
The Design of the ICE Encryption Algorithm

Matthew Kwan

mkwan~cs.mu.oz.au

Abs t rac t . This paper describes the design and implementation of the
ICE cryptosystem, a 64-bit Feistel block cipher. It describes the design

process, with the various aims and tradeoffs involved. It also introduces
the concept of keyed permutation to improve resistance to differential

and linear cryptanalysis, and the use of an extensible key schedule to

achieve an explict tradeoff between speed and security.

1 I n t r o d u c t i o n

The Data Encryption Standard (DES) [8] has been widely used as an interna-

tional standard since its introduction in 1977. However, in the years since its

release, a number of vulnerabilities have come to light.

These include susceptibility to differential cryptanalysis [2], susceptibility to

linear cryptanalysis [7], a key/plaintext complementat ion weakness [4], four weak

and twelve semi-weak keys [4], a fixed 56-bit key size, inefficient software per-

formance, and an absence of public design criteria.

While triple-DES [10] provides a larger key size at 112 bits, this is at the

expense of a factor of three in encryption speed.

ICE, which stands for Information Concealment Engine, was designed to

address these issues, while maintaining a compatible interface with DES. This is

to allow it to act as a substitute in existing applications.

In addition to the standard ICE algorithm, other variants are described. Thin-

ICE is a faster, less secure version, while there are also open-ended variants ICE-n

which trade off greater key size for reduced encryption speed.

2 T h e S t r u c t u r e

ICE is a standard Feistel block cipher, with a structure similar to DES.

It takes a 64-bit plaintext, which is split into two 32-bit halves. In each round

of the algorithm the right half and a 60-bit subkey are fed into the function F.

The output of F is XORed with the left half, then the halves are swapped.

This repeated for all but the final round, where the final swap is left out, as is

illustrated in figure 1. At the end of the rounds, the halves are concatenated to

form the ciphertext.

Decryption follows the same procedure, except that the subkeys are used in

reverse order.

A Feistel structure was chosen for a number of reasons. To begin with, it was

guaranteed to carry out one-to-one mappings between plaintext and ciphertext,

70 Matthew Kwan

Plaintext

F
I

I

I

I

Ciphe~ext

Subkey 1

Subkey 2

Subkey n

Fig. 1. The structure of n-round ICE

which is necessary for a cipher to be decryptable. This enabled the designer

to concentrate on the design of the F function and key schedule, secure in the

knowledge that a valid cipher would be produced.

Secondly, Feistel ciphers have been publicly cryptanalysed for more than two

decades, and no systematic weakness has been uncovered. In addition, the tech-

niques that have been used to analyse existing Feistel ciphers are generally ap-

plicable to new ones. This simplifies the design task, since the designer is not

forced to invent as many new forms of cryptanalysis when evaluating a design.

And finally, Feistel ciphers are reasonably fast and simple to implement in

software. Speed and simplicity were two important design aims for ICE.

The Design of the ICE Encryption Algorithm 71

3 The F Funct ion

N o t a t i o n : In this paper, bits will be numbered from right to left, starting at

bit zero. So, for example, the rightmost bit of a plaintext half is P0, while the

leftmost bit is P31.

The ICE F function is similar in structure to the one used in DES, with the

exception of keyed permutation (described below). The function as a whole is

illustrated in figure 2.

20-bit

subkey

40-bit

subkey

Fig. 2. The ICE F function

72 Matthew Kwan

3.1 The Expans ion Function E

The 32-bit plaintext half is expanded to four 10-bit values, El , E2, E3, E4, in

the following manner.

z l = P1PoP3~P3oP29P2sP27P26P25P~4

E2 = P25P24P~3P22P21P~oP19PlsP~TP16

z3 = P17P~6P~sP~4P~3P~Pl~P~oPgP8

E4 = PgPsPTP6PsP4P3P2P1Po

This expansion function was chosen because four 10-bit values were needed

for the S-boxes, and it was reasonably fast to implement in software.

3.2 Keyed Permutat ion

After expansion, keyed permutation is used. The permutation subkey is 20 bits

long, and is used to swap bits between E1 and E3, and between E2 and E4. For

example, if bit 19 of the subkey is set, bit 9 of E1 and E3 will be swapped. If bit

0 of the subkey is set, bit 0 of E2 and E4 will be swapped. The cryptographic

properties of keyed permutation are described in a later section.

The values El , E2, E3, and E4, after being permuted, are XORed with 40 bits

of subkey, then used as input to the four S-boxes, S1, $2, $3, and $4. Each S-box

takes a 10-bit input and produces an 8-bit output. The S-boxes are described in

more detail later.

3.3 The Permutat ion Function P

The four 8-bit S-box outputs are combined via a P-box into a 32-bit value, which

becomes the output of the F function. The P-box, which is specified in table 1,

was designed to maximize diffusion from each S-box, and to ensure that bits

which are separated by 16 places never come from the same S-box, nor from

S-boxes separated by two places (eg S1 and $3). Given that these criteria were

met, the P-box was also designed to be as regular as possible.

Ou tpu t bit 3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6

Source S17 $47 $37 S2T $26 $3~ S16 $46 $35 S2s S4s SI~ $44 S14 $24 S34

Outpu t bit 15 14 1 3 1 2 11 10 9 8 7 6 5 4 3 2 1 S400
Source $23 $33 $43 S13 S12 $42 $22 $32 $41 Sll $31 $21 $30 $20 S10

Table 1. The permutation function P

The 32-bit output is thought of as eight 4-bit blocks, and diffusion is achieved

by ensuring that each bit from a particular S-box is permuted to a different 4-bit

The Design of the ICE Encryption Algorithm 73

block in the output. This means that the output of one S-box is guaranteed to

affect the inputs to all the four E-boxes in the next round. Whether it affects the

inputs to all the S-boxes depends to some extent on the keyed permutation in

that round.

Although each S-box output bit goes to a different 4-bit block, there are four

positions within each block to choose from. For an even spread, it was decided

that each position would be used twice (since there are eight bits coming out of

each S-box).

Because of the E-boxes, certain input bits to the F function (bits 0, 1, 8, 9, 16,

17, 24, 25) end up affecting two S-boxes, while the other bits only affect one. The

P-box was designed to ensure that only one bit from each S-box will exclusively

affect that same S-box in the next round, assuming that the bit isn't redirected

by the keyed permutation. However, in the worst case, keyed permutation can

result in up to three bits from an S-box exclusively affecting the same S-box in

the next round.

4 The S - b o x e s

The S-boxes in ICE are similar in structure to those used in LOKI [3] in their

use of Galois Field exponentiation.

Each S-box takes a 10-bit input X. Bits X9 and X0 are concatenated to

form the row selector R. Bits Xs. .X1 are concatenated to form the 8-bit column

selector C. For each row R, there is an XOR offset value On, and a Galois Field

prime (irreducible polynomial) Pn.

The 8-bit output of an S-box for an input X is given by (C @ OR) 7 mod PR,

under 8-bit Galois Field arithmetic. The exponent 7 was chosen because it is a

one-to-one function, and it produces a reasonably flat XOR profile, useful for

resistance to differential cryptanalysis. Regardless of the prime used as the mod-

ulus, no input difference produces an output difference with a probability greater

than 2-'~6 �9

The XOR offsets for each row in each S-box are given in table 2, while the

prime numbers are specified in table 3.

S-box O0 O1 02 03

$1 83 85 9b cd

$2 cc a7 ad 41

$3 4b 2e d4 33
$4 ea cd 2e 04

Table 2. The S-box XOR offsets (in hexadecimal)

74 Matthew Kwan

iS-box P0 P1 P2 P3

S1 333 313 505 369
$2 379 375 319 391
$3 361 445 451 397

S4 397 425 395 505

Table 3. The S-box Galois Field primes

The choice of these values is described in detail in a later par t of this paper.

The way the S-boxes are specified, with 16 offsets and 16 primes, was chosen

so that the boxes were parameterised. This enabled software to automate the

generation and evaluation of millions upon millions of different possible S-boxes.

5 The Key Schedule

ICE has been designed with an extensible key schedule to permit a tradeoff

between speed and security.

The standard ICE algorithm takes a 64-bit key and uses 16 subkeys in 16

rounds. There is a fast variant Thin-ICE which uses 8 rounds with a 64-bit key,

and there are open-ended variants ICE-n which use 16n rounds and 64n-bit keys.

For example ICE-2 uses 32 rounds and a 128-bit key.

5.1 Design criteria

When the key schedule was designed, a number of criteria were used.

- There must be no weak keys. In other words, for an n-round schedule there

must be no two keys K1 and K2 such that the all the subkeys S K (K 1 , i) =

S K (K 2 , n - i + 1) for i = 1..n

- Only a single key complementation weakness, ignoring keyed permutation.

In other words, assuming that bits aren ' t being permuted in the F function,

the only values of A, B, C s.t. I C E (P , K) = I C E (P @ A, K • B) @ C is

when A, B, and C have all bits set. This is largely unnecessary, since keyed

permutat ion makes it impossible to exploit complementat ion weaknesses, but

it can ' t hurt.

- Each subkey bit should only be dependent on only one key bit. This simplifies

the proof [5] that the above two conditions are satisfied.

- No meet-in-the-middle attacks. This means that, for any round N, all key

bits must be used either in the preceeding rounds, or all must be used in the

following rounds.

- Since the F function makes use of 60 key bits per round, each key bit must

be used 15 times in the ICE and ICE-n ciphers. Thinking of the 60 key bits

as being divided into 15 4-bit blocks, each key bit must use a different 4-bit

The Design of the ICE Encryption Algorithm 75

block each time it is used. For Thin-ICE, with only eight rounds, every key

bit must be used 7 or 8 times, and spread out such that, if the 60 bits are

partitioned into three 20-bit blocks, each key bit is used in a 20-bit block 2

or 3 times.

- Immunity to related-key cryptanalysis [1]. This means some sort of irregu-

larity in the key schedule.

- The key scheduling algorithm must be simple to implement in software, yet

not too fast, so as to hinder exhaustive key searches.

5.2 K e y s c h e d u l e s p e c i f i c a t i o n

The Thin-ICE key schedule is simply the first 8 rounds of the standard ICE

key schedule. The ICE-n key schedules build on the ICE key schedule using the

following algorithm.

S t a r t w i t h an empty ke y s c h e d u l e .

f o r i = 1 . . n

Take t h e n e x t 64 b i t s o f t h e ke y and u s e them t o g e n e r a t e

a 1 6 - r o u n d ICE ke y s c h e d u l e .

Take t h e s c h e d u l e so f a r , s p l i t i t a t t h e h a l f - w a y p o i n t ,

and i n s e r t t h e new 1 6 - r o u n d s c h e d u l e .

end

This ensures that there is no simple meet-in-the-middle attack, and that if

ICE has no weak keys, then neither does ICE-n. However, this structure is still

susceptible to more sophisticated meet-in-the-middle attacks [11].

In order to satisfy the condition that there be no weak keys, it was firstly

necessary to prevent an all-zero key from producing zero subkeys in all rounds.

The condition that each subkey bit be dependent on only one key bit means that

this can only be achieved by inverting certain bits during the key schedule.

In each round 60 key bits are used. These are typically stored in three 20-bit

values, SKi, SK2, and SK3.

SK1 is the value XORed with the inputs to S1 and $2.

SK2 is the value XORed with the inputs to $3 and $4.

SK3 is the value used for key permutation.

The key is first converted into four 16-bit blocks, KB [0 . . 3]. These blocks

are used, along with the key rotations K R shown in table 4, to derive the subkeys

in each round using the algorithm as follows.

KB [03 ---- K63..//48

KB[1] ---- K47..K32

KB [2] ---- K31..K16

KB [3] ---- K15..Ko

76 Matthew Kwan

for each round n = 1 .. 16

for SK = SKI, SK2, SK3 in turn, 5 times each

for i = 0 .. 3

Set B to bit 0 of KB[(i + KR[n]) rood 43.

Shift SK left one bit.

Set bit 0 of SK to B.

Shift KB[(i + KR[n]) rood 43 right one bit.

Set bit 19 of KB[(i + KR[n]) rood 4] to the inverse of B.

end

end

end

R o u n d

R o t a t i o n

1 2 3 4 5 6 7 8 910111213141516

2 0 1 2 3 2 1 3 0 1 3 2 0 3 1 0

Table 4. Key rotations K R

6 K e y e d P e r m u t a t i o n

The inspiration for the use of keyed permutation comes from the salt value in the

Unix password encryption function c r y p t (3) , designed by Ken Thompson and

Denis Ritchie at AT&T Bell laboratories. This function uses a fixed, publicly-

known, 12-bit value to permute the DES E-box in the manner similar to that

described in the ICE F function, except that it permutes only 24 of the 48 E-box

output bits.

It was a small step to consider a modification where the salt was increased

in size to permute all the bits from the E-box, and where the salt was not pub-

licly known, but rather derived from the secret key in each round via some key

schedule. It turns out that this has some useful cryptographic properties.

From an aesthetic point of view it has a certain consistency. The cornerstone

of block cipher design has been the use of substitution and permutation net-

works to encrypt data [9]. Keyed substitution, usually in the form of XORing

key bits with an S-box input, has been commonly used, and it is felt that keyed

permutation should complement this nicely.

To begin with, keyed permutation gives ICE immunity to complementation

weaknesses. These result from situations where key and plaintext bits are inver-

ted, but cancel each other out at the inputs to the S-boxes, causing the S-boxes

to produce identical outputs. However, if key bits are inverted in ICE, the S-

boxes will receive their inputs from totally different bits, and thus not regularly

produce identical outputs.

The Design of the ICE Encryption Algorithm 77

A great challenge to cryptosystem designers has been resistance to differen-

tial cryptanalysis. Although the keyed permutation used in ICE doesn't grant

immunity to differential cryptanalysis, it does greatly reduce its effectiveness.

Differential cryptanalysis relies an attacker sending XOR differences to the

inputs of S-boxes, where the S-boxes will then produces an XOR difference as

output with some probability. But because these input bits are being permuted

in ICE, the attacker does not know which S-box will receive the bit.

However, an attacker can exploit the symmetry of the keyed permutation.

Think of the 32-bit input to the F function as having left and right 16-bit halves.

The permutation in ICE simply swaps bits between the halves. By using input

differences where both halves are the same (called symmetric inputs), an attacker

can be certain that the bits will reach their target S-boxes.

However, since the attacker now has to target at least two S-boxes at a time,

the probability of success is typically squared or worse. Detailed values are given

in later sections.

Similarly, linear cryptanalysis is forced to use symmetric inputs, again with

much lower probabilities.

7 T h e D e s i g n o f t h e S - b o x e s

The S-boxes in ICE were primarily designed to be resistant to differential crypt-

analysis, and in particular to symmetric attacks. In an ideal world, every possible

Galois Field prime and XOR offset would be tried, and the resulting S-boxes eval-

uated. However, with 30 Galois primes to try in 16 positions, and 16 8-bit offsets

to choose, this would require more than 1071 evaluations. As result, the selection

process was done in incremental steps.

1. Of the ten bits input to each S-box, the middle six bits are unique to that

S-box, while the remaining four are shared with adjacent S-boxes. Since

each row only uses one prime, XOR profiles for all 30 different primes were

generated, and groups of four primes were evaluated by adding their profiles

together and checking the probabilities of characteristics whose inputs use

the middle six bits. 509 groups of four were found whose peak probability

was 18/1024.

2. Pairs of these four-prime sets were evaluated, with the proviso that no pair

could share a prime in common. The aim was find the pair with the lowest

product of probabilities given the same input probability. The pairs chosen

appeared to have probability products of 256/1048576, but it later turned

out that the analysis software was flawed, and the true probability was

324/1048576. However, by then the design was complete, and the problem

was not deemed serious enough to justify a redesign.

3. The XOR offsets in each S-box were selected to minimise the probability of

an input difference producing a zero output difference, and consequently to

minimise the probability that a symmetric input difference would produce a

zero output difference.

78 Matthew Kwan

4. 4096 sets of values had the same probabilities (4320/24~ so the set was

chosen which had the lowest probability of a symmetric input difference

producing itself as output (8064/240).

With respect to differential cryptanalysis, it makes no difference if all the

XOR offsets in a row are XORed with a constant, or if the positions of the

primes are XORed with a constant, so there were still 1024 choices available for

each S-box. None of these choices would have any effect on differential (and, it

turns out, linear) cryptanalysis, so some new, and fairly arbitrary, criteria were

used to narrow down the choice of parameters.

1. There should be no x where F (x) = 0, assuming a zero subkey. If F in all

rounds produces zero outputs, then a plaintext would encrypt to itself.

2. There should be no x where F (x) = x.

3. For a given input, no S-box shall produce the same output as another S-box.

4. The sum of the bit count of F(x) @ x over all symmetric x values shall be

perfectly balanced (i.e. equal to 1048576).

5. Finally there were 16 sets of values to choose from. They were evaluated for

the bitcount of F(x) for all 32 single-bit x values. None gave the balanced

value of 512, but the closest was 506, which was then chosen as the set of

primes and offsets for the S-boxes.

8 C r y p t a n a l y s i s

During the design process, ICE was subjected to a number of attacks. In addition

to the key schedule analysis described previously, it was also subjected to differ-

ential cryptanalysis, linear cryptanalysis, and some other specialised attacks.

8.1 Differential Cryptanalysis

There are 22 one-round characteristics with probability 18/1024. However, they

require non-symmetric inputs, so are not effective attacks.

The two best symmetric single round characteristics are F(008c008c) -4

4042a085 and F(OOdcOOdc) --4 5920a681, both with probability 324/1048576.

However, because they are not symmetric they cannot be turned into iterative

characteristics.

For characteristics with symmetric inputs and outputs, the best examples

are F(bSOlb801) -4 02bT0267 with probability 57600/240 and F(34eb34eb) -4

d82fd82f with probability 50176/24~

The best symmetric characteristics where the output difference equals the

input are F(80848084) --+ 80848084 and F(98619861) -+ 98619861, both with

probability 8064/24~ Although these can be turned into an iterative attack, the

probabilities are too low to be useful.

The best symmetric characteristics that produce zero output differences are

F(b2d6b2d6) --4 0 and F(cad6cad6) ---+ 0, both with probability 4320/24~

The Design of the ICE Encryption Algorithm 79

Both of these characteristics can be turned into a five-round characteristic

with a probability of 2 -55 ss. It is possible that this attack could be used to

break Thin-ICE in less time than exhaustive search, although this has not been

investigated fully at present.

The full 16-round ICE and all its extended variants appear to be secure

against diffferential cryptanalysis.

8.2 L i n e a r C r y p t a n a l y s i s

Linear cryptanalysis relies on correlations between the XOR sum of certain bits

in the input and output of S-boxes. However, the use of keyed permutation means

that, although the output of the S-boxes are usable in the same way as the DES

attack, the source of the input bits cannot be known for certain unless symmetric

input bits are used.

For ICE, the best approximation for a single S-box is NS2(457,136) -- 416 --

512 - 96. However, since this is not symmetric it is not usable as an attack.

Linear approximations that only make use of the two bits shared by adjacent

S-boxes do not need knowledge of input bits, and can be combined into iterative

expressions. The best approximations of this form are ...

X[24, 25]~X[24, 25]@F(X, K) [l l , 12, 18, 20, 25, 31]@F(X, K)[4, 9, 17, 22, 27] =

K[28, 29] @ K[30, 311

X[8, 9] @ X[8, 9] @ F(X,K)[3,8, 16,26] ~ F(X,l"()[13, 19,21,30] = K[8, 9] @

K[X0, 11]

X[8, 9]GX[8, 9]@F(X, K)[3, 14, 23, 26]~F(X, K)[19, 21,30] = K[8, 9]@K[10, 11]

Each of these linear approximations has a probability of 2 -7'83. They can be

combined into a symmetric 6-round expression which has a probability of 2 -42.

If used to attack Thin-ICE it would typically require 2 s2 ciphertexts to achieve

a 75% success rate, so it appears that Thin-ICE cannot be broken using this

attack.

8.3 Other A t t a c k s

It is possible that the use of keyed permutation introduces weaknesses of its

own. One possibility is to somehow trace the path of bits through the cipher, and

thus deduce where they were permuted. This would immediately yield key bits.

However, early analysis indicates that the avalanche effect of the S and P boxes

masks any information of this sort after a few rounds.

For extended-round variants of ICE with keys 128 bits and longer, it must

be remembered that the strength of the cipher under a chosen-plaintext attack

is only 264 time and memory, since an attacker can theoretically simply store all

the plaintext/ciphertext pairs in one massive lookup table, and thus immediately

find the plaintext corresponding to a ciphertext. Although this may not be a

practical attack, it does represent the theoretical strength of the cipher under

chosen-plaintext attacks, and, to a lesser extent, known-plaintext attacks.

80 Matthew Kwan

9 Sof tware I m p l e m e n t a t i o n

Keyed permutation is achieved by simple bitwise operations. This is best demon-
strated in the ICE F function source code, written in ANSI C. Note that for speed

the S-boxes have been pre-permuted to produce 32-bit outputs. Full source code

implementations of ICE, written in ANSI C, C++, and Java, can be found at

[6].

unsigned long

ice_f (

unsigned long

const ICE_SUBKEY
){

unsigned long tl, tr;

unsigned long al, ar;

P~
s k

/* Expanded 40-bit value */

/* Salted expanded 40-bit value */

/* Lef t ha l f expansion */

tl = ((p>>16) & Ox3ff) [(((p>>14) [(p<<18)) ~ OxffcO0);

/* Right half expansion */

tr = (p & Ox3ff) I ((p<<2) �9 OxffcO0);

al = sk[2] & (tl " tr);

ar = al " tr;

al "= tl;

/* Perform the keyed permutation */

al "= sk[O];

ar "= sk[l];

/* XOR with the subkey */

/* S-box lookup and permutat ion */

r e tu rn (ice_sbox[0] [al>>10] I ice_sbox[1] [al ~t 0x3ff]

I ice_sbox[2][ar>>lO] I ice_sbox[3][ar ~ Ox3ff]) ;

The C implementations were bechmarked against an optimised version of

DES on a 100MHz 486 PC running Linux, as shown in table 5.

The slow speed of key changes was surprising, given the simplicity of the

key scheduling algorithm. It turns out this is because the algorithm operates on

only one key bit at a time, whereas this DES implementation operates on 28-bit

blocks.

10 S u m m a r y

The design and analysis of ICE and its variants has been described here. It is

hoped that the ciphers will prove secure in the long run, and provide possible

The Design of the ICE Encryption Algorithm 81

Opera t ion (x 100000) T i m e (seconds)

DES encryption 2.37
DES decryption 2.40

DES key change 4.98

ICE encryption 1.63

ICE decryption 1.59

ICE key change 44.79

Thin-ICE encryption 0.88

Thin-ICE deeryption 0.87
Thin-ICE key change 22.45

:ICE-2 encryption
ICE-2 decryption

ICE-2 key change

3.12
3.04

89.63

Table 5, Benchmark results

Variant Key P la in tex t C iphe r t ex t

ICE deadbeef01234567 fedcba9876543210 7d6eflef30d47a96
Thin-ICE deadbeef01234567 fedcba9876543210 de240d83a00a9cc0

ICE-2 00112233445566778899aabbccddee~ fedcba9876543210f94840d86972~21c

Table 6, Certification triplets

alternatives for DES in the future. As a public-domain algorithm, with source

code freely available (export restrictions permitting), it should be useful in any

number of security and privacy applications.

R e f e r e n c e s

1. E. Biham, New Types of Cryptanalytic Attacks Using Related Keys, Advances in

Cryptology- EUROCRYPT '93 Proceedings, Springer-Verlag, pp. 386-397, 1994

2. E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Stand-

ard, Springer-Verlag, 1993
3. L. Brown, J. Pieprzyk and J. Seberry, LOKI: A Cryptographie Primitive for Au-

thentication and Secrecy Applications, Advances in Cryptology - A USCRYPT '90

Proceedings, Springer-Verlag, pp. 229-236, 1990

4. M.E. Hellman, R.C. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig
and P. Schweitzer, Results of an Initial Attempt to Cryptanalyze the NBS Data

Encryption Standard, Technical Report SEL 76-042, Stanford University, Septem-

ber 1976

5. M. Kwan and J. Pieprzyk, A General Purpose Technique for Locating Key Schedul-

ing Weaknesses in DES-Like Cryptosystems, Advances in Cryptology- ASIAC-

RYPT '91 Proceedings, Springer-Verlag, pp. 237-246, 1991

82 Matthew Kwan

6. M. Kwan, The ICE Home Page, http://www.cs.mu.oz.au/~mkwan/ice

7. M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology

- E U R O C R Y P T "93 Proceedings, Springer-Verlag, pp. 386-397, 1994

8. National Bureau of Standards, Data Encryption Standard, FIPS PUB 46, U.S.
Department of Commerce, 1977

9. C.E. Shannon, Communications Theory of Secrecy Systems, Bell System Technical

Journal, vol. 28, no. 10, pp. 656-715, October 1949

10. W. Tuchman, Hellman Presents No Shortcut Solutions to DES, IEEE Spectrum, v.

16, n. 7, pp. 40-41, July 1979

11. P.C. van Oorschot and M.J. Weiner, A Known-Plaintext Attack on Two-Key Triple

Encryption, Advances in Cryptology- E U R O C R Y P T '90 Proceedings, Springer-

Verlag, pp. 318-325, 1991

