T > be a set of weights for G.

For ve V let f, be a fault in G, and let f, the corresponding mul-
tiple fault in G. The probability that a random pattern correspon-

ding to X detects £ in G is equal to the probability that fy is de-
tected at time-step r by a random sequence, which is generated

by the time-dependent set of weights X := {(x.i,0) | (x,(i,0)e X ).

Since [TI < ril, the time-dependent set of weights is bounded as
required.

4  Test lengths and time-dependent weights.

Computing fault-detection probabilities in combinational circuits
is a #-complete problem, and has an exponential worst-case
complexity. Hence, algorithms computing them exactly are re-
stricted to a small class of circuits. Estimating procedures may
use sampling techniques as STAFAN [AgJa84], may compute
bounds like the cutting algorithm [BDS83], or there are analytical
techniques, for instance PROTEST [Wu85]. All results reported
in this paper are obtained by PROTEST, which is extended in

order to deal with combinational representations G and multiple
faults.

By the last corollary, fault detection at time step r is equivalent to
fault detection of the combinational representation. In order to
simplify the notation we do not consider fault detection at the

first 0,...,r-1 ime-steps. Every new pattern €b:E {0,1} liel>at

. - =T+
time 27 provides a new pattern <b-: =

binational representation (see fig, 9).

I (i,k)e T > for the com-
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a) Sequences at the sequential network.
(e1,0) (e2,0) (e1,1) (e3,1)
0 0

1 0
1 0 0 0
0 1 1 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1

b) Corresponding patterns for the combinational representation.

Figure 9:  Pattern sequences for the circuit of figure 7 and the
corresponding test patterns for the combinational
representation.

We assume that the test patterns are completely independent with

respect to both the bit position and the time step. In this case the

corresponding patterns of the combinational representation are
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completely independent, too. Let F be the set of faults of the se-
quential circuit, and let F be the corresponding set of (multiple)

faults. Finally, let € be the probability of detecting all faults of F
by N patterns when applied to the combinational representation:

N

@ e<[la-a-pp™

feF
Let N be the smallest integer fulfilling (4), and let N be the ne-
cessary number of patterns of the corresponding sequential cir-
cuit, then we have
(5) Ng < Ng < Nc+r, where r is the rank of the S-graph.
Formula (5) holds for equiprobable patterns, and the same result
is obtained using time-independent weights <x;e[0,1] | ieI> for
the sequential circuit. More effort is necessary in analyzing time-
dependent weights.

If W= <(x¢i,0,(,0) | (,)e T> is a time-dependent set of
weights of length n, and <Tl.....Tr1|>. <’T%Ti> are two subse-

quent pattern sequences corresponding to W, then there are im-
plicitly defined n-1 link weights Ly,...,Ln.1. They correspond to

the n-1 pattern sequences <'T;T:I‘I‘2I> <I';, 1,....1"21_1:-.
The link-weights L; are constructed by augmenting the time-de-
pendent set of weights, such that weights are assigned to all pri-
mary inputs at every time-step. Then we do a cyclic shift of the
weights by j time-steps, and project the new set of weights to the
defined inputs and time steps. This gives us the link-weight L.
We proceed in a more formal way, by defining a complementary
weight:

Definition 6: Let W := <(x(;,.(i0) | (i,)e T> be a time-depen-

dent set of weights. A set W := <(x(j ,(i,t)) | (i,t)e T> is called a
complementary set.

Now let W be an arbitrary set of weights, complementary to W,
and set U ;= WUW, Define Ul ;= ((x,i,h) | (x,i,k)e U A

(h=k+j<n v h=j>n-k)}, and set L := {(x,i,k) € Uil (ik)eT}.

If we apply Ns+1 pattern sequences corresponding to W, then
we also apply N pattern sequences corresponding to each link-

weight L;. For each fault fe F the detection probabilities pf(W)
and pf(Lj), j := 1,...,n-1 depend on the weights of the applied
pattern sequences, and formula (4) turns into

© esIla-a-povn ™ Tla-p,wyn™

feF i=t
For small detection probabilities this is estimated by

=1 N
@ eslla-a-@m+Zpwm.
feF j=l
Hence we only have to add the corresponding detection probabi-
lities of all time-dependent weights we used, in order to deter-
mine the necessary test lengths.

5  Self-testable sequential circuits

Random patterns corresponding to both multiple sets of weights
or time-dependent sets of weights can easily be applied using a
(partial) scan path and external pattern generator. But in order to
implement a self-test, a time-independent, single set of weights
seems to be mandatory. Firstly in this section, we discuss time-



independent sets of weights for circuits represented by an arbi-
trary, acyclic S-graph. Secondly, we discuss design restrictions
leading to shorter test lengths.

Definition 7: Let W := <(x(,1,(i.1)) | (i,t)e T> be a time-depen-
dent set of weights having a length n. The compaction of W is
the time-dependent set of weights W' < [0,1]xIx(1,...,n'},
such that:

a) W' has length n';
b) V(x,ik)eW (x,i, k mod n")e W';
¢)  There is no shorter set of weights fulfilling a) and b)

If a patern sequence is generated corresponding to a time-
dependent. comq;ctcd set of weights W', then it satisfies the
original weights W, too.

For ie I set n(i) := I{k | (i,k)e T}I, and h(i):i= ¥ X(i,k)- The
(ikeTl

: S (1 > S
average set of weights Wy := {{;8—.1) | iel} is time-indepen-
dent, and patterns corresponding to W can be generated by a
GURT during a self-test.

W4 is an approximation of the optimal set of weights, and if the
result of an average set of weights is not sufficient, further de-
sign restrictions are necessary resulting in a pipeline-like struc-
ture.

Definition 8: Let G := (V,E) be an acyclic S-graph. G is called

equidistant, if for all pairs (u,v)e V2 all paths from u to v have
the same length.

The notation of equidistant faphs is a generalization of linear
pipelines. A graph is equidistant, if it does not contain any
asymmetric reconvergences. Figure 10 gives examples of equi-
distant S-graphs.

.

Eigure 10: Equidistant S-graphs.
Theorem 3: Let G := (V,E) be an equidistant, acyclic S-graph
with a single output o. For each primary input ie I, there is

exactly one time step k, such that (i,k)e I is input of the combi-
national representation.

Proof; All paths from i to o have the same length.

As a consequence, a time-dependent set of weights W defines a
value for a primary input only once. Hence its compaction is W'
< [0,1]xIx{ 1}, which actually is a time-independent set.

Definition 9: Let GCi := (VCi ECi) be a circuit graph with an
equidistant acyclic S-graph. The combinational reduction of G&
is the graph G := (V',Ef), where V= V'E IUV(:\V?, V'E'

contains the boolean substitutes of the sequential nodes VE’. and

E" is defined in the obvious way.
In a combinational reduction the flipflops are substitued by lines.
In multi-output equidistant S-graphs, for each o O we define a
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subset of inputs Iy := {(ik)e T (i,k)e p(0)}. For each i, there
is at most one k with (i,k)e ;. Now we have:

Theorem 4: Let G := (V,E) be an equidistant, acyclic S-graph, let
o€ O be an output of the circuit graph, and let fye F be a target
fault at node v. A test pattern T := <b; | ie I> detects fy at output
o in the combinational reduction, if and only if the test pattern T'
= <tk | Yigy=tia(ik)e o> detects the fault at output o in the
combinational representation.

Proof: Left 10 the reader,

Now the problem is solved: Fault detection is reduced to fault
detection in combinational reductions, and all primary inputs are
only needed at the first time-step. Thus we have to compute a
singlﬁ weight at each input, resulting in a time-independent set of
weights.

6  Design algorithms

Up 10 now we have shown that a random test is feasible for a set
of weights (at least multiple weights, see [Wu88]), if the se-
quential circuit is represented by an acyclic or equidistant S-
graph. In this section, we discuss how to select the flipflops for
self-test registers (GURT or BILBO) or partial scan-paths.
Definition 10; Let G=(V,E) be an S-graph of a sequential circuit.
A cut of a node ve V provides a new graph G'=(V"E’), where

a)
b)

V'=(pilw(po) UW\(v}, with new pizpoe V
E'= [(piw) | wesd(v)] U [(w,po) | wepd(v)}u

EM(x,y)ix=vvy=v])

If two nodes are cut, then the resulting graph G" is independent
of the order of these cuts. Thus for each WV we can define a
graph by Gw=(Vw,Ew). The problem to select a minimal num-
ber of scan elements can now be stated as follows:

(EBN): Let G = (V,E) be an S-graph. Find a set W<V of mini-
mal cardinality such that Gy = (Vw,Ew) is acyclic.

FBN is known to be NP-complete [Karp72], and heuristics are
used in order to obtain good, suboptimal solutions. Let Zg be the
set of all elementary cycles of G. For each cycle ze Zg, we de-
fine n(z):={ve V Ive z), the set of all nodes of z. Now the scan
selection problem is divided into two subproblems:

i)  For the S-graph G=(V E), create the set of all elementary

cycles Zg.

i) SetH :=ZL..chn(z). Find a set W C H of minimal cardinali-

ty, such that Vze Zg Win(z)=0.

Both subproblems are standard-problems of graph-theory, and
there are well-known solutions. implemented algorithm are
based on methods described in [ChKo75], and additional heuri-
stics are used. Alternatively we select a bounded set Z'g of ele-
mentary cycles to solve the hitting problem ii), and select another
bounded Z'g. By a very similar we can create equidistant
S-graphs:

Definition 11: Let G=(V,E) be an acyclic graph. An asymmetric
reconvergency between u,ve Vis a set of nodes RCV, such that

a)  There are paths p; and p2 from u to v with L{py)=L(p2).
b pinp2=(uyv]
¢)  R=(prup2Muv].



An asymmetric reconvergency R is solved, if one node of R is
removed. If Zg denotes the set of all asymmetric reconver-
gencies instead of cycles, we have to solve subproblem ii) in the
same way as before.

7

Results

We discuss three examples: the operation unit of the signal pro-
cessor (SP) proposed in [Blan84], a multiplier presented in
[Gutb88], and a PROLOG-coprocessor (PP) [Habe&7].

Circuit Inputs | Outputs | Gates Flipfiops
SP 83 55 1675 239
MU 43 26 993 183
PP 36 73 1428 136
Table ];:  Circuit characteristics.

The circuit SP needs no time dependent weights, whereas the
circuit MU is not testable by a conventional random test. The
patterns have been simulated, and the obtained fault coverage is
listed in table 6. With the exception of circuit SP, the results are
compared with equiprobable patterns.

Using time-dependent weighted patterns, a complete fault cove-
rage is achieved for moderate test-lengths. For the circuits MU
and PP, the fault coverage obtained by equiprobable patterns is
not sufficient. As already mentioned, the acyclic S-graph of the
MU also is equidistant. Thus the used weights are time-indepen-
dent and can be applied by a GURT. But for the circuit PP we
have to determine new time-independent weights.

The unmodified circuits are hard to test, which is proven with the
help of the program LASAR [LASAB85]. Fault coverages are li-
sted below obtained after 3600 seconds of computing time.

SP MU PP

8.71% 9.8% 11.2%

Table2;: Fault coverage by LASAR after 1h computing time.
In table 3, the percentage of flipflops is given which have to be
integrated into a scan-path, in order to generate a complete scan
path (CS), equidistant S-graphs (EQ), and acyclic S-graphs
(AC).

Circuit AC EQ% S
5P 17.2% 185 T00%
MU 39.3% 39.3% 100%
PP 20.6% 44.1% 100%

Table 3:  Percentage of elements to be integrated into a self-test
register or scan-path.

For the general approach, only 17.2% and 20.6% of the flipflops
must be directly accessible. The multiplier (MU) has a structure
such that generating an acyclic S-graph automatically provides an
equidistant S-graph, too.

By a deterministic test pattern generator it is possible to identify
faults undetectable due to redundancies. A sequential redundancy
exists, if a fault is not detectable due to unreachable states. For
this reason, the number of redundancies will increase from the
CS-design over the EQ-design up to the AC-design, Table 4 gi-
ves the overall number of redundancies identified by the program
SPROUT-9V ([Ku89], [KuWu89)).

33 MU PP
Patterns weighed equ weighted  equi
50 | 97.4 88.5 92.0 72.9 757
100 | 99.2 92.8 92.8 79.0 80.0
200 99.7 96.1 94.1 84.3 B6.2
300 | 99.8 97.0 94.1 87.4 89.8
400 99.8 97.7 94.4 90.1 91.7
500 99.8 97.9 944 91.1 924
1000 | 99.9 98.8 952 952 952
2500 | 100.0 99.5 955 97.7 98.0
3000 99.6 95.5 97.8 982
4000 99.9 0955 98.4 98.8
5000 98.5 98.9
7000 98.9 991
9000 99.2 993
10000 993 993
15000 99.7 99.3
20000 99.9 993
25000 100.0 995
30000 99.5

Table 6;  Fault coverage obtained by time-dependent, weighted

patterns and by equiprobable patterns.
AC-Designs (average weights): The average weights for the cir-
cuit PP have been computed, and the results of fault simulation
are listed in table 7.We need a similar test length as before,
which could be explained by the fact that no link-weights are
necessary for time-independent weights.

AC EQ cs |

SP 4 01% 4] 0.1% 4 10.1% |
MU 10 | 0.4% 10 | 0.4% 0 [0.0%
PP 692 |25.6% 512 | 18.4% | 188 |7.0%

Table 4:  Total number of redundancies.

Random test patterns are generated and fault coverages are mea-
sured only with respect to the remaining faults.

AC-Designs (time-dependent weights): We assume an AC-De-
sign of the example circuits with an integrated partial scan path.
Random patterns are generated corresponding to a time-depen-
dent set of weights as described in section 4. Table 5 lists the
necessary number of patterns estimated by PROTEST using
time-dependent sets of weights and equiprobable patterns se-
quences.

Pattern FC || Pattern FC Pattern FC
50 | 75.1 1000 | 97.0 9000 | 99.9
100 | 80.7 2500 | 98.9 10000 | 99.9
200 | 87.1 3000 | 99.2 15000 | 99.9
300 | 90.1 4000 | 99.3 20000 |100.0
400 | 92.2 5000 | 99.5
500 | 93.3 7000 | 99.7

Table7: Fault-coverage obtained by time-independent,
weighted patterns.

Up to now, we have derived time-independent weights for all
circuits represented by an acyclic S-graph. Only 17.2 % through
39.3 % of the flip-flops must be integrated into a GURT or
BILBO, and hence this self-test strategy requires less transistor
overhead than the costs of a complete scan-path. Now we try to
reduce the test length further.

EQ-Design: The circuits SP and PP have been modified in order
to be represented by an equidistant S-graph. The estimated test
lengths are listed in table 8.

PP

SP MU SP 33
weighted [ 1.4-103 16104 3.3104 weighted 3.0-102 8.3.104
equipmbable 48103 2.3-10! 1 2.2’106 equipmbab]e 2.0-103 1.6-106
TableS: Estimated random test lenghts (acyclic S-graphs). Table 8: Estimated random test lenghts (equidistant S-

L6

graphs).




Again, we have generated random patterns and compared the
fault coverages obtained by simulation of weighted and equipro-
bable patterns. Table 9 shows the results.

Pattern 100 150 | 200 ] 250 | 300
FC 9921 998 9991 9991 999 [100.0
a) Circuit SP
Pattern FC || Pattern FC || Pattern FC
100 91.1 1000 989 6000 99.9
200 | 95.1 2500 | 99.8 7000 |100.0
300 | 96.1 3000 | 99.8
400 | 97.0 4000 | 99.9
b) Circuit PP
Table9: Fault-coverage obtained by time-independent,

weighted patterns.

A complete fault-coverage is obtained by very moderate test
lengths.

Conclusions

Algorithms have been proposed, to integrate a small number of
flipflops into a partial scan path-or a self-test register, but still
ensuring random pattern testability. For the modified sequential
circuits methods have been discussed in order to compute the
necessary test lengths and to determine weights of the random
patterns. Here, 3 methods with different trade-offs have been
proposed:

1)  Time-dependent weights requiring lowest hardware-over-
head and short test lengths, but which are not suitable for a
self-test strategy.

2)  Time-independent weights using acyclic S-graphs, which
can be applied during self-test.

3) Time-independent weights using equidistant S-graphs,

which require the shortest test lengths and which can be
applied during self-test, too. This is paid by slightly more
hardware-overhead.
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