-

ESD-TR-71-368

TRI FILE COPY

THE DESIGN OF THE VENUS OPERATING SYSTEM

ESD AC;_J.L,. Q |
TRI Call No. ’/L/f 5
Copy Na. _____/I_

.."ﬂ: ./ ;hLEST

MTR-2150

B.H. Liskov

OCTOBER 1971 ESD RECORD COPY

SCIENTIFIC & TECHI
(TRI), Bui
Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

L. G.

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 6710

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

ADT335%5

N DIVISIOI

When U.5. Government drawings, specifications,
or other data are used for any purpose other than
‘a definitely related government procurement
operation, the government thereby incurs no re-
sponsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or .In any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or otherwise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destrov

ESD-TR-71-368 MTR-2150

THE DESIGN OF THE VENUS OPERATING SYSTEM

B.H. Liskov

OCTOBER 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 6710

Approved for public release;

Prepared by
distribution unlimited.

THE MITRE CORPORATION

Bedford, Massachusetts

Contract F19(628)-71-C-0002

FOREWORD

This report presents the results of an effort conducted by The MITRE
Corporation, Bedford, Massachusetts, in support of Project 6710 under

Contract F19(628)-71-C-0002. Dr. J. B. Goodenough (ESD/MCDT-1)
was the ESD Project Monitor.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

EDMUND P. GAINES, JR., Colonel, USAF
Director, Systems Design & Development
Deputy for Command & Management Systems

ii

ABSTRACT

The Venus Operating System is an experimental multiprogramming
system which supports five or six concurrent users on a small com—
puter. The system is defined by a combination of microprograms and
software. This paper describes the development of the system, with
particular emphasis on the principles which guided the design.

i1

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

APPENDIX

REFERENCES

INTRODUCTION
SYSTEM DESIGN PRINCIPLES

THE VENUS MACHINE

HARDWARE

THE MICROPROGRAM
Segments
Multiprogramming
Input/Output Channel
Procedures

LEVELS OF ABSTRACTION

EXTENSIONS TO THE VENUS MACHINE
DICTIONARIES
QUEUES
THE POLLER

RESOURCE MANAGEMENT
MANAGEMENT OF SHARED DATA SEGMENTS
MANAGEMENT OF INPUT/OUTPUT DEVICES
Teletypes
Other Devices
LEVELS OF ABSTRACTION
Teletypes
Other Devices

CONCLUSIONS

THE USER ENVIRONMENT

Page

vi

(S

NN wwww

11
12

13
13
14
14
14
15
15
15

18

19

21

Figure Number

N =

LIST OF ILLUSTRATIONS

Flowchart of Microprogram

Levels of Abstraction Supported by the
Venus Microprogram

Levels of Abstraction Supporting Extensions
to the Venus Machine

Levels of Abstraction Used in Resource
Management

vi

o
]
oo L=at]

10

16

SECTION I

INTRODUCTION

The Venus Operating System is an experimental multiprogramming
system for a small computer. It supports five or six concurrent
users, who operate on-line and interactively through teletypes. It
may be distinguished from other multi-user systems in that it primar-
ily caters to users who are cooperating with each other; for example,
a group of users sharing a data base or building a system composed of
cooperating processes.

The operating system was produced to test the following hypothesis:
The difficulties encountered in building a system can be greatly
reduced if the system is built on a machine with the "correct" archi-
tecture. We had in mind a complex system whose data and processing
requirements vary dynamically; for example, an operating system or an
on-line data management system. We felt that machines available today
do not support programming of such systems very well and that consider-
able software complexity is introduced to cope with the inadequacies
of the hardware.

First, it was necessary to build the machine with the correct
architecture. This was done through microprogramming on an Interdata
3 computer; the result is called the Venus machine. The microprogram
contained solutions to some of the time-consuming and complex tasks
performed by such systems as well as useful mechanisms for building
these systems.

Next, it was necessary to use the Venus machine for a software
application. An operating system was selected as the initial effort
because it was the type of system the machine was intended to support
and because it would provide a facility which could support later
applications.

SYSTEM DESIGN PRINCIPLES

Two main principles were followed in the design of the operating
system:

1. The system was built as a hierarchy of levels of abstraction,
defined by Dijkstra.(l) We expected this would lead to a better
design with greater clarity and fewer errors. A level is
defined not only by the abstraction which it supports (for
example, virtual memories) but also by the resources which it

uses to realize that abstraction. Lower levels (those closer
to the machine) are not aware of the resources of higher
levels; higher levels may apply the resources of lower levels
only by appealing to the functions of the lower level. This
reduces the number of interactions among parts of a system
and makes them more explicit. Examples of levels of abstrac-—
tion, which occur in both the microprogram and software, will
by given throughout the paper.

2. The features of the Venus machine were allowed to directly
influence the operating system design in order to evaluate
the effect of the architecture on the development of the
software.

Several other principles also guided the design of the system:

3. Efficiency of performance was always considered when making
design choices but was not the major criterion.

4. Independent users were protected, insofar as possible, from
each other's mistakes by limiting the effects of errors to
the user or group of cooperating users involved.

5. Users were given as much access as possible to the features
of the machine and the software mechanisms developed for the
operating system.

This paper is primarily concerned with the development of the
operating system according to the design principles with special
emphasis on the two main principles. In the next section the Venus
machine features of most influence on the operating system design are
described. The following section explains how these features were
extended to support the design of the operating system. Then the
design of the resource management portion of the system is described.
Finally, the design experience is evaluated. The Appendix gives a
brief summary of the services available to a user of the system, for
the benefit of those who wish to know the external characteristics of
the system.

SECTION II

THE VENUS MACHINE

HARDWARE

The Venus machine was built by microprogramming an Interdata 3,
a small, slow, and inexpensive computer. The microprogram is stored
in a read-only memory; it is limited to 2,000 microinstructions which
imposes fairly severe restrictions on its content.

The Interdata is connected to several teletypes, a card reader,
a printer, and two magnetic tapes. In addition, there is a small
paging disk with a capacity of half a million bytes of storage. The
disk and tapes have direct memory access through hardware selector
channels; the other devices transfer data a byte at a time.

THE MICROPROGRAM

In addition to an ordinary instruction set, the Venus micropro-
gram supports a number of non-standard architectural features. Those
features most important to the design of the operating system will be
briefly described here;™ they are:

segments,
multiprogramming of 16 concurrent processes,

a microprogrammed multiplexed input/output channel, and
procedures.

Segments

Segments are named virtual memories, as defined for MULTICS.(3)
Each segment contains a maximum of 64 thousand bytes of data and has
a 15-bit name; segments are the primary storage structure on the Venus
machine. Segments and core memory are both divided into 236-byte
pages. Information about the contents of each core page is kept in a
single, centralized core-resident table, the core page table, which
is used by the microprogram to map virtual addresses into real addresses.
All references to a given virtual address will be mapped by the micro-
program into the same real address, which implies that segments are
physically shared among processes. In addition, there is no way for
one process to protect a segment from access by other processes. This
restriction makes sense only because the Venus machine was designed co
support a system composed of cooperating processes.

1For a complete description of the Venus machine see Reference 2.

3

Paging on the Venus machine is performed on demand. If the micro-
program cannot locate the desired segment page in the core page table,
it starts a software routine, the page fault routine, to fetch the
page from the disk. The page fault routine acts like a subroutine of
the microprogram, called by the microprogram when needed and returning,
via a special instruction, to the microprogram at the point where the
page fault was detected. There are two main advantages to handling
page faults in software: It permits experimentation with methods of
selecting the pages to be swapped out (at present, the page not refer-
enced for the longest time is removed), and it makes the microprogram
independent of the particular device(s) being used for paging. The
Venus machine is not completely defined without this piece of software;
therefore, we view it as a part of the machine, rather than as a part
of the system to be defined on that machine.

Multiprogrammiqg

A process is defined to be a procedure in execution.2 Sixteen
processes are supported by the Venus machine; each runs on a virtual
machine consisting of an address space and a work area. The address
space encompasses all segments and is the same for all processes,
although only a few segments are of interest to a particular process.
The work area is permanently located in core and contains the state
word(4) of the process; this comprises about 150 bytes of process-related
information including the general registers, program counter, and other
information about the state of the process.

Scheduling of the CPU to the processes is performed by the micro-
program, which enabled us to define a single uniform mechanism for
passing control of the processor among the processes. This mechanism,
used even for indicating the end ofl§npu:/output, is provided by sema-
phores, first defined by Dijkstra. Semaphores are used to control
the sharing of resources and to synchronize processes. Two operations
may be performed on semaphores: P and V. P is performed when a pro-
cess wishes to wait for an event to occur or a resource to become
available. A process performs a V to free a resource; either a pro-
cess or the input/output channel performs a V to signal the occurrence
of an event.

Dijkstra defined a semaphore to be an integer variable and an
associated waiting list. In Venus the waiting list is represented by
a8 queue, and the association is made explicit by defining a semaphore
to be an ordered pair (count, link). If count is negative, its abso-
lute value equals the number of processes on the queue. In this case,

Dennis and Van Horn(4) define a process as follows: "... a process
1s that abstract entity which moves through the instructions of a
procedure as the procedure is executed by a processor."

4

link points to the work area of the process which most recently per-
formed a P on the semaphore; in the work area of that process is a
pointer to the work area of the next newest process on the queue, and
so on. Also in the work area of each process is . priority which can
be set by software. When the time comes to remove a process from the
queue (because a V was performed on the semaphore), the process with
the highest priority is removed; if the highest priority is associated
with more than one process, the one which has been on the queue the
longest is selected.

Process-swapping in Venus only occurs as the result of P's and
V's being performed by processes or by the I/0 channel. All pro-
cesses in Venus are in one of three states:

a single running process,
processes which are ready to rum, or
processes which are blocked.

Ready processes are listed on a special queue, the J queue. Blocked
processes are on queues associated with semaphores. If the running
process performs a P, requesting a resource which is not available or
waiting for an event which has not occurred, it becomes blocked; at
this point, the highest priority, oldest process on the J queue is
selected to be the new running process. If a V is performed, some
blocked process may become ready. If this process does not have higher
priority than the running process, it is added to the J queue; otherwise,
it becomes the running process, and the old running process is added

to the J queue. The running process always has a priority at least

as high as all ready processes.

Thus, when implementing software on the Venus machine, P's and
V's are used to synchronize processes and control shared resources,
and priorities can be assigned to tune the system or accommodate some
favored process.

Input/Output Channel

The microprogrammed input/output channel relieves the software
from all real-time constraints associated with devices by permitting
the specification of I/0 transfers in increments which suit the require-
ment of the devices. The microprogram runs the channel between the
execution of instructions; from the software point of view, the chan-
nel is running simultaneously with the execution of instructions. The
channel signals the completion of I/0 by performing a V on a special
semaphore located in the work area of the process which requested the
transfer. When the process wishes to synchronize with the I/0, it per-
forms a P on this semaphore. Figure 1 shows the relationship of the
channel to the rest of the microprogram.

5

1

Execute
next

instruction
&

Does an
device

require
attention?

no yes

v
Channel
services

device
*

Figure 1. Flowchart of Microprogram

This figure shows the relationship of the channel to the execution
of instructions. The asterisks indicate places where changes in the
states of processes can occur as the result of the performance of P's
and V's,

Procedures

Each procedure is stored in a unique segment. Call and return
instructions switch a process from the instruct_.ns in one procedure
to those in another; they also save and restore part of the state
word at the time of the call. Arguments and values can be passed in
separate segments which are used as push-down stacks, referenced by
push and pop instructions.

Sharing procedures is desirable on the Venus machine; only
reentrant procedures can be successfully shared. The primary support
for reentrant procedures comes from the separate virtual machines.

The call, return, push, and pop instructions provide a reentrant pro-
cedure interface. In addition, no easy way of storing into procedures
is available, and segments provide private and temporary work space
whenever this is needed.

LEVELS OF ABSTRACTION

The design principle of levels of abstraction was applied to the
microprogram as well as to software. Levels supported by the micro-
program and the page fault handler include the virtual memory abstrac-
tion, the virtual machine abstraction, and the I/0 channel which really
provides virtual devices - for example, a card reader which reads an
entire card at once. Figure 2 illustrates the resources and methods
of appeal associated with these levels.

we13oxdoad snusp 3yl £q pajioddng uojloeilsqy Jo sTaaad] °*Z =2ian31g

SUOT3IONIISUT A PuUB g 10s8s82201d ‘ananb p SaUTYOBW TBNIITA
aTqe1l (TeuuRyd pauweis
SPUBWNOD TAUUBYD ‘UOTIONIISUT QIS PIOM SNIBIS IDJAIP “IDTAIP -o1doxdjw) SadFA9P TENIATA

(sseappe jysTp o3ul 23ed pue
sweu juawdas jo sdem) s9Ta
UOF3IONIISUT T4 10 2Juaiajal jusuwBas -03I031FP ‘arqe3 =28ed 2100 sjusm3as

1e°oddy 3O pPOYISH EERFLEEY] UOFIOBIISQY

SECTION III

EXTENSIONS TO THE VENUS MACHINE

The second main design principle was to let the features of the
Venus machine influence the design of the operating system. Thus, we
expected the system to use segments for data and to be composed of a
combination of reentrant procedures and asynchronous processes. A
feeling for the usefulness of such structures can be gained by con-
sidering how they correspond to the way in which the system most con-
veniently performs its work.

We were interested in designing a system to support multiple
users. Each user is assigned a separate virtual machine and is thus
represented as an independent process. To support the users, the
system must perform certain tasks. Some will most naturally be per-
formed on the user's virtual machine by reentrant system procedures,
which use segments to hold user-related data. Other system tasks are
logically asynchronous with the user (for example, running input/output
devices for the system as a whole); these tasks can be made physicailly
asynchronous by assigning them to separate processes. Thus, the work
done by the system can be distributed among the processes so that
logically concurrent and asynchronous tasks can be performed by physi-
cally concurrent and asynchronous processes. This leads to clarity
in the design.

To make the features of the Venus machine more convenient to use,
three levels of abstraction were defined in software. The lowest
level supports the convenient use of segments; the second, communica-
tion between processes; and the third increases the number of processes
available by allowing processes to share a virtual machine. These
levels are described below and are illustrated by Figure 3.

DICTIONARIES

Building a system out of segments containing procedures and data
requires cross-referencing between segments. The Venus machine sup-
ports references to segments by internal segment name, which is not
a very convenient item for a programmer to use or remember. In
addition, internal segment names are dynamically assigned (by the
page fault handler); the programmer needs a static name. Therefore,
external segment names were introduced.

QUFYOBK SNU3) 3Y3l 03 suojsuaixy Jurizoddng uorloBIISqY JO STIAIT 21n813

saanpadoxd
£IBUOTIOFP £q pesSsSadO® SITIBUOFIDIP

gaanpadoad 3urnsnb £q passadde sananb

dITT0d

uofjoei3sqy 3ioddng 03 pas) POYIoW

S9TABUOTI
-2Fp Sujurejuod sjusuldas

sonanb Bujurejuoco sjusw3as

SaUTyorW TENIITA

§301IN0S8SaY

someu jusm3as JBUIIIXD
so8sadoi1d usaMmlaq UOTIED FUNWLOD

89s882001d TBUOTITPPE

UOTIOBI]ISqQY

10

To support external segment names, a mapping between external and
internal names is required. This is supplied by uictionaries, which
are stored in segments. An external segment name is actually a p-ir
of symbolic names: the symbolic name attached to the segment and the
symbolic name of the dictionary which should be used to perform the
mapping. One special dictionary contains the mappings between the
symbolic and internal names of all dictionaries. The two-level exter-
nal name allows related segments to be grouped together (referenced
through the same dictionary) and makes it easier for a user to obtain
unique names.

Dictionaries are intended to be shared and may be referenced
simultaneously. While a dictionary is being changed, it does not con-
tain consistent data. Therefore, each dictionary has an associated
semaphore which is used to control sharing. System procedures access
dictionaries only by calls to special reentrant dictionary procedures,
which perform P's and V's on the associated semaphore where appropriate.
Restricting dictionary access to these procedures guarantees that the
semaphores will be used correctly (for example, every P will eventually
be followed by a V). In addition, it means that the structure of dic-
tionaries can be changed without affecting other parts of the system.

Although dictionaries are primarily intended to support external
segment names, they are actually a general mapping facility and are
occasionally used as such by the system.

QUEUES

Processes which synchronize with each other may also need to send
and receive information. P's and V's permit processes to wait for or
signal the occurrence of events but do not contain any information
about what the event is. A process may be waiting for several differ-
ent events; it must know which event occurred in order to take appro-
priate action. A mechanism was required which allows one process to
send information and the same or another process to receive it.

Queues were selected for this purpose because they supply a chrono-
logical ordering for their elements.

As with dictionaries, only one process at a time may access a
queue; therefore, queues are protected by semaphores, and system access
is restricted to systemprovided queuing procedures, which use senaphores
correctly. All queues are held in a single '"queue segment'; the loca-
tion within this segment of the head of a particular queue is obtained
from an associated ''queue dictionary."

11

THE POLLER

One consequence of distributing the work of the system over sepa-
rate processes is that many processes are required. To have all the
processes we needed with enough left over for the users, we defined
a simple reentrant function called the Poller, which increases the
number of processes available by permitting processes to share a vir-
tual machine. The Poller uses a table to determine which processes
are sharing its virtual machine. It performs a P on the semaphore
controlling all the processes; when it awakens, it polls them until
one recognizes the event which occurred.

The Poller is intended primarily for system use. Every virtual
machine used by the system (five in all) is controlled by the Poller,
which permits the later redistribution of the load if necessary.
Selection of which processes share which virtual machine is made on
the basis of overall system efficiency.

12

SECTION IV

RESOURCE MANAGEMENT

An operating system must manage the resources available on a
machine in such a manner that deadlock is avoided and access to
resources is distributed fairly among the users. Resource management
in Venus will be described in some detail, partly because this is an
interesting part of the operating system and partly as an example of
the use of levels of abstraction and distribution of work among pro-
cesses. Resource management is primarily provided by independent
processes synchronizing and communicating with each other.

If several processes compete freely for resources, deadlock may
result. The simplest example of deadlock is:

Process 1 owns Resource A and is waiting for Resource B.
Process 2 owns Resource B and is waiting for Resource A.

Neither Process 1 nor Process 2 can continue. We wanted to avoid
deadlock in the Venus Operating System, which required careful design
of resource management. Resources to be managed by software include
segments and input/output devices; core, the paging disk, and the CPU
are managed by the microprogram. Virtual machines must also be managed,
but only in the sense that no more can be assigned to users than are
available.

MANAGEMENT OF SHARED DATA SEGMENTS

The management of shared data segments is difficult because gen-
eral solutions which insure that deadlock will not occur tend to pfg—ﬁ)
vent users from running even when the situation is perfectly safe.‘”?®
In our system, users must control their own sharing. The availability
of semaphores provides users with a tool for controlling sharing by
means of an algorithm of their own choosing. If the algorithm does
not work correctly, only the group of users would be affected.

There still remains tne problem of system data structures which
are also available tc users; for example, the dictionaries and the
queues. If such a structure is accessed incorrectly, all users will
suffer. Users are expected to access these structures only through
the systemprovided procedures which use semaphores correctly and
insure that no access errors occur.

13

MANAGEMENT OF INPUT/OUTFUT DEVICES

All input/outpuc devices are managed similarly. The system
retains ownership of the devices; users are given access for well-
defined and limited transactions, which insures that deadlock cannot
occur. The definition of a transaction is different for teletypes
than for the other devices. This section discusses how devices are
managed; the next section explains how levels of abstraction were
used to accomplish the management.

TeletvEes

Our system is on-line and interacctive; and therefore, every user
needs a teletype. One solution is to assign each user a teletype
which he alone can use. This requires one teletype to be designated
the "operator's console" and handled differently, since the system
occasionally needs a teletype to announce special conditions and
errors. Furthermore, it would not be natural for one user to send a
message to another user's teletype or for the system to do so.

The solution chosen adefines the teletype on which a user starts
running as his "preferred" teletype. He can reference this device
symbolically and will ordinarily use it, but he is noc constrained to
do so and is unable to prevent others from using it. A teletype may
be accessed without interruption long enough to write and then read
one line. This insures that the standard use of teletypes, which is
the user responding to the program (with a command) when told to do
S0, can occur without interference from other users.

Other Devices

The card reader, the printer, and the two magnetic tapes are all
in high demand. Because the disk is small, symbolic data can be
maintained in core and disk storage for only a limited time. The
card reader and tapes provide the only reasonable method for entering
large amounts of symbolic data; only on tape can edited symbolic data
'be saved and then retrieved later. The printer provides the only
reasonable method for listing symbolic data. Users will probably
require lengthy access to several of these devices each time they run.
All users will benefit if the devices are handled efticiently.

If users can own these devices, there is no guaraatee that the
devices would be run efficiently. When the system retains control,
we can insure that the devices will be run efficiently and kept busy
as long as there is work to do. For user convenience, the devices
may be accessed without interruption for a fairly long time; for
example, long enough to list the assembly of a user's procedure or
read the cards in a user's card deck.

14

LEVELS OF ABSTRACTION

The system performs device management by providing the user with
virtual devices which are quite different from real devices. This is
accomplished through several levels of abstraction, which are spread
over several processes (see Figure 4).

The lowest level, which the microprogram supplies, provides
devices which have no real-time constraints but which require core
buffers. The first level supplied by software is made up of the Con-
trollers, one for each device. Each Controller is an independent pro-
cess (although one reentrant procedure may serve as several Controllers).
The virtual devices supported by the Controllers have the following
characteristics:

(1) Only a few types of transfers are possible; for example,
exactly one card may be read.

(2) The buffers for the transfer are located in segments.
(3) A transfer on the device may be requested at any time,
regardless of whether the device is currently in use. It

will be performed when the device is available.

(4) The completion of the transfer is signalled by the perfor-
mance of a V on a semaphore specified by the transfer request.

Above the Controller level, teletypes are handled quite differ-
ently from the other devices.

Teletypes

A single reentrant procedure, the Teletype Requester, handles
teletypes. Primarily, it provides an interface between the user and
the Controllers; it runs on the user's virtual machine.

Other Devices

The card reader, printer, and tapes are accessed for much larger
amounts of data than are accepted by the Controllers. The Drivers
support this abstraction. Each Driver handles one device and _s an
independent process. The characteristics supported are:

(1) The device is accessed a segment at a time. The Driver
breaks the segment into buffers acceptable to the Controller.

15

juswadeur) 30INOSIY UL PaIs) UOTIOBIISQY JO S[2Ad7 ‘b 2Ins[g

*8133Jnq 3109 pue

Tauuey) 13peay SIUTE1}BUOD 3WT] OU YIFM SIDJA
10309739 SERLIES & piey ALL ALL ALL -9p Teniifa sizoddns Tauuetd
ade| paume 130xdoidoTm a3y ‘*Q [9ADT

‘swyl B 3B
U0 p3[puey 318 SIIJSUBII 10T

sisanbal {sjuam8as uyr siajing
1811013u0D| |I3TTOIJUOY | IIT[OAIUC)| [LIT[OX U0 [13[T0IJu0)| [13[T01Iuo)| 1yYITM §30TA3p [BNn3iTA 3ioddns

adeg 133jufag | |19peay paep ALL ALL ALL SI13TT013U0) Y] ‘T T9Ad

*813[T013U0)

ad43ara]l ay3 pue (sainpadoad
o ysenbei walsks [aA3] 19y8Ty pue) siasn

. usaMm3aq 3DBJI3jUT ue sepjaoxd

AL 133sanbay adA3ayay syr ‘7z [easq

v ¥ ¥ L

‘W3 B 1B jucw3as B pasgsadoe
1A T(] 13ATI(I9ATI(. 24B UYOTYM SIDJASP [ENIITA
adeg, BERLGSE, 13peay pie) 11oddns siaafaq 9yl ‘4 [aA97

) 4

*SI19ATIQ ¥yl PuUB Si3sn

193sonbayl | 193sanbay 24yl ul3M3Iaq IVEBJIIJUT UB IPTA

133utag | |13pesy paen -cad siaisanbay ayr ¢ Tona
\

: Ly

suorjduny AIFTEIn ‘i1as *I9sn 9y °9 TIAD]

16

(2) The Driver defines the type of synchronization required.
The Card Reader Driver builds segments containing the images
% of card decks whenever there are cards in the hopper; user
synchronization is required only to obtain the completed
segments. The Printer Driver requires notification that a
segment should be printed; no synchronization with the com-
pletion of printing is required. The Tape Driver requires
notification to read or write a segment on a tape; the user
must wait for completion.

Above each Driver is a Requester which primarily provides an
interface between the user and the Driver and runs on the user's vir-
tual machine. These Requesters are more elaborate than the Teletype
Requester. For example, the Printer Requester helps the user build
printable segments, while the Tape Requester is an interactive pro-
cedure which reads and writes segments on tape on user command.

17

SECTION V

CONCLUSIONS

The Venus Operating System has been supporting multiple users for
several months. We estimate six man-years were required to design
and implement the system on the Venus machine;3 an additional two to
three man-years were spent building the machine. This is a surpris-
ingly brief time to develop such a system. We feel this indicates
that the architecture of the Venus machine is suitable for supporting
the programming of complex software and, in fact, reduces the diffi-
culties encountered in building such software.

In addition, the use of levels of abstraction proved a valuable
tool because it provided a way of thinking about the design with
clarity and precision. Errors were uncovered while putting the system
together, but the rule about ownership of resources was for the most
part faithfully followed, minimizing errors resulting from interac-
tions of parts of the system. Such errors as were discovered resulted
from: errors internal to some piece of the system which was not fully
checked out and errors traced to breaking the rule about resources.

An added benefit of levels of abstraction is the ease with which the
system can be modified; its design is clearly stratified so that the
effects of proposed modifications are plainly visible.

3This includes utility functions (Assembler, Editor, and debugging
aids) in addition to operating system functions.

18

APPENDIX

THE USER ENVIRONMENT

A description of the user environment is included to give the
reader an idea of what it is like to run under the operating system.
The user views the system in two ways. First, he must write his pro-
grams; for this he is interested in available data structures and sys—
tem procedures. Then he is interested in running and debugging his
programs.

Programs running under Venus use segments for all storage - pro-
cedures, data, and push-down stacks. Because segments are available
by external name through dictionaries, users can readily share data
and procedures. Users may also synchronize with other users through
queues and semaphores.

The user runs on-line and interactively. He starts up by typing
a command on a teletype and is assigned a virtual machine under the
control of an interactive system procedure called the Loader. The
Loader recognizes many commands; the most important is the "E" com-
mand, which passes control to a specified system, utility, or user
procedure. Important system and utility procedures are the Assembler,
Editor, Tape Requester, and Debugger.

The user submits card decks to be read prior to his rum; he may
access all decks through a command to the Loader. The names of the
segments containing the card deck images are entered in a dictionary
associated with the user. The user may read segments from tape; the
names of these segments are also entered into his dictionary, where
they may be assembled or edited on command. Binding of intersegment
references occurs on completion of assembly.

The user executes procedures by giving the "E" command. Execu-
tion can occur with or without debugging; no change to the procedures
being run is required. Debugging is handled by an interactive system
procedure which runs before the execution of every instruction and
can be used to stop execution at a specified "breakpoint." A dialogue
with the user then commences in which the contents of a segment or his
work area may be displayed and modified, a new breakpoint specified,
and control returned to the interrupted procedure or the Loader.

The system also provides interactive interrupt procedures which
run as the result of exceptional conditions; for example, a stack under-
flow or overflow. They make use of a subset of the debugging commands,
permitting the user to discover the reason for the error, restore his
data, and return to the Loader.

19

When the user has finished running, he saves his symbolic data
on tape and then informs the Loader, which releases his virtual machine
and destroys his symbolic data. His checked-out programs may be entered
in the system and become accessible to others through dictionaries.

20

REFERENCES

E. W. Dijkstra, ""The Structure of the 'THE' - Multiprogramming
System, '"" Communications of the ACM, 11, 5, May 1968, 341-346.

B. J. Huberman, Principles of Operation of the Venus Microprogram,
The MITRE Corporation, MTR 1843 (ESD-TR-70-198), F19(628)-71-
C-0002, Bedford, Massachusetts, May 1970.

F. J. Corbato and V. A. Vyssotsky, "Introduction and Overview of
the Multics Systems, '" Proceedings AFIPS 1965 Fall Joint Computer
Conference, 27, Part 1, Spartan Books, New York, 185-196.

J. B. Dennis and E. C. Van Horn, '""Programming Semantics for Multi-
programmed Computations, " Communications of the ACM, 9, 3, March
1966, 143-155.

A. N. Habermann, "Prevention of System Deadlocks, "' Communications
of the ACM, 12, 7, July 1969, 373-377, 385.

R. C. Holt, "Comments on Prevention of System Deadlocks, ' Com-
munications of the ACM, 14, 1, January 1971, 36-38.

21

Security Classification

DOCUMENT CONTROL DATA-R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report |s classified)
1. ORIGINATING ACTIVITY (Corporate author) 28, REPORT SECURITY CLASSIFICATION
The MITRE Corporation UNCLASSIFIED
. P. O. Box 208 2b. GmOUP
Bedford, Massachusetts 01730
3. REPORT TITLE -
v The Design of the VENUS Operating System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

%. AUTHORI(S) (First name, middle initial, last name)

Barbara H. Liskov

é. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
OCTOBER 1971 27 6
8a. CONTRACT OR GRANT NO. 8. ORIGINATOR'S REPORT NUMBERI(S)
F19(628)-71-C-0002
b. PROJECT NO. ESD-TR-71-368
6710
c. ob. OTHER REPORT NOI(S) (Any other numbers that may bes sssigned
this report)
d. MTR-2150

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Electronic Systems Division, Air Force

Systems Command, L. G. Hanscom Field,
Bedford, Massachusetts 01730

13. ABSTRACT

The Venus Operating System is an experimental multiprogramming system which
supports five or six concurrent users on a small computer. The system is defined
by a combination of microprograms and software. This paper describes the devel-
opment of the system, with particular emphasis on the principles which guided

the design.

DD "X.1473

Security Classification

Security Classification

KEY WORDS

LiINK a

LINK B

LINK C

ROLE wT

ROLE wT

ROLE wT

COMPUTER SOFTWARE

MICROPROGRAMMING
VENUS
VENUS MICROPROGRAM

Security Classification

