
The Design, Usage, and Performance of GRUBER:
A Grid Usage Service Level Agreement based BrokERing
Infrastructure

Catalin L. Dumitrescu & Ioan Raicu & Ian Foster

Received: 9 March 2006 /Accepted: 4 November 2006
Springer Science + Business Media B.V. 2007

Abstract WepresentGRUBER,aGrid Resource Usage
service level agreement (uSLA) based BrokERing
infrastructure, aimed at addressing the challenging
issues that can arise within virtual organizations
(VOs) that integrate participants and resources span-
ning multiple physical administrative domains. In such
environments, participants delegate to one or more
VOs the right to use certain resources subject to local
policy and service level agreements; each VO then uses
those resources subject to VO policy. GRUBER
supports the explicit representation, enforcement, and
management of service level agreements (SLAs)

concerning resource usage (uSLAs) that can serve as
an objective organizing principle for controlled re-
source sharing in distributed systems. uSLAs express
how resources must be used over various time intervals
and represent a novelty for the Grid domain. This paper
provides a detailed overview of the GRUBER infra-
structure, the evolution of its design to improve
scalability, specifically the distribution of the resource
brokering service, and the extended support for
dynamic environments. We also present various results
achieved over time that demonstrate both the utility and
performance of GRUBER under various application
workloads and scenarios.

Key words controlled resource sharing .

Grid computing . resource management
resource and service brokering .

usage service level agreements (uSLAs)

Abbreviations

uSLA usage Service Level Agreement
VO Virtual Organization
RM Resource Manager

1 Introduction

GRUBER is an infrastructure for usage service level
agreements (uSLAs [1]) specification, management
and enforcement in any distributed environment in
general; our implementation has been successfully

J Grid Computing
DOI 10.1007/s10723-006-9060-6

DO09060; No of Pages

This work was carried out for CoreGrid IST project n°004265,
funded by the European Commission.

C. L. Dumitrescu (*)
Mathematics and Computer Science,
Delft University of Technology,
Mekelweg 4, Delft,
2628 CD Delft, The Netherlands
e-mail: c.dumitrescu@ewi.tudelft.nl

I. Raicu
Computer Science Department,
The University of Chicago,
5801 S. Ellis Ave.,
Chicago, IL 60637, USA
e-mail: iraicu@cs.uchicago.edu

I. Foster
Mathematics and Computer Science Division,
Argonne National Laboratory,
9700 S. Cass Ave., MCS/221,
Argonne, IL 60439, USA
e-mail: foster@mcs.anl.gov

deployed and used in Grid environments in particular.
In these environments, each resource owner assigns a
percentage of the owned resources to several con-
sumers. The aggregated virtual resources assigned to
a consumer can be used for the consumer immediate
benefits, may be shared among various consumer’s
entities or provided further to other third parties. In
the third scenario, the first consumer acts as a
middleman for resource aggregation and provisioning.
The total resource amount each consumer can use
depends on the specified uSLAs at each level in the
allocation chain.

The novelty of GRUBER consists in its capability
to provide a means for enforcement of uSLAs and
support for automated agents to select available
resources in a Grid-like environment. It focuses on
computing resources such as computers, storage, and
networks and higher-level services as well as any
Grid services. A VO is a group of participants who
seek to share resources for some common purpose.
From the perspective of a single site in an environ-
ment such as Grid3 [2, 69], a VO corresponds to
either one or several users, depending on local
uSLAs. However, the problem is more complex than
a cluster fair-share allocation problem, because each
VO has different allocations under different schedul-
ing policies at different sites and, in parallel, each VO
might have different task assignment policies. This
heterogeneity makes the analogy untenable when
there are many sites and VOs.

The rest of this paper is organized as follows.
Section 2 introduces the controlled resource sharing
problem, presents the common scenarios for uSLA-
based sharing and related work. Section 3 presents
GRUBER’s design. Next, Sections 5 and 6 cover
GRUBER’s performance in terms of request scheduling
performance and, respectively, its infrastructure perfor-
mance for various scenarios. The paper ends with
acquired lessons during this work and our conclusions.

2 Background Information and Related Work

The thread shared by most Grid environments is
cooperative computing [3, 49]. The goal of these
systems is to provide large-scale, flexible and secure
resource sharing among dynamic collections of indi-
viduals, institutions, and resources, also referred as
virtual organizations (VOs) [4]. In such settings, users

from multiple administrative domains pool available
resources to harness their aggregate power, to benefit
from the increased computing power and the diversity
of these resources, especially when their applications
are customized for a specific computing configuration.

2.1 The Controlled Resource Sharing Problem

Resource sharing within large distributed systems (i.e.,
P2P and Grid environments [13, 68]) that integrate
participants and resources spanning multiple physical
institutions raises challenging issues [2]. Physical
institutions may wish to delegate to one or more
participants the right to use certain resources subject to
local preferences and various agreements; each partic-
ipant then wishes to enable those resources subject to
their own policy.

2.1.1 Usage Service Level Agreements (uSLAs)

We distinguish in our work between “resource access
policies” and “resource usage service level agree-
ments” (uSLAs). Resource access policies typically
enforce authorization rules. They specify the priv-
ileges of a specific user to access a specific resource
or resource class, such as submitting a job to a
specific site, running a particular application, or
accessing a specific file. Resource access policies
are typically binary: they either grant or deny access.
In contrast, resource uSLAs govern the sharing of
specific resources among multiple groups of users.
Once a user is permitted to access a resource via an
access policy, then the resource uSLA steps in to
govern how much of the resource the user is permitted
to consume.

uSLAs [1, 5–8, 41, 47, 50] represent a novelty for
Grids. The term uSLA was introduced to denote this
new type of specific resource sharing for multi-type
resources. In the networking domain, usage policies,
the equivalent of uSLAs, are used to address the
problem of bandwidth allocation based on specific
rules. Such policies are specified by network admin-
istrators and contain the rules for handling different
types of traffic. In this domain, a simple usage policy
example is “Email traffic is only allowed from outside
the company’s servers only from a special mail
gateway” [9–12, 48, 56].

C.L. Dumitrescu, et al.

2.1.2 Motivating Scenarios

In the following sub-sections we describe two
scenarios that motivate controlled resource sharing.
These scenarios are based on the real OSG/Grid3
environment and an external provider example that
outsources service. In each scenario, common uSLA
examples are provided.

2.1.2.1 OSG/Grid3 Scenario OSG/Grid3 comprises
tens of institutions and hundreds to thousands of
individual investigators that collectively control
thousands of computers and associated storage systems
[2, 14]. Each individual investigator and institution
participates in, and contributes resources to multiple
collaborative projects that vary in scale and formality.
Figure1 depicts a graphical representation of the OSG/
Grid3 sites.

In this environment, several VOs exist that are
composed of users with various common interests and
applications. The most common ones are the USAT-
LAS [15], Sloan Digital Sky Survey (SDSS) [16] and
iVDGL [17] VOs. USATLAS VO users simulate the
collisions of protons on protons at 14 TeV for the
LHC experiment; applications are composed of hun-
dreds of embarrassingly parallel programs with large
input/output files. The SDSS VO users measure the
distance to, and the masses of, clusters of galaxies in
the SDSS data set; applications are composed again of
many components, but in this case they have input/
output dependencies [18] that can be represented using
direct acyclic graphs (DAGs). The iVDGL VO per-
forms protein sequence comparisons at increasingly
larger scales (various size workflows in which a
single BLAST job has an execution time of about an
hour – the exact duration depends on the CPU, reads

about 10–33 KB of input, and generates about 0.7–
1.5 MB of output). OSG/Grid3 sites are sponsored
either by different VOs or directly by the hosting
institutions. Each site has uSLAs (expressed sometimes
as “provide 30% of resources to USATLAS”) that are
enforced by means of a local resource manager (RM).

For the OSG/Grid3 scenario, some of the require-
ments include the provisioning of uSLAs capable of
expressing situations both with and without conten-
tion. Usually, resource providers (universities and
laboratories) and resource consumers (scientists from
different domains) want access to these resources
pooled together according to various needs. For
example, before important conferences we have
observed that Grid utilization increases and job higher
contention occurs, while during holidays most of the
time resources are free for long time intervals [19].
These observations presented by Iosup et al. [19]
motivate our introduction of a uSLA that ensures
“whenever there is no contention users can use a
certain amount of resources, while when contention
occurs, the resources are allocated according to pre-
defined rules that provide the incentives for Grid
participation”. The following sharing example is
widely accepted by each individual site (or with
different variations in terms of the amount of
resources provided) [20]: “there are three types of
incoming jobs to balance: one from SDSS, one from
ATLAS, and one from iVDGL. We call them SDSS-
Prod, USATLAS-Prod, and IVDGL. We want SDSS-
Prod and USATLAS-Prod to get an equal share of
available CPUs, but IVDGL should get a small frac-
tion, of the resources, if there is contention (a 4th of
what the others get)”. Figure 2 shows this controlled
resource sharing scenario for the University of
Chicago resources.

Fig. 1 Grid3 site and
instantaneous utilization –
the Grid Catalog Monitoring
System (GridCat) snapshot

The design, usage, and performance of GRUBER

2.1.2.2 Outsourcing Scenario In the second scenario,
we envisage that a community outsources one or
more services to reduce deployment and operational
costs. Community members acquire resources and
services from independent utility providers that
specialize in providing those services (see Fig. 3).
Service examples include scheduling prediction
services, monitoring services (MonALISA [22]), or
community authorization services (e.g., DOE certificate
authority [23]).

In this scenario, the service provider requires that
uSLAs express the amount of resources or services a
consumer is entitled to: “I provide 1000 requests for
service A from 7:00 to 16:00 for 1 month for any
remote user from Grid3” or “I accept 1,000 requests
for service A from 7:00 to 16:00 on date X for any
remote user from Grid3” [24].

2.2 Related Work

Current solutions for controlling resource access in
large scale distributed systems focus mainly on access
control [25, 26, 40], but other groups have started
pursuing various paths for controlled resource sharing

[5, 6, 27–32]. Finer access control mechanisms focus
on enabling resource providers in expressing addi-
tional conditions about access and in delegating
partial control to other entities.

For example, a Community Authorization Service
(CAS) for access control policy management allows
resource providers to maintain ultimate authority over
their resources, but spars them from day-to-day policy
administration tasks (e.g. adding and deleting users,
modifying user privileges) [25]. However, access
control dictates the operations an entity is entitled to
perform on certain resource without any further
restrictions once access is granted. A policy based
scheduling framework for Grid-enabled resource
allocations is under development at the University of
Florida [32]. This framework provides scheduling
strategies that (a) control the request assignment to
Grid resources by adjusting resource usage accounts
or request priorities; (b) manage efficiently resources
assigning usage quotas to intended users; and (c)
supports reservation based Grid resource allocation.

Other methods focus on economic models or match-
making for controlled resource provisioning. In such
cases, mini-markets are built for resource brokering

Fig. 2 Graphical view of
the UChicago resourse
sharing

C.L. Dumitrescu, et al.

and provisioning [27]. The Grid Service Broker, a part
of the GridBus Project, mediates access to distributed
resources by (a) discovering suitable data sources for a
given analysis scenario, (b) suitable computational
resources, (c) optimally mapping analysis jobs to
resources, (d) deploying and monitoring job execution
on selected resources, (e) accessing data from local or
remote data source during job execution, and (f)
collating and presenting results. The broker supports
a declarative and dynamic parametric programming
model for creating Grid applications [33].

Service level agreements [5, 21] focus on estab-
lishing consumer-provider relationships concerning
how resources must be consumed. Such relationships
can be designed by bi-lateral rules that are driven by
internal policies that govern any institution. Cremona
is a such project developed at IBM as a part of the
ETTK framework [31]. It is an implementation of the
WS-Agreement specification and its architecture
separates multiple layers of agreement management,

orthogonal to the agreement management functions:
the Agreement Protocol Role Management, the
Agreement Service Role Management, and the
Strategic Agreement Management. Cremona focuses
on advance reservations, automated SLA negotiation
and verification, as well as advanced agreement
management.

GARA [29] represents modular and extensible
system architecture for resource reservations to
support end-to-end applications QoS. It offers a single
interface for reserving different types of resources
(network, CPU, disk), and focuses on provisioning
generic solutions and algorithms for different types
RMs (the heart of GARA). Reservations (and QoS)
are specified through a specialized C-API, composed
of client and Globus gatekeeper modules (admission
control). GARA has a modular design, based on three
levels: low-level QoS RMs, a QoS component for
interfacing with the low-level RMs and provisioning
the common interface, and high-level libraries (at the

Fig. 3 Service outsourcing scenario

The design, usage, and performance of GRUBER

user level) for leveraging reservation synchronizations
for user-level applications. The prototype supports
only finite reservations, with three main classes of
elements: reservations, resources, and QoS elements.
All communications client-agreement provider are
done through a specific API, and the underlying
language for messages is RSL, with only one QoS
quantitative parameter per reservation request.

SNAP [6] tries to overcome previous resource man-
agements by providing a generic framework instead of
considering specialized classes of resources. The
generalized framework maps resource interactions onto
a well defined set of platform independent service level
agreements. SNAP represents the instantiation of this
generalized framework, which provides a management
infrastructure for such SLAs. However, the entire
approach is generic enough and can be used beyond
the Grid domain and Globus Toolkit in particular. The
SLAs are categorized as: task service level agreements,
resource level agreements, and binding service level
agreements. A minimal number of scenarios are also
introduced, to provide a basic understanding how SNAP
should be used in practice: file transfer service, job
staging with transfer service, resource virtualization.
Also, for agreements realization, a supporting protocol
is introduced that supports the SLA management.

2.3 The Motivation and Challenges for Our Work

None of the above systems fully address the problem
of controlled resource management in distributed
environments where many independent resource
providers share their resources according to some
local preferences and uSLAs. Mechanisms for sup-
porting controlled resource sharing that allow coop-
erative systems to provision resources based on local
preferences become a necessity in such cooperative
environments.

Important challenges for uSLA-based resource
management can arise in practice from: the lack of
automated mechanisms for uSLA discovery, publica-
tion, or interpretation [34] to the complexity of the
uSLA operations to be performed (to satisfy the
requirements [35, 36]) of many resources and users.

Additionally, the increased scale of such distribut-
ed systems calls for minimizing the need for human
supervision and for automating as many management
tasks as possible. In a systemwith over 1,000 providers
and consumers, new uSLAs will occur thousands of

times more often than on a single system. In the same
time, the complexity of necessary services for uSLA
discovery, management and enforcement will increase
with the scale of the system.

Increasing scale in large cooperative computing
also makes performance and reliability challenging
and centralized systems are unlikely to be suitable for
these challenges. A single unified management
approach over hundreds to thousands of consumers
and providers can become a bottleneck in terms of
both reliability and performance. Additionally, in a
wide area network, where short and transient failures
often occur, the centralized approach can become
inaccessible for varying time periods.

3 The GRUBER Infrastructure

GRUBER was specifically developed to address the
problem of uSLA discovery, management and en-
forcement in large Grid environments. GRUBER
addresses issues regarding how uSLAs can be stored,
retrieved, and disseminated efficiently in these types
of distributed environments and has been imple-
mented by means of both the Grid Services (OGSI
[37]) and Web Services (WS [38]) versions of the
Globus Toolkit (GT3, respectively, GT4). The main
elements of GRUBER are:

(a) The GRUBER specification language represents
the medium for uSLA specification. It supports
well-defined semantics and syntax for allocation
specification, as described next.

(b) The GRUBER engine implements various algo-
rithms for detecting available resources and
maintains a generic view of resource utilization
in the Grid. Our implementation is a Grid service
capable of serving multiple requests and based
on all the features provided by the GT3 or GT4
container (authentication, authorization, state or
state-less interaction, etc).

(c) The GRUBER site monitor is one of the data
providers for the GRUBER engine. It is com-
posed of a set of UNIX and Globus tools for
collecting Grid status elements.

(d) The GRUBER site selectors are tools that
communicate with the GRUBER engine and
provide answers to the question: “Which is the
best site at which I can run this job?” Site

C.L. Dumitrescu, et al.

selectors can implement various task assignment
policies, such as round robin, least used, or last
recently used task assignment policies.

(e) The GRUBER queue manager is a complex
GRUBER client that must reside on a submitting
host. It monitors VO policies and decides how

many jobs to start and when. The GRUBER
architecture is presented in Fig. 4.

Planners, work-runners, or application infrastructures
invoke GRUBER site selectors to get site recommen-
dation, while the GRUBER queue manager is respon-

Gruber
engine

ES

Submit Host
Queue

VO
Jobs

GRUBER QM
and V-PEP

GRUBER
Site Sel.

State
Grid Site

R

R

P

H

H

ES = External Scheduler (e.g., Condor G)

Queue State: Hold (H), Pending (P)

GRUBER
Monitor

and S-PEP

3

4

6

5

7
1

2

GRUBER Messages:

1. & 2. Get site states and uSLAs

3. How many nodes are available?

4. Hold or release jobs

5. Select specific site

6. Where can this job run?

7. Run the job

Grid Site

1
GRUBER
Monitor

and S-PEP

1

2

Questions / Answers

Data / Job Submission

Gruber
engine

ES

Submit Host
Queue

VO
Jobs

GRUBER
Site Sel.

State

R

R

P

H

H

ES = External Scheduler (e.g., Condor G)

Queue State: Hold (H), Pending (P)

3

4

6

5

7

1,2

GRUBER Messages:
1. & 2. Get site states and uSLAs
3. How many nodes are available?
4. Hold or release jobs
5. Select specific site
6. What can this job run?
7. Run the job

8. Submit reservations

9. What sites can serve this request?

10. Submit request

WSRF
Client

8

10

9

GRUBER QM
and V-PEP

Questions / Answers

Data / Job Submission / Service Invocation

a

b

Reservations

Fig. 4 GRUBER architec-
ture: low-level resource
(left – A) vs. service
(right – B) brokering

The design, usage, and performance of GRUBER

sible for controlling job starting time. If the queue
manager is not enabled, GRUBER becomes only a site
recommender, without the capacity to enforce any usage
SLA expressed at the VO level. The site level usage
SLA is still enforced by limiting the choices a job can
have and by means of removing a site for an already
over-quota VO user from the list of available sites.

3.1 GRUBER Specification Language: Semantics
and Syntax

Without a well-defined specification language for
uSLAs, their interpretation may become misleading.
We focus in the rest of this section on the GRUBER’s
language semantic and syntax and describe the four
semantics for specifying resource usage constraints
and give examples for the proposed schemas.

3.1.1 GRUBER uSLA Semantics

The uSLA semantics capture how controlled resource
sharing is performed in the scenarios described in
Section 2.1. They are generic enough to be also
applied for any distributed environment. The pro-
posed semantics are named after their goals: no-limit,
fixed-limit, extensible-limit, and commitment-limit
[43–46].

& The no-limit uSLA is a statement that specifies no
limit in acquiring resources. Resources are ac-
quired on a first come first executed basis.

& The fixed-limit uSLA specifies a hard upper limit
on the fraction of resources Ri available to a VOi.
A request to run a job is granted if this limit is not
exceeded, and rejected otherwise. More precisely,
a job requiring J resources is admitted if and only
if Ci+J≤Ri, where Ci denotes the resources
currently consumed by VOi at the site. Note that
an admitted job will always be able to run
immediately, unless the resource owner oversub-
scribes resources, i.e., ΣiRi >1.

& The extensible-limit uSLA also specifies an upper
limit, but this limit is enforced only under con-
tention. Thus, under this SLA a job requiring J
resources is admitted if Ci+J≤Ri or ≤ Cfree, where
Ci and Ri have the same meaning as before, and
Cfree denotes the site’s current unused resources.
Note that because this policy allows VOs to
consume more than their allocated resources,

whether or not an admitted job can run immedi-
ately may depend on the site’s preemption policy.
While the fixed or extensible-limit uSLA are

sufficiently expressive for the OSG/Grid3 scenarios,
their limitations become obvious when moving to the
second scenario.

& The uSLA, the commitment-limit SLA, supports
these more complex queries. It specifies two upper
limits, an epoch limit Repoch and a burst limit
Rburst, and specifies for each an associated
interval, Tepoch and Tburst, respectively. A job is
admitted if and only if (a) the average resource
utilization for its VO is less than the corre-
sponding Repoch over the preceding Tepoch, or (b)
there are idle nodes and the average resource
utilization for the VO is less than Rburst over the
preceding Tburst. Both periods are modeled here
as recurring within fixed time slots. A provider
may grant requests above the epochal allocation if
sufficient resources are available, but these
resources can be preempted if other parties with
appropriate allocations request those resources at
a later stage. More precisely, any job accepted by
the following algorithm is admitted, with the
following definitions:

s site
J Job
Repoch Epoch Usage Policy for VOi at

site s
Rburst Burst Usage Policy for VOi at

site s
BAi Burst Resource Usage for VOi at

site s
EAi Epoch Resource Usage for VOi at

site s
TOTAL upper limit allocation on the

site s

algorithm commitment-uSLA inputs
(J, VOi, s) returns accept/reject

Case 1: site over-used by VOi

1. if EAi > Repoch then
2. return reject
Case 2: sub-allocated site
3. else if Σk(BAk) + J < TOTAL and

BAi + J < Rburst then
4. return accept
Case 3: over-allocated site

C.L. Dumitrescu, et al.

5. else if Σk(BAk) = TOTAL and
BAi + J < Repoch then

6. return accept
7. else
8. return reject

This uSLA can be extended further by introducing
an unlimited number of sharing intervals, which
makes it generic enough to express any requirements
in practice. I note that the fixed limit and extensible-
limit uSLA can be expressed as particular cases of the
commitment-limit uSLA.

Based on the UNIX quota system, the same four
uSLAs can be implemented with success in the case of
disk space. However, in this case once a file is saved at a
site and the allocation is higher than the uSLA limit
allows (extensible-limit and commitment limit cases),
the space cannot be preempted without evicting the
violating files to other sites. Our approach builds on the
UNIX quota system, which prevents one user on a static
basis from using more than his hard limit (but it still
considers soft and hard limits similarly to the commit-
ment limit). More precisely, for scheduling decisions a
list of site candidates that are available for use by a VOi

for a job with disk requirements J is built by executing
the following logic, with the following definitions:

s Site Set
k index for any VO != VOi at site s
IPi Epoch uSLA for VOi at site s
ISPi Instantaneous uSLA for VOi at

site s
IAi Instantaneous Resource Usage

for VOi at site s
TOTAL Upper limit allocation on the

site

algorithm commitment-uSLA_disk inputs
(F, VOi, s) returns accept / reject

Case 1: over hard-limit site by VOi

1. if IAi IPi for VOi at site s
2. return reject
Case 2: over soft-limit site by VOi

3. if IAi > ISPi and time < grace period
for VOi at site s

4. if Σk(IAk) < s.TOTAL-J && IAi + J < IPi

then
6. return reject
Case 3: un-allocated site

7. if Σk(IAk) < s.TOTAL-J&&IAi + J < IPi

then
8. return accept

The final type of resources we consider is a Grid
service (a high-level resource). Because Grid services
are difficult to quantify in term of their utilization (a
weather service and a matrix multiplication service
are difficult to compare in terms of resource con-
sumption without a through service performance
model analysis), we maintain the CPU semantics
unchanged for the uSLAs, but with different utiliza-
tion metrics: instead of CPU utilization, the number of
requests a client can perform on a certain service is
considered for the uSLA algorithms. While this
approach may seem an over-simplification, the end
result is similar: a service provider states by means of
the uSLAs how many requests a certain consumer can
perform on its resources.

Based on this approach, the algorithm to supports
controlled Grid service sharing is identical with the
one for controlled CPU sharing. We present a
variation of the previous algorithm that allows
advance service reservations (a request can be sent
in well in advance of its starting time). It applies a
pre-specified uSLA on each “future” sub-intervals
resulted from a variation in terms of either service
requests or allocations. The algorithm for accepting
new advance reservations is introduced next, where:

R resource request
Aj allocated resources
Rj requested resources
Allocations set of accepted allocations
Requests set of already accepted

requests

algorithm fixed-uSLA_service (R)
returns accept/reject

1. response = accept
Stores availability on the considered

interval
2. S = empty

Identify all requests overlapping
current request

(save their start/end times and
requested quantities)

3. foreach Rj in Requests do
4. if Rj time overlaps R time then

The design, usage, and performance of GRUBER

5. save S, R j.start, + Rj.attributes
6. save S, Rj.stop, − Ri.attributes
7. fi
8. done

Identify all allocations overlapping
current request

(update accordingly previous values
with these allocations)

9. foreach Aj in Allocations do
10. foreach Tj in S do
11. if Aj overlaps Tj then
12. save S, Tj, + Aj.attributes
13. fi
14. done
15. done
Check constraints (available resources)
16. compute Request = R.attributes
17. foreach Availability in S do
Apply the according uSLA algorithm

(hard limit example here)
18. if (Request > Availability)

response = reject
19. done
20. if response == accept then
21. update accordingly one of the

overlapping uSLAs
22. add R to Requests
23. fi
24. return response

3.1.2 GRUBER uSLA Syntax

We have considered two syntaxes for uSLAs: a simpler
one based on allocations and one based on WSLA.

3.1.2.1 Tuple-based Syntax Our starting point for the
first approach is the Maui [51] syntax for specifying
allocations. Maui supports three types of fair share
limits: “at least limit”, “average limit” and “at most
specification”. In the first case, when the utilization
for a group goes below the limit, the mechanism
increases the priority of the jobs from that group
(expressed as a real number preceded by a “+”). In the
second case, whenever the utilization for a group is
different from the limit, the fair share mechanism
either increases the priority (for under-utilization) or
decreases the priority (for over-utilization) of jobs
from that group. In the final case, when the utilization

for a group goes above the limit, the fair share
mechanism decreases the priority of jobs from that
group (expressed as a real number preceded by a “−”).
Our first syntactic form is represented as a set of
allocations of the form:

<resource-type, provider, consumer,
start, epoch-alloc, burst-alloc>

where:

resource-type ::= [CPU | NET | STORAGE]
provider ::= [site-name | vo-name]
consumer ::= [vo-name | (vo-name,

group-name) | ANY]
start ::= date-time | time | *
epoch-alloc ::= (interval | *,

percentage) | −

burst-alloc ::= (interval | *,
percentage) | −

ANY ::= matches any name
* ::= means instantaneous
- ::= means not specified

However, this syntax has its limitations for
expressing sharing rules about resources of different
types. First, this syntax does not provide a mechanism
for specifying monitoring requirements. Second, it
does not support the specification of complex con-
ditions (AND, OR, etc.).

3.1.2.2 Schema-based Syntax We considered as a
second approach, a uSLA syntax based on the WS-
Agreement specification, to take advantage of its
high-level structure SLA specification and of
available parsers. The objective of a WS-Agreement
specification is to provide standard means for
establishing and monitoring service agreements. The
specification draft comprises three major elements: a
description format for agreement templates, a basic
protocol for establishing agreements, and an interface
for monitoring agreements at runtime.

For this syntax, we use a schema that includes
from the WS-Agreement specification support for
resource monitoring metrics and goal specifications
[31, 43, 52]. The resource monitoring metrics
describe how various utilizations must be measured
or how these quantities should be collected from
an underlying monitoring system. A goal specifi-
cation provides support for describing the targeted

C.L. Dumitrescu, et al.

allocations in a form that can be parsed by automated
agents. The other elements (i.e., obligations and han-
dlings violation) were considered beyond the scope
and capacity of current site and VO RMs.

The schema of this grammar is described next.
First, the monitoring metric element defines how a
certain resource metric required for a guarantee
should be measured.

<!– MonitoredMetric –>
<xsd:complexType name="Monitored-

MetricType">
<xsd:attribute name="name"

type="xsd:string" />
<xsd:attribute name="method"

type="xsd:string" />
<xsd:attribute name="type"

type="xsd:string" />
<xsd:attribute name="interval"

type="xsd:integer" />
<xsd:attribute name="notification"

type="xsd:boolean" />
</xsd:complexType>

The next element of the grammar, MonitoredType,
describes the entire list of monitored metrics required
in enabling the considered uSLA. This list can have
zero or more of required metrics that must be
monitored.

<!-– Monitored Type -–>
<xsd:complexType name="MonitoredType">

<xsd:sequence>
<xsd:element name="MonitoredMetric"

type="MonitoredMetricType"
minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name"

type="xsd:string" use="optional" />
</xsd:complexType>

The precondition element identifies of the entity
for which the uSLA is defined and the name of the
provider:

<!–- Precondition –->
<xsd:complexType name="PreconditionType">

<xsd:sequence>
<xsd:element name="consumer"
type="xsd:string" minOccurs="0" />

<xsd:element name="provider"
type="xsd:string" minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

The goal element describes the conditions under
which a resource is provided. It uses the constraint
element for defining conditions (with LessEqual,
Equal and GreaterEqual corresponding to the seman-
tics introduced earlier for – , <space>, + signs, while
Range has a special meaning for time specifications):

<!–- Goal –->
<xsd:complexType name="GoalType">

<xsd:sequence>
<xsd:element type="Constraint-

Type" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
<!–- Constraint –->
<xsd:complexType name="ConstraintType">

<xsd:attribute name="type"
type="xsd:string"
values="LessEqual,Equal,GreaterEqual,

Range" />
<xsd:element name="Metric"

type="xsd:string" />
<xsd:element name="Value"

type="xsd:literal" />
</xsd:complexType>

Similarly to a MonitoringType element, a Guaran-
teeElement contains a list of all guarantees that a
resource provider agrees to when providing the
resources.

<!–- Guarantee Type -–>
<xsd:complexType name="GuaranteeType">

<xsd:sequence>
<xsd:element name="Precondition"

type="PreconditionType"
minOccurs="0" maxOccurs="1" />

<xsd:element name="Goal"
type= "GoalType" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name"

type="xsd:string" use="required" />
</xsd:complexType>

The final element of the grammar is the uSLA
element, which is composed of several monitored and
guarantee elements.

The design, usage, and performance of GRUBER

<!-– usage SLA -–>
<xsd:complexType name="uSLA">

<xsd:attribute name="Monitored"
type="MonitoredType" minOccurs="1"/>

<xsd:attribute name="Guarantee"
type="GuaranteeType" minOccurs="1"/>

<xsd:attribute name="name"
type="xsd:string" use="required"/>

</xsd:complexType>

The OSG/Grid3 example is represented using this
syntax as follows. Three metrics are monitored (by
means of MonALISA, for example, and these values
are retrieved from a certain URL): CPUBurst-Met-
USATLAS, CPUBurst-Met-SDSSS and CPUBurst-
Met-iVDGL.

<uSLA name=”Grid3 uSLA (Scenario 1)”>

<!–- Define Monitored Metrics (and
acquisition mechanism) -–>

<Monitored>
<MonitoredMetric name="CPUBurst-

Met-USATLAS"
method="http://URL/CPU?vo=
USATLAS&t=5"

interval="5" type="%"
notification="true" />

<MonitoredMetric name="CPUBurst-
Met-SDSS"

method="http://URL/CPU?vo=
SDSS&t=5"

interval="5" type="%"
notification="true" />

<MonitoredMetric name="CPUBurst-
Met-iVDGL"

method="http://URL/CPU?vo=
iVDGL&t=5"

interval="5" type="%"
notification="true" />

</Monitored>

<!–- USTALAS minimal allocation -–>
<Guarantee name="CPUBurst-G-USATLAS">

<precondition usage="required">
<consumer name="USATLAS-Prod" />
<provider name="UChicago" />

</precondition>
<goal usage="required">
<Constraint type="GreaterEqual">

<Metric value="CPUBurst-
Met-USATLAS" />

<Value value="40" />
</Constraint>

</goal>
</Guarantee>

<!–- SDSS minimal allocation –->
<Guarantee name="CPUBurst-G-SDSS">

<precondition usage="required">
<consumer name="SDSS-Prod" />
<provider name="UChicago" />

</precondition>
<goal usage="required">
<Constraint type="GreaterEqual">
<Metric value="CPUBurst-
Met-SDSS" />

<Value value="40" />
</Constraint>

</goal>
</Guarantee>

<!–- iVDGL minimal allocation -–>
<Guarantee name="CPUBurst-G-iVDGL">

<precondition usage="required">
<consumer name="iVDGL" />
<provider name="UChicago" />

</precondition>
<goal usage="required">

<Constraint type="GreaterEqual">
<Metric value="CPUBurst-
Met-iVDGL" />

<Value value="20" />
</Constraint>

</goal>
</Guarantee>

</uSLA>

3.2 The GRUBER Engine

The GRUBER engine represents the main component
of the brokering infrastructure. We often call through-
out this paper an engine instance a decision point
(DP). Usually, all the other elements in the brokering
infrastructure rely on communicating with one DP to
perform their operations. It maintains a view of the
available resources at each Grid site and invokes
various algorithms for deciding the resource avail-
abilities. Two main resource types are considered for

C.L. Dumitrescu, et al.

brokering: low-level resources (e.g., CPU, disk, and
network) and services (e.g., any Grid-enabled ser-
vice). The GRUBER algorithms address differently
these two resource types, conditioned mainly by the
local site managers in each case (Condor [53], PBS
[54], etc. for low-level resources vs. ARESRAN [24],
SAML [55], etc for services).

3.2.1 CPU Brokering

GRUBER decides which consumers are best for a
request from a CPU availability point of view by
implementing the following logic:

& If there are fewer waiting jobs at a site than
available CPUs or an extensible-limit uSLA is in
place, then GRUBER assumes the job will start
right away if an extensible-limit uSLA is in place.

& If there are more waiting jobs than available CPUs
or if an extensible-limit uSLA is not in place, then
GRUBER determines the VO’s allocation, the
number of jobs already scheduled, and the RM
type. Based on this information, if the VO is:

– under its allocation, GRUBER assumes that a
new job can be started (in a time that depends
on the local RM type: for example, in the
Condor RM case a 15 min delay period might
be enforced before a newly free machine can
be acquired)

– over its allocation, GRUBER assumes that a
new job cannot be started (the running time is
unknown for the jobs already running)

More precisely, for any job placement CPU-based
decision a list of available sites is built and provided
under the following algorithm to find those sites in
the site set G that are available for use for job J (J
keeps place for job characteristics as well in the
following algorithm) from the VO number I (with the
following definitions):

G Grid Site Set ;
S Matching Site Set;

algorithm get-avail-sites_cpu inputs
(sites G, VOi, job J) returns S

1. S = empty
2. for each site s in G do

Apply one of the algorithms
introduced in Section 4.1

3. if commitment-uSLA_CPU
(J, VOi, s) == accept then

4. add (s, S)
5. else
6. next
8. return S

3.2.2 Disk-space Brokering

Disk space brokering introduces additional complexi-
ties in comparison to CPUs, if job files cannot be
fetched from some generic replication service. If an
entitled-to-resources job becomes available, it is
usually possible to delay scheduling other jobs, or to
preempt them if they are already running. In contrast, a
file that has been staged to a site cannot be “delayed,” it
can only be deleted. Yet deleting a file that has been
staged for a job can result in livelock, if a job’s files are
repeatedly deleted before the job runs. So far, we have
considered a UNIX quota-like approach. Usually,
quotas just prevent one user on a static basis from
using more than his limit. There is no adaptation to
make efficient use of disk in the way a site CPU RM
adapts to make efficient use of CPU (by implementing
more advanced disk space management techniques).
The set of disk-available site candidates is combined
with the set of CPU-available site candidates and the
intersection of the two sets is used for further
scheduling decisions. More precisely, for scheduling
decisions a list of site candidates that are available for
use by a VOi for a job with disk requirements J, in
terms of provided disk space, is built by executing the
following logic, with the following definitions:

G Grid Site Set ;
S Matching Site Set ;
F File requirements for Job J

algorithm get-avail-sites_disk inputs
(F, VOi, G) returns S

1. S = empty
2. for each site s in G do
Apply one of the algorithms

introduced in Section 4.1
3. if commitment-uSLA_disk

(F, VOi, s) == accept then

The design, usage, and performance of GRUBER

4. add (s, S)
5. else
6. next
7. return S

3.2.3 Service (Higher-level Resource) Brokering

For service brokering, GRUBER uses an internal
representation based on a variable time-slot represen-
tation, as introduced by Wolf et al. [57], and each
uSLA has assigned its own time intervals. This
structure allows for an unlimited number of uSLAs
and unlimited or unknown periods of time intervals.
The processing logic we propose and evaluate is
based on the following algorithms, where:

G Grid Site Set ;
S Matching Site Set ;
R Request ;

algorithm get-avail-sites_service
inputs (R, VOi, G) returns S

1. S = empty
2. for each site s in G do
Apply one of the algorithms

introduced in Section 4.1
3. if fixed-uSLA_service

(R) = = accept then
4. add (s, S)
5. else
6. next
7. return S

3.3 Helpers and Provisioning Tools

In addition to the engine, the GRUBER infrastructure
relies on various site monitors and queue managers.
We describe in this section the current solutions
already implemented and available for integration
whenever GRUBER must be deployed.

3.3.1 uSLA Enforcers (PEPs) and Observers (POPs)

We describe here three solutions for site uSLA
management and enforcement as implemented for
GRUBER. The first solution considers the case of

simple RMs unable to handle any type of arbitration
among concurrent requests for resources. The second
solution instead takes in consideration advanced site
managers capable of enforcing complex uSLAs that
must be discovered and published mainly at the Grid
level. The final solution targets instead Grid service
management.

Solution 1 (Stand-alone S-PEP) Our first solution
does not require a usage policy-cognizant cluster RM.
It works with any primitive batch system that has at
least the following capabilities: provide accurate
usage and state information about all scheduled jobs,
job start/stop/held/remove capabilities, and running
job increase/decrease priority capabilities. The S-PEP
sits at the level of the local scheduler(s), checks
continuously the status of jobs in all queues and
invokes management operations on the cluster RM
when required to enforce policy. In more detail, the S-
PEP gathers site uSLAs, collects monitoring informa-
tion from the local schedulers about cluster usage,
computes CPU-usage parameters, and sends com-
mands to schedulers to start, stop, restart, hold, and
prioritize jobs. Our approach provides priority-based
enforcements. The processing logic of our prototype
S-PEP is based on the algorithms presented below,
with the following definitions:

EPi Epoch allocation policy
for VOi

BPi Burst allocation policy
for VOi

Qi Set of queues with jobs
from VOi

BAi Burst Resource Allocation
for VOi

EAi Epoch Resource Allocation
for VOi

TOTAL possible allocation on the
site

Over-quota
job

job of VOj

procedure s-pep
1. while (true) do
2. sleep N # (seconds)
3. foreach VOi with EPi

Case 1: available and BAi < BPi

4. if Σ(BAk)<TOTAL & BAi<BPi &
Qi has jobs then

C.L. Dumitrescu, et al.

5. release job J from some Qi#
(e.g., FIFO scheduling policy)

Case 2: res. contention: fill EPi

6. else if Σ(BAk) == TOTAL & BAi < EPi

& Qi has jobs then
7. if j exists & BAj >= EPj then
8. suspend an over-quota job Qj

9. release job J from some Qi#(e.g.,
FIFO scheduling policy)

10. foreach VOi with EPi

11. if EAi > EPi then
12. suspend jobs for VOi

from all Qi

As a further clarification, BA or EA represents the
share actually utilized by a VO. BP or EP represents
upper values for these utilized shares. When BP or EP
increases for example, the VO is entitled to more
shares starting with the moment of the change. An
important novelty of this S-PEP over a cluster RM is
its capability to keep track of jobs under several RMs
and to allow the specification of more complex usage
policies without the need to change the actual cluster
RM implementation.

Solution 2 (Policy-aware Scheduler) The second
solution was developed and implemented with suc-
cess in the context of the Grid3 environment. We
decoupled the functionalities of the S-PEP in two
major components and mapped to existing solutions:
a standalone site policy observation point (S-POP)
and the cluster RMs for resource allocation control. In
this case, we assume that the cluster RM is able to
enforce by itself the desired usage policies, which are
provided by means of our S-POP module. Examples
of such cluster RMs are Condor [58], Portable Batch
System [59], and Load Sharing Facility [60], widely
used on Grid3 [2]. The S-POP’s main functions are to
optionally provide and to translate to/from the RM
local usage policies, and to monitor the actual
resource utilization. An advantage of this approach
is that the local administrators do not have to use an
additional Grid component in managing their clusters.

At the RM level (sites), owners state how their
resources must be allocated and used by different
consumers. This statement represents the high-level
GOAL an owner (MP) wants to achieve. Site
administrators map MPs to different software RMs’
semantics/syntax. The end product is a set of RM

configuration files, named the local POLICY or
system configuration (SC). For automated consump-
tion, site policies are translated from SCs by auto-
mated tools into an abstract usage policy (AP) set,
i.e., the uSLA syntax/semantic described above. SC
descriptions are collected from the site RM config-
urations, filtered and, after translation, published
through a specific monitoring system, e.g., VO-
Ganglia [61], MonALISA [22, 34] or GRUBER-
SiteMonitor [43, 62].

We have proposed three levels of description for
the statement “site X gives ATLAS 30% over a
month:”

& MP: a description of a site manager’s policy for
the site, e.g., MP (VOs) = “give ATLAS 30% over
a month”. I assume that simple English statements
describe the MP set (site level);

& SC: an RM configuration: SC (VO) = <number of
nodes, scheduler-type, scheduler-config>, which
is written by the site administrators during the RM
configuration process (site level);

& AP: An SC (VO) translated into a uSLA repre-
sentation: AP (VO, Site) expresses SC (VO) in a
scheduler-independent format and is published
through a monitoring tool for resource brokering
or other automated tools (Grid level).

The key point is determining how an SC maps to
an AP. We have achieved this part by providing
specialized SC-translators for each type of SC
supported by a specific RM. The translator parses
the configuration files or queries the resource provider
RM, and outputs the resulting configuration directly
into AP form. The information flow for this process is
captured in a graphical way in Fig. 5.

Solution 3 (Stand-alone Service S-PEP) For Grid
services, the solution adopted for uSLA management
is the ARESRAN prototype. ARESRAN is a GT4
service for uSLA and reservation management,
specification and enforcement at the level of a single
site based on the Globus technology [38]. ARESRAN
prototype is based on the authorization schemes
implemented by the GT4, the so called Policy
Decision Point (PDP). GT4 allows a chain of PDPs
to be configured internally, with each PDP evaluating
to an independent decision [63]. The authorization
engine of the framework then uses a policy combina-
tion algorithm to combine the decisions returned by

The design, usage, and performance of GRUBER

each PDP to render a final decision. We have
developed two specific ARESRAN PDPs – one for
managing service reservations and one for lower level
resource reservations such as compute nodes that are
managed by the WS-GRAM service.

The overall ARESRAN architecture is described in
Fig. 6. Whenever a service request comes in for a
service managed through ARESRAN, its PDP steps
in and verifies if the request is acceptable or not.
Now, at the Grid level, GRUBER collects uSLAs
from all individual ARESRAN services and provides
brokering services for the consumers.

The main components here are the ARESRAN
Service, the ARESRAN PDPs and the ARESRAN
Reservation Database. These three components inter-

communicate in order to ensure that requested
resources or services are used accordingly. The
specific details of these components are:

& Service: represents the reservation and uSLA
engine of our prototype. Every time a new
reservation is requested, the engine is invoked to
verify if the new reservation can be honored. The
verification procedure takes into account various
information from the ARESRAN database and
returns either ACCEPT, DENY or PROBABLY. If
the reservation request is accepted, it is also saved
to the ARESRAN database

& Database: stores reservations, uSLAs as well as
information about the requests in progress. In this
manner, ARESRAN has a complete view about
the utilization of the services and resources that it
manages. So far, the database is implemented only
in memory, but future enhancements target the
usage of a specific database system for this part of
ARESRAN. Every time a reservation is served,
various statistics are also saved, such as: request
time, running time, remote client, etc. Based on such
information, we believe the ARESRAN engine
could later perform probabilistic reservations

& PDPs: authorize based on the rules stored in
database about various services and resources.
Each PDP returns either REJECT or ACCEPT.
When a request is accepted (associated with a
reservation), the database is also updated to reflect
the current state of the managed resourcesFig. 6 ARESRAN architecture

Fig. 5 Correlations MP,
SC, and AP

C.L. Dumitrescu, et al.

3.3.2 Queue Managers and VO-level uSLA
Enforcement

GRUBER queue managers reside at the submission
hosts and are responsible for determining how many
jobs per VO or VO group can be scheduled at a
certain moment in time and when to release them.
Usually, a VO planner is composed of a job queue, a
scheduler, and job assignment and enforcement
components. Here, the last two components are part
of GRUBER and have multiple functionalities. Queue
manager components answer: “How many jobs
should group Gm of VOn V be allowed to run?”
and “When to start these jobs?” The queue manager is
important for uSLA enforcement at the VO level and
beyond. This mechanism also avoids site and resource
overloading due to un-controlled submissions. The
GRUBER queue manager implements the following
algorithm (with the assumption that all jobs are held
initially at the submission host), with the following
definitions:

J = Job Id ;
Q = Job Queue ;
S = Site Set ;
G = All Site Set ;
VO = Mapping Function jobId –> VO

procedure v-pep
1. while (true) do
2. sleep N # (seconds)
3. if Q != empty then
4. get J from Q
5. else
6. next
7. S = get-avail-sites(G, Vo(J), J)
8. if S != empty then
9. release J from Q

3.3.3 Site Selectors

While GRUBER provides mainly brokering services
in distributed environments, we have extended it to
provide also primitive scheduling services. By intro-
ducing site selector tools, the GRUBER infrastructure
is able to select from the set of available sites the best
site for running a job according to various scheduling
policies. The site selector components answer the
question: “Where is best to run next?” These site
selectors are invoked by any automated tool requiring

a list of available sites for scheduling (e.g., Euryale,
KOALA or WMS).

The four main policies implemented by GRUB-
ER’s site selectors are: random assignment (G-RA),
round-robin assignment (G-RR), least-recently-used
assignment (G-LRU), and last-used assignment (G-
LU). Each of these implements the scheduling policy
described by their name. “GRUBER observant” (G-
Obs) is a custom site selector that associates a further
job to a site each time a job previously submitted to
that site has started, but without bypassing the uSLA
enforced at the site. In effect, this fifth site selector
fills up what a site provides by associating jobs until
site’s limit is reached.

3.4 GRUBER Extensions

Several extensions were performed over time for
GRUBER. The most notable ones are described in
this section: high-level resource brokering, distributed
uSLA management, client scheduling among the
decision points and human interfacing for easy system
checking.

3.4.1 DI-GRUBER (DIstributed GRUBER)

Managing uSLAs within environments that integrate
participants and resources spanning many physical
institutions can become a challenging problem in
practice. A single unified uSLA management decision
point providing brokering decisions over hundreds to
thousands of jobs and sites can become a bottleneck
in terms of reliability as well as performance. DI-
GRUBER, an extension of the GRUBER infrastruc-
ture, was developed as a distributed Grid uSLA-based
resource broker that allows multiple decision points to
coexist and cooperate in real-time. DI-GRUBER
targets to provide a scalable management service with
the same functionalities as GRUBER but in a
distributed approach. [64] It is a two layer resource
brokering service (see Fig. 7), capable of working
over large Grids, extending GRUBER with support for
multiple scheduling decision points that cooperate by
periodically exchanging various status information.

3.4.2 WS-Index Service Support

As already described, the ability to bring online a
decision point is important in a large and dynamic

The design, usage, and performance of GRUBER

Grid. Our previous work on GRUBER and DI-
GRUBER [64] assumed a static environment, and
hence did not offer flexibility for dynamic environ-
ments. The DI-GRUBER implementation evolved to
support dynamic environments through the use of the
WS-Index Service [39] provided with GT4; our
solution uses the functionalities offered by the WS-
Index Service for service registering and querying. In
our implementation, each DI-GRUBER decision
point registers with a predefined WS-Index Service
at startup, while it is automatically deleted when it
vanishes. Further, all decision points and clients can

use this registry to find information about the existing
infrastructure and select the most appropriate point of
contact. Whenever we use the term “most appropri-
ate”, we refer to metrics such as load and number of
clients already connected. A decision point schedul-
ing policy can easily be incorporated by each client,
the default one being least-used policy (in terms of
number of clients). In Fig. 8 is presented a view
achieved by means of the GRUBER graphical console.
Now, whenever a new client boots (at a submission
point), it can easily find which decision point is most
appropriate. Also, whenever a decision point stops

Fig. 8 Decision points allo-
cation interface (PlanetLab
experimental testbed)

Fig. 7 DI-GRUBER
architecture

C.L. Dumitrescu, et al.

responding to a client, this client automatically queries
the registry and selects a different point of contact.

We consider that this approach is less error-prone
than the static solution, and, additionally, it offers the
support for dynamically bootstrapping new decision
points whenever new ones register with the WS-Index
Service. While we have not implemented this facility
100% yet, a human operator can easily perform such
an operation (starting a new GT4 container with a DI-
GRUBER decision point web service deployed).
Additionally, if a pool of decision points are main-
tained in background and forced to register with the
WS-Index Service only when needed, the operation
would be 100% automated.

While dynamic DI-GRUBER decision point boot-
strapping might be difficult to automate in a generic
environment, the solution we have devised for such
environments is semi-automatic. Every time a client
fails to communicate or to connect with a decision
point, it registers with the WS-Index Service a request
fault. These faults are then used by a human operator
in order to bring up new DI-GRUBER instances and
stabilize the brokering infrastructure whenever re-
quired. As future work, we envisage to fully automate
such operations by means of Grid technologies where
possible. Such faults can be consumed by a specialized

entity that can dynamically start new decision points
by means of WS-GRAM [38]. For example, in the
OSG/Grid3 scenarios considered here, whenever the
condition for bringing up a new decision occurs, a
special job is submitted to a site and a new container
is started. In a more specialized context, a dedicated
pool of nodes can be used for bringing up such
decision points and really used only when necessary.
For the remaining time, the dedicated pool might be
used for other Grid specific operations.

3.4.3 Human Interfacing

Firstly, accurate monitoring is important if we are to
understand how the framework actually performs in
different situations (the verifier concept introduced by
Dumitrescu et al. [1]). As a first step towards this
goal, we have developed mechanisms for measuring
how resources are used by each VO and by the Grid,
overall. The monitoring tool built for GRUBER is a
graphical interface able to present the current alloca-
tions and uSLAs at each decision point and over in
the managed Grid infrastructure. This interface con-
nects to a decision point, collects the local or generic
view and presents it in an easy to visualize mode (see
Fig. 9).

Fig. 9 Resource allocation
scenario

The design, usage, and performance of GRUBER

In order to avoid gathering large amount of
information, we also introduced various summation
operations for different metrics. Practically from a
human verifier point of view, this interface answers
the question “Are uSLAs adequately enforced by each
decision point?” and “What are the utilizations and
allocations of different resource in the Grid?”

Also, the same graphical interface provides support
for uSLA specification at group, VOs and site levels.
The uSLAs can be entered and associated either with
a site, a VO or a group. In another approach, various
WS-Agreement like rules can be specified that are
parsed when required to perform various job steering
operations. Further, all uSLAs specified at a certain
decision point are distributed to all other decision
points if not marked as private. While this solution
seems not very scalable (when going towards
hundreds of decision points), we assume that for a
Grid one hundred times larger than today Grid3, it is
sufficient. As an additional note, uSLAs are associat-
ed with the decision point that distributed them and
they can be deleted only by the same point of
decision.

4 The Usage of GRUBER

GRUBER was tested with success in the OSG/Grid3
[2] environment for raw resource brokering for
various workloads. Also, we tested its performance
for higher-level (Grid) service brokering on an ad-hoc
Grid testbed deployed on PlanetLab [70].

4.1 Testing Environment

The first testing environment, OSG/Grid3, uses Eur-
yale [65] as a system to run jobs over Grid3/OSG [2].
Euryale uses Condor-G [30] (and Globus’ WS-
GRAM [38]) to submit and to monitor jobs at sites.
It takes a late binding approach in assigning jobs to
sites, meaning that site placement decisions are made
immediately prior to running the job, rather than in an
earlier planning phase. Euryale also implements a
simple fault tolerance mechanism by means of job re-
planning whenever a failure is discovered. We use the
Euryale planner as our job submission tool while also
interfacing with the GRUBER infrastructure. A tool
called DagMan executes the Euryale prescript and
postscript. The prescript calls out to the external

GRUBER site-selector to identify the site on which
the job should run, rewrites the job submit file to
specify that site, transfers necessary input files to that
site, registers transferred files with the replica mech-
anism, and deals with re-planning. The postscript file
transfers output files to the collection area, registers
produced files, checks on successful job execution,
and updates file popularity.

DAS-2 environment [66], a wide-area distributed
computer of 200 Dual Pentium-III computer nodes,
represents a second example where GRUBER can be
used with success. The environment is built out of
clusters of workstations, which are interconnected by
SurfNet, the Dutch university Internet backbone for
wide-area communication, whereas Myrinet, a popu-
lar multi-Gigabit LAN, is used for local communica-
tion. The Grid scheduling technologies used in this
environment are the Sun Grid Engine (SGE) [67] and
KOALA [66]. KOALA has been designed and
implemented by the PDS group in Delft in the context
of the Virtual Lab for e-Science (VL-e) research
project. The main feature of KOALA is its support for
co-allocation, that is, the simultaneous allocation of
resources in multiple clusters to single applications
which consist of multiple components. Applications
are executed using KOALA runners, which must be
installed on all submission hosts and which handles
the reservations of resources and the submission of
applications. KOALA provides different kinds of
runners and each runner is specialized for a different
application type. These runners can be directly
interfaced with GRUBER to take advantage of uSLAs
for scheduling decisions. In this approach KOALA’s
runners invoke the GRUBER site selectors for a
detailed list of available sites and their specific
resources.

4.1.1 Usage Performance Metrics

We have used five metrics to evaluate the effective-
ness of GRUBER raw-resource brokering perfor-
mance over OSG/Grid3. We note that these metrics
are independent, in the sense that a smaller total
execution time does not imply a higher speedup.

& Comp: the percentage of jobs that complete
successfully.

Comp ¼ Completed Jobð Þ�#jobs � 100:00

C.L. Dumitrescu, et al.

& Util: average resource utilization, the ratio of the
per-job CPU resources consumed (ET i) to the
total CPU resources available as a percentage:

Util ¼
X

i¼1::N
ETi

�
#cpus � $ t
� � � 100:00

& Delay: average time per job (DT i) that elapses
from when the job arrives in a resource provider
queue until it starts:

Delay ¼
X

i¼1::N
DTi

�
#jobs

& Time: the total execution time for the workload.
& Speedup: the serial execution time to the Grid

execution time for a workload. We note the
definition implies a comparison between the
running times on similar resources – practically,
the first time in sequence and the second time in
parallel.

For the service brokering tests, we used two
additional metrics: # of requests and response time
(for various operations as presented in Table 3).

4.1.2 Environment Characteristics

We performed all raw-resource brokering experiments
on Grid3 (December 2004), which comprises around
30 sites across the U.S., of which we used 15. Each
site is autonomous and managed by different local
resource managers, such as Condor, PBS, and LSF.
Each site enforced different uSLAs which were
collected through GRUBER-SiteMonitor and used in
scheduling workloads. We submit all jobs within the
iVDGL VO, under a VO uSLA that allowed a
maximum of 600 CPUs in parallel (fixed-limit uSLA
at the VO level). Furthermore, we used also a fixed-
limit uSLA at the VO group level where each
individual workload corresponded to separate iVDGL
group; the uSLA enforced was that any group can not
get more than 25% of iVDGL CPUs, i.e., 150.

For the service brokering measurements, we
deployed 10 ARESRAN managed WSRF services
on PlanetLab. Each instance was providing Grid
service for consumption while GRUBER was used
for service brokering for the ad-hoc Grid. Each
service ran inside a GT4 container on a PlanetLab
node, except the GRUBER and WS-Index Service
that ran inside the same container on a node at the
University of Chicago. PlanetLab nodes were Linux-

based PCs connected to the PlanetLab overlay
network with worldwide distribution. All nodes are
connected via 10 Mb/s network links (with 100 Mb/s
on several nodes), have processor speeds exceeding
1.0 GHz IA32 PIII class processor, and at least
512 MB RAM. The clients were situated in the same
network as the GRUBER node (UofC LAN), and ran
on a node having an Intel Pentium 2.0 GHz processor,
1 GB of memory, 100 MBit/s network connectivity,
and running the Linux-SuSe9.1 OS. We must also
note that the PlanetLab configuration between the two
experiment cases was different (and also a few
months difference in time) – as an explanation for
the difference in the overall performance.

4.1.3 Workloads and Settings

We used a single job type in all our raw-resource
brokering experiments, the sequence analysis program
BLAST. A single BLAST job has an execution time
of about an hour (the exact duration depends on the
CPU), reads about 10–33 KB of input, and generates
about 0.7–1.5 MB of output: i.e., an insignificant
amount of I/O. We used this BLAST job in two
workload different configurations. In 1×1 K, we have
a single workload of 1,000 independent BLAST jobs,
with no inter-job dependencies. This workload is
submitted once. Finally, in the 4×1 K case, the 1×1 K
workload is run in parallel from four different hosts
and under different VO groups. Also, each job can be
re-planed at most four times through the submission
infrastructure.

For service brokering tests, we opted for a simple
service that is provided by default with the GT4
container, namely the SecureCounterService. The
ARESRAN’s PDP was enabled on all the containers
providing services, while each instance of ARESRAN
was also registering with a pre-defined WS-Index
Service in order to support such a dynamic environ-
ment [64]. The GRUBER framework was aware only
of the services registered with this WS-Index Service
and performed brokering and reservations function-
alities only for those. The uSLAs enforced at each site
were fixed-limit uSLAs, with the following values
(allowed number of requests over one hour): 10, 16,
27, 46, 77, 128, 214, 357, 595 and 992 for the #1 case
and 0, 0, 0, 0, 0, 0, 0, 0, 0, 1000 for #2 case. Each
experiment ran for 1 h.

The design, usage, and performance of GRUBER

4.2 Low-level Resource Brokering Example
on OSG/Grid3

In Table 1 are captured the results achieved by run-
ning a BLAST workload composed of 1×500 jobs
[71] over Grid3. Here, in the ideal case, the values
are: Comp = 100, Util = 25.00, Delay = 3,600,
Time = 3,000, and Speedup = 150, while the metrics
were defined by Dumitrescu et al. [71]. In this case
GRUBER besides enforcing the required uSLAs also
provides a 65 value for the Speedup metric in average.
Taking in account that not all jobs in Grid3 were
scheduled using GRUBER, we consider these values
as encouraging from a user perspective that otherwise
might have to wait three times longer when using a
uSLA-unaware scheduling strategy (see Table 2).

We also compared GRUBER-based scheduling
performance with an un-aware of any site uSLAs
scheduling approach. In the first of the two methods,
we use G-LU and G-Obs. The third alternative, S-RA,
associates each job to a site selected at random.
Table 2 shows the results obtained on Grid3 for the
1×1 K workload. We found out that a GRUBER site
selector achieves a three times better performance
than the one of S-RA site selector (resource utilization
drops a few order of magnitude while the total
execution time is almost three times higher).

4.3 Service Brokering Example on an Ad-hoc Grid
Deployed on PlanetLab

Next, we present our experiments with the integrated
GRUBER-ARESRAN infrastructure. Firstly, we con-
sider the case when all service requests are done
through GRUBER, secondly by means of a random
scheduling strategy and thirdly by means of a round
robin strategy. Case #1 shows the worst case
performance of GRUBER as all provided services
are 100% available; this case will favor simple
scheduling approaches, such as the random or round
robin assignment as the scheduling decision is not
very important because of the abundance of available
resources; furthermore, this case also shows the
overhead incurred by the GRUBER assignment in
relation to the trivial random or round robin assign-
ments. Case #2 shows the best scenario for the
GRUBER engine as a large portion of all provided
services are not available; this case will favor a
scheduling approach that can make good and in-
formed decisions regarding the scheduling decisions
in order to utilized the little available resources.
Table 3 depicts the results for the client situated on
the same network as the GRUBER engine for the
three scenarios under the two different cases men-
tioned above.

For case #1, we can observe that the total number
of request completed in one hour differs greatly
between the third approaches (177 vs. 321 and,
respectively, 312). These results show that the
brokering request has taken an important ratio of the
total execution time. However, in case #1, all
provided services were initially 100% available, so
the brokering decisions did not provide any real help
in the beginning. Once the allocations started to fill
up, the importance of GRUBER decisions have
increased, but are not very apparent in the case #1
experiments.

For case #2, we see the potential benefits from the
GRUBER assignments as we were able to obtain
many more assignments than with either the random
or the round robin assignment (150 vs. 59 and 52).
We conclude that the utility of the GRUBER service
brokering engine occurs only when the amount of
services is large, custom advance reservations are
performed in the system or the number of the requests
is large and can potentially exhaust the available
allocations.

Table 1 Results of four GRUBER scheduling policies for
1×500 workloads

G-RA G-RR G-LU G-LRU

Comp(%) 100 100 100 100
Util (%) 34.04 33.19 30.3 25.41
Delay (s) 9,202 6,700 6,169 9,125
Time (s) 28,116 24,225 21,362 20,434
Speedup 67.32 60.22 63.12 51.77

Table 2 G-LU, G-Obs and S-RA strategies: performance for
1×1,000 workloads

G-LU G-Obs. S-RA

Comp (%) 99.3 97.3 60.2
Util (%) 14.56 12.59 0.57
Delay (s) 50.50 62.01 121.0
Time (s) 33,300 40,320 80,280

C.L. Dumitrescu, et al.

5 The Performance of GRUBER

In this section we focus on the experimental results
that capture some of the GRUBER capabilities in
terms of both scalability and accuracy. Of course,
these results are captured for the distributed version of
GRUBER, because they make more sense in this
scenario.

5.1 Testing Environment

For the GRUBER infrastructure performance meas-
urements, we used a simulated Grid environment 10
times larger than the current OSG/Grid3 environment.
The decision points were deployed on PlanetLab,
providing brokering services while no real submission
was actually performed.

5.1.1 Infrastructure Performance Metrics

We use three metrics to evaluate the effectiveness of
DI-GRUBER: Average Response Time (Response),
Average Throughput (Throughput), and Average
Scheduling Accuracy (Accuracy).

We define Response as follows, with RTi being the
individual job time response and N being the number
of jobs processed during the execution period:

Response ¼
X

i¼1::N
RTi=N

Throughput is defined as the number of requests
completed successfully by the service per unit time.
Finally, we define the scheduling accuracy for a
specific job (SAi) as the ratio of free resources at the
selected site to the total free resources over the entire

Grid. Accuracy is then the aggregated value of all
scheduling accuracies measured for each individual
job:

Accuracy ¼
X

i¼1::N
SAið Þ=N

5.1.2 Environment Characteristics and Workloads

For the service brokering measurements of this
section, we used similar settings as in the previous
section for service brokering: 10 ARESRAN man-
aged WSRF services on PlanetLab, while each
instance GRUBER was used for service brokering
for the ad-hoc Grid. Therefore, we skip the testbed
description. Using DiPerF, we performed several tests
where the decision points were exchanging status
information under various settings: predefined bro-
kering mesh connectivity (all, one half and, respec-
tively, one quarter), predefined time intervals (1, 3, 10
and 30 min) and predefined number of decision points
(1, 3 and 10). The workloads were generated by
means of DiPerF, with jobs submission simulation
from 120 submission hosts every 1 s.

5.2 Scalability Test Results and Comparison
with a Peer-to-Peer Service

Figure 10 reports the experiments performed when
using 1, 3 and 10 GRUBER decision points on
PlanetLab. As can be easily observed, the results
show improvement in terms of Throughput and
Response Time when moving from 1 decision point
to 10 decision points. The Throughput metric’s value
increases practically linearly with the number of
decision points, reaching a constant value of 5 queries
per seconds for 3 decision points, while going us up

Table 3 Service brokering performance results (Metrics: number of request, GRUBER infrastructure response time, tested service
response time and tested service reject time)

Scheduling
strategy

GRUBER assg
(#1)

GRUBER assg
(#2)

Random assg
(#1)

Random assg
(#2)

Round robin
(#1)

Round robin
(#2)

of request 177 150 321 59 312 52
GRUBER resp 8.98 9.78 0 0 0 0
Service resp 11.45 16.55 10.84 17.45 11.04 17.06
Reject resp 0 0 8.89 10.18 9.28 9.85

The design, usage, and performance of GRUBER

as 16 queries per second for 10 decision points
(Throughput is defined as the number of requests
completed successfully by the service per time unit).
The results are convincing in our view that moving to
a distributed infrastructure provides real advantages
from a performance point of view.

For convincing the reader that even though DI-
GRUBER’s transaction throughput seems low com-

pared to ‘other transaction processing systems,’ we
have performed further performance studies by means
of DiPerF [72] on PlanetLab for a pretty well know
distributed lookup service. The service chosen for
testing was the PAST application, built on top of the
PASTRY substrate [42].

The chosen setup was very similar to the one used
for DI-GRUBER: the same PlanetLab nodes (around

Fig. 10 DI-GRUBER
throughput and response for
1, 3 and 10 decision points

C.L. Dumitrescu, et al.

120). This time we used five machines for running
permanent PAST nodes, while the rest ones were
brought up dynamically, joining and leaving the
network in a controlled manner. Again, we used only
one of the five nodes as the main contact point (a
node situated at the University of Chicago). The rest
ones were maintained as backup and to mimic the DI-
GRUBER network. The length of the experiment was
again one hour, while each joining node requested a
lookup and an insert operation every second (or, if the
previous operation took more than one second, at
soon as the previous operation ended).

Our performance results are presented in Fig. 11.
The measurements show that for insert and lookup
operations, the PAST’s response time is around 2.5 s
with a higher variance in the beginning (the stabili-
zation of the P2P network), while the throughput goes
as up as 27 transaction per second in average. Also,
the message lost rate for this ad-hoc network was
pretty high compared with the one of DI-GRUBER.
However, the network stabilization delay is higher for
the P2P system (first 18% of the experimental time)
compared with DI-GRUBER clients’ instantaneous

network join operation. Our last note is that all
operations were performed and measured on the local
nodes (insertion followed by lookup); each node was
responsible to propagate the results further (thus the
higher response time and lower throughput than in the
case of employing the continuation).

5.3 GRUBER Accuracy Performance Results

We consider three main directions of analysis: mesh
connectivity, synchronization among decision points
and the total number of decision points of the
infrastructure. For each dimension, our results and
considerations (where available) are captured in the
following sections.

5.3.1 Accuracy with Mesh Connectivity

First, we measure Accuracy of the brokering infra-
structure function of the decision points’ average
connectivity. We consider practically three cases: full
connectivity (all DPs see each other), half connectivity
(DP collects information only from half of all the
others), and one-fourth connectivity (DP collects
information only from a quarter of all the others).
The results were achieved by means of the DI-
GRUBER infrastructure in all three above configu-
rations and are captured in Table 4.

We can observe that the performance of the
brokering infrastructure drops substantially with con-
nectivity degree of each individual decision point; in a

Table 4 DI-GRUBE accuracy function of the infrastructure
mesh connectivity

Connectivity (N=10) Accuracy (%)

N-1 75
N/2 62
N/4 55

Fig. 11 PAST network response time (left axis) and throughput
(right axis) for a variable load (left axis*10) on 120 PlanetLab
nodes

Table 5 DI-GRUBER accuracy function of the exchange time
interval for three decision points

Exchange interval (min) Accuracy (%)

1 89
3 87
10 86
30 83

Table 6 DI-GRUBER accuracy function of the number of
decision points

Number of decision points Accuracy (%)

1 98
3 89
10 75

The design, usage, and performance of GRUBER

nutshell, Accuracy drops almost linearly with clients’
connectivity degree.

5.3.2 Accuracy with Time Exchange Intervals

The results in Table 5 show that, for a three decision
point infrastructure, a three to ten minutes exchange
interval is sufficient for achieving almost 90%
Accuracy. However, this accuracy value depends also
on the number of the jobs scheduled by the decision
points.

5.3.3 Accuracy with the Number of Decision Points

Next, we analyze the performance of DI-GRUBER
and its strategies for providing accurate scheduling
decisions function of the number of decision points in
the infrastructure. Table 6 depicts the accuracy
performance. We note that the accuracy drops to
75% in the 10 decision points case.

6 Summary and Conclusions

We have presented a Grid resource broker, GRUBER,
for representing and managing resource allocation
policies in a multi-site, multi-VO environment.
GRUBER is an infrastructure for uSLA specification
and enforcement in large and dynamic distributed
environments. It is our result of a uSLA-based Grid
management infrastructure as described by Dumi-
trescu et al. [1, 21]. We note that GRUBER is a
complex service: a query to a decision point may
include multiple message exchanges between the
submitting client and the decision point, and multiple
message exchanges between the decision points and
the job manager in the Grid environment. In a WAN
environment with message latencies in the 100 s of
milliseconds, a single query can easily take multiple
of seconds to serve. We expect that performance will
be significantly better in LAN environments. Howev-
er, one of GRUBER’s design goals was to offer
resource brokering in a WAN environment such as
multi-site, multi-VO Grids.

Managing uSLAs within large virtual organizations
that integrate participants and resources spanning
multiple physical institutions is a challenging prob-

lem. Maintaining a single unified decision point for
uSLA management is a problem that arises when
many users and sites need to be managed. We provide
a solution, namely the GRUBER infrastructure with
the distributed variation, to address the question on
how uSLAs can be stored, retrieved and disseminated
efficiently in a large distributed environment. We
believe that all these features presented in this paper
make GRUBER capable working not only in large
Grid environments, but also in dynamic and heavily-
loaded environments where automatic recovery can
be a problem. The novelty of this paper consists in
introducing and evaluating a model and architecture
for generic Grid resource and service brokering,
uSLA-based provisioning and advance reservation in
large distributed and dynamic environments.

Acknowledgments Authors would like to thank Anne Rogers
for her feedback on the material in this paper. Also, we thank
Jens-S Vöckler and Michael Wilde for their support and help in
integrating Euryale and GRUBER. Some of the experimental
results reported in this paper were supported by the NSF
Information Technology Research GriPhyN project, under
contract ITR-0086044.

References

1. Dumitrescu, C., Wilde, M., Foster, I.: A model for usage
policy-based resource allocation in Grids. In: Proceedings of
the 6th IEEE International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY 2005), Stockholm,
Sweden, pp. 191–200 (2005) (ISSN: 0-7695-2265-3)

2. Foster, I., et al.: The Grid 2003 production Grid: principles
and practice. In: Proceedings of the 13th International
Symposium on High Performance Distributed Computing
(HPDC), pp. 236–245 (2004) (ISSN: 1082–8907)

3. Foster, I.: Grid computing. In: Proceedings of the Ad-
vanced Computing and Analysis Techniques in Physics
Research (ACAT). AIP Conference Proceedings, Chicago,
IL, vol. 583, pp. 51–56 (2000)

4. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of
the Grid: enabling scalable virtual organizations. Int. J.
Supercomput. Appl. 2150, 200–222 (2001) (ISBN: 3-540-
42495-4)

5. Dan, A., Davis, D., Kearney, R., Keller, A., King, R.,
Kuebler, D., Ludwig, H., Polan, M., Spreitzer, M.,
Youssef, A.: Web services on demand: WSLA-driven
automated management. IBM Syst. J. 43, 136 (2004)

6. Czajkowski, K., Foster, I., Kesselman, C., Sander, V.,
Tuecke, S.: SNAP: a protocol for negotiating service level
agreements and coordinating resource management in
distributed systems. In: Proceedings of the 8th Workshop
on Job Scheduling Strategies for Parallel Processing,
Edinburgh, Scotland (2002)

C.L. Dumitrescu, et al.

7. Czajkowski, K., Dan, A., Rofrano, J., Tuecke, S., Xu, M.:
WS-agreement: agreement-based Grid service management
(OGSI-Agreement), Version 0. [Online: http://forge.
gridforum.org/projects/graap-wg/document/Draft_OGSI-
agreement_Specification/en/1/Draft_OGSI-Agreement_
Specification.doc]

8. Gimpel, H., Ludwig, H., Dan, A., Kearney, R.: PANDA:
specifying policies for automated negotiations of service
contracts. In: Proceedings of the 1st International Confer-
ence on Service Oriented Computing, pp. 287–302. Trento,
Italy (2003)

9. Verma, D.C.: Policy Based Networking, Architecture and
Algorithm. New Riders, Indianapolis, IN (2000 November)

10. Dumitrescu, C.: INTCTD: a peer-to-peer approach for
intrusion detection. In: Proceedings of the 6th IEEE Inter-
national Symposium on Cluster Computing and the Grid
(CCGrid’06), Singapore (2006) (ISBN: 0-7695-2585-7)

11. Verma, D.C.: Simplifying Network Administration using
Policy based Management. IBM, UK (2004)

12. Lamanna, D., Skene, J., Emmerich, W.: SLang: a language
for defining service level agreements. In: Proceedings of
the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems, Puerto Rico, pp. 100–106. IEEE-CS
Press (2003 May)

13. LHC Computing Project (2004)
14. Ranganathan, K., Foster, I.: Decoupling computation and

data scheduling in distributed data-intensive applications.
In: Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing, pp. 352.
Edinburgh, Scotland (2002) (ISSN: 1082-8907)

15. Mambelli M.: Capone and VDS: The University of Chicago
and Argonne National Laboratory: Chicago [Online: http://
griddev.uchicago.edu/swhome/atgce/] (2005)

16. Annis, J., Kent, S., Szalay, A.: The SDSS-GriPhyN
Challenge Problems: Cluster Finding, Correlation Func-
tions and Weak Lensing. FermiLab, Batavia, IL (2001)

17. Maltsev, N., Sulakhe, D., D’Souza, M.J., Glass, E.,
Rodriguez, A., Syed, M., Zhang, Y.: GNARE: Genome
Analysis Research Environment. 2005, Argonne National
Laboratory/Chicago [Online: http://compbio.mcs.anl.gov/
gnare/gnare_home.cgi] (2006)

18. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: a
virtual data system for representing, querying, and auto-
mating data derivation. In: Proceedings of the Global and
Peer-to-Peer Computing on Large Scale Distributed Sys-
tems Workshop. IEEE Computer Society, Washington, DC
(1995 May)

19. Iosup, A., Dumitrescu, C., Epema, D., Liu, H., Wolters, L.:
An analysis of four long-term Grid traces. Technical
University of Delft: Delft, Netherlands [Online: http://pds.
twi.tudelft.nl/reports/2006/PDS-2006-003/PDS-2006-003.
pdf] (2006)

20. Open ScienceGrid (OSG) [Online: http://www.opensciencegrid.
org/] (2004)

21. Dan, A., Dumitrescu, C., Ripeanu, M.: Connecting client
objectives with resource capabilities: an essential compo-
nent for Grid service management infrastructures. In:
Proceedings of the 2nd ACM International Conference on
Service Oriented Computing (ICSOC’04), pp. 57–64.
New York, NY (2004) (ISSN 1-58113-871-7)

22. Legrand, I., Newman, H., Galvez, P., Voicu, E.,
Cirstoiu, C.: MonALISA: a distributed monitoring service
architecture in computing. In: Proceedings of the High
Energy Physics (HEP), La Jolla, CA (2003)

23. DOE Science Grid PKI Certificate Policy and Certification
Practice Statement (2002)

24. Dumitrescu, C.: ARESRAN: A WSRF-based resource
reservation service for Grid service. [Online: http://
peopellcs.uchicago.edu/~cldumitr/ARESRAN] (2005)

25. Pearlman, L., Welch, V., Foster, I., Kesselman, C.,
Tuecke, S.: A community authorization service for group
collaboration. In: Proceedings of the IEEE 3rd International
Workshop on Policies for Distributed Systems and Net-
works, pp 55–59. Monterey, CA (2002) (ISBN: 0-7695-
1611-4)

26. The Globus Project Team: CAS – community authorization
service. [Online: http://www.nsf-middleware.org/Lists/
Products/DispForm.aspx?ID=47] (2006)

27. Zhao, T., Karamcheti, V.: Expressing and enforcing distrib-
uted resource agreements. In: Proceedings of High Perfor-
mance Networking and Computing Conference (SC’2000),
pp. 62. Dallas, Texas (2000) (ISSN 0-7803-9802-5)

28. Raman, R.: Matchmaking Frameworks for Distributed
Resource Management. PhD Thesis, University of
Wisconsin (2000)

29. Foster, I., Roy, A., Sander, V., Winkler, L.: End-to-End
Quality of Service for High-end Applications. Computer
Communications 27(14). Kluwer, Norwell, MA (2004)
(ISBN: 1375–1388)

30. Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid.
In: Berman, F., Hey, A.J.G., Fox , G. (eds.) Grid Computing:
Making The Global Infrastructure a Reality. Wiley, New
York, NY (2003) (ISBN: 0-470-85319-0)

31. Ludwig, H., Dan, A., Kearney, B.: Cremona: an architec-
ture and library for creation and monitoring WS-Agree-
ments. In: Proceedings of the ACM International
Conference on Service Oriented Computing (ICSOC’04),
New York, NY (2004)

32. In, J., Avery, P., Cavanaugh, R., Ranka, S.: Policy based
scheduling for simple quality of service in Grid comput-
ing. In: Proceedings of the International Parallel & Dis-
tributed Processing Symposium (IPDPS), p. 23. Santa Fe,
New Mexico (2004) (ISBN: 0-7695-2132-0)

33. Buyya, R.: GridBus: A Economy-based Grid Resource
Broker. The University of Melbourne, Melbourne,
Australia (2004)

34. Foster, I.: The Grid: a new infrastructure for 21st century
science. Phys. Today 55(2), 42–47 (2002)

35. Mueller, E.T., Moore, J.D., Popek, G.J.: A nested transac-
tion mechanism for LOCUS. In: Proceedings of the 9th
ACM Symposium on Operating System Principles (SOSP),
Bretton Woods, New Hampshire (1983)

36. Stonebraker, M., et al.: Mariposa: a wide-area distributed
database system. VLDB J. 5(1), 48–63 (1996)

37. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid
Services for Distributed Systems Integration. IEEE Com-
puter 35(6), 37–46 (2002)

38. Humphrey, M., Wasson, G., Jackson, K., Boverhof, J.,
Rodriguez, M., Bester, J., Gawor, J., Lang, S., Foster, I.,
Meder, S., Pickles, S., McKeown, M.: State and events for

The design, usage, and performance of GRUBER

http://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-agreement_Specification/en/1/Draft_ OGSI-Agreement_Specification.doc
http://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-agreement_Specification/en/1/Draft_ OGSI-Agreement_Specification.doc
http://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-agreement_Specification/en/1/Draft_ OGSI-Agreement_Specification.doc
http://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-agreement_Specification/en/1/Draft_ OGSI-Agreement_Specification.doc
http://griddev.uchicago.edu/swhome/atgce/
http://griddev.uchicago.edu/swhome/atgce/
http://compbio.mcs.anl.gov/gnare/gnare_home.cgi
http://compbio.mcs.anl.gov/gnare/gnare_home.cgi
http://pds.twi.tudelft.nl/reports/2006/PDS-2006-003/PDS-2006-003.pdf
http://pds.twi.tudelft.nl/reports/2006/PDS-2006-003/PDS-2006-003.pdf
http://pds.twi.tudelft.nl/reports/2006/PDS-2006-003/PDS-2006-003.pdf
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://peopellcs.uchicago.edu/~cldumitr/ARESRAN
http://peopellcs.uchicago.edu/~cldumitr/ARESRAN
http://www.nsf-middleware.org/Lists/Products/DispForm.aspx?ID=47
http://www.nsf-middleware.org/Lists/Products/DispForm.aspx?ID=47

web services: a comparison of five WS-resource framework
and WS-notification implementations. In: Proceedings of
the 4th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-14), Research Tri-
angle Park, NC, 24–27 July 2005

39. Czajkowski, K., et al.: Grid information services for
distributed resource sharing. In: Proceedings of the 10th
IEEE International Symposium on High Performance
Distributed Computing. San Francisco, IEEE Computer
Society, Los Alamitos, CA (2001)

40. Thompson, M.R., Essiari, A., Mudumbai, S.: Certificate-
based authorization policy in a PKI environment. ACM
Trans. Inf. Syst. Secur. 6(4), 566–588 (2003)

41. Lupu, E.: A role-based framework for distributed systems
management, in Department of Computing. PhD thesis,
University of London, London (1998)

42. Rowstron, A., Druschel, P.: Pastry: scalable, distributed
object location and routing for large-scale peer-to-peer
systems. Lect. Notes Comput. Sci. 2218, 329–350 (2001)

43. Dumitrescu, C., Foster, I.: GRUBER: a Grid resource
SLA broker. In: Proceedings of the 11th International
Euro-Par Conference, pp. 465. Portugal (2005) (ISBN:
3-540-28700-0)

44. The University of Wisconsin: UWMadisonCMS Open
Science Grid Site Policy Page. University of Wisconsin,
Madison, WI (2006)

45. FNAL: FNAL: GPFARM Site Policy for OSG. FNAL
(2006)

46. USCMS: USCMS: OSG Policy Pages. USCMS (2006)
47. Keahey, K., Araki, T., Lane, P.: Agreement-based inter-

actions for experimental science. In: Proceedings of the
10th International Euro-Par Conference, p. 399. Italy
(2004) (ISBN: 3-540-22924-8)

48. Kay, J., Lauder, P.: A Fair Share Scheduler. University of
Sydney, AT&T Bell Labs (1998)

49. Epema, D.H.J., Livny, M., van Dantzig, R., Evers, X.,
Pruyne, J.: A worldwide flock of condors: load sharing
among workstation clusters. Future Gener. Comput. Systs.
12, 53–65 (1996) (ISSN: 0167-739X)

50. Wolf, L.C., Steinmetz, R.: Concepts for reservation in
Advance. Multimed. Tools Appl. 4(3), 255–278 (1997)
(ISSN 1380–7501) (Kluwer)

51. Maui Team: Maui Scheduler. Center for HPC Cluster
Resource Management and Scheduling. [Online: http://
www.clusterresources.com/pages/products/maui-cluster-
scheduler.php]

52. Keller, A., Ludwig, H.: The WSLA framework: specifying
and monitoring service level agreements for web services.
J. Netw. Syst. Manag. 11(1), 57–81 (2003)(Plenum)

53. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor – a hunter
of idle workstations. In: Proceedings of the 8th Interna-
tional Conference on Distributed Computing Systems,
pp. 104–111. San Jose, CA (1998) (ISBN: 0-8186-0865-X)

54. Altair Grid Technologies. OpenPBS (Portable Batch Sys-
tem) (2004) [Online: http://www.openpbs.org/]

55. Foster, I., Kesselman, C.: Globus: a toolkit-based Grid
architecture. In: The Grid: Blueprint for a Future Comput-
ing Infrastructure, pp. 259–278. Morgan Kaufmann, San
Mateo, CA (1998)

56. Dumitrescu, C., Foster, I.: Usage policy-based CPU sharing
in virtual organizations. In: Proceedings of the 5th

International Workshop on Grid Computing, pp.53–60.
Pittsburgh, PA (2004) (ISSN: 1550-5510)

57. Wolf, L.C., Steinmetz, R.: Concepts for resource reserva-
tion in advance. Multimed. Tools Appl. 4(3): 255–278

58. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor
– a distributed job scheduler. In: Berman, F., Hey, A.J.G.,
Fox, G. (eds.) Grid Computing: Making the Global
Infrastructure a Reality. Wiley, New York, NY (2003)
(ISBN: 0-470-85319-0)

59. Henderson, R., Tweten, D.: Portable batch system: external
reference specification. Technical report, NASA, Ames
Research Center (1996)

60. Platform, User’s Guide: (2006)[Online: http://www.
platform.com/Products/Platform.LSF.Family/]

61. Dumitrescu, C.: Policy Research for iVDGL. 2004, The
University of Chicago/GriPhyN Project NSF Review 2004.
Chicago, USA (2004) [Online: http://poeple.cs.uchicago.
edu/~cldumitr/]

62. Dumitrescu, C., Wilde, M., Foster, I.: Usage policies at the
site level in Grid. iVDGL/GriPhyN Project: The University
of Chicago (2006) [Online: http://poeple.cs.uchicago.edu/
~cldumitr/]

63. Constandache, I.: Policy based dynamic negotiation for
Grid services authorization. In: L3S Research Center.
University of Hannover, Hannover, Germany (2005)

64. Dumitrescu, C., Raicu, I., Foster, I.: DI-GRUBER: a
distributed approach for Grid resource brokering. In:
Proceedings of the Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing (SC’2005), p. 38. Seattle,
WA (2005) (ISBN: 1-59593-061-2)

65. Vöckler, J.-S., Wilde, M., Foster, I.: The GriPhyN Virtual
Data System. GriPhyN Technical Report, The University of
Chicago (2002) [Online: http://www.griphyn.org/]

66. Mohamed, H.H., Epema, D.H.J.: Experiences with the
KOALA co-allocating scheduler in multiclusters. In:
Proceedings of the 5th IEEE/ACM Int’l Symp. on Cluster
Computing and the GRID (CCGrid2005), Cardiff, UK
(2005 May)

67. SUN: Sun Grid Engine. (2004) [Online: http://www.sun.
com]

68. LCG: LHC – The Large Hadron Collider Project [Online:
http://lcg.web.cern.ch/LCG/] (2006)

69. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C.,
Tuecke, S.: The Data Grid: towards an architecture for the
distributed management and analysis of large scientific data
sets. J. Netw. Comput. Appl. 23, 187–200 (2001) [Online:
http://www.globus.org/]

70. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.,
Wawrzoniak, M., Bowman, M.: PlanetLab: an overlay test-
bed for broad-coverage services. ACM SIGCOMM Com-
put. Commun. Rev. 33(3), 3–12 (2003) (ISSN: 0146-4833)

71. Dumitrescu, C., Raicu, I., Foster, I.: Experiences in running
workloads over Grid3. In: Proceedings of the Grid and
Cooperative Computing (GCC2005), pp. 274–286. Beijing,
China (2005) (ISBN: 3-540-30510-6)

72. Dumitrescu, C., Raicu, I., Ripeanu, M., Foster, I.: DiPerF:
automated distributed performance testing framework. In:
Proceedings of the 5th IEEE/ACM International Workshop
in Grid Computing (Grid’04), pp. 289–296. IEEE Com-
puter Society, Los Alamitos, CA (2004) (ISBN: 0-7695-
2256-4)

C.L. Dumitrescu, et al.

http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.openpbs.org/
http://www.platform.com/Products/Platform.LSF.Family/
http://www.platform.com/Products/Platform.LSF.Family/
http://poeple.cs.uchicago.edu/~cldumitr/
http://poeple.cs.uchicago.edu/~cldumitr/
http://poeple.cs.uchicago.edu/~cldumitr/
http://poeple.cs.uchicago.edu/~cldumitr/
http://www.griphyn.org/
http://www.sun.com
http://www.sun.com
http://lcg.web.cern.ch/LCG/
http://www.globus.org/

	The Design, Usage, and Performance of GRUBER: A Grid Usage Service Level Agreement based BrokERing Infrastructure
	Abstract
	Introduction
	Background Information and Related Work
	The Controlled Resource Sharing Problem
	Usage Service Level Agreements (uSLAs)
	Motivating Scenarios
	OSG/Grid3 Scenario
	Outsourcing Scenario

	Related Work
	The Motivation and Challenges for Our Work

	The GRUBER Infrastructure
	GRUBER Specification Language: Semantics �and Syntax
	GRUBER uSLA Semantics
	GRUBER uSLA Syntax
	Tuple-based Syntax
	Schema-based Syntax

	The GRUBER Engine
	CPU Brokering
	Disk-space Brokering
	Service (Higher-level Resource) Brokering

	Helpers and Provisioning Tools
	uSLA Enforcers (PEPs) and Observers (POPs)
	Queue Managers and VO-level uSLA Enforcement
	Site Selectors

	GRUBER Extensions
	DI-GRUBER (DIstributed GRUBER)
	WS-Index Service Support
	Human Interfacing

	The Usage of GRUBER
	Testing Environment
	Usage Performance Metrics
	Environment Characteristics
	Workloads and Settings

	Low-level Resource Brokering Example on OSG/Grid3
	Service Brokering Example on an Ad-hoc Grid Deployed on PlanetLab

	The Performance of GRUBER
	Testing Environment
	Infrastructure Performance Metrics
	Environment Characteristics and Workloads

	Scalability Test Results and Comparison with a Peer-to-Peer Service
	GRUBER Accuracy Performance Results
	Accuracy with Mesh Connectivity
	Accuracy with Time Exchange Intervals
	Accuracy with the Number of Decision Points

	Summary and Conclusions
	References

